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Abstract

This thesis deals with the analysis of the real µ problem as a powerful tool for measuring

the stability margins of a system subject to parametric uncertainty. Several algorithms of

varying complexity are proposed for calculating upper bounds of the structured singular

value of a matrix M subject to real parametric uncertainty. Our approach is based on the

projection of the uncertainty set in the most critical direction. This is implicit in the set

of optimal (minimum-norm) unstructured singularising perturbations and is defined by the

pair of singular vectors corresponding to the largest singular value of M . Two relaxations

are considered to simplify the problem. A randomised algorithm is proposed which re-

lies on the partial enumeration of the Zonotope’s vertices for high dimensional problems

when the complete enumeration may not be practical. Applying this bound to our problem

produces a probabilistic lower bound on the structured distance to singularity. The main

results of the thesis are extended to the distance to singularity problems with "correlated"

or nonlinear descriptions of uncertainty. A similar randomised algorithm is proposed for

breaching the gap between the Quadratic Integer Programming (QIP) and its convex relax-

ation which is closely related to the structured singular value problem. It is shown that the

duality gap can be reduced, provided a Reduced Rank Quadratic Integer Problem (RRQIP)

can be solved. Alternatively, a sequence of increasingly tighter bounds can be obtained by

solving a sequence of QIP’s of progressively increasing complexity (and rank). Here, we

present a randomisation algorithm for breaching the duality gap when the full enumeration

is not computationally feasible. The Greatest Common Divisor(GCD) problem to calculate

the nearest common root of a polynomial set under perturbations in their coefficients is also

considered in this thesis. We propose a relaxation technique directly to the Sylvester struc-

ture before converting to the diagonal matrix which is the standard setting for the structured

singular value estimation. This could give an upper bound tighter than the largest singular

value without solving the equivalent µ problem which is potentially large-scale. Several

numerical examples illustrate the main results of this work.
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Chapter 1

Introduction

In the field of control systems, an accurate model is required to analyse and design a feed-

back controller. The quality and accuracy of a model, however, depends on how closely

it describes the real system. Nevertheless, adding unnecessary characteristics can result

in over-complicated models which could dramatically increase complexity and the volume

of computations, limiting the sampling rate of the controller. On the other hand, provided

model uncertainties are small and provided they are not amplified by feedback they could

result in small deviations between the actual and the simulated responses of a system. How-

ever, the presence of uncertainty is always one of the significant difficulties in control sys-

tems analysis and design. A widely used method to control a system is feedback control

which is an interconnection of the plant and the controller in a feedback loop. Therefore,

a designed controller must stabilise the closed-loop system despite the presence of the un-

certainty. At the same time, the controller should fulfil the design objectives in an efficient

way. A good controller should be able to minimise the effect of uncertainties. In robust

control, the largest size of uncertainty that the system can tolerate is critical. This is nor-

mally referred to as the stability radius of the design. The larger the uncertainty that can

be tolerated, the more robust is the control system. As an example, PID (proportional inte-

gral derivative) controllers are simple but effective method in robust control systems. PID

controllers use a control loop feedback mechanism to control process variables and are the

most popular controller in the industry.

In general, deriving a dynamic model of a system is not straightforward since in the real

world systems are non-linear and complex. In most cases, however, a relatively simple lin-

ear time-invariant model which contains modelling error and uncertainties can adequately

describe the behaviour of a system for control purposes at least near equilibrium. A control
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system is then said to be robust if its response is insensitive to model perturbations. Figure

1.1 shows a general feedback framework which can address a general model of uncertain-

ties. In this diagram, M is a transfer function representing the nominal system, and ∆ is a

transfer function representing the uncertainty.

Figure 1.1: A general control system framework

The structure we impose on ∆ affects the stability radius. Ignoring any structure on ∆ is

likely to result in a conservative design. On the other hand, adding a more refined structure

of uncertainty makes the design of the controller difficult and costly. In robust control, we

usually distinguish between Robust analysis and Robust Synthesis. The analysis problem

consists of finding the maximum perturbation that the feedback system can tolerate before

losing stability. The synthesis problem is to design a controller that minimises the effects of

the perturbations or keeps them under an acceptable level. Maximising the robustness of a

system in the presence of unstructured uncertainties has been addressed in the literature(see

[3, 4]). Typically, unstructured uncertainties result in small stability radius compared to

structured uncertainty. Stability analysis when ∆ is a structured matrix (rather than a full

matrix) can be addressed via Structured Singular Value (µ) techniques. In which, the per-

turbations are restricted to a certain class of structured matrices, and the stability radius

is defined as the smallest norm in the perturbation, ∆, that destabilises the system in Fig-

ure 1.1 (denoted as µ∆(M)−1). Unfortunately, in general, µ∆(M) cannot be computed in

polynomial time. In other words, this problem is numerically intractable and can be shown

to be NP-hard in terms of polynomial complexity[5]. One possible way to overcome this

issue is to relax the problem and find reliable convex upper and lower bounds on µ∆(M),

which is sufficient for many practical applications. At present, the standard procedure used

to minimise the upper bound of µ∆(M) is the so-called D-iteration[6] resulting in a convex

upper bound on µ∆. Nonetheless, in theory, the gap between µ∆(M) and its convex upper

bound can be arbitrarily large [7]. This gives rise to another research problem, i.e. to iden-
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tify conditions under which the gap between structured singular value and its upper bound

can be breached [8, 9]. Although, at the present time, there is no general method available

for this purpose, some algorithms have been developed for specific uncertainty classes. The

fundamental disadvantage of these algorithms is their high computational cost which may

dramatically increase as the size of the system grows. In this thesis the approximate GCD

problem is formulated and studied as an application of the µ problem. The study of GCD of

a set of polynomials has been widely studied in recent years. Due to extensive applications

in Control Theory like algebraic control methods, distance to controllability or observabil-

ity, determinantal assignment problems, Robust Control, the stability of dynamic systems

subject to structured perturbations, Linear Systems, Numerical Analysis and other Engi-

neering fields. Another topic which is also the focus of this research is Quadratic Integer

Programming(QIP). QIP is a classical problem which is widely used in various real-world

applications, including control and communications [10]. QIP is also an NP-hard problem

which shares interesting similarities with µ problem. It is shown in this work that this mo-

tivates us in this research to transfer intuition and solution techniques from one problem

domain to the other.

In the following sections, some of the above-mentioned topics and terms are explained

in more details.

1.1 Complexity in optimisation

Computational complexity theory has been a central area of theoretical computer science

since its early development in the mid-1960s[11].The subsequent rapid development in the

next three decades has not only established it as a rich exciting theory, but also shown strong

influence on many other related areas in computer science, mathematics, and operations re-

search. Computational complexity refers to the the amount of communications required to

solve a type of problem by systematic application of an algorithm. Since the size of the par-

ticular input to a problem will affect the amount of computation, measures of complexity

needs to be carried out to identify the effectiveness of the designed algorithms. Hence cat-

egorising the algorithms or problems are a good introduction to identify the computational

complexity.

When discussing complexity, “time” and “space” is often used as the basis for com-

parison. The “time” here is not the actual time, but rather an indication of the number of

computation required to achieve a solution. Due to the fact that the computer hardware is

3



constantly improving, the “time” required to solve a given problem for the same algorithm

will be consequently decreasing. However, the complexity of a problem, which is in fact

the number of steps required to terminate the algorithm, will be always identical regardless

of the processing power improvement. That is the reason why the Complexity is quantified

independent of hardware. It , nevertheless, depends on the methods and algorithms used

to approach the problem. A meaningful way of quantifying complexity is to introduce a

formal model of computationM which specified decision algorithms can be implemented

and to identify various parameters of this model as formal representations of computational

resources. The two most basic computational resources which are studied in complexity

theory are running time and tape (or memory) space [12].

1.1.1 Complexity Classes

The general notion of a complexity class for a model of computationM decides a language

X is defined by TIME t(n) and SPACE s(n) as functions of type (N) → (N).These are

related to a Turning Machine,T model which is theoretically a set of languages, T ∈ T in

time t(n) and space s(n). i.e.,

TIME(t(n)) = {X ⊆ {0, 1} : ∃T ∈ T ∀n(t(n) ≤ t(n)) and T decides X};

SPACE(s(n)) = {X ⊆ {0, 1} : ∃T ∈ T ∀n(s(n) ≤ s(n)) and T decides X};

In general the complexity classes are defined as below,

P Class

The set of problems P contains problems with whose solution-time upper bound scales as a

polynomial function of the input size. P problem is referred to the complexity class in which

the problems can be efficiently solved by a deterministic algorithm (known as solvable or

tractable problems). Other time classes are quadratic time, linear time or exponential time.

Examples of polynomial time algorithms: the "quicksort" algorithm and basic arithmetic

operations such as addition, subtraction, multiplication, division, and comparison.

NP Class

Non-deterministic Polynomial-time, NP complexity, contains problems whose solutions can

be verified within a polynomially scaled upper bound. That does not mean they can be abso-

lutely solved in polynomial time, but given a potential solution, its verity can be confirmed

4



or denied in polynomial time.

NP-Hard class

A problem is NP-hard (nondeterministic polynomial time-hard) if it it can be obtained from

a NP-complete problem that is polynomial time Turing-reducible. It can be said to be "at

least as hard as the hardest problems in NP."

Examples of NP-hard problems: Subset sum problem, traveling salesman problem, halt-

ing problem.

NP-Complete class

A problem is NP-complete (nondeterministic polynomial time-complete) if it belongs to

both NP as well as NP-hard. NP-complete problems can be obtained by transforming every

other problem in NP in polynomial time. NP-complete problems are of note because there

is an apparent correlation between the quick verification of solutions and quick solving of

the problems

Common approaches to solving NP-complete problems are heuristic algorithms and

approximation algorithms.

Examples of NP-Complete problems: graph isomorphism problem, Boolean satisfiabil-

ity problem, knapsack problem, Hamiltonian path problem, travelling salesman problem,

subgraph isomorphism problem, and more. Figure 1.2 shows Euler diagram for P, NP, NP-

complete and NP-hard set of problems.

1.2 Convex and Non-convex Optimisation problems

Having described the complexity class of a problem in previous section, we understood that

NP- Hard problems, in general, cannot be solved in polynomial time. A common practice to

approach these problems, therefore, is to relax them to approximate convex bounds which

are solvable. An optimisation problem is said to be convex if all the constraints are convex

functions and the feasible region (intersection of convex constraints) is a convex region. In

this case, there is only one globally optimal solution which can be calculated efficiently.

In contrast, any optimisation problem with a non-convex constraint or objective function

is called a non-convex problem. Non-convex problems can have multiple feasible regions

and therefore, multiple local optimal points in each region. Determining that a non-convex

5



Figure 1.2: P, NP, NP-complete and NP-hard set of problems

problem is infeasible, the objective function is unbounded or finding the optimum across all

feasible regions can take exponential time.

Convex optimisation problems are considerably more general than linear programming

problems but have the desirable characteristics of linear programming problems. They can

be solved quickly and reliably, even for large-scale problems with thousands of variables.

1.3 Structured Singular Value

In previous sections we described NP-Hard class as an important set of problems which

computational algorithms fail to solve them. We have also described convex sets as solv-

able optimisation problem to which NP-hard problem could be approximated. Here, we

briefly define the structured singular value as a powerful tool for measuring stability mar-

gins of a control system subjected to parametric uncertainty. This problem is NP-hard and

normal solutions to approach this problem is to relax it to a convex bound. All models

used for control design are uncertain to some extent. If uncertainty is small, it can only

induce minor deviations in the system behaviour. System complexity, however, enhances

the uncertainties on some occasions in ways that make the entire system behaviour more

difficult to predict. Even more importantly, uncertainty can jeopardise the stability margin

of the system. Accordingly, the presence of uncertainty in real systems is one of the most

challenging issues of the control design methodology. One of the main objectives in control
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design is to reduce the effect of uncertainty on the stability of the system. Conversely, we

would like to determine the size of the largest perturbation that a system can tolerate before

it loses stability. The effect of uncertainty and modelling errors have been studied by many

researchers (e.g. see [13]).

A control system is considered to be robust if its performance and stability are insensi-

tive to modelling errors. In fact, robust synthesis methods aim to design the controller so

that robust performance in the presence of uncertainties is achievable. In order to analyse

the effect of uncertainty on the behaviour of a system, we need to provide a model of pertur-

bations in the system dynamics. The complexity of the error model, however, can make the

controller unnecessarily complicated and costly. Conversely, unstructured error model can

lead to conservative feedback designs. In control theory, it is typical to classify uncertainty

as structured or unstructured. In unstructured uncertainty, perturbations are allowed to be

any stable n × n transfer function, and then the analysis is carried out by considering the

worst-case scenario. Thus the problem reduces to finding the unstructured perturbation ,∆,

with the smallest H∞ norm (say r) that destabilizes the feedback loop [14] and hence, any

∆ which ‖∆‖∞ < r will not destabilize the system. For a system with transfer function M

this value of r is called the Stability radius and is denoted by γ∆(M). Thus if the norm of ∆

is sufficiently small, then the closed-loop system will be stable. The small gain theorem can

be used to identify how large ‖∆‖∞ can be before it destabilises the closed-loop system.

As discussed earlier, unstructured uncertainty is, in general, a special class of pertur-

bations and may result in a conservative design. In most cases, only a few entries of the

transfer function or state-space model contain perturbations and thus, only a few entries in

∆ are subjected to uncertainty. In that case, the remaining entries in ∆ take zero value.

We particularly consider block-diagonal structures in this work which can be described by

repeated full blocks and scalar blocks:

∆ = {diag [δ1Ir1 , ..., δSIrs ,∆1, ...,∆F ]} (1.1)

where δi ∈ C (or R), ∆j ∈ Cmj∈mj and Iri is the ri × ri identity matrix.

The problem of maximising the robust stability radius of systems subject to structured

uncertainty has been widely investigated in the literature, and has led to the development

of µ-analysis and synthesis techniques [15, 16, 3, 14, 17, 18, 9]. The Structured Singular

value (µ) is a generalisation of the singular value of a matrix. Similarly to QIP problem,

the general solution to this problem is also NP-hard [19, 5] which means that for any given
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algorithm to compute µ, there will be “worst-case” problems for which the algorithm is un-

able to find the optimal solution in polynomial time. In practice, the problem can be relaxed,

and upper bounds are often used, which may give sufficiently robust stability and perfor-

mance margins for certain simple uncertainty structures. This class of problems, however,

is too small for most practical applications [9]. In theory, the gap between µ solution and

its convex upper bound can be arbitrarily large [7]. Therefore, breaching the gap between µ

and its upper bound can be highly beneficial. Authors of [9, 20, 21, 8] conducted valuable

research which provides realistic estimates of the stability radius and fast algorithms. The

research area is still active for the derivation of tighter bounds and improved algorithms for

its calculation.

In this research several algorithms of varying computational complexity is proposed for

calculating upper bounds of the structured singular value (equivalently lower bounds of the

structured distance to singularity) of a matrix M subject to real parametric uncertainty. Our

approach is based on the projection of the uncertainty set in the most critical direction. This

is implicit in the set of optimal (minimum-norm) unstructured singularising perturbations

and is defined by the pair of singular vectors corresponding to the largest singular value of

M . Two relaxations are considered to simplify the problem. The first leads to the maximi-

sation of a convex quadratic function under box constraints. The second relaxation, which is

computationally more demanding but produces tighter bounds, results in a geometric prob-

lem in the complex plane involving the intersection of a Zonotope with a parametric family

of Apollonius circles. For problems of low or medium complexity, this can be solved via

the complete enumeration of the Zonotope’s vertices, e.g. by applying the computationally

efficient "reverse enumeration" algorithm. For high dimensional problems, this approach

may not be practical and a randomised algorithm is proposed as an alternative which relies

on the partial enumeration of the Zonotope’s vertices. The convex hull of these partially-

enumerated vertices approximates the Zonotope within a probabilistic Housedorff distance

bound. Applying this bound to our problem produces a probabilistic lower bound on the

structured distance to singularity (equivalently a probabilistic upper bound on the structured

singular value). The main results of this part of thesis are extended to the distance to sin-

gularity problems with "correlated" or nonlinear descriptions of uncertainty. The results are

illustrated with several numerical examples.
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1.4 Quadratic Integer Programming

Quadratic Integer Programming (QIP) problem is a classical optimisation problem with

many applications. For example Model Predictive Control (MPC), an advanced method of

control with application in many engineering fields like process and power systems is based

on optimising a performance index over a finite time-horizon on the current time slot. One

of the main ideas behind MPC is its ability to formulate and solve a QIP problem where

the constrains on control parameters can be formulated as linear inequalities. Apart from

its unique applications, QIP share common characteristics with µ-problem which motivates

their simultaneous study in this thesis. In terms of complexity, they both are NP-hard prob-

lems. Both have convex upper bounds and have an equivalent dual problem. And finally,

in both problem there are conditions to breach the duality gap. The algorithms of solv-

ing these problems are quite similar. Thus, developing an algorithm in one problem could

be adapted in the other problem. There are some other common characteristics that also

motivate studying both problems in parallel.

As mentioned above, QIP, however, like µ-problem, cannot be solved in polynomial

time, i.e. it is an NP-hard problem. A way to overcome this is to convert QIP to an equiv-

alent convex problem or relax it to a convex problem and optimise ideally tight bounds.

Many solvable cases of QIP have been presented in the literature. For instance, if matrix,

Q, in the QIP problem (maxxTQx : x ∈ {−1, 1}) is of rank one the solution can be found

by inspection [22]. This is also true when Q has non-positive off-diagonal entries [23],

or when the system graph is associated with the Max-Cut problem [24]. All these special

cases have their own complexity and have been investigated by numerous researchers. For

example, imposing restriction on equivalent system’s graphG(Q) results in solvable classes

of the problem. Such special cases include the pseudo-Boolean program [25], cases where

the graph G(Q) is series-parallel [26] or when the graph G(Q) is a binary tree [26]. Vari-

ous other special solvable cases of the QIP problem have been defined in the literature (see

Chapter 10 of [27] for a survey of the methods that solve some special cases associated with

the QIP problem). In all of these cases, the solution of the QIP problem is obtained by meth-

ods appropriate to each special case. The general solution to the problem, however, remains

open. The low-Rank Quadratic Optimisation problem is another well-known special class

of QIP problems in the literature which can be solved via special algorithms of polynomial

complexity [22], [28], [29] and [30]. This class of problems is still an active area of research

with many applications, e.g. in the area of renewable energy. Another application is MPC

9



optimal Control. In this case, the optimisation problem needs to be solved strictly within

the sampling interval of the control system. Therefore, since the QIP problem is solved

on-line, it is critically important that the real-time algorithm can efficiently track the pro-

cess and does not impose delays to the control loop. Although powerful hardware in recent

computers enables a faster sampling rate, control systems also become more complex with

hundreds of control loops. For example in large scale networked systems typical objective

matrices may have thousands of entries. Note that often the exact solution to the problem is

not required and tight bounds are acceptable.

One of the contributions of this research is to introduce a fast track method for finding a

convex upper bound with reduced computational cost. A condition to improve the accuracy

of the solution of QIP problem is also derived by breaching the gap between optimal solution

and its convex relaxation bound. This also helps to establish a more time-efficient algorithm

by reducing the computation at each iteration. In the thesis, a randomised algorithm is

proposed for calculating an upper bound of the QIP problem. First, a convex relaxation of

the problem was defined, the solution of which produces an upper bound to the original

problem. The duality gap of the problem, i.e. the distance between the convex upper bound

and the optimal solution, can be reduced which is equivalent to the full enumeration of the

vertexes of an specific convex polygon called Zonotope. Although this can be achieved

by a polynomial-time algorithm, the computation may still be intractable for problems of

high-dimensionality. In the present research, a randomisation algorithm is presented for

breaching the duality gap when the full enumeration is computationally not feasible. It

is shown that even with incomplete enumeration improved probabilistic bounds may be

obtained. The bound may be further improved by combining the proposed randomised

approach with the solution of a sequence of deterministic QIP problems of increasing rank.

This approach is useful in practice since it can exploit fully the available computational

resources to obtain the tightest bound possible with a pre-specified probability.

1.5 Greatest Common Divisor(GCD)

Finally, as a practical application of µ problem, we can name the Greatest Common Divisor

(GCD) problem. One of the common methods to approach GCD problem is converting it

to an equivalent µ problem in order to enable implementing various available algorithms in

µ field. This will, however, increase the dimensions and consequently the computational

expenses of the problem dramatically. Therefore, it can effectively illustrates the impor-
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tance of low cost algorithms to calculate the solution. The study of the GCD of a set of

polynomials has several applications in Control Theory (e.g. algebraic control methods,

determinantal assignment problems, distance to controllability or observability), Robust

Control (stability of dynamic systems subject to structured perturbations), Linear Systems,

Numerical Analysis and other Engineering fields and hence has received considerable inter-

est in recent years. Computation of the GCD is a non-generic problem. Hence, the concept

of "approximately coprimeness" can be defined as a distance from the nearest common di-

visor in an appropriate sense. Similar definition of "almost zeros" was first introduced in

[31]. This definition has been reformulated to the notion of "approximate GCD" which is, in

fact, based on the relaxation of the conditions defining the exact GCD, see [32], [33], [34],

[35], [36], [37] and references therein. [38] proposed one of the most recent methods for

calculating the distance of a set of co-prime polynomials to the set of polynomials sharing

a common root. The technique was based on singular values to define and solve approxi-

mate GCD problems by converting the corresponding Sylvester matrix in GCD problem to

a diagonal matrix compatible to µ problem.

A disadvantage of this method is that the size of equivalent objective matrix in µ prob-

lem will increase considerably. This will significantly increase the computational expenses

of the corresponding µ problem. One way of overcoming this issue, which has been noted

in most of references mentioned earlier, is to ignore the structure of the problem and use

the singular value as an approximate measure of singularity of the corresponding Sylvester

resultant matrix(which implies loss of coprimeness). This, however, gives a loose bound

which is far from the optimal solution in many cases.

In this research, we propose using a relaxation approach to perturbations with Sylvester

matrix structure. This gives an upper bound tighter than the largest singular value while

avoiding calculating the structured singular value of a high-dimensional problem. The ad-

vantages of this approach are illustrated via a numerical example.

1.6 Thesis Aims and Objectives

The research starts with working on QIP problem and studying the typical algorithms used

to find feasible solutions. It is then expanded into the area of convex relaxations and explores

the limitation of current techniques in these areas. The second main topic in this research

involves the efficient computation of the Structured Singular Value(SSV) or µ problem and

its application in robust control.
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The efficient computation of the the µ problem can be extended to efficient algorithms

in the area of robust control synthesis using H∞ methods, for which ad-hoc algorithms are

currently applied (D-K iteration). In this work, it is also aimed to exploit the similarity

between these two problems in order to develop an efficient algorithm for a large class of

convex relaxation problems.

Another topic in this research is the problem of calculating the nearest common root of

a set of polynomials that are under perturbations in their coefficients which is considered as

an application of the µ problem. It is aimed to generalise a convex approach to find an a

cost efficient upper bound on GCD which is tighter than the largest singular value.

The main contribution of this research can be summarised as follows:

• Propose a cost-efficient method for breaching the gap between the QIP problem and

its convex relaxation.

• Propose a probabilistic method of calculating a convex upper bound on µ based on the

intersection of the associated convex polygon (so-called Zonotope) with a parametric

family of Apollonius circles.

• Extend the main results of the proposed method to the distance to singularity prob-

lems with "correlated" or nonlinear descriptions of uncertainty.

There are also some minor contributions which can be itemise as follows:

• Improved the convex bound by combining the proposed randomised approach with

the solution of a sequence of deterministic QIP problems of increasing rank

• Propose an ellipse of minimum area which contains all vertices of the Zonotope to

obtain a lower bound on the distance to singularity; and propose a method to cal-

culate an enclosing ellipse directly from the Zonotope’s generating matrix without

enumerating the vertices

• Establish an easy-computable bound which gives a tighter bound but the computation

is immediate.

• Propose a relaxation methods to find a cost efficient upper bound on GCD which is

tighter than the largest singular value.

The outcome of this work is two Manuscripts:
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• "Structured singular value of matrices with real parametric uncertainty: Deterministic

and Probabilistic algorithms" submitted to International Journal Of Control Journal

and is under the review.

The other one is titled

• "A randomised algorithm for breaching the gap between the quadratic integer pro-

gramming problem and its semidefinite relaxation"ready for submission.

The structure of this report is as Follows:

Chapter 2

This chapter starts with an introduction to QIP problems. A brief background and lit-

erature review is given in this chapter. The concept of convex relaxation methods, SDR,

RRQIP, Zonotope is also reviewed. A novel randomised algorithm is proposed. This is

the first contribution in this work which is itemised as "Propose a cost-efficient method for

breaching the gap between the QIP problem and its convex relaxation" above. The main idea

of this algorithm is discussed in detail. The advantages and disadvantages of this method

are also evaluated. In addition, a probabilistic sufficient condition under which the gap be-

tween QIP problem and its convex upper bound can be breached is derived. In this chapter

the behaviour of the Zonotope enumeration algorithm is also studied to estimate the prob-

ability that the optimal solution occurs is vertices with specific flatness characteristics.A

minor contribution of "Improved the convex bound by combining the proposed randomised

approach with the solution of a sequence of deterministic QIP problems of increasing rank"

will be introduced in this chapter. A numerical experiment finally included to show the

applicability of the proposed method.

Chapter 3

In this chapter, some preliminaries needed for chapter 4 is introduced . µ analysis is

briefly described. The special conditions where a 1 × 1 block of the matrix takes vari-

ous structures is also discussed in this chapter. This section also gives several definitions

related to the structured singular value and the structured distance to singularity for real,

parametric, diagonal uncertainty structures. This is mainly based on two main references,

[6] and [9]. Detailed proofs of the main materials used in subsequent chapters are included,

where appropriate. Some of the proofs have been transferred to Appendix to improve the

readability of the Chapter.
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Chapter 4

In this chapter two deterministic and probabilistic approaches are introduced to calcu-

late upper bound on µ. First the µ problem is defined for real set of uncertainty and then

the distance to a singularity is formulated as a quadratic optimisation problem. A deter-

ministic upper bound on µ via solving an optimisation problem is then derived. Using the

randomised method introduced in chapter 2, a probabilistic upper bound on the structured

singular value of a matrix is derived. Numerical experiment are included in each section to

show the validity of the proposed methods.

The preliminary results of this Chapter apply to the general case for which the multi-

plicity of the larger singular value of M is an arbitrary integer. The (generic) case m = 1 is

analysed in detail. This allows for a concrete set of algorithms to be formulated and solved

based on an interesting geometric interpretation of the problem. This is the second contri-

bution of this thesis listed as "Propose a probabilistic method of calculating a convex upper

bound on µ based on the intersection of the associated convex polygon (so-called Zonotope)

with a parametric family of Apollonius circles". Extensions of the proposed methodology to

correlated parameters and nonlinear uncertainty models are also presented here, which cre-

ate the third main contribution of this work titled as "Extend the main results of the proposed

method to the distance to singularity problems with "correlated" or nonlinear descriptions

of uncertainty". Several algorithmic implementation aspects are discussed in this chapter.

Some of the minor contributions like ellipse of minimum area or easy-computable bound,

are formed here. A randomisation algorithm for the partial enumeration of the Zonotope’s

vertices is also describe along with an estimation of the Hausdorff distance between the

Zonotope and the convex hull of the polytope corresponding, in order to the reduced set of

vertices obtained from the randomisation algorithm. This can be used to obtain a probabilis-

tic lowed bound on the structured distance to singularity. A numerical example is presented

at the end of this Chapter to illustrate the performance of all the algorithms described in this

section.

Chapter 5 In this Chapter, Greatest Common Divisor (GCD) of two polynomials as an

application of the µ problem is considered. The problem is first defined and its application in

control system will be reviewed. The link between GCD and µ problem is then defined and

it is shown how the problem could be formulated to the solution of an equivalent µ problem.

A relaxation method will be then introduced to find a cost efficient upper bound on GCD
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which is tighter than the commonly used largest singular value. This is what we itemised

it as a minor contribution titled "Propose a relaxation methods to find a cost efficient upper

bound on GCD which is tighter than the largest singular value" above. The performance of

proposed method will be illustrated by a number of numerical example.

Chapter 6

This is concluding chapter which summarises the results of the research and the main

conclusions in the context of the aims and objectives of the study outlined in Chapter 1.

Finally, the possible extensions of the work in future research is outlined.

1.7 Notation

The notation of the thesis is standard and is summarised here for convenience. R denotes the

set of real numbers. For integer n, Rn denotes the space of n-dimensional (column) vectors

whose entries are in R, X denotes the set of n-dimensional vectors whose entries are either

1 or −1, i.e. X = {−1, 1}n. For integers n and m, Rn×m denotes the space of all n ×m

matrices whose entries are in R. For A ∈ Rn×m, A′ denotes the transpose of A, trace(A)

is the sum of the diagonal elements of A, N (A) denotes the null space of A and R(A) is

the range of A. If A ∈ Rn is symmetric (A = A′), λ(A) denotes the smallest eigenvalue of

A and we write A � 0 if λ(A) ≥ 0 and A � 0 if λ(A) > 0. The m-dimensional identity

matrix is denoted by Im and the m× n null matrix is denoted by 0m,n (0m if m = n) with

the subscripts omitted if they can be inferred from the context. The null set is denoted by

∅. If F is a space, dim F denotes the dimension of F . For a square matrix A, diag(A)

denotes A with all its off-diagonal elements set to zero. A ∈ Rm×n is called orthogonal if

AA′ = Im (m ≤ n) or A′A = In (n ≤ m). For A = A′ ∈ Rn the spectral decomposition

is the identity: A = UΛU ′ where U ∈ Rn×n is orthogonal and Λ ∈ Rn×n is a diagonal

matrix of the eigenvalues of A. If P is a polytope then vert(P) is the set of its vertices. If F

is a finite set then |F| is its cardinality, i.e. the number if its elements. Finally, if P ⊆ Rn

then conv(P) is its convex hull. Other notation is introduced as needed.
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Chapter 2

A Randomised Algorithm for

Enumerating Zonotope Vertices in

QIP

2.1 Introduction

In the previous chapter we introduced QIP as an NP-hard problem with many practical ap-

plications. We have also mentioned computing good bounds as a practical approach. A

"good" solution is considered to be one which is computationally efficient. Some QIP re-

search guarantees a small gap to the optimal value of the problem. Other research evaluates

methods for obtaining the exact solution in special cases. However, obtaining good approx-

imate solutions for QIP is not easy in general.

Many solvable cases of QIP have been identified in the literature. For instance, when the

QIP problem is of rank one [22], when the quadratic matrix defining the problem has non-

positive off-diagonal elements [23], or when the system graph is associated with the Max-

Cut problem [24]. Algorithms for solving all these special cases have their own time and

space complexity. The Low-Rank Quadratic Optimisation problem is another well-known

special class of QIP problems which can be solved via special algorithms of polynomial

complexity [29], [39] and [30]. This class of problems is still an active area of research

with many applications. Often in practice, the exact solution to the problem is not required,

and tight bounds may be acceptable. In this Chapter, several methods for breaching the

gap between the optimal solution of the QIP problem and its Semidefifinite Relaxation

(SDR) is reviewed. It is known [30] that the gap may be reduced by solving an auxiliary
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QIP problem of low rank, a task that can be achieved via the complete enumeration of the

vertices of a a convex polytope(so-called Zonotope) corresponding to the problem. A full

enumeration algorithm can be used to solve the reduced rank QIP, which, in turn, can be

used to reduce the duality gap of the solution of the standard QIP problem from the solution

of its SD relaxation. In this chapter, the concepts of SDR, Zonotope, duality gap and low-

rank problems is also defined.

These results will be further extended using the randomised version of this algorithm.

The advantage of the proposed method is its ability to terminate before all vertices of the

Zonotope associated with the problem are identified. This reduces the computation load,

especially for large scale problems. Our approach is based on the results in [40] which

derives an estimate of the Hausdorff distance between the Zonotope and its approximation,

defined as the convex hull of the partially enumerated vertices of the Zonotope (obtained

by random sampling). This algorithm is used to solve the Reduced Rank QIP(RRQIP) in

a probabilistic setting. In other words, a probabilistic condition is derived for which the

gap between the QIP solution and its convex upper bound is breachable. The algorithm is

utilised to evaluate those vertices at which the maximiser of QIP problem occurs with a high

probability. In fact, the algorithm relies on the fact that "sharp" vertices of the Zonotope

which are further away from the origin are selected with higher probability compared to

"flat" vertices by the randomised algorithm. A similar approach has been used in Chapter

4 to derive a probabilistic bound of the (real) structured distance to the singularity of a

matrix obtained from the intersection of a Zonotope with a parametric family of Apollonius

circles. For the problem considered in this chapter, an estimate of the Zonotope’s vertex

furthest away from the origin can be used to derive a probabilistic upper bound on the

solution of the QIP which is tighter than the SDR bound. Besides, we generalise the results

of [41] which derive a decreasing sequence of upper bounds to the solution of the QIP

problem by solving a sequence of auxiliary QIP problems of increasing rank (and hence

also complexity) which are equivalent to the enumeration of the vertices of a sequence of

Zonotopes defined in progressively higher dimensional spaces. By identifying the optimal

transition between deterministic (full) and randomised (partial) vertex enumeration, it is

possible to obtain the tightest bound compatible with the available computational resources.

A disadvantage of this method, nevertheless, is its probabilistic nature. i.e. the solution

provided by the algorithm is always valid only with a certain probability. However, this

probability could be increased at the cost of increasing the number of iterations. In fact,

the trade-off between the accuracy and speed of the algorithm can be adjusted by the user.
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Another disadvantage of this method is the possibility that the reduced polytope omits the

optimiser and hence the upper bound breaches the solution of QIP. To overcome this feature,

a method is introduced to extend the gap between the QIP problem and its upper bound. In

fact, the gap is extended by a minimal amount which is just sufficient to cover all those

vertices which potentially have not been selected by the algorithm. Nevertheless, if the

maximiser is obtained at a sharp vertex, the upper bound proposed by this method may be

conservative. We study the probability of recovering particular sharp vertices and relate it

to the angle of the vertex. A MATLAB program code is developed to confirm the validity

of this method.

The structure on this chapter is as follows: First the QIP problem is formally defined

along with its Semi Definite (SD) relaxation and a review of the main results of [41] and

[30] for breaching the duality gap in section 2.2. The results of section 2.2 then will be

formulated in a geometric setting by showing that the improved upper bounds of section

2.2 can be obtained by enumerating the vertices of a Zonotope corresponding to a reduced-

rank QIP. A suitable method for this task is the "reverse enumeration" algorithm [42]. Then

probabilistic bounds on the solution of the QIP problem are proposed using a randomised

algorithm for partial enumeration of the vertices of a Zonotope. The results of the proposed

methods in this section are illustrated via numerical examples.

It has to be mentioned here that although the main contribution in this thesis was in

the µ-problem field, it is decided to present the QIP chapter prior to the µ chapter. This

is because it is believed that the description of the Zonotope concept and Randomisation

algorithm in QIP field is more understandable due to a better visualisation. Hence the

reader will be familiarised with the Zonotope concept before reading the µ chapter.

2.2 Unconstrained {−1, 1} Quadratic Integer Programming

The unconstrained Quadratic Integer Programming (QIP) problem in {−1, 1} variables is

defined as:

(QIP) γ := max
∀x∈X

x′Qx (2.1)

where X = {−1, 1}n and Q = Q′ ∈ Rn×n is given. Computationally, this is a classical NP

hard problem [43].

The form of the QIP defined in (2.1) can be transformed to the zero-one QIP problem

via the linear transformation y = (x+ e)/2 where e ∈ Rn is the vector of ones and zeroes

to problems involving a linear term using a simple homogenisation procedure [44]. It is
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well known that other optimisation problems, such as the Quadratic Assignment Problem

[45], the Maximum-Cut Problem [46], can also be transformed to the standard QIP problem

considered here.

Since (2.1) is an NP-hard problem, it cannot be solved in polynomial time, and therefore

it is normally relaxed to an upper bound. Tighter upper bounds will result in a better approx-

imation. Among many methods, Semi Definite Relaxation (SDR) of the QIP is well-known

in literature, [47], [48], [49], [44], [50] and [22].

In [50], the author considers three different relaxations of the QIP problem and shows

that all three yield the same bound. The following relaxation is widely used in literature.

Let D ∈ Rn×n be any diagonal matrix for which D − Q is positive semidefinite and let x

be any binary vector where x ∈ X . Thus the following identities can be verified:

D −Q ≥ 0⇔ D ≥ Q⇒ x′Dx ≥ x′Qx (2.2)

For all x, 2.2 can be rewritten as

x′Qx = −
(
trace(D)− x′Dx

)
− x′(D −Q)x+ trace(D) (2.3)

Since x ∈ X we can write

x′Dx = trace(D) (2.4)

Substituting this into (2.2) gives:

x′Qx ≤ trace(D) (2.5)

Inequality (2.5) is true for all diagonal D such that D−Q ≥ 0 and for all x ∈ {−1, 1}.

Therefore the tightest bound is obtained as:

max
x∈{−1,1}

x′Qx ≤ min
D−Q≥0

D is diagonal

trace(D) (2.6)

The above relaxation reduces QIP to the problem of finding an upper bound by solving

the problem in (2.7) which is within the class of convex optimization problems:

(SDR) γ = min
D−Q≥0

D is diagonal

trace(D) (2.7)
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There are a number of efficient algorithms to solve SDR problem. For example, the

interior-point algorithm introduced by Yang in[51]. In [24], Goeman et al. introduced a

randomised approximation algorithm to solve the maximum cut problem as a special case

of QIP. In [52], the author found an approximate solution for Lagrangian relaxation SDR.

Zhang et al. also introduced a more accurate approximation for the same problem [53].

It can be shown that the optimal solution of the SDR problem is unique [30]. The

following result summarises three necessary conditions for the optimal solution of the SDR

problem [30]. These are used in the sequel to investigate the relaxation gap of γ̄ − γ.

Lemma 2.2.1. [30] LetD be the unique minimiser for the SDR problem so that trace(D) =

γ̄ and D −Q � 0. Then:

1. dim N (D −Q) ≥ 1, (equivalently, λ(D −Q) = 0) so that

D −Q =
[
V V+

] 0r 0

0 Λ+

 V ′

V ′+

 (2.8)

for some orthogonal
[
V V+

]
∈ Rn×n, r=dimN (D−Q)≥1 and Λ+ � 0.

2. There does not exist diagonal Z such that trace(Z) = 0 and V ′ZV � 0.

3. Every row of V has (Euclidean) norm at least 1/
√
n. In particular, none of the rows

of V is zero.

Necessary and sufficient conditions for the absence of a gap between the QIP problem

and the SDR problem, i.e. for γ = γ̄ are established as follows:

Lemma 2.2.2. [30] Let D be the (unique) minimiser for the SDR problem and let D − Q

have a spectral decomposition (2.8). Then the following statements are equivalent: (i)

γ = γ̄, (ii) N (D −Q) ∩ X 6= ∅, and (iii) V y ∈ X for some y ∈ Rr.

Lemma 2.2.2 suggests a simple test given in the following Lemma for the absence of

the relaxation gap.

Lemma 2.2.3. [30] Let all variables be as in Lemma 2.2.2. By rearranging the rows of V

if necessary; and let V =
[
V ′11 V ′21

]′
with V11 ∈ Rr×r non-singular. Then γ = γ̄ if

and only if V21V
−1

11 z ∈ {−1, 1}n−r for some z ∈ {−1, 1}r. Equivalently a necessary and

sufficient condition for γ = γ̄ is that max x∈X x′V V ′x = n.
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Note that the second condition given in Corollary 2.2.3 implies that the duality gap is

zero if r = 1. This follows from Lemma 2.2.1 part 3 which shows that in this case each

element of (vector) V has modulus 1√
n

and hence the maximum of ‖V ′x‖2 over all x ∈ X

must be equal to n. An improved bound of the QIP problem that breaches the convex SDR

upper bound is established by the following Lemma:

Lemma 2.2.4. [30] Let all variables be as in Lemma 2.2.2 and suppose that γr solves the

reduced-rank quadratic integer problem (RRQIP)

(RRQIP) γr :=
1

n
max
x∈X

x′V V ′x (2.9)

Then

γ ≤ γ̄ − n(1− γr)λ(Λ+) ≤ γ̄ (2.10)

Proof. Since [ V V+ ] ∈ Rn×n is orthogonal, then

x′x = x′
[
V V+

] V ′

V ′+

x = x′V V ′x+ x′V+V
′

+x = n

for any x ∈ X . Therefore:

x′V+V
′

+x = n− x′V V ′x (2.11)

Due to the fact that trace(D) = x′Dx for any x ∈ X and also considering the definition of

SDR in (2.7),we can reformulate (2.1) to

γ := max
x∈{−1,1}

x′Qx = max
x∈{−1,1}

x′(
γ

n
I − (D −Q))x

which is equivalent to

γ := max
x∈{−1,1}

x′(
γ

n
I −

[
V V+

] 0r 0

0 Λ+

 V

V+

)x

hence,

γ := max
x∈{−1,1}

x′
[
V V+

]
(
γ

n
I −

 0r 0

0 Λ+

)

 V

V+

x

22



which gives

γ := max
x∈{−1,1}

x′
[
V V+

]
(

 γ

n
I 0

0
γ

n
− Λ+

)

 V

V+

x
Since x′Qx ≤ λ(Q)x′x, we have

γ ≤ max
x∈{−1,1}

γ

n
x′V V ′x+

(
γ

n
− λ(Λ+)

)
x′V+V

′
+x

= n

(
γ

n
− λ(Λ+)

)
+ λ(Λ+) max

x∈{−1,1}
x′V V ′x

= γ − nλ(Λ+)(1− γr)

(2.12)

Note that since V ′V = Ir, then γr ≤ 1. Note also that γr = 1 implies from Lemma

2.2.3 that γ = γ̄ and the duality gap is zero. In general, the relaxation upper bound γ̄ can

be "breached" provided a simple solution to the RRQIP in (2.9) can be found for which γr

is less than one (or at least if an upper bound less than one can be found on γr). Although

problem (2.9) is similar to the original QIP, the difference is that the matrix V V ′ in the

cost function in (2.9) has a potentially low rank. It is shown in the next section that low-

rank quadratic integer programming problems are significantly easier to solve than full-rank

problems. Note also that the lower the value of γr and the higher the value of λ(Λ+), the

tighter the bound on γ.

Reference [41] defines a sequence of QIP problems of increasing rank resulting in a

decreasing sequence of upper bounds on γ. The initial bound can be selected either as

the largest eigenvalue of Q (which is a well upper bound on γ) or the SDR bound via

a slight reformulation of the problem. The solution can be obtained either iteratively or

via a "one-shot" approach. Again, the solution of each QIP problem resulting from either

approaches can be obtained by the enumeration of the vertices of a Zonotope. For the

iterative algorithm these are defined in progressively higher dimensional spaces and are of

increasing complexity. In this form, the algorithm strikes a balance between accuracy (small

gap) and computational complexity and can be used to obtain the tightest bound compatible

with the available computational resources.

Lemma 2.2.5. [41] Let A = A′ ∈ Rn be given and assume that A has at least two distinct

eigenvalues (otherwise computational of γ is straightforward). Let X1 = {− 1√
n
, 1√

n
}n,
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f(x) = x′Qx and γ1 = max{f(x) : x ∈ X1}. Let A have r distinct eigenvalues λ1 >

· · · > λr with multiplicities m1, . . . ,mr, respectively, where 2 ≤ r ≤ n and
∑r

i=1mi = n,

so that A has an ordered Schur form

A = UΛU ′ =
[
U1 · · · Ur

]
λ1Im1 · · · 0

...
. . .

...

0 · · · λrImr



U ′1
...

U ′r

 (2.13)

where U =
[
U1 · · · Ur

]
∈ Rn×n is orthogonal, Λ = diag(λ1Im1 , . . . , λrImr) is the

diagonal matrix of the eigenvalues of A, with Ui ∈ Rn×mi , i = 1, . . . , r. Set f0(x) = 0,

φ0 = 0, γ0 = 0, λr+1 = 0 and for i = 1, . . . , r, define

fi(x) =
i∑

j=1

x′Uj
λj − λi+1

γi − λi+1
U ′jx, φi = max

x∈Xn
fi(x) (2.14)

and

γi = φi−1γi−1 + (1− φi−1)λi. (2.15)

Then for i = 1, . . . , r: 0 ≤ φi ≤ 1, λi ≤ γi, γ ≤ γi and γ = γi if and only if

φi = 1 or equivalently if and only if there exists x ∈ X such that φi−1 = fi−1(x) and∑i
j=1 x

′UjU
′
jx = 1. Hence, γ = γr ≤ · · · ≤ γ2 ≤ γ1 = λ1. Finally, suppose that φj < 1

for j = 1, . . . , i− 1 and φi = 1. Then: γ = γr = · · · = γi < γi−1 < · · · < γ1.

Proof. See [41].

The "one-shot" version of Lemma 2.2.5 is stated next:

Lemma 2.2.6. Let A = A′ ∈ Rn×n be as given in the previous Lemma. Choose the largest

i such that 1 ≤ i < r and such that the maximisation in (2.16) below is feasible. Define

V1 =
[
U1 · · · Ui

]
, Λ1 = diag(λ1Im1 , · · · , λiImi)

V2 = Ui+1, Λ2 = λi+1Imi+1

V3 =
[
Ui+2 · · · Ur

]
, Λ3 = diag(λi+2Imi+2 , · · · , λrImr)
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so that A has a Schur form given by

A = UΛU ′ =
[
V1 V2 V3

]
Λ1 0 0

0 Λ2 0

0 0 Λ3



V ′1

V ′2

V ′3


Let S := Λ1 − λi+1Im so that S > 0 is diagonal and define V = V1S

1/2 ∈ Rn×m where

m =
∑i

j=1mj . Let φ̄i be the maximum of the reduced rank quadratic integer program

φ̄i = max
x∈X

x′V V ′x (2.16)

Then

γ := max
x∈X

x′Ax ≤ λi+1 + φ̄i =: γi. (2.17)

Furthermore, γ = γi if and only if there exists a maximiser xi ∈ X for the RRQIP defined

in equation (2.16) such that V ′3xi = 0.

Note that (2.16) has the same form as the original QIP problem but now V V ′ ≥ 0 and

rank(V V ′)= r (potentially r can be much lower than n)

If γr = 1, the gap between QIP and SDR program is zero. However if γr < 1, then

the distance between the optimal solution and its convex upper bound (duality gap) can be

reduced.

2.3 Fixed rank QIP and Zonotopes

Allemand and Fukuda et al in 2001 [22] have shown that if matrix Q in the QIP problem is

of fixed rank, positive semidefinite and all its eigenvalues are known, the QIP can be solved

in a polynomial time. In the literature, this is known as the Fixed Rank Convex(FRC) QIP

problem[1] or Reduced Rank QIP(RRQIP).

It is shown in [22] that the solution of RRQIP can be reduced to the enumeration of the

extreme points of a Zonotope. This is the image of a hypercube under the linear transforma-

tion and is a convex polytope of a special type. The claim can be verified by the following

consideration:

max
x∈X

x′V V ′x = max
x∈X
‖V ′x‖2 = max

x∈X

d∑
i=1

〈x, νi〉2 (2.18)

where νi ∈ Rn is the ith row of V ′ ∈ Rn×m and 〈x, νi〉 is the inner product of x and νi.
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Note that the second equality follows from the convexity of
∑d

i=1 〈x, νi〉
2. Now consider

the following linear mapping

Z = {V ′x : x ∈ [−1, 1]n} (2.19)

The image of the hypercube [−1, 1]n under map (2.19) defines the Zonotope (Z). Every

extreme point of x will be mapped to an extreme point of Z under transformation of Z →

V ′x. Substituting (2.19) into (2.18), shows that RRQIP becomes:

max
x∈{−1,1}n

x′V V ′x = max
z∈Z

m∑
i=1

z2
i (2.20)

where zi ∈ Rd is the ith row of z ∈ Rn×m. Let S be the set of extreme points of Z .

Then (2.20) will reduce to

(RRQIP) max
x∈{−1,1}n

x′V V ′x = max
z∈Z

m∑
i=1

z2
i = max

z∈S
z′z (2.21)

Thus, RRQIP is reduced to the enumeration of extreme points of Zonotope Z . From

discrete geometry theory, it is known that the number of extreme point of ZonotopeZ in Rn

is O(n(m−1)) and therefore the point of S can be calculated in O(n(m−1)) for m ≥ 3 and

O(nm) for m ≥ 2. More specifically, if Z is in general position, the number of its vertices

is given by [22].

|vert(Z)| = 2
m−1∑
i=0

(
n− 1

i

)
(2.22)

Among many attempts to develop optimal algorithms for enumerating the extreme point of

Zonotope, the most well-known one is based on a "Reverse Search" and was developed by

Avis and Fukuda [42]. A major disadvantage of this method is its memory requirement. It

has to store all the extreme points and also all faces and their incidences [54]. Ferrez at

[28], developed an algorithm based on reverse search which reduces the time complexity

to O(mnLP (n,m)vert(Z)) where LP (a, b) is the complexity of solving a linear problem

with a variables and b inequalities. In [40], Stinson at al. proposed a randomised algorithm

in which the Zonotope is approximated by a convex hull of a partially enumerated set of

vertices. In next section we have a general review over some of enumeration algorithms but

before that a geometric interpretation of Zonotope is described.
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2.4 Geometric Interpretation of Zonotope

Zonotopes are convex, centrally symmetric polytopes. They can be thought of as linear

projections of a high-dimensional hypercube. If Ω ∈ Rm×n with m < n then the set Z =

{Ωx : x ∈ [−1, 1]n} defines a Zonotope in Rm. An equivalent way to define Zonotopes is

via Minkowski sums of n line segments in Rm. Let {ωi}mi=1, ωi ∈ Rm, i = 1, 2, . . . , n be

the columns of Ω. Then

Z = A1 +A2 + . . .Ap =

{
n∑
i=1

ωi : ωi ∈ Ai, i = 1, 2, . . . , n

}

where Ai = {λωi : −1 ≤ λ ≤ 1}, i = 1, 2, . . . , n. The vectors ωi are called the gen-

erators of Z . To emphasise the dependence of Z on its generators we will often write

Z = Z(ω1, ω2, . . . , ωn) or Z = Z(Ω).

The solution of the RRQIP problem reduces to the enumeration of the extreme points

of the Zonotope [22] Z = {V ′x : x ∈ X} since

nγr = max
x∈X

x′V V ′x = max
x∈X

x′V V ′x = max
z∈Z

z′z (2.23)

and the last maximisation is achieved at an extreme point of Z since Z is convex.

Slightly different versions of the RRQIP problem in (2.9) have also been considered

in [21, 8, 20] in connection with the so-called real and complex structured singular value

problems in robust control applications. The problem of enumerating the extreme points of

the Zonotope Z for low-rank matrix V is well known, see for example [55], [56], [54], [57],

[58].

2.5 Enumeration Algorithms

Searching or enumeration of vertices and faces of a graph that describe a system is a funda-

mental problem in computational geometry. There is a wide number of known search tech-

niques for enumerations. The main objective in vertex enumeration is to find a polynomial-

time algorithm or a linear-time algorithm [59]. One of the first methods widely used in

graph-based problems was proposed by Read et al. [60] and is known as Backtracking.

This algorithm examines an element to decide whether to include it into the current solution

or not and afterwards, continues to the next element recursively. Dyer in [61], was the first

to propose a linear-time algorithm which uses a depth-first search and a balanced tree data
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structure [59]. Some researches focus only on a particular type of polytopes [62]. Among

many other efficient enumeration algorithms (see [59], [60], [61], [28], [29], [63] and [39]),

Avis and Fukuda introduced an efficient algorithm known as reverse search [42] for enu-

meration of all vertices and cells in a hyperplane arrangement in Rm. The Avis-Fukuda

algorithm is widely used in various listing problems in combinatorics and geometry. In this

work, we use reverse research for the vertices of the Zonotope associated with the RRQIP as

the final stage of the algorithm used to breach the duality gap of the original QIP problem.

If reverse research algorithm successfully designed, its time complexity is proportional to

the size of output times the size of the input. The space complexity is also a polynomial in

the size of the input. Hence, both time and space complexity are severely affected by the

size of the system. In this work, we try to use approximate methods to reduce the number

of inputs and consequently reduce the complexity of enumeration algorithms.

In the Zonotope associated with QIP, there is only one local optimal vertexX∗. In order

to explain the idea behind the reverse search, let G = (V, E) be a graph associated to an

objective matrix where V is vertex set, and E is edge set. Consider the tree T spanning all

vertices of G with the only sink X∗. Therefore, if we track this graph from X∗ using any

conventional methods like depth-first search [61], all vertices can be enumerated. Unlike

the backtracking method [60] which simply performs the vertex research algorithm itself

and stores the information of those vertices which included in the solution at each step,

reverse search algorithm traces each edge against its orientation which, in fact, corresponds

to reversing the local search without storing any information. An interesting application of

reverse search is its ability to enumerate the cells, triangulation’s, connected-induced sub-

graphs bases and spanning trees. For our work, in particular, cell enumeration is crucial

as it can be used to find adjacent vertices and hence calculate the angle of each vertex. In

fact, there is a relation between a vertex of a Zonotope and its dual arrangement (Theorem

3.4(Duality) in [1]).

This is illustrated graphically in Figure 2.1.

The dual associated with a Zonotope Z(V) generated by the columns of V , is a central

arrangement A(V) of n hyperplanes in Rd, having a vj as its normal vector:

A(V) = {h0
j : j = 1, 2, ..., n} (2.24)

where h0
j = {y ∈ Rd :

〈
vj , y

〉
= 0} for j = 1, 2, ..., n. Similar definition for the positive

and negative side of each hyperplane is defined as: h+
j = {y ∈ Rd :

〈
vj , y

〉
> 0} and
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Figure 2.1: Duality of a Zonotope and its associated arrangement [1]

h−j = {y ∈ Rd :
〈
vj , y

〉
< 0}.

Therefore, the location of any vector c ∈ Rd can be defined as σ(c) where:

σ(c)j =


+ if c ∈ h+

j

0 if c ∈ h0
j

− if c ∈ h−j

(2.25)

The benefit of this identification, is that each vertex of Zonotope Z(V ) can be identified by

a unique sign vector of its dual cell. For example if Figure 2.2 illustrates a cut subsection

of 5 hyperplanes in R3 associated with Zonotope Figure 2.1. Each cell is represented by a

sign vector of length 4 as shown in Figure 2.2

Another interesting consequence of the sign vector is the simplicity with which adjacent

cells can be found. For example if corresponding sign vector of two cells differ in only

one sign, these two faces are adjacent. Note that two vertices of Z are adjacent if and

only if associated cells are adjacent. As mentioned before, this characteristic is useful to

calculate the angle of vertices. There are some other improvements to the reverse search

method[64] in the literature which makes this algorithm one of the most efficient methods

for enumerating the vertices of Zonotope.
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Figure 2.2: A cut subsection of a 3-dimensional central arrangement [1]

2.6 A randomised algorithm for enumerating Zonotope vertices

Breaching the SDR bound relies on the complete enumeration of the vertices of a Zonotope.

This can be effectively achieved using several deterministic algorithms, e.g. the reverse-

enumeration algorithm outlined in the previous section. In high dimensional problems,

however, even efficient deterministic algorithms are impractical. In this case, one can rely

on randomised algorithms which approximate the Zonotope by generating only a subset of

its vertices. A method to obtain an improved (probabilistic) bound on γ can be obtained

by using the results of [40]. As it has been mentioned in the previous section, the time

complexity of enumeration algorithms can be problematic as the size of a system grows.

For straightforward algorithms like Quickhull [65], the complexity scales exponentially in

m, the number of vertices. An alternative approach is the reverse search [42], which has

been introduced in section 2.5. Another alternative is to approximate the Zonotope via Gof-

fin’s algorithm [66]. Nevertheless, the numerical implementation of this method appears

problematic [40]. Randomised methods are used in some research publications to approxi-

mate solution to the QIP problem (see [24],[67] and [68]). Among these methods, Stinson

et al. [40] introduced an interesting randomised method recently. The algorithm uses the

fact that a Zonotope vertex is a linear combination of Zonotope generators. The research

in [40] shows if the randomised algorithm terminates before all vertices are recovered, the
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convex hull of the enumerated vertices approximates the Zonotope with certain accuracy

and probability. In this chapter, it is shown how this approach can be adapted to qualify

the probability that the duality gap in the QIP is breachable, even if it is not possible to

enumerate all vertices of the Zonotope in the solution of RRQIP.

Consider a Zonotope Z(Ω) with generator a matrix Ω ∈ Rq×p where q ≤ p. Suppose

that the columns of Ω satisfy the following two conditions: (i) No column of Ω is the zero

vector, and (ii) no two columns of Ω are scalar multiples of each other. ThenZ(Ω) = {Ωx :

x ∈ [−1 1]p} is in general position and the number of its vertices is given by

|vert(Z)| = 2

q−1∑
i=0

(
p− 1

i

)
(2.26)

Then, under the above assumption, for x ∈ Rn such that Ω′x has all nonzero elements, the

point v defined by the mapping v = m(δ) := Asign(A′δ) is a vertex of Z(ω1, . . . , ωp).

From central symmetry v ∈ vert(Z)⇒ −v ∈ vert(Z). Moreover, if

H =

q⋃
i=1

{
δ ∈ Rp : ω̂′iδ = 0

}
(2.27)

where ω̂′i are the rows of Ω, i = 1, 2, . . . , q, then the mapping m : Rq \ H → vert(Z) is

well defined and onto [40]. A randomisation algorithm can now be used to enumerate the

vertices of Z . This is summarised in Figure 2.3. The algorithm updates a list of vertices

(initialised as the empty list) by drawing independent samples δ ∈ Rp from a p-dimensional

standard Gaussian distribution, computing v+ = Ωsign(Ω′δ) and v− = −v+ and adding

them to the list (unless they are already listed). The algorithm can proceed until all vertices

have been enumerated, or terminate after a fixed number of iterations. In the later case only

a subset of vertices will be (in general) enumerated. The convex hull of these vertices will

be a subset of Z .

It is worth mentioning that Zonotopes have another geometric representation, known as

the Minkowski sum [29] (also known as dilation). The Minkowski sum of two sets A and

B is defined as follows:

A+B = {a+ b : a ∈ A, b ∈ B} (2.28)

A Zonotope (Z) can then be defined as

Z = A1 + ...+An (2.29)
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Figure 2.3: Randomised Algorithm flow-chart

where

Ai = {ααi | α ∈ [−1, 1]} (2.30)

Without lose of generality, we assume that matrix V = [ν1 . . . νn] ∈ Rn×m in (2.19)

is in general position, i.e. V neither has a column of zero, nor are there any two columns

which are a scalar multiple of each other.

The above discussion can be summarised in the following theorem:

Theorem 2.6.1 (Theorem2, Corollary 1 and Corollary 2 [40]). Let Ω = [ ω1 . . . ωm ] ∈

Rn×m be the Zonotope generator and let x ∈ Rn be such that none of the component of
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A′x is zero, define V as

V = m(x) := Ωsign
(
Ω′x
)

(2.31)

where sign(X) returns a vector in {−1, 1} whose elements correspond to the sign of each

component of X. Then both V and −V are vertices of Z(A).

Moreover, letH ⊂ Rm as defined in (2.27), then mappingm : Rm\H −→ V er (Z(A))

is well defined and Px[H] = 0, where Px is probability measure in Rm.

A direct consequence of Theorem 2.6.1 is that each x ∈ Rn maps under relation (2.31)

to some Zonotope vertex with probability one. However, the probability that a randomly

chosen x maps to a specific vertex is related to the geometric properties of the vertex. More

specifically, the probability that x maps to a sharp vertex is larger than the probability that

x maps to a flat vertex. In fact, [40] argue that the contribution of flat vertices to forming

a Zonotope is negligible. The idea is that the flat vertices are less likely to be selected in

randomised algorithm which eventually results to an enumeration over a reduced number

of vertices. It is obvious that examining every vertices in order to identify non-influential

vertices is not computationally efficient. In fact, if you could examine every vertex you

would have a complete list and therefore distinguishing between flat an sharp vertices would

be irrelevant. However, there is an interesting relation between the contributions of a vertex

of the Zonotope and the probability that a random vector x maps to this vertex as defined

before. To investigate this relationship we need to introduce the following two concepts:

• Normal Cone of a vertex V (NZ(V )),

• Hausdorff distance between a vertex V and the convex hull of V er(Z(A))\{V }.

The normal cone of a vertex is the set of all x ∈ (R)m which map to the vertex under (2.31).

This set forms a region denoted by NZ(V ) formally defined as follows:

NZ(V ) = {x ∈ (R)m | 〈z − V, x〉 ≤ 0 for z ∈ Z} (2.32)

Figure 2.4 shows an example of the normal cone for a sharp and a flat vertex for a two-

dimensional zonotope:

Referring to Theorem 2.6.1 the normal cone NZ(V ) is the inverse of the map defined in

(2.31), i.e.

interior Nz(V ) = m−1(V ) (2.33)
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Figure 2.4: An example of normal cone for sharp and flat vertices in a 2-dimensional plane

One of the main characteristic of Normal cone in a Zonotope is that the integration of

the normal cone corresponding to all vertices forms the complete space Rm. This is a

consequence of Theorem 2.6.1 and the fact that Px[H] = 0 or equivalently

Px [{x ∈ Rm|m(x) ∈ ver (Z(A))}] (2.34)

where m(x) defined in (2.31). This consequence motivates finding the probability of a

vector x being mapped to a specific vertex Px(Vi). It is obvious that sharp vertices have a

higher probability than flat vertices. Figure 2.5 illustrates how the normal cones of vertices

of a two-dimensional Zonotope forms the entire space.

(a) (b)

Figure 2.5: (a)Example of Normal Cone of each vertices in a 2-Dimensional Zonotope. (b)Normal
Cones of all 2–dimensional vertices form the entire R2

It can be seen from Figure 2.5, that the normal cone of flat vertices have smaller share

in forming space R2. The probability that a random vector x ∈ R2 lies inside the normal
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cones of Vi is:

Px (Vi) =
θVi
2π

(2.35)

The Hausdorff distance, is a measure of the proximity of two sets. This measure can be used

as a criterion of whether the convex hall of a subset of all vertices is a good approximation of

the original Zonotope. Hausdorff distance between two non-empty sets X and Y, h(X,Y ),

is defined as:

h(X,Y ) = max {sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (2.36)

where d(x, y) is the metric distance between x and y. In our case when two polygonal

subsets are identical in all vertices except one, the Hausdorff distance has a simpler form

called as simplicity constant, αZ(V ), and has been used in [40]. As a criterion to identify

how far the vertex is from the convex hull, we define:

αZ(Vi) = inf
x
{‖Vi − x‖2 | x ∈ conv(vert(z)\{Vi})} (2.37)

Figure 2.6 shows a graphical interpretation of αZ(V1). It can be seen from Figure 2.6

that there is a direct relation between the angle of a vertex and its simplicity constant. In

other words, the sharper the angle, the larger the simplicity constant.

These two definitions (Normal Cone and Hausdorff distance) have been well studied in

[40]. Next, a simple form of the randomised algorithm [40] is outlined. For given ε ≥ 0

and δ ≥ 0 the algorithm approximates the Zonotope as:

V = Co{ν1, ν2, ..., νr} (2.38)

where v1, v2, ..., vr are the vertices selected by the randomised algorithm. A bound on the

Hausdorff distance as an approximation criterion, between the original Zonotope and its

approximate polytope is stated in Theorem 2.6.2 below [40]:

Theorem 2.6.2 ( [40]). Let Z(ω1, . . . , ωn) to be a Zonotope with its generating vectors in

general position. Given ε > 0 and δ > 0 choose b > diam(Z) and p as

p >
log (|vert(Z)|/ε)
log (1/(1− k))

(2.39)
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Figure 2.6: αZ(Vi) is a Hausdorff distance between a vertex and the convex hall of rest of the vertices

where

k =

(
1

2
(1− sin (arctan(b/δ)))

)m−1
2

(2.40)

Let V be the subset of Z’s vertices produced by the randomised algorithm after p iterations.

Then, if h(Z, conv(V)) denotes the Hausdorff distance between sets Z and conv(V) we

have that:

h(Z, conv(V)) ≤ |vert(Z) \ V|
2

δ (2.41)

with probability at least 1− 2aε where a = |vert(Z) \ UZ |/2 and

UZ = {v ∈ vert(Z) : αZ(v) ≥ δ}

Remark 2.6.1. If Ω ∈ Rm×n, m ≤ n, is orthogonal then

diam(Z) = max
x∈[−1,1]n

2‖Ωx‖ ≤ 2
√
n

and b in Theorem 2.6.2 may be selected as b = 2
√
n.

We can now prove the following Theorem which gives a probabilistic upper bound on

γ. Here the generator matrix Ω of Z(Ω) is identified with Ω = V ′ where V is defined in

the spectral decomposition given in equation (2.13).
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Theorem 2.6.3. Let all variables be defined as in Theorem 2.6.2. Let also Z(V ′) = {V ′x :

x ∈ {−1, 1}n} and assume that V is the set of vertices generated by the randomised

algorithm in p iterations. (i) Suppose there is a vertex v ∈ V with ‖v‖ =
√
n. Then γ = γ̄.

(ii) Suppose that τ = max{‖v‖ : v ∈ V} <
√
n. Suppose that δ is selected such that

|vert(Z) \ V|2δ2

4
+ τ2 < n

and set

γ̂r =
1

n

(
|vert(Z) \ V|2δ2

4
+ τ2

)
< 1

Then

γ ≤ γ̄ − n(1− γr)λ(Λ+) ≤ γ̄ − n(1− γ̂r)λ(Λ+) ≤ γ̄

with probability at least 1− 2aε.

Proof. (i) If the distance of an enumerated vertex from the origin is equal to
√
n then this

must be a vertex of Z furthest away from the origin and hence γ = γ̄. (ii) Let v0 be the

vertex enumerated by the randomised algorithm which is furthest away from the origin so

that τ = ‖v0‖. Let also P be a compact superset of conv(V ) such that

h(P, conv(V )) = R(δ) :=
|vert(Z) \ V |δ

2
(2.42)

P can be easily constructed as the intersection of hyperplanes drawn parallel to the faces of

the polytope conv(V ) displaced a distance r(δ) away from the origin with the hyperspheres

{z : ‖z − v‖ ≤ R(δ)} with centre the vertices of V and radius R(δ) (see Figure 2.7 for the

construction of P in the case r = 2). It is also clear that the point on P furthest away from

the origin is the intersection of the line connecting v0 and the origin and the hypersphere

{z : ‖z−v0‖ = R(δ)} whose distance from the origin is
√
τ2 +R2(δ). Since P ⊇ Z with

probability at least 1− 2aε we have that:

γr : =
1

n
max
x∈X

‖V ′x‖2 =
1

n
max
z∈Z

‖z‖2

≤ 1

n
max
z∈P
‖z‖2 =

1

n

(
τ2 +R2(δ)

)
= γ̂r < 1

where the inequality is valid with probability at least 1− 2aε. The result then follows from

Lemma 2.2.4.
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Remark 2.6.2. Note that the inequality γr ≤ γ̂r is always in force and hence the proba-

bilistic bound on γ cannot be tighter than the deterministic bound. The probabilistic bound,

however, does not rely on the full enumeration of the vertices of the Zonotope and hence is

potentially less computationally demanding. The accuracy of the approximation cannot be

determined a-priori and depends on the particular set of vertices (and their number) that

was selected by the randomised algorithm.

Figure 2.7: Estimation of maxz∈Z ‖z‖

Remark 2.6.3. The Hausdorff distance between P and Z can be made arbitrarily small by

selecting δ sufficiently small. In this case, however, the required number of iterations p of

the randomised algorithm may be too high, so that the algorithm may not be implementable

in practice.

A probabilistic version of Lemma 2.2.6 follows:

Theorem 2.6.4. Let all variables be defined as in Lemma 2.2.6 and Theorem 2.6.2. Let

also Z(V ′) = {V ′x : x ∈ {−1, 1}n} where V is as defined in Lemma 2.2.6 and assume

that V is the set of vertices generated by the randomised algorithm in p iterations where p

is defined in Theorem 4.4.1. Suppose that τ = max{‖v‖ : v ∈ V} < 1. Suppose also that

δ is selected such that:
|vert(Z) \ V|2δ2

4
+ τ2 < 1

and set

φ̂i =
|vert(Z) \ V|2δ2

4
+ τ2 < 1
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Then

γ := max
x∈X1

x′Qx ≤ λi+1 + φ̂i

with probability at least 1− 2aε.

Proof. Similar to the proof of Theorem 2.6.3.

2.6.1 Numerical Example 1

In this section the results of the previous section are illustrated with a numerical example.

Matrix Q ∈ R10×10, Q = Q′ ≥ 0 has been chosen randomly as:



4.07 −0.46 0.25 −2.79 −1.50 −0.41 −1.54 0.04 −1.604 −1.03

−0.46 4.77 −4.56 −1.36 −0.70 −0.45 −0.49 −2.15 0.33 −1.19

0.25 −4.56 6.71 1.38 2.03 1.31 −0.39 3.38 0.54 −1.05

−2.79 −1.36 1.38 6.53 1.60 −0.56 1.72 −0.46 −1.23 1.54

−1.50 −0.70 2.03 1.60 3.43 −0.80 1.78 0.95 −0.44 −0.23

−0.41 −0.45 1.31 −0.56 −0.80 4.54 −1.87 2.55 3.46 0.07

−1.54 −0.49 −0.39 1.72 1.78 −1.87 3.91 −0.82 −2.22 1.17

0.04 −2.15 3.38 −0.46 0.95 2.55 −0.82 3.73 1.61 −0.22

−1.60 0.33 0.54 −1.23 −0.44 3.46 −2.22 1.61 5.27 −0.11

−1.03 −1.19 −1.05 1.54 −0.23 0.07 1.17 −0.22 −0.11 3.46̄̄


(here truncated to two decimal places). The optimal value of the QIP can be calculated via

all 210 = 1024 binary evaluations as γ = 1.164243. The SDR upper bound was obtained

via MATLAB’s LMI toolbox after 24 iterations as γ̄ = 1.23753502 with guaranteed relative

accuracy 8.01 · 10−11. The corresponding eigenvalues of D −Q were obtained as:

{10−8, 8× 10−8, 3.09, 4.31, 8.54, 11.00, 11.25, 11.62, 12.66, 14.77}

indicating a nullity r = 2. From the spectral decomposition of D − Q the matrix V ∈

R10×2 with orthonormal columns was constructed spanning the null-space of D − Q. The

auxiliary QIP problem (2.9) was again solved via all possible (210) binary evaluations (for

problems of higher complexity the reverse enumeration algorithm could have been used).

The maximum was obtained as γr = 0.882856 which corresponds to the two vertices of

the Zonotope (Z) = { 1√
10
‖V ′x‖ : x ∈ co(X )} furthest away from the origin (see Figure

2.8). Note that the Zonotope has 20 vertices in agreement to equation (2.26), the remaining

1004 extreme points located in the interior of the Zonotope. With the achieved value of γr,

equation (2.10) gives the improved bound on γ as 1.201261 which corresponds to a gap
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reduction of approximately 50.51%.

Figure 2.8: Zonotope and reduced polytope from randomised algorithm

Next, the randomised algorithm was tested by assuming that full enumeration of the

vertices is not possible. The parameters of the algorithm were initially set as ε = 0.05 and

δ = 0.1. This resulted in a randomised algorithm with p = 10 iterations. Random sampling

from the standard normal bi-variate distribution was implemented with MATLAB’s function

mvnrnd.m. Note that in this case, a different subset of the Zonotope’s vertices is obtained

each time a set of p = 10 independent random samples is taken. Figure 2.8 shows the

convex hull of the selected vertices on a particular occasion in which 14 vertices were

obtained (i.e. 3 out of the 10 samples resulted in a vertex which was already listed). Three

sets of results obtained in this way are summarised in the table below. This displays the

number of polytope vertices selected (nP ), the Haussdorf distance estimate dH, the bound

γ̄r on γr, the bound γu on γ and the corresponding confidence level P [γ ≤ γu].
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nP dH γ̄r γu P [γ ≤ γu]

14 0.30 0.891 120.404 ≥ 95%

12 0.40 0.898 120.621 ≥ 95%

10 0.50 0.907 120.900 ≥ 95%

To study the variability of the results produced by the randomised algorithm, the process

was repeated 1000 times with the same parameters (ε = 0.05 and δ = 0.1). The empirical

probability mass function of variables nP , γ̄r and γu are shown in Figures 2.9, 2.10 and

2.11, respectively. The mean value of γu is E[γu] = 120.6541 and its standard deviation

σ = 0.2538. Thus, on average, the randomised algorithm indicates that γ ≤ 120.6541 with

a probability of at least 95%.

Figure 2.9: Empirical probability distribution: nP

So far we have argued that the randomised algorithm generate a convex hull of the ran-

domly enumerated vertices of the original vertices of the Zonotope. Those vertices which

do not contribute to the approximation form the new reduced polytope, have a Hausdorff

distance less than δ from the convex hall of the rest of the vertices with a certain proba-

bility. Eventually, the Hausdorff distance between the Zonotopes and its reduced polytope

is as small as τδ . We also discussed that the maximiser might not be included in set V

when the algorithm is terminated, which could result in the Zonotope maximiser breach the

optimal value of QIP problem. To overcome this issue, we extended the solution by Haus-

dorff distance, so we can form a convex set which, firstly, has the same number of extreme

points as those obtained by the partial enumeration algorithm; and secondly, the maximiser
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Figure 2.10: Empirical probability distribution: γ̄r

Figure 2.11: Empirical probability distribution: γu

over this set overbounds the maximum over the original Zonotope and hence the risk of

underestimating the maximum is eliminated.

Another way of presenting this method is to extend the bases of the reduced polytope

by h (Z,U) to contain all vertices of original Zonotope. Figure 2.12 illustrates how the

extended boundary includes all non-enumerated vertices. In Figure 2.12, a random rank 2

Q7×7 has been generated in MATLAB and then the randomised algorithm has been pro-

grammed to enumerate the extreme points. As discussed previously, due to the fact that Q

is positive semi-definite, the maximiser will occur on the boundary or more precisely on a
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Figure 2.12: Expanding the boundary by Hausdorff distance will form a Zonotope which cover the orig-
inal Vertices

vertex. In the example of Figure 2.12, the Zonotope has 12 vertices of which 4 have been

omitted by the randomised algorithm. It can also be observed from Figure 2.12 that the

omitted vertices are mainly flat ones. This is due to the fact that the probability of omitting

a sharp vertex is small. The program then develops a method to extend the boundary of

the reduced polytope by h (Z,U) and form the new approximation (green circuits are new

vertices and black lines are the boundary of approximation). It can be seen that the original

Zonotope (red line) is within the extended approximation It follows immediately that:

If Zonotope A is inside convex polytope B, then the Maximise of the set associated with

Zonotope A≤ the Maximise of the set associated with polytope B

Note that the maximiser over the extended polytope gives an upper-bound for the RRQIP.

One point that worth mentioning is that the symmetry property of the Zonotope would

normally push the maximiser toward a sharp vertex which has less probability to be omitted

by the randomised algorithm.

Figure 2.13 shows examples of 2-dimension Zonotopes overlayed on a set of QIP level

contours. As discussed, the maximiser tends to occur at the sharpest vertices of the Zono-

tope.

To demonstrate that the extreme points of a Zonotope tend to occur at its sharp vertices,

a Matlab code was produced to randomly generate rank-2, 20 by 20 QIP and sort the vertices

of the equivalent Zonotope from the sharpest to the widest angle. Then the extreme points

were ordered according to their distance from the origin. Note that in a Zonotope of a

rank-2, defined by a 10 by 10 matrix there were 20 pairs of vertices each corresponding to

the same distance. This is due to the symmetry property of the Zonotope with respect to
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Figure 2.13: The maximiser of Zonotope is normally obtained in sharp vertices which the algorithm is
unlikely to cancel them.

the origin. Hence the enumeration algorithm enumerates needs only half the vertices. In

our example, these vertices are numbered 1 to 20 (the sharpest angle being number 20).

The program has been run for 1000 random trials. Figure 2.14, shows the histogram of the

results. In this case, more than 85% of the maximisers occur at the three sharpest vertices.

Next, a condition for which the reduced rank QIP guarantees that the duality gap of the

original problem is breachable will be derived. Note that in [30], a sufficient condition for

breaching the gap has been obtained if a bound on the corresponding RRQIP problem can

be obtained. This condition is adapted here to derive a new probabilistic condition which

guarantees that the duality gap is breachable. Theorem 2.6.5 derives this condition.

Theorem 2.6.5. Let all variables be defined as in Lemma 2.2.6 and Theorem 2.6.2. Sup-

pose U be the subset of the vertices of Z generated by randomised enumeration algo-

rithm defined in Figure 2.3. For each Z ∈ U , let φZ be the angle of vertex Z and define

α =
|vert(Z) \ V |

2
. Then if

max
Z∈U
‖Z‖+ δ

sin(φ/2)
≤
√
n (2.43)

an upper bound can be induced on γ that with probability of at least 1−2αδ, is tighter than
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Figure 2.14: Histogram of the maximum amount in 1000 trails of randomly selected Q20×20

semi definite relaxed bound γ:

γ ≤ γ − n(1− γr)λ(Λ+) < γ − n(1− γu)λ(Λ+) ≤ γ (2.44)

where

γr :=
1

n
max
Z∈Z

Z ′Z (2.45)

and

γu :=
1

n
max
Z∈U

Z ′Z (2.46)

Proof. To distinguish between different sets, we define

Uδ = Co{ν∗1 , ν∗2 , ..., ν∗r} (2.47)

as the convex hull of the extended vertices {ν∗1 , ν∗2 , ..., ν∗r} where

δ = h (Z,U) =
|V ert(Z)\V |

2
δZ(V )

. Enumeration over the new vertices, therefore, gives an upper bound on nγr.

U = Co{ν1, ν2, ..., νr} ⊆ Uδ = Co{ν∗1 , ν∗2 , ..., ν∗r} (2.48)
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Assuming

Zx ∈ arg max
Z∈Uδ

‖Z‖ (2.49)

Therefore

U ⊆ Uδ ⇒ max
Z∈Z
‖Z‖ = ‖Zx − Ẑx + Ẑx‖ ≤ ‖Zx − Ẑx‖+ ‖Ẑx‖ (2.50)

Let Ẑx is new vertex associate with Zx in reduced polytope (outcome of enumeration

algorithm). The geometric relation between two vertices can be illustrated as in Figure 2.15

Figure 2.15: The geometric relation between associated vertices in the original Zonotope and reduced
polytope

From Figure 2.15, it is easy to see that:

‖Zx − Ẑx‖ =
δ

sin(φ/2)
(2.51)
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Substituting (2.51) into (2.50), gives

max
Z∈Z
‖Z‖≤ δ

sin(φ/2)
+ ‖Ẑx‖≤

δ

sin(φ/2)
+ max

Z∈U
‖Z‖ (2.52)

max
Z∈Z
‖Z‖≤ δ

sin(φ/2)
+ max

Z∈U
‖Z‖ (2.53)

max
Z∈Z
‖Z‖−max

Z∈U
‖Z‖≤ δ

sin(φ/2)
(2.54)

Now recall the condition for which the gap between QIP and SDR program is zero:

If max
Z∈{−1,1}n

x′V V ′x = max
x∈Z

Z ′Z ≤ n ⇔ γ ≤ γ (2.55)

This condition can be described as:

max
Z∈Z
‖Z‖≤

√
n⇒ γ ≤ γ (2.56)

Substituting (2.56) in (2.54), results in condition (2.43) in which the gap can be breached

max
Z∈U
‖Z‖+ δ

sin(φ/2)
≤
√
n⇔ δ ≤ sin(φ/2)

(√
n−max

Z∈U
‖Z‖

)
(2.57)

From Lemma 2.2.4 [30], we have

γ ≤ γ − n(1− γr)λ(Λ+) ≤ γ

Thus γr < γu ⇒ n(1− γr) > n(1− γu) gives

γ − n(1− γr)λ(Λ+) < γ − n(1− γu)λ(Λ+)

which proves (2.44)

The following example demonstrate the proposed method.

2.6.2 Numerical Example 2

A Q ∈ R7×7 that the actual solution is known is selected:
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Q =



0.7853 −0.3957 0.2214 −0.2242 −0.0885 −0.0952 −0.4936

−0.3957 1.2814 −0.0511 −0.1232 0.1041 0.6171 0.1491

0.2214 −0.0511 0.8411 0.0477 −0.3506 0.4144 −0.5087

−0.2242 −0.1232 0.0477 0.7910 −0.0847 −0.0046 0.1315

−0.0885 0.1041 −0.3506 −0.0847 0.6318 −0.1260 0.3097

−0.0952 0.6171 0.4144 −0.0046 −0.1260 1.2128 −0.1793

−0.4936 0.1491 −0.5087 0.1315 0.3097 −0.1793 0.8566


The solutiong of QIP for this example is γ = 12.1306. The Semidefinite Convex upper

bound is calculated to be γ = 12.8382 for

D =



1.9481 0 0 0 0 0 0

0 1.9890 0 0 0 0 0

0 0 2.1172 0 0 0 0

0 0 0 0.9683 0 0 0

0 0 0 0 1.3880 0 0

0 0 0 0 0 2.0213 0

0 0 0 0 0 0 2.4062



which gives

D −Q = [ V+ V ]

 Λ+ 0

0 0r

 V T
+

V T


where

V+ =



−0.3567 −0.3902 −0.5564 0.4058 −0.0334

−0.0455 0.2126 −0.6368 −0.0884 −0.0690

−0.4327 0.6735 0.2152 0.2124 0.2669

0.0262 −0.0356 −0.1684 0.1887 0.8577

0.0637 0.1852 0.0971 0.7908 −0.3673

0.0274 −0.5226 0.4109 0.2813 0.1970

−0.8234 −0.2008 0.1789 −0.2059 −0.1165


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V =



−0.4122 −0.2744

0.1381 0.7181

−0.4322 0.0990

0.4306 −0.1143

0.4379 0.0131

−0.2353 0.6197

0.4378 0.0452


and

λ+ =



2.0446 0 0 0 0

0 1.6893 0 0 0

0 0 1.5247 0 0

0 0 0 1.0531 0

0 0 0 0 0.1264


Since the nullity of D −Q is 2, the equivalent RRQIP will be

γ =
1

n
max

x∈{−1,1}n
x′V V ′x =

1

7
max

x∈{−1,1}7
x′



0.2452 −0.2540 0.1510 −0.1461 −0.1841 −0.0730 −0.1928

−0.2540 0.5347 0.0114 −0.0226 0.0699 0.4125 0.0929

0.1510 0.0114 0.1966 −0.1974 −0.1880 0.1631 −0.1847

−0.1461 −0.0226 −0.1974 0.1985 0.1871 −0.1722 0.1833

−0.1841 0.0699 −0.1880 0.1871 0.1919 −0.0949 0.1923

−0.0730 0.4125 0.1631 −0.1722 −0.0949 0.4394 −0.0750

−0.1928 0.0929 −0.1847 0.1833 0.1923 −0.0750 0.1937


x

Enumeration over all the x ∈ {−1, 1}7 gives that maximum value of Z ′Z = 6.5373 at

x =
[
−1 −1 −1 1 1 −1 1

]

Hence, γr :=
1

n
maxZ∈(Z) Z

′Z = 0.9339 which breach the convex upper bound by

γ < γ − n(1− γr)λ(Λ+) < γ ⇒

γ = 12.1306 < 12.8382− 7× (1− 0.9339)× 0.1264 = 12.7797 < γ = 12.8382
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In next step, the proposed algorithm is applied with value of δZ = 0.07 and ε = 0.04. The

algorithm successfully omitted two vertices, therefore

δ = h (Z,U) =
|V ert(Z)\V |

2
δZ(V ) =

2

2
× 0.07 = 0.07

The randomised algorithm did not omit the maximiser and it is remains as maxZ∈(U) Z
′Z =

6.5373. It is achieved at φ = 136◦, thus checking condition (2.43) gives

√
6.5373 +

0.07

sin(136/2)
= 2.6323 <

√
7

The condition is satisfied and hence the gap is breatchable. Although, the randomised did

not omit the maximiser of the original Zonotope, the extended polytope pushed the max-

imiser from maxZ∈(Z) Z
′Z = 6.5373 to maxZ∈(U) Z

′Z = 6.7308 which gives γu =

0.9615. Hence

γ < γ − n(1− γu)λ(Λ+) < γ ⇒

γ = 12.1306 < 12.8382− 7× (1− 0.9615)× 0.1264 = 12.8041 < γ = 12.8382

The following facts can be observed from the example:

• The chosen Q matrix is full rank, however D − Q matrix for the optimal D loses

rank. This showing the validity of Lemma 2.2.2.

• Rank(V V ′) = 2, therefore the RRQIP form a 2-dimension Zonotope

• Since γr < 1, The convex upperbound is reduced by n(1 − γr)λ(Λ+) which shows

the validity of Lemma 2.2.4

• Randomised algorithm omits two vertices

• Both omitted vertices have angle wider than 170◦ which contribute less in forming

the original Zonotope

• The extended polytope pushes the maximiser fromZ ′Z|Z∈Z = 6.5373 toZ ′Z|Z∈U =

6.7308. Therefore, γu =
6.7308

7
< 1 and the convex upper-bound is breached by

n(1− γu)λ(Λ+).

• If the Randomised algorithm omits more than two vertices, condition (2.43) will not

be satisfied and hence the extended polytope fails to breach the convex bound. This is
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due to the fact that the polytope extension,
|V ert(Z)\V |

2
, is depending on the number

of omitted vertices. Figure shows the Zonotope of this example where 2 and 4 vertices

are omitted. Both polytopes shows good approximation of the general Zonotope.

Nevertheless, the polytope with more omitted vertices gives γu = 7.1197/7 = 1.017.

Figure 2.16: Zonotope of Section 2.6.2 example with two approximations

Table 2.1 shows a summary of the above example

Table 2.1: Summary of the numerical experiments 2

Measures Maximiser γ Enumerated vertices Upper bound
Original Zonotope 6.5373 0.9339 14 12.7797

Randomised polytope 6.5373 0.9339 12 12.7797
Extended polytope 1 6.7308 0.9615 12 12.8041
Extended polytope 2 7.1197 1.0171 10 N/A

2.7 Summary

In this chapter, a randomised algorithm is proposed for calculating an upper bound of the

QIP problem. First, a convex relaxation of the problem was defined, the solution of which

produces an upper bound to the original problem. The duality gap of the problem, i.e. the

distance between the convex upper bound and the optimal solution, can be reduced pro-

vided an RRQIP problem can be solved which is equivalent to the full enumeration of the

vertexes of a Zonotope. Although this can be achieved by a polynomial-time algorithm,

the computation may still be intractable for problems of high-dimensionality. Hence, a

randomisation algorithm is presented for breaching the duality gap when the full enumera-

tion is computationally not feasible. It was shown that even with incomplete enumeration
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improved probabilistic bounds may be obtained. The bound may be further improved by

combining the proposed randomised approach with the solution of a sequence of determin-

istic QIP problems of increasing rank. This is useful in practice since it can exploit fully the

available computational resources to obtain the tightest bound possible with a pre-specified

probability.
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Chapter 3

Preliminaries: The Complex

Structured Singular Value and its

Convex Upper Bound

In this chapter we provide an introduction to some of the material needed in the next Chap-

ters. It is assumed that the reader is familiar with matrix theory, linear algebra, control

theory and the fundamental concepts of linear systems theory. For more detailed studies,

the reader is referred to [6] and [9]. The notation of this chapter is standard and is outlined

here for convenience. Rn (Cn) denote the spaces of n-dimensional real (complex) vectors,

respectively. Rn×m (Cn×m) denote the spaces of n ×m (complex) matrices, respectively.

If z ∈ C then <(z) and =(z) are the real and imaginary parts of z, respectively, and |z| is

the modulus of z. If M ∈ Cm×n then M ′ denotes the transpose of M and M∗ the complex

conjugate transpose of M . The singular values of a matrix M ∈ Cm×n are denoted as

σi(M), i = 1, 2, . . . ,min(m,n) and are indexed in non-increasing order of magnitude, i.e.

σ1(M) ≥ σ2(M) ≥ . . . ≥ σmin(m,n)(M) ≥ 0. ‖M‖ denotes the spectral norm of M , i.e.

the largest singular value of M . If M ∈ Cn×n its spectrum, i.e. the set of its eigenvalues

is denored as σ(M). The eigenvalues of a Hermitian matrix M ∈ Cn×n, M = M∗ are

denoted as λi(M), i = 1, 2, . . . , n and are indexed in non-increasing order of magnitude,

i.e. λ1(M) ≥ λ2(M) ≥ . . . ≥ λn. We also write λ1(M) = λmax(M). If Ω ∈ Rq×p

with p ≥ q, then the set Z = {Ωx : x ∈ [−1 1]p} defines a Zonotope in Rq. If {ωi}pi=1

are the columns of Ω, this is also written as Z(ω1, . . . , ωp) and the vectors {ωi}pi=1 are

the generators of Z . If Z is a polytope, then vert(Z) denotes the set of vertices of Z and

conv(Z) the convex hull of Z . If Z is a closed set, then int(Z) denotes the interior of Z
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and ∂Z = Z \ int(Z) the boundary of Z . If V is a finite set then |V | denotes the number

of elements of V . Further notation is introduces in the chapter when needed.

3.1 Introduction

Real-world systems are normally complex and nonlinear. However, in most industrial cases,

simplified linear time-invariant models can sufficiently describe the behaviour of the system

around an operating point and hence can be used to specify an appropriate control system.

Such models usually contain errors and uncertainties which arise for the various factors

[13]. Therefore, it is essential to ensure that the system is not destabilised due to allowable

range of perturbations. In other words, the uncertain model of a plant needs to be analysed

in order to find the maximum allowable perturbation for which the feedback system remains

stable. Consider the feedback loop in Figure 3.1 in which T ∈ H∞, i.e.

‖T‖∞ := max
ω∈R

σ [T (jω)]

and ∆ ∈ H∞ is the plant structured uncertainty perturbations which are added accord-

ing to the multiplicative perturbation in the system. The uncertainty matrix in a real system

is in the form of diagonal block structure. An example at the end of this section illustrates

the uncertainty matrix for a real system. Here T represents the nominal closed-loop system

incorporating the nominal plant and the designed feedback controller.

Figure 3.1: Problem of Close loop Stability

The problem is to find the minimum H∞ norm of ∆ for which the feedback loop is

de-stablised. It can be shown from the Small Gain Theorem [69], that for any γ > 0, the

interconnected system in Figure 3.1 is internally stable for all ∆ with

• ‖∆‖∞ ≤ 1
γ if and only if ‖T (s)‖∞ < γ

• ‖∆‖∞ < 1
γ if and only if ‖T (s)‖∞ ≤ γ
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The value of r = 1
γ is called the robust stability radius of T and is denoted by r∆(T ).

If ∆(s) represent an unstructured perturbation, then we can construct a specific ∆(s) of

r∆(T ) = 1
γ such that the feedback system is unstable.

The problem of maximising the robust stability radius of systems subject to unstructured

uncertainty has been widely investigated in the literature [15], [3]. Lehtomaki et. al, in [16]

consider the problem of finding the robust stability radius when the perturbation is bounded

away from the unstructured stability radius in the most vulnerable direction. The method in

[16] is used to obtain a bound on the structured singular value.

Assuming ∆ to be a full matrix will result in a relatively conservative bound. Consider-

ing a structured matrix instead has led to developing µ− analysis and synthesis techniques.

In recent years, the structured singular value (µ) which is a generalisation of the singular

value of a matrix has been the focus of significant research interest as an effective analytical

and design tool in the area of robust control. The structured singular value was introduced

by Doyle in [17] and by Safonov in [18]. Since the computation of µ is an NP-hard problem

in the general case [18], the primary approach will become computing reliable bounds on

µ∆(M). The synthesis problem is also defined as the problem of finding a controllerK that

maximises the stability radius.

Equivalently, the objective of µ-synthesis problem is to find a stabilising controller in

order to minimise the structured singular value of a system with respect to uncertainty in

the form of a block diagonal structure ∆ [14]. Unfortunately, the general solution to this

problem is numerically intractable [5]. Nevertheless, solving special classes of µ problems

can be relatively easy. Young in [70] proposed a complete solution for Rank-One problem.

Smith in [71], proposed a low-rank algorithm to solve a special case of a rank-2 problem.

Gungah et al. in [21], obtained bounds on µ by embedding the underlying block-structured

uncertainty set within a larger set. Later on, they introduced a new upper bound on struc-

tured singular value [8]. Although the algorithm offered good performance results, only the

complex structured singular value under mixed-type structured uncertainty was considered

in this method.

Malik in [20] introduce a tighter bound on the structured singular value which has been

developed by [9] and has resulted in a detailed study on the gap between the complex

structured singular value and its convex upper bound [9]. In that paper, new necessary

and sufficient conditions were derived for the absence of a duality gap. The study has also

shown that if an upper bound on this reduced rank problem can be obtained, it can provide an

upper bound on the original problem that is lower than the convex relaxation upper bound.
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As a practical example, a Four-wheel steering (4WS) vehicle closed-loop control system

can be described in Figure3.2, where Gf (s) and Gr(s) are the functions of velocity and

mass which may vary under different running conditions[2].

Figure 3.2: 4WS vehicle closed-loop control system[2]

The aim is to find a robust controller K, to stabilise the system in the presence of the

uncertainties. Hence, to expand the model based on µ framework, two perturbation blocks

∆f and ∆r are added to the control loop. Figure 3.3 shows the 4WS vehicle model in the

µ framework where Ws = diag[Wsf ,Wsr] is a frequency dependant weighting function

matrix to represent all possible structured perturbations. Rearranging the feedback system

Figure 3.3: 4WS vehicle closed-loop control system in µ framework[2]

in Figure 3.3 leads to the general structure shown in Figure 3.4, where (u, r) are control

and measure signals, (δf , er, eβ) constitute the performance variables and (d1, d2, zf , zr)

connect the system P to perturbation ∆.

Compare to Figure 3.1
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Figure 3.4: 4WS vehicle generalized system[2]

∆ = diag[∆f ,∆r]

and the control system is stable when ‖∆‖∞ ≤ 1. This example shows how a real system

can be formulated in µ framework.

In the following paragraph, we give a short description of the theory of the structured

singular value.

Let M ∈ Cn×n be a non-singular matrix. Define block-diagonal structured uncertainty

set ∆ as:

∆ ={diag [δ1Ir1, ..., δsIrs,∆s+1, ...,∆s+f ] :

δi ∈ C,∆s+j ∈ Cmj×mj , 1 ≤ i ≤ s ≤ j ≤ f}
(3.1)

where
∑s

i=1 ri +
∑f

j=1mj = n.

Let B∆ denote the unit ball of ∆ were

B∆ = {∆ ∈∆ : σ (∆) ≤ 1}

Definition 3.1.1. For M ∈ Cn×n, the Structured Singular Value of M corresponding to the
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structured set ∆ is

µ∆ (M) :=
1

min {‖∆‖ : ∆ ∈∆, det (I −M∆) = 0}
(3.2)

If I −M∆ is nonsingular for every ∆ ∈∆ then µ∆(M) = 0.

The general real structured singular value (µ) problem is known to be NP-hard. i.e.

any algorithm to compute µ will fail to find the answer in polynomial time [9]. Hence,

in practical applications, upper or lower bounds are introduced for special structured of ∆

which makes it possible to find a solution to the problem or derive countable upper bound.

Such bounds are often sufficient for many applicable cases.

The following lemma shows the most constrained upper bound when ∆ is allowed to

be a full block, ∆ = Cn×n; and the most constrained lower bound when ∆ is a diagonal

matrix.

Lemma 3.1.1. [6] For every M ∈ Cn×n,

ρ (M) ≤ µ∆ (M) ≤ σ (M)

Proof. First take ∆ = {δIn : δ ∈ C}, then

µ∆(M) = max
|δ|≤1

ρ(δM) = max
|δ|≤1
|δ|ρ(M) = ρ(M)

Now take ∆ = ∆1 = Cn×n and let M = UΣV ∗ be singular value decomposition where

UV ∗ = V ∗U = I and Σ = diag(σ1, ..., σn) where σ1 ≥ · · · ≥ σn are the n singular

values. Thus

det (I −∆M) = 0⇒ det (I −∆UΣV ∗) = 0

This gives det (V ∗U − V ∗∆UΣ) = 0. Since V ∗∆U ∈∆ and ‖V ∗∆U‖= ‖∆‖ then

det
(
Σ−1 −∆

)
= 0

or equivalently

det




1

σ1
. . . 0

...
. . .

...

0 . . .
1

σn

−∆

 = 0
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It is obvious that ∆ = ∆2 = diag(1/σ1, 0, . . . , 0) has the smallest ‖∆‖ for which det
(
Σ−1 −∆

)
=

0. Hence for any given structured ∆ in (3.1)

∆2 ⊆ ∆ ⊆ ∆1 ⇒ ρ (M) ≤ µ∆ (M) ≤ σ (M)

Note 3.1.1. The function µ : Cn×n → R is not a norm, as it does not satisfy the triangular

inequality.

Note 3.1.2. The function µ : Cn×n → R is continuous.

The bounds of

ρ (M) ≤ µ∆ (M) ≤ σ (M) (3.3)

provide little information about the value of µ as the gap between them can be arbitrary

large[6]. Hence, a transformation can be introduced on M which change the bound but not

affect the µ∆(M). Thus two subsets of Cn×n can be defines

Q = {Q ∈∆ : Q∗Q = In} (3.4)

D = {diag [D1, ..., DS , dS+1Im1, ..., dS+F ImF ] : Di ∈ Cri×ri , Di = D∗i > 0, ds+j > 0}

(3.5)

For any ∆ ∈∆, Q ∈ Q and D ∈ D,

Q∗ ∈ Q, Q∆ ∈∆,∆Q ∈∆

σ(Q∆) = σ(∆Q) = σ(∆)

D1/2∆ = ∆D1/2

Theorem 3.1.1. [6] For all Q ∈ Q and D ∈ D

µ∆ (MQ) = µ∆ (QM) = µ∆ (M) = µ∆

(
D1/2MD−1/2

)
(3.6)

Proof. For all D ∈ D and ∆ ∈∆,

det (I −M∆) = det
(
I −MD−1/2∆D1/2

)
= det

(
I −D1/2MD−1/2∆

)
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Since D commutes with ∆, µ∆ (M) = µ∆

(
D1/2MD−1/2

)
. On the other hand, since

∆Q∗ = ∆, then ‖∆Q∗‖ = ‖∆‖. Therefore,

I −∆M = I −∆Q∗QM ⇒ µ∆(M) = µ∆Q∗(QM) = µ∆(QM)

Same argument can be used for MQ.

Hence, the bound on (3.3) can be tightened to

max
Q∈Q

ρ (QM) ≤ µ∆ (M) ≤ inf
D∈D

σ
(
D1/2MD−1/2

)
(3.7)

Without loss of generality, we assume that D is normalised (dF+S = 1), Hermitian and

positive definite. These conditions will not affect the infimum. The advantage of such upper

bound in (3.7) is that with a certain convexity properties, this upper bound is computation-

ally achievable [6]. In general

σ
(
D1/2MD−1/2

)
< β

⇔ λ
(
D−1/2M∗D1/2D1/2MD−1/2

)
< β2

⇔ D−1/2M∗D1/2D1/2MD−1/2 − β2I < 0

⇔M∗DM − β2D < 0

The last equation is a Linear Matrix Inequality (LMI) which is clearly a convex condition

for a given M ∈ Cn×n and β > 0 in a scaling set D. In the next section we describe Linear

Fractional Transformations as a practical application of structured singular value in control

theory.

3.1.1 Linear Fractional Transformations

Linear Fractional Transformations (LFTs) is a class of general linear feedback loops which

are widely used in the application of Structured Singular value in control theory. To define

LFTs, let M ∈ Cn×n is partitioned as

M =

 M11 M12

M21 M22


and let ∆2 ∈ ∆2 be compatible is size with M22. Consider the control block diagram
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in Figure 3.5 with the following corresponding equations

 e

z

 =

 M11 M12

M21 M22

 d

w

 (3.8)

Figure 3.5: Linear Fraction Transformation

Solving equation (3.8) for z and e, we have

e = M11d+M12w

z = M21d+M22w

⇒

 z = (I −M22∆2)−1M21d

e =
(
M11 +M12∆2 (I −M22∆2)−1M21

)
d

It is obvious that these equation for e and z are well-posed if and only if (I −M22∆2)−1

exists.

3.2 Structured distance to singularity

The distance to singularity, γ∆(M), is defined as the inverse of structured singular value in

definition 3.1.1. Note that both structured singular value and structured distance to singu-

larity are identical notions which describe the behaviour of a control system in the face of

uncertainty; therefore, we may use either of these definitions in this work. To formulise,

γ∆(M), we first start with the most general form of notation structured uncertainty and es-

tablish a connection with the structured distance to singularity. The content of the following

section summarises the results of references [6] and [9]. However, we expand the proofs and

highlight the results that are extensively used in the following chapters. First, consider the

following definition which is another formulation of the structured distance to singularity.
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Definition 3.2.1. Let A be

A = diag(a1, a2, ..., an) ∈ Cn×n (3.9)

where a1 > a2 > ... > an and let ζ =
[
Im 0m×(n−m)

]∗. For any set ∆11 ⊆

Cm×mdefine the structured distance of A to singularity

γ∆11 = min {‖∆‖ : det (A−∆) = 0, ζ∗∆ζ ∈∆11} (3.10)

and the set of all optimal structured rank reducing perturbations

D∆11 :=
{

∆ ∈ Cn×n : ‖∆‖ = 0, det (A−∆) = 0, ζ∗∆ζ ∈∆11

}
(3.11)

In this notation the (unstructured) distance to singularity will be denoted as

γCm×m = min
{
‖∆‖ ∈ Cn×n : det(A−∆) = 0, ζ∗∆ζ ∈ Cm×m

}
= min {‖∆‖ : det(A−∆) = 0}

Note that the above definition is identical to the definition of matrix µ∆(M). i.e.

det (I −∆M) = 0⇒ det (I −∆UΣV ∗) = 0⇒ det (I − V ∗∆UΣ) = 0⇒ det
(
Σ−1 − V ∗∆U

)
= 0

(3.12)

where

M = UΣV ∗, Σ = diag (σ1, ..., σn) , σ1 > .. > σn

is singular value decomposition. Since UV ∗ = V ∗U = I , then

V ∗∆U ∈∆, and ‖V ∗∆U‖ = ‖∆‖

Therefore by taking A = Σ−1 and considering γ∆ = µ−1
∆ , equation (3.2) can be reduced to

(3.10); hence from now on we replace term det (I −∆M) by det (A−∆). Moreover, since

for any α ∈ C, µ (αM) = |α|µ (M) we can always normalise A to its largest element,a1,

thus simplifying it to

A = Σ−1 = diag (A1, A2) , where A1 = Im, and , A2 = diag (am+1, ..., an) .

where 1 < am+1 ≤ ... ≤ an.
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Note that m in above equation is the multiplicity of the smallest singular value of A.

3.2.1 Lehtomaki’s Result

Before we continue, we present a well-known theorem to calculate a bound on γ∆(M).

This is in fact the main result of Lehtomaki et al at [16].

It is known that if ‖∆‖= 1/σmin = a1, then A + ∆ could be singular; and if ‖∆‖<

1/σmin then A+ ∆ is non-singular [9]. In fact, the Singular Decomposition of Matrix A is

A = UΣV ∗ = [u1, u2, ..., un]


a1 . . . 0
...

. . .
...

0 . . . an



v∗1

v∗2
...

v∗n

 =

n∑
i=1

aiuiv
∗
i

where a1 < a2 < . . . < an. For an arbitrary matrix ∆

∆ =
n∑
i=1

n∑
j=1

〈uiv∗j ,∆〉uiv∗j

where the inner product for matrix A,B is defined by 〈A,B〉 = tr(A∗B)

The matrix 〈uiv∗j ,∆〉uiv∗j is the projection of ∆ into the subspace spanned by uiv∗i

which has magnitude |〈uiv∗j ,∆〉|

If A+ ∆ is singular then

det(A+ ∆) = 0⇒ det(UΣV ∗ + ∆) = 0⇒ det(Σ + V∆U∗) = 0

Now let ∆̃ = V∆U∗ then

det(diag(a1, a2, ..., an)− ∆̃) = 0

Selecting ∆ =


a1 . . . 0
...

. . .
...

0 . . . 0

 gives ∆̃ = V∆U∗ = a1v1u
∗
1 =


a1 . . . 0
...

. . .
...

0 . . . 0

 and thus

min ‖∆‖ = a1.
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Now, if the projection of ∆ in the most sensitive direction, i.e. |u1∆v∗1|, is constrained to

have a magnitude less than σmin(A) = a1,A+∆ cannot be singular along this direction and

thus ‖∆‖ needs to increase to make A + ∆ singular [16]. This means that by constraining

the uncertainty we can achieve a larger stability radius. Now the question is that how big

can the perturbation be in this condition to make A + ∆ singular. Therefore, the problem

can be defined as

γ∆(M) = min
{
‖∆‖: ∆ ∈ Cn×n, |v∗1∆u1| ≤ φ < a1, φ ∈ R, det(A−∆) = 0

}
(3.13)

Thus, we impose a constraint such that ∆ cannot have a projection of magnitude a1 in

the most sensitive direction u1v
∗
1 . In other words A+ ∆ cannot become singular along the

direction of u1v
∗
1 and hence ‖∆‖ have to increase in order to make A+ ∆ singular.

This problem has been evaluated in details by Lehtomaki et al at [16]. The main result

of this section can be summarised via the following Theorem

Theorem 3.2.1. [16] The optimiser of the problem (3.13) is given by ‖∆‖=
√
a1a2 + φ(a1 − a2).

The set of ∆ associated to the optimiser is also given by

∆ = U


Ps 0

0
φ γ

γ∗ −φ

V ∗ (3.14)

where Ps is arbitrary and

‖Ps‖≤
√
a1a2 + φ(a1 − a2) = ‖∆‖ (3.15)

and

γ =
√

(φ+ a2)(a1 − φ)ejθ, (3.16)

where θ is arbitrary.

Proof. The result is first established for the 2 × 2 matrix case and then generalised for

general n× n matrices

Let A = diag[a1 a2] and assume ∆ = ∆∗, thus
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∆ =

 a b

b∗ d


Then ‖∆‖ is given by

‖∆‖ = |a+ d

2
|+

√(
a+ d

2

)2

+ |b|2

Using the fact that A+ ∆ is rank deficient |b|2 = (a1 − a)(a2 − d) and thus

‖∆‖ = |a+ d

2
|+

√(
a+ d

2

)2

+ (a1 − a)(a2 − d)

Taking partials of ‖∆‖ with respect to a and d, we have

∂‖∆‖
∂a

= 1/2 [sgn(a+ d) + z1] ,
∂‖∆‖
∂d

= 1/2 [sgn(a+ d) + z2]

Here, sgn(•) is sign function and

z1 =

(
a+ d

2

)
+ a2√(

a− d
2

)2

+ (a1 + a)(a2 + d)

z1 =

(
a+ d

2

)
+ a1√(

a− d
2

)2

+ (a1 + a)(a2 + d)

It follows via a straightforward calculation that for |d| < a2 and |a| < a2, |z1| > 1 and

|z2| < 1. Thus
∂‖∆‖
∂d

has the same sign as (a+d), hence the global minimum is at a = −d.

On the other hand, since|z2| > 1,
∂‖∆‖
∂a

is always positive, thus the minimum is at d = −φ.

Therefore, the optimal ∆ has the form

∆ =

 φ γ

γ∗ −φ


where γ =

√
(a1 + φ)(a2 − φ)ejθ, θ arbitrary.The proof for the structure of the optimum

∆ in the general case can be found in [16]. Here we only calculate the optimal norm. This
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is given by

‖∆‖=
√
λmax (∆∗∆) =

λmax

PsP

∗
s 0

0
φ(a1 − a2) + a1a2 0

0 φ(a1 − a2) + a1a2




1/2

Thus

‖∆‖2= ‖

φ(a1 − a2) + a1a2 0

0 φ(a1 − a2) + a1a2

 ‖
This is equivalent to

λmax(PsP
∗
s ) ≤ λmax

φ(a1 − a2) + a1a2 0

0 φ(a1 − a2) + a1a2


Hence

‖∆‖=
√
λmax (∆∗∆) =

λmax
φ(a1 − a2) + a1a2 0

0 φ(a1 − a2) + a1a2

1/2

=√
a1a2 + φ(a1 − a2)

Note that the tightest result is achieved when φ = 0 which gives ‖∆‖ =
√
a1a2. We

can now generalise the Lehtomaki’s idea of constraining the 1 × 1 entry of ∆ to the case

where the leading m × m block of a diagonal matrix ∆, i.e. ∆11 is constrained or is of

different classes of uncertainty. Next we evaluate γ∆11 and D∆11 for different sets of ∆11.

3.2.2 A class of uncertainty where ∆11 = C.

First we consider the simplest form of ∆11 where m = 1 and it is free to take any complex

value.i.e.

∆ =


δ11 0

0 ∆22


so that

det(A−∆) = 0⇔ det



a11 0

0 A22

−

δ11 0

0 ∆22


 = 0
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It is clear that a11 = δ11 gives det(A − ∆) = 0. Also ‖∆‖ = max {δ11, ‖∆22‖}.

Hence, taking ‖∆22‖ and δ11 = σ(A) = a11 gives the minimiser

γC = min {‖∆‖ : det (A−∆) = 0} = σ (A) = 1

and the set of all optimal rank reducing perturbations is given by

DC =
{

∆ = diag (1,∆22) ∈ Cn×n,∆22 ∈ C(n−1)×(n−1), ‖∆22‖ ≤ 1
}

Note that, if ‖∆‖ = σmin (A) then A+ ∆ is singular.

3.2.3 A class of uncertainty where ∆11 = {δ ∈ C : |δ| ≤ φ} , 0 ≤ φ < 1

As mentioned earlier, if the perturbation of the (1, 1) entry is confined to be less than or

equal to φ where 0 ≤ φ < 1, ‖∆‖ must increase to make A + ∆ singular. This is the

Lehtomaki result that has been reviewed in 3.2.1 and can be summarised to the following

theorem.

Theorem 3.2.2. [16] Let A = diag (1, a2, a3, ..., an) with 1 < a2 < ... < an be given and

define ζ =
[

1 01,n−1

]∗
and ∆φ = {δ ∈ C : |δ| ≤ φ} for any 0 ≤ φ ≤ 1.Then

γ∆φ
:= min {‖∆‖ : det (A−∆) = 0, ζ∗∆ζ ∈∆φ} =

√
a2 − φ (a2 − 1)

and for φ < 1, the set of all optimal rank reducing perturbation is given by

D∆φ
=

diag
 φ γ∆φ

ejθ

γ∆φ
e−jθ −φ

 ,∆33 : θ ∈ R,∆33 ∈ C(n−2)×(n−2), ‖∆33‖ ≤ γ∆φ


Proof. Same as Theorem 3.2.1 by setting a1 = 1.

3.2.4 A class of uncertainty where ∆11 = Cm×m

To take one step further, we assume. ∆11 = Cm×m. This gives generalisation of Theorem

3.2.2 for a case that m > 1. It has been shown in [9] that,
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Lemma 3.2.1. For A and ζ defined previously,

γ∆∈Cm×m = min {‖∆‖ : det (A−∆) = 0} = σmin(A) = 1 (3.17)

and the set of all optimal ∆ is given by

D =


 W 0

0 In−m




1 0 0

0 ∆22 ∆23

0 ∆32 ∆33


 W ∗ 0

0 In−m

 ∈ Cn×n

 (3.18)

where

WW ∗ = W ∗W = Im, and , ‖

 ∆22 ∆23

∆32 ∆33

 ‖ ≤ 1

Proof. See Appendix A.1

3.2.5 A class of uncertainty where ∆11 = {0m×m}

Similar to the condition when ∆11 ∈ C, we violate the constrain on ∆11 and assume that

‖∆11‖ cannot reach 1. We start with the simplest condition where ∆11 = 0.

Lemma 3.2.2. [9]

Let A = diag(A1, A2) ∈ Rn×n with

A1 =

 Im1 0

0 A22

 ∈ Rm×m

and

A2 =

 a3Im3 0

0 A44

 ∈ R(n−m)×(n−m)

Assume that 1 < σ(A22), 0 < a3 < σ(A44), and 1 < a3. Then the structured distance to

singularity is

γ0m×m := min {‖∆‖ : det (A−∆) = 0, ζ∗∆ζ = 0} =
√
a3 =:

√
σ(A1)σ(A2) (3.19)

Furthermore all optimal rank reducing perturbations are generated by
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W



0 0 0
√
a3 0 0

0 0 0 0 ∆13 ∆14

0 0 0 0 ∆23 ∆24

√
a3 0 0 0 0 0

0 ∆31 ∆32 0 ∆33 ∆34

0 ∆41 ∆42 0 ∆43 ∆44


W ∗ = W∆W ∗ (3.20)

where W = diag(W1, Im2 ,W3, Im4) ∈ Cn×n is unitary and

wwwwwwwwwwww


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44



wwwwwwwwwwww
≤
√
a3 (3.21)

Proof. See Appendix A.2

3.2.6 A class of uncertainty where ∆11 ∈ Cm×m, ‖∆11‖ ≤ 1

Next we assume that ∆11 ∈ Cm×m, i.e. ∆11 is a fixed complex-valued matrix with

‖∆11‖≤ 1.

The following lemma, from [9], summarises the optimal solution in this case.

Lemma 3.2.3. [9] For matrices A and ζ, as defined previously, let ∆11 ∈ Cm×m has the

same structure as section 3.2.6 where ‖∆11‖ ≤ 1 and det (I −∆11) 6= 0. Then

min
det(A−∆)=0
ζ∗∆ζ=∆11

‖∆‖ = min
‖(γ2I−∆11)(I−∆11)−1‖=am+1

γ>1

γ (3.22)

Proof. See Appendix A.3

Remark 3.2.1. The optimisation on the right-hand side of (3.22) is an eigenvalue problem,

as the following argument shows. Setting γ2 = 1 + ζ, ζ > 0, gives
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(γ2I −∆11)(I −∆11)−1 = ((1 + ζ)I −∆11) (I −∆11)−1

= (I + ζI −∆11) (I −∆11)−1

= (ζI + (I −∆11)) (I −∆11)−1

= ζ(I −∆11)−1 + I

⇒ ‖γ2I −∆11(I −∆11)−1‖= ‖ζ(I −∆11)−1 + I‖

On the other hand

min γ = min
√

1 + ζ =
√

1 + min ζ

hence,

min
‖(γ2I−∆11)(I−∆11)−1‖=am+1

γ>1

γ =
√

1 + min
‖I+ζ(I−∆11)−1‖=am+1

ζ>0

ζ (3.23)

Note that

am+1 = ‖I + ζ (I −∆11)−1 ‖ ⇒ a2
m+1 = ‖I + ζ (I −∆11)−1 ‖2

Let I + ζ (I −∆11)−1 = θ, thus

a2
m+1 = ‖θ‖2 ⇒ a2

m+1 = λmax (θθ∗)⇒ a2
m+1 − λmax (θθ∗) = 0

this can be express as

λmin
(
a2
m+1I − θθ∗

)
= 0⇒

which gives

λmin
(
a2
m+1I−

[
I + ζ (I −∆11)−1

] [
I + ζ (I −∆11)−1

]∗)
= 0⇒

λmin
(
a2
m+1I−

[
I + ζ (I −∆11)−1

] [
I + ζ (I −∆∗11)−1

])
= 0
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simple calculation gives

λmin

[
a2
m+1I − I − ζ (I −∆11)−1 − ζ (I −∆∗11)−1 − ζ2 (I −∆11)−1 (I −∆∗11)−1

]
⇒

λmin

[
I − ζ(I −∆11)−1

a2
m+1 − 1

− ζ(I −∆∗11)−1

a2
m+1 − 1

− ζ2 (I −∆11)−1 (I −∆∗11)−1

a2
m+1 − 1

]
= 0⇒

Factorizing ζ gives

λmin

[
ζ−1I − (I −∆11)−1

a2
m+1 − 1

− (I −∆∗11)−1

a2
m+1 − 1

− ζ (I −∆11)−1 (I −∆∗11)−1

a2
m+1 − 1

−

]
= 0

(3.24)

Using the matrix identity

det

 A B

C D

 = det(D)det(A−BD−1C)

It follows that

det

 A B

B∗ αI

 = det(αI)det(A−B(αI)−1B∗) = α.det(A− α−1BB∗) for any α ∈ R

Comparing with equation(3.24) and taking

A = ζ−1I − (I −∆11)−1

a2
m+1 − 1

, B = −(I −∆11)−1√
a2
m+1 − 1

, D = ζ−1I

gives

λmin

[
ζ−1I − (I −∆11)−1

a2
m+1 − 1

− (I −∆∗11)−1

a2
m+1 − 1

− ζ (I −∆11)−1 (I −∆∗11)−1

a2
m+1 − 1

]
= 0

which is equivalent to

λmin


ζ−1I − (I −∆11)−1 − (I −∆∗11)−1

a2
m+1 − 1

(I −∆11)−1√
a2
m+1 − 1

(I −∆∗11)−1√
a2
m+1 − 1

ζ−1I

 = 0
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or

λmin


 ζ−1I 0

0 ζ−1I

−


(I −∆11)−1 − (I −∆∗11)−1

a2
m+1 − 1

−(I −∆11)−1√
a2
m+1 − 1

−(I −∆∗11)−1√
a2
m+1 − 1

0



 = 0

Since ζ > 0,

min{ζ−1} − λmax


(I −∆11)−1 − (I −∆∗11)−1

a2
m+1 − 1

−(I −∆11)−1√
a2
m+1 − 1

−(I −∆∗11)−1√
a2
m+1 − 1

0

 = 0

Thus minimum in (3.23) is given by ζ0, where

ζ−1
0 = λmax


(I −∆11)−1

a2
m+1 − 1

−(I −∆11)−1√
a2
m+1 − 1

−(I −∆∗11)−1√
a2
m+1 − 1

0


To summarise, this section has focused on the problem with the following form

γ = min
det(A−∆)=0

∆ is a given diagonal positive definite matrix
Constraint on ∆

‖∆‖ (3.25)

Different constraints were imposed on ∆ to find optimal distance to singularity. Table

3.1 gives a summary of the main results:

Table 3.1: Summary the optimum γ for different class of uncertainties

Constraint on ∆ Optimum γ

No Constraint a1

δ11 = 0
√
a1a2

|δ11 ≤ φ1 < a1|
√
a1a2 − φ1(a2 − a1)

∆11 ∈ Cm×m a1

∆11 = {0m×m}
√
σ(A1)σ(A2)

∆11 ∈ Cm×m, ‖∆11‖ ≤ 1 answer of eigen value problem in (3.22)

One of the main result of this Chapter is Lemma 3.2.3 which reduces to eigenvalue

problem in (3.22). This problem is used in next chapter to obtain a graphical method for

achieving an upper bound on µ. Next, we propose several algorithms of varying computa-
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tional complexity for calculating upper bounds of the structured singular value (equivalently

lower bounds of the structured distance to singularity) of a matrix M subject to real para-

metric uncertainty. Our approach is based on the projection of the uncertainty set in the

most critical direction along the lines summarised in the present Chapter.

3.3 Summary

This chapter is preliminary to chapter 4 where µ analysis is briefly described. Several

definitions, equations, theorems and proofs are mentioned in this chapter. The results of

this chapter was based on two main references, [6] and [9].
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Chapter 4

Structured singular value of matrices

with real parametric uncertainty:

Deterministic and Probabilistic

algorithms

The structured singular value (µ) is a powerful tool for measuring the stability margins of

a system subject to parametric uncertainty. In robust control, µ can be used to establish

conditions under which robust stability of feedback systems is guaranteed when the system

is subject to structured or norm-bounded uncertainties. Combined withH∞ optimal control,

it provides a framework for robust control synthesis.

When real scalar perturbations describe the uncertainty, we have a real µ-problem. The

solution of the general real (µ) problem is known to be NP-hard, i.e. one can always con-

struct examples in which any algorithm used to compute µ fails to perform the calculation

in polynomial time [9]. Hence, in practical applications, upper and lower bounds are often

sought, or, alternatively, specialised algorithms are tuned to the specific class of problems

under consideration. The most straightforward case is when uncertainty is unstructured, i.e.

when the uncertain set ∆ consists of a single (norm-bounded) matrix block. In this case

the structured singular value coincides with the standard singular value and can be easily

calculated. Another category of problems is when µ coincides with its convex upper bound

(problems with µ-simple structure). However, this class is too limited in practice to address

problems of realistic complexity. For problems of medium or high complexity, obtaining

a tight upper bound on µ is often needed to guarantee robust control design margins with
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a minimal degree of conservativeness. In this chapter, structured singular value problems

with real scalar (possibly repeated) uncertainty is considered. By adapting previous work

results in this area, we obtain several deterministic and probabilistic bounds on µ. Thus, our

approach addresses the trade-offs between accuracy and algorithmic complexity explicitly

and is easily adaptable to the needs of practical control design problems.

The chapter extends the methodology of [9] to the case of real-parametric uncertainty.

Reference [9] considered the complex µ(M) problem. It aimed to derive conditions for

breaching the convex upper bound of µ(M), normally obtained via convex programming

or the so-called D-iteration algorithm. It was shown that this bound could be breached if

an auxiliary µ problem of a low-rank matrix could be solved (or a sufficiently tight bound

could be obtained).

The approach followed in this chapter proceeds by characterising the projection of the

uncertainty set in the most critical direction corresponding to unstructured perturbations.

This direction is defined by the pair of singular vectors (u, v) corresponding to the maxi-

mum singular value ofM . In the unstructured case, all minimum-norm singularising pertur-

bations ∆ have a projection of magnitude σmin(M) in the worst-case direction. If the mag-

nitude of the projection of the perturbation in this direction is not allowed to reach σmin(M),

i.e. |(uv∗,∆)| ≤ φσmin(M), 0 ≤ φ < 1, the norm of nearest destabilising perturbations

must increase for I − ∆M to lose rank. This constrained distance to singularity problem

can be solved exactly in terms of the constraint parameter φ and the two smaller singular

values ofM . Note that imposing a constraint on the projection of ∆ in the direction (uv∗, ·)

defines an implicit "structure". By embedding the actual (diagonal) uncertainty structure as

tightly as possible within this implicit structure allows for the derivation of an upper bound

on µ(M) with respect to the diagonal structure of real perturbations (equivalently a lower

bound on the structured distance to singularity).

We consider two types of relaxation. The first bounds the magnitude of the projected

uncertainty set. To obtain the tightest possible embedding within the artificial uncertainty

structure we need to maximise a convex multivariable quadratic function with box con-

straints, for which the maximum occurs on the boundary of the constraint set. Several

relaxation methods can be applied to this optimisation for problems of high dimensionality.

The second relaxation method is computationally more demanding but produces a tighter

bound. In this case we do not only want to calculate the maximum magnitude of the pro-

jected set in the most critical direction but to characterise fully the projected set and its

boundary in the complex plane. In the standard real µ problem the uncertain parameters

76



enter linearly and the projected set takes the form of a Zonotope. It can be shown [8] that

the calculation of the tightest lower bound to the structured distance to singularity reduces

to a geometric problem, in particular the calculation of the minimum value of a parameter

for which the intersection of an Apollonius circle and the Zonotope in the complex plane is

a non-empty set. This can be obtained by enumerating the vertices of the Zonotope, a task

that can be achieved efficiently using the "reverse enumeration" algorithm [42],[29].

Despite the efficient computational properties of this algorithm (in terms of speed and

memory storage requirements) the full enumeration of the vertices becomes impractical

for high dimensional problems. In this case a randomised enumeration algorithm may be

used as an alternative. This generates sequential Zonotope vertices by random sampling the

standard two-dimensional Gaussian distribution. The full Zonotope is approximated by the

convex hull of the set of partially enumerated vertices that are generated by the algorithm.

The method also produces a probabilistic upper bound of the Hausdorff distance between

the original Zonotope and the convex polytope which approximates it. Embedding this ap-

proximating polytope within a broader convex set of minimum volume (using the estimated

Hausdorff distance) allows us to conclude (with a specific high probability controlled by

the designer) that this also contains the original Zonotope. Finally, calculating again the

minimum value of the parameter for which the intersection of the Apollonius circle and

the extended polytope is non-empty, allows us to obtain a lower bound of the structured

distance to singularity (this time probabilistic).

An appealing aspect of our methodology is that it can be easily extended (at least con-

ceptually) to structured perturbation problems with "correlated" parameters or, in general,

to problems in which parameters enter the uncertainty set described in a nonlinear way.

What is required in this case is the description of the boundary of the uncertainty set pro-

jected in a low dimensional space. We illustrate this method with a simple example. Of

course, in the nonlinear case, the projected uncertainty set is not expected to be a Zonotope

in general or even convex. We believe that this approach is promising for establishing robust

stability conditions in nonlinear problems of this type and is worth investigating further in

future work. For problems of high dimensionality in which the projected set boundary is

challenging to determine deterministically, probabilistic estimation methods that involving

random sampling techniques may be a viable alternative.

The structure of this chapter is as follows: Section 4.1 gives several definitions related

to the structured singular value and the structured distance to singularity for real parametric

diagonal uncertainty structures. In addition, the two basic relaxations techniques introduced
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in [9] are reviewed and specialised to the real uncertainty structure considered here. The

results of this section apply to the general case for which the multiplicity of the larger sin-

gular value m is an arbitrary integer. The generic case m = 1 is analysed in Section 4.2.

This allows for a more concrete set of algorithms to be formulated and solved based on an

interesting geometric interpretation of the problem. Extensions of the proposed method-

ology to correlated parameters and nonlinear uncertainty models are also presented here.

Several algorithmic implementation aspects are discussed in Section 4.3. Section 4.4 de-

scribes a randomised algorithm for the partial enumeration of the Zonotope’s vertices along

with an estimation of the Hausdorff distance between the Zonotope and the convex hull of

the polytope corresponding to the reduced vertices obtained from the randomisation algo-

rithm. This can be used to obtain a probabilistic lowed bound on the structured distance to

singularity. In section 4.5, a numerical example is presented to illustrate the performance of

the algorithms described in previous sections.

The notation of this chapter is standard and is outlined here cor convenience. Rn (Cn)

denote the spaces of n-dimensional real (complex) vectors, respectively. Rn×m (Cn×m)

denote the spaces of n×m (complex) matrices, respectively. If z ∈ C then <(z) and =(z)

are the real and imaginary parts of z, respectively, and |z| is the modulus of z. IfM ∈ Cm×n

then M ′ denotes the transpose of M and M∗ the complex conjugate transpose of M . The

singular values of a matrix M ∈ Cm×n are denoted as σi(M), i = 1, 2, . . . ,min(m,n)

and are indexed in non-increasing order of magnitude, i.e. σ1(M) ≥ σ2(M) ≥ . . . ≥

σmin(m,n)(M) ≥ 0. ‖M‖ denotes the spectral norm of M , i.e. the largest singular value

of M . If M ∈ Cn×n its spectrum, i.e. the set of its eigenvalues is denored as σ(M).

The eigenvalues of a Hermitian matrix M ∈ Cn×n, M = M∗ are denoted as λi(M), i =

1, 2, . . . , n and are indexed in non-increasing order of magnitude, i.e. λ1(M) ≥ λ2(M) ≥

. . . ≥ λn. We also write λ1(M) = λmax(M). If Ω ∈ Rq×p with p ≥ q, then the set

Z = {Ωx : x ∈ [−1 1]p defines a Zonotope in Rq. If {ωi}pi=1 are the columns of Ω, this

is also written as Z(ω1, . . . , ωp) and the vectors {ωi}pi=1 are the generators of Z . If Z is a

polytope, then vert(Z) denotes the set of vertices ofZ and conv(Z) the convex hull ofZ . If

Z is a closed set, then int(Z) denotes the interior of Z and ∂Z = Z \ int(Z) the boundary

of Z . If V is a finite set then |V | denotes the number of elements of V . Further notation is

introduces in the chapter when needed.
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4.1 Structured Singular Value for a real set of uncertainty

First, we describe the problem using some basic definitions from chapter 3. Let M ∈ Cn×n

be a square non-singular value with singular value decomposition

M = UΣV ∗ =
[
V1 V2

] Im 0

0 Σ2

 V ∗1

V ∗2

 (4.1)

where

Σ = diag(σm+1, σm+2, . . . , σn), 1 > σm+1 ≥ σm+2 ≥ · · · ≥ σn > 0. (4.2)

and V ∗V = U∗U = In.

Note that the largest singular value is assumed equal to one. This involves no loss

of generality and can be achieved for any non singular matrix M by the transformation

M/σ1 →M . We also define

A = Σ−1 = diag(1, . . . , 1, am+1, . . . , an) (4.3)

with 1 < am+1 ≤ . . . ≤ an and ai = σ−1
i for i = m+ 1, . . . , n.

We define ∆ ⊆ Cn×n to be a uncertainty set which defines the "structure" of the model.

At present we consider ∆ be the set of (possibly repeated) real diagonal perturbations:

∆ =
{

diag
(
δ1Ik1 . . . , δpIkp

)
, δi ∈ R, i = 1, 2, . . . , p

}
,

p∑
i=1

ki = n (4.4)

The structured distance to singularity of M ∈ Cn×n with respect to ∆ is defined as

γ∆ (M) := min {‖∆‖ : ∆ ∈∆, det (I −M∆) = 0} (4.5)

Similarly, the structured singular value with respect to ∆, µ∆(M), is defined as the

inverse of γ∆(M) (provided the inverse exists), i.e.

µ∆ (M) = γ∆ (M)−1 :=
1

min {‖∆‖ : ∆ ∈∆, det (I −M∆) = 0}
(4.6)

If det(I −M∆) 6= 0 for every ∆ ∈ ∆, then µ∆(M) = 0. The following Lemma gives an

alternative formulation of γ∆(M) which is used later.

Lemma 4.1.1. [8] Let M = UΣV ∗ and A be as defined in equations (4.1) and (4.3),
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respectively, and let ∆ be the structured uncertainty set defined in equation (4.4). Then:

γ∆(M) := min {γ : E ∈ E, det (A− γE) = 0} (4.7)

where

E = {V ∗∆U : ∆ ∈ B∆} and ; B∆ = {∆ ∈∆ : ‖∆‖≤ 1} .

Proof. Equation (4.5) can be written as:

γ∆ (M) := min {‖∆‖ : ∆ ∈∆, det (I −M∆) = 0}

:= min {‖∆‖ : ∆ ∈∆, det (I − UΣV ∗∆) = 0}

:= min {‖∆‖ : ∆ ∈∆, det (A− V ∗∆U) = 0}

(4.8)

where A = Σ−1 = diag(1, . . . , 1, am+1, . . . , an) where 1 < am+1 ≤ . . . , an and ai =

1/σi for i = m+ 1, . . . , n

Hence

γ∆(M) := min {‖∆‖ : ∆ ∈∆, det (A− V ∗∆U) = 0} (4.9)

Now let

B∆ = {∆ ∈∆ : ‖∆‖≤ 1}

be the unit ball and define

E = {V ∗∆U : ∆ ∈ B∆} (4.10)

E can also be written as

E = V ∗B∆U = BV ∗∆U

This follows from the fact that

‖V ∗∆U‖= ‖∆‖ for all ∆ ∈∆

Taking ‖V ∗∆U‖= ‖∆‖= γ, equation (4.8) can be reformulated as

γ∆ (M) := min {‖∆‖ : ∆ ∈∆, det (I −M∆) = 0}

= min {‖∆‖ : ∆ ∈∆, det (A− V ∗∆U) = 0}

= min

{
‖∆‖ : ∆ ∈∆, det

(
A− ‖∆‖V

∗∆U

‖∆‖

)
= 0

}
= min {γ : E ∈ E, det (A− γE) = 0}

(4.11)
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Note that if set E has complex structure, calculation of the minimum in equation (4.11)

may be difficult. However, a lower bound of γ∆ could be easy to obtain if we embed E

within a conveniently-chosen super-set E1. In this case:

γE1(M) := min {γ : E ∈ E1, det (A− γE) = 0}

≤ min {γ : E ∈ E, det (A− γE) = 0}

= γ∆(M)

(4.12)

provided E1 ⊇ E . Thus, γE1(M) is a lower bound on γ∆. Equivalently γ−1
E1

= µE1 is an

upper bound on µ∆(M).

Note that E1 can be chosen as an arbitrary superset of E . At this point, E1 is chosen to

facilitate the process of finding an upper bound of µ∆(M):

First Relaxation: First let E1 have the following structure

E1 =
{
E ∈ Cn×n : Z∗EZ ∈ E11

}
(4.13)

where E11 = {V ∗1 ∆U1 : ∆ ∈ B∆} and Z∗ =
[
Im|0m×(n−m)

]
.

Note further that if E ∈ E then E = V ∗∆U for some ∆ ∈ B∆ and

Z∗EZ = Z∗V ∗∆UZ =
[
Im 0

] V ∗1

V ∗2

∆
[
U1 U2

] Im

0

 = V ∗1 ∆U1 ∈ E11

Thus E ∈ E ⇒ E ∈ E1 and hence E ⊆ E1. For simplicity, we denote Z∗EZ by E11.

We partition V1 and U1 compatibly with ∆, i.e.

V ∗1 =
[
V ∗11 V ∗22 . . . V ∗1p

]
∈ Cm×n, U1 =


U11

U22

...

Up1

 ∈ Cn×m

where V ∗1j ∈ Cm×kj and Uj1 ∈ Ckj×m for j = 1, 2, . . . , p, then for ∆ ∈∆,
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V ∗1 ∆U1 =
[
V ∗11 V ∗22 . . . V ∗1p

]

δ1Ik1 0k1,k2 . . . 0k1,kp

0k2,k1 δ2Ik2 . . . 0k2,kp

...
...

. . .
...

0kp,k1 0k2,k2 . . . δpIkp




U11

U22

...

Up1


Equivalently,

V ∗1 ∆U1 =

p∑
i=1

δi(V
∗

1j .Uj1) =

p∑
i=1

δiEi, Ei = V ∗1j .Ui1 ∈ Cm×m (4.14)

for i = 1, 2, . . . , p. Therefore, the lower bound of γ∆(M) is given by:

γE1 = min (γ : det(A− γE) = 0, E ∈ E1) (4.15)

where

E1 = {

 E11 E12

E21 E22

 : E11 =

p∑
i=1

δiEi, −1 ≤ δi ≤ 1, i = 1, . . . , p

E12 ∈ Cm×(n−m), E21 ∈ C(n−m)×m, E22 ∈ C(n−m)×(n−m) }

(4.16)

E12 ∈ Cm×(n−m), E21 ∈ C(n−m)×m and E22 ∈ C(n−m)×(n−m) are free matrices of the

indicated dimensions and E1 contains all the matrices of the form

E1 =


 ∑p

i=1 δiEi ∗

∗ ∗

 ∈ Cn×m : |δi| ≤ 1, i = 1, 2, . . . , p

 (4.17)

Next let δi = δ0
i , i = 1, 2, . . . , p be real fixed values such that |δ0

i | ≤ 1 and consider

the minimisation:

β(δ0
1 , . . . , δ

0
p) = min

{
‖∆‖: det(A−∆) = 0, |δ0

i | ≤ 1, Z∗∆Z =

p∑
i=1

δ0
iEi

}
(4.18)

It follows from (4.15) that:

γE1(M) = min{β(δ1, . . . , δp) : δi ∈ R,−1 ≤ δi ≤ 1, i = 1, 2, . . . , p} (4.19)

82



The solution to problem (4.18) and subsequently problem (4.19) is provided later in this

section. First we need the following three Lemmas:

Lemma 4.1.2. [9] LetA be as defined in equation (4.3) and Ψ ∈ Cm×m such that ‖Ψ‖ ≤ 1

and 1 /∈ σ(Ψ) Then:

β := min
det(A−∆)=0

∆11=Ψ

‖∆‖ = min
‖(γ2I−Ψ)(I−Ψ)−1‖=am+1

γ>1

γ (4.20)

where ∆11 is the leading m×m block of ∆. Further,

β2 − 1 = min
{
ζ : ‖Im + ζ (Im −Ψ)−1 ‖= am+1, ζ > 0

}

= λ−1
1




(Im −Ψ)−1 + (Im −Ψ∗)−1

a2
m+1 − 1

−(Im −Ψ)−1√
a2
m+1 − 1

−(Im −Ψ∗)−1√
a2
m+1 − 1

0




(4.21)

Proof. See Appendix A.3.

A matrix E ∈ Cm×m is called radial if ρ(E) = ‖E‖. Order the eigenvalues of E as:

ρ(E) = |λ1| = |λ2| = . . . = |λs| > |λs+1| ≥ . . . ≥ |λm|

where s is the number of eigenvalues ofE on the circle: |z| = ρ(E). The following Lemma

characterises radial matrices:

Lemma 4.1.3. [72] A matrix E ∈ Cm×m is radial if and only if it is unitarily similar to a

matrix of the form diag(Λ, B) in which:

Λ =


λ1 0

. . .

0 λs

 and B =


λs+1 0

. . .

(Bij) λm


and ρ2(E)Im−s −B∗B > 0.

Proof. See [72].

Lemma 4.1.4. Assume that 1 ∈ σ(V ∗1 ∆U1) for some ∆ ∈ B∆. Then µ∆(M) = 1.

83



Proof. Let ∆ ∈ B∆ with 1 ∈ σ(V ∗1 ∆U1). Then

V ∗∆U =

 V ∗1

V ∗2

∆
[
U1 U2

]
=

 V ∗1 ∆U1 V ∗1 ∆U2

V ∗2 ∆U1 V ∗2 ∆U2


Since 1 ∈ σ(V ∗1 ∆U1) we have that ρ(V ∗1 ∆U1) ≥ 1. However, since V and U are unitary

and ‖∆‖ ≤ 1 we have that ‖V ∗∆U‖ ≤ 1 ⇒ ‖V ∗1 ∆U1‖ ≤ 1 and hence, since the spec-

tral radius of a matrix does not exceed its spectral norm, we conclude that ρ(V ∗1 ∆U1) =

‖V ∗1 ∆U1‖ = 1 and matrix V ∗1 ∆U1 is radial. Let V ∗1 ∆U1 have eigenvalues ordered in

non-increasing order of magnitude as:

ρ(V ∗1 ∆U1) = 1 = λ1 = |λ2| = . . . = |λs| > |λs+1| ≥ . . . ≥ |λm|

Then, from Lemma 4.1.3, there exist a unitary matrixQ ∈ Cm×m such that Q∗V ∗1 ∆U1Q =

diag(1, T ), where T = diag(Λ1, B) in which:

Λ1 =


λ2 0

. . .

0 λs

 and B =


λs+1 0

. . .

(Bij) λm


Let Qa = diag(Q, In−m) and consider the product:

L := Q∗aV
∗∆UQa =

 Q∗ 0

0 In−m

 V ∗1

V ∗2

∆
[
U1 U2

] Q 0

0 In−m


Define:

Ṽ ∗1 = Q∗V ∗1 =

 ṽ∗11

Ṽ ∗12

 and U1Q =
[
ũ11 Ũ12

]
where ṽ∗11 ∈ C1×n and ũ11 ∈ Cn×1. Then

L = Q∗aV
∗∆UQa =


1 0 ṽ∗11∆U2

0 T Ṽ ∗12∆U2

V ∗2 ∆ũ11 V ∗2 ∆Ũ12 V ∗2 ∆U2


Since ‖L‖ = 1 it follows that ṽ∗11∆U2 = 0 and V ∗2 ∆ũ11 = 0. Note also that: ∆ =
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V QaLQ
∗
aU
∗. Hence

det(In −M∆) = det(In − UΣV ∗V QaLQ
∗
aU
∗) = det(In −Q∗aΣQaL)

Now

Q∗aΣQa =

 Q∗ 0

0 In−m

 Im 0

0 Σ2

 Q 0

0 In−m

 =

 Im 0

0 Σ2

 = Σ

and hence

det(In −M∆) = det




0 0 0

0 Im−1 − T −Ṽ ∗12∆U2

0 −Σ2V
∗

2 ∆Ũ12 In−m − Σ2V
∗

2 ∆U2


 = 0

Since ∆ ∈ ∆ this implies that γ∆(M) ≤ 1 (equivalently µ∆(M) ≥ 1). Since however

µ∆(M) ≤ ‖M‖ = 1 we conclude that µ∆(M) = 1.

Remark 4.1.1. Note that since Q is unitary we can redefine the columns of U1Q and V1Q

as the singular vector pairs corresponding to the largest singular value of M (normalised

to 1), i.e, write M = (U1Q)(Q∗V ∗1 ) + U2Σ2V
∗

2 .

Remark 4.1.2. In the cases when µ∆(M) = 1 the upper bound ‖M‖ = 1 is immediate

(and exact). Thus, to simplify the presentation, it is normally assumed in the sequel that

µ∆ < 1 (for otherwise the problem of calculating an upper bound is trivial). Lemma 4.1.4

then implies that 1 /∈ σ(V ∗1 ∆U1).

Using the two previous results the solution to the optimisation problem defined in equa-

tion (4.18) can now be obtained:

Theorem 4.1.1. Let δi = δ0
i , i = 1, 2, . . . , p, be real fixed values such that |δ0

i | ≤ 1 and

consider the minimisation defined in equation (4.18). Assume also that µ∆(M) < 1. Then:

β(δ0
1 , . . . , δ

0
p) = min

{
γ : ‖

(
γ2Im −Ψ

)
(Im −Ψ)−1 ‖= am+1, γ > 1

}
(4.22)

where Ψ =
∑p

i=1 δ
0
iEi. Further,

β(δ0
1 , . . . , δ

0
p) =

√
1 + ζ0(δ0

1 , . . . , δ
0
p) (4.23)
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where ζ0(δ0
1 , . . . , δ

0
p) is equal to:

λ−1
1




Φ(δ0

1 , . . . , δ
0
p) + Φ∗(δ0

1 , . . . , δ
0
p)

a2
m+1 − 1

−
Φ(δ0

1 , . . . , δ
0
p)√

a2
m+1 − 1

−
Φ∗(δ0

1 , . . . , δ
0
p)√

a2
m+1 − 1

0



 (4.24)

in which

Φ(δ0
1 , . . . , δ

0
p) =

(
Im −

p∑
i=1

δ0
iEi

)−1

Proof. Let Ψ =
∑p

i=1 δ
0
iEi. Then,

‖Ψ‖= ‖
p∑
i=1

δ0
iEi‖= ‖V ∗1 ∆U1‖≤ ‖V1‖ ‖∆‖ ‖U1‖ ≤ 1

Further the assumption µ∆(M) < 1 implies from Lemma 4.1.4 that 1 /∈ σ(Ψ). Thus

Lemma 4.1.2 is applicable and the result follows.

Next we consider the optimisation defined in equation (4.15) or equivalently (4.19).

Note that in contrast to the optimisation defined in equation (4.18), here the leading m×m

block is not fixed. The solution is straightforward and is stated in the following Lemma.

Lemma 4.1.5. γE1 =

√
1 + ζ̂0 in which ζ̂−1

0 is obtained by maximising

ζ̂−1
0 = maxλmax




Φ(δ1, . . . , δp) + Φ∗(δ1, . . . , δp)

a2
m+1 − 1

−Φ(δ1, . . . , δp)√
a2
m+1 − 1

−Φ∗(δ1, . . . , δp)√
a2
m+1 − 1

0


 (4.25)

over the hypercube |δi| ≤ 1, i = 1, 2, . . . , p.

Proof. Proof is immediate from the previous discussion.

Remark 4.1.3. Recall that γE1(M) ≤ γ∆(M) and so µ∆(M) ≤ 1√
1+ζ̂0

.

Remark 4.1.4. Problem (4.25) is a maximisation of a non-concave function over a convex

set. Although several algorithms can be used in an attempt to solve it (e.g. penalty/barrier

methods, feasible ascent direction algorithm using sub-gradients) there is no guarantee

of convergence to a global optimum. In the following section we will develop a solution

technique in the special case m = 1 which simplifies the problem considerably.
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Example 4.1.1 shows the maximisation problem (4.25) applied to a 4× 4 matrix.

Example 4.1.1. Consider the matrix M = Mr + jMi with

Mr =


−0.2497 0.0404 0.4750 0.4051

0.3904 0.1175 0.1743 0.1459

0.1511 0.0523 0.2814 0.0608

0.7479 0.0473 −0.2059 0.1892


and

Mi =


0.3368 0.0342 0.4223 0.0138

0.1828 0.0251 0.3155 0.4993

0.1559 0.3591 0.1061 0.1162

0.0541 −0.0390 0.1553 −0.1005


The singular values of M are σ1(M) = σ2(M) = 1, σ3(M) = 0.5 and σ4(M) = 0.25.

The diagonal structure of the problem is:

∆ = {diag(δ1, δ1, δ2, δ2) : δi ∈ R, |δi| ≤ 1, i = 1, 2}

The graph and the level contours of the largest eigenvalue of the matrix in equation (4.25)

are shown in Figures 4.1 and 4.2 respectively. Note that the function has a saddle point and

is maximised at the boundary of the constraint region (at point (δ1, δ2) = (−1,−1)).

Second Relaxation: Next we consider a second relaxation. Consider the set E1 defined

in equation (4.16). Suppose that ∥∥∥∥∥
p∑
i=1

δiEi

∥∥∥∥∥ ≤ φ
for all δi ∈ R with |δi| ≤ 1, i = 1, 2, . . . , p and introduce the set Eφ2 , where

Eφ2 =


 E11 E12

E21 E22

 : E11 ∈ Cm×m, ‖E11‖ ≤ φ

 (4.26)

in which the remaining blocksE12 ∈ Cm×(n−m),E21 ∈ C(n−m)×m andE22 ∈ C(n−m)×(n−m)
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Figure 4.1: Graph of λ1(δ1, δ2), (δ1, δ2) ∈ [−1 1]2

are free. Clearly Eφ2 ⊇ E1 ⊇ E and hence

γ∆(M) ≥ γE1(M) := min {γ : det(A− γE) = 0, E ∈ E1}

≥ min
{
‖∆‖: det(A−∆) = 0, ‖Z ′∆Z‖ ≤ φ

}
:= γEφ2

(M)

(4.27)

Intuitively, to minimise the gap γ∆(M) − γEφ2 (M) variable φ should be selected to over-

bound the set {
p∑
i=1

δiEi : δi ∈ R, |δi| ≤ 1, i = 1, 2, . . . , p

}

as tightly as possible (in the spectral-norm sense). Thus ideally we would like to select φ

which maximises:

φ0 = max

{∥∥∥∥∥
p∑
i=1

δiEi

∥∥∥∥∥ : δi ∈ R, |δi| ≤ 1, i = 1, 2, . . . , p

}
(4.28)

This is a maximisation of a convex function over a convex set and therefore the maximum

is attained at some extreme point of the constraint region. It is also clear that φ0 ≤ 1.

In the following section we specialise the problem to the (generic) case m = 1 and
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Figure 4.2: Level contours of λ1(δ1, δ2), (δ1, δ2) ∈ [−1 1]2

develop solutions to the relaxed optimisation problems defined in this section, thereby es-

tablishing computable upper bounds to µ∆(M).

4.2 Solution of relaxed problems (m = 1)

In this section we describe several algorithms that can be used to provide solutions to the

relaxed optimisation problems defined in the previous section in the case m = 1, i.e. when

the largest singular value of M is non-repeated. To fix notation we denote the left and right

singular vectors of M corresponding to the largest singular value (which is equal to 1) as

u1 and v1, respectively. These are partitioned conformally with the diagonal structure ∆

defined in equation (4.4), i.e.

v∗1 =
[
v∗11 v∗12 . . . v∗1p

]
∈ C1×n, u1 =


u11

u21

...

up1

 ∈ Cn×1 (4.29)
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where v∗1i ∈ C1×ki and ui1 ∈ Cki×1 for i = 1, 2, . . . , p. The matrices Ei now reduce to

complex numbers, i.e. Ei := ei = v∗1iui1 ∈ C, i = 1, 2, . . . , p.

4.2.1 First relaxation: m = 1 case

We start the section by specialising Theorem 4.1.1 in the previous section to the casem = 1.

Lemma 4.2.1. Let A be as defined above and let δ11 =
∑p

i=1 δ
0
i ei where δ0

i ∈ R, |δ0
i | ≤ 1,

i = 1, 2, . . . p. Then |δ11| ≤ 1. Assume that µ∆(M) < 1 so that δ11 6= 1 (see Remark

4.1.2). Then

min
∆11=δ11

det(A−∆)=0

‖∆‖= min
γ>1

|γ2−δ11|=a2|1−δ11|

γ

Proof. The proof is immediate from Theorem 4.1.1.

The following Theorem specialises Theorem 4.1.1 in the previous section to the case

m = 1.

Theorem 4.2.1. Let matrix A be as defined previously let

∆11 =

{
δ11 =

p∑
i=1

δiei, δi ∈ R, |δi| ≤ 1, i = 1, 2, . . . , p

}

Then |δ11| ≤ 1 for every δ11 ∈ ∆11. Assume also that µ∆(M) < 1 so that δ11 6= 1 for

every δ11 ∈∆11 (see Lemma 4.1.4). Then

γE1(M) = min
det(A−∆)=0

∆11∈∆11

‖∆‖ =
√

1 + ζ0 (4.30)

where ζ0 is the solution of the following optimisation problem

ζ0 = (a2
2 − 1) min

{
1− δ′X + δ′Γδ

1− δ′X + a2

√
1− δ′X + δ′Γδ

such that ‖δ‖∞≤ 1

}

where

δ =


δ1

δ2

...

δp

 , X =


<(e1)

<(e2)
...

<(ep)

 and Y =


=(e1)

=(e2)
...

=(ep)


and Γ = XX ′ + Y Y ′.
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Proof. Recall that from Theorem 4.1.1

γE1(M) = min
det(A−∆)=0

∆11∈∆11

‖∆‖= min
δ11∈∆11

min
|(γ2−δ11)(1−δ11)−1|=a2

γ>1

γ (4.31)

=
√

1 + min
δ11∈∆11

min
|1+ζ(1−δ11)−1|=a2

ζ>0

ζ (4.32)

where the minimum value of ζ (for fixed δ11), ζ0, satisfies ζ−1
0 = λ1(Ψ) where

Ψ =


(1− δ11)−1 + (1− δ11)−1

a2
2 − 1

−(1− δ11)−1√
a2

2 − 1

−
(
1− δ11

)−1√
a2

2 − 1
0

 :=

 α β

β̄ 0

 (4.33)

The maximum eigenvalue of Ψ is

λ1(Ψ) = ζ−1
0 =

α+
√
α2 + 4|β|2
2

Write <(δ11) = x and =(δ11) = y. Then

α =
2

a2
2 − 1

1− x
1− 2x+ x2 + y2

and |β|2 =
1

a2
2 − 1

1

1− 2x+ x2 + y2

Also √
α2 + 4|β|2 =

2a2(
a2

2 − 1
)√

(1− x)2 + y2

after some algebra. Thus:

ζ0 = (a2
2 − 1)

(1− x)2 + y2

1− x+ a2

√
(1− x)2 + y2

(4.34)

Finally note that x = δ′X , y = δ′Y and x2 + y2 = δ′(XX ′ + Y Y ′)δ = δ′Γδ.

We can now specialise the result of Lemma 4.1.2 as shown in the following Lemma:

Lemma 4.2.2. Let A be as defined above and let δ11 =
∑p

i=1 δ
0
i ei where δ0

i ∈ R, |δ0
i | ≤ 1,

i = 1, 2, . . . p. Then |δ11| ≤ 1 and δ11 6= 1. Further

min
∆∈∆

det(A−∆)=0

‖∆‖= min
γ>1

|γ2−δ11|=a2|1−δ11|

γ

where ∆ = {∆ ∈ Cn×n, z′∆z = δ11}.
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Proof. In the notation of Lemma 4.1.2 if ∆11 ∈ Cm×m with ‖∆11‖ ≤ 1 and

det (I −∆11) 6= 0

then

min
det(A−∆)=0
Z′1∆Z1=∆11

‖∆‖ = min
‖(γ2Im−∆11)(Im−∆11)−1‖=am+1

γ>1

γ (4.35)

In the case m = 1, write ∆11 = δ11 ∈ C. Then the constraint can be written as:

|
(
γ2 − δ11

)
(1− δ11)−1 | = a2 ⇒ |γ2 − δ11| = a2|1− δ11| (4.36)

as required.

The scaled version of the above result is the following:

Theorem 4.2.2. [8] Let A be as defined previously, let e11 ∈ C, e11 6= 1, |e11| ≤ 1. Then:

f(e11) := min
E11=e11

det(A−γE)=0

γ = min
γ>1

|γ−e11|=a2|γ−1−e11|

γ

Proof. Follows from Lemma 4.2.2 by carrying out the scaling e11 = γ−1δ11.

The above lemma can be generalised and used to compute γE1(M).

Lemma 4.2.3. In the above notation:

γE1(M) = min
γ>1

|γ−e11|=a2|γ−1−e11|
e11∈E11

γ

where

E11 =

{
p∑
i=1

δiei : δi ∈ R, |δi| ≤ 1, i = 1, 2, . . . , p

}
(4.37)

Proof. Note that in the above Lemma we can set e11 =
∑p

i=1 δ
0
i ei where δ0

i ∈ R, |δi| ≤ 1,

i = 1, 2, . . . , p. Allowing e11 to vary over the set E11 defined in 4.37 above, we can write:

γE1(M) = min{f(e11) : e11 ∈ E11} = min
γ>1

|γ−e11|=a2|γ−1−e11|
e11∈E11

γ

as required.
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In this form, the problem has a nice geometric interpretation which allows us to calcu-

late γE1(M), i.e. the optimal γ in the above equation corresponds to the intersection of a

Zonotope and a parametric Apolonius circle (of variable centre and radius).

As defined previously in chapter 2, Zonotopes are convex, centrally symmetric poly-

topes. They can be thought of as linear projections of a high-dimensional hypercube.

Specifically if A ∈ Rp×q with p < q then the set Z = {Ax : x ∈ [−1, 1]q} defines a

Zonotope in Rp. An equivalent way to define Zonotope is via Minkowski sums of q line

segments in Rp. Let {ai}qi=1, ai ∈ Rp, i = 1, 2, . . . , q be the columns of Ω. Then

Z = A1 +A2 + . . .Aq =

{
q∑
i=1

ωi : ωi ∈ Ai, i = 1, 2, . . . , q

}

where

Ai = {λωi : −1 ≤ λ ≤ 1}, i = 1, 2, . . . , q

The vectors ωi are called the generators of Z . To emphasise the dependence of Z on its

generators we will often write Z = Z(ω1, ω2, . . . , ωq). Note that identifying the complex

plane C with R2 allows to write E11 = Z(ε1, . . . , εp) where εi =
[
<(ei) =(ei)

]′
, i =

1, 2, . . . , p, i.e. the set E11 ⊆ R2 is the Zonotope with generators the vectors ω1, ω2, . . . , ωp.

It is clear that the whole set of δ11 on complex plane, can lies within a convex hull. i.e.

since δ11 = f (δ1, . . . , δn) ∈ C and −1 ≤ δi ≤ 1 : ∀i, all the combinations of f (δi = ±1)

make a set of points in complex plane. Thus a convexhull over these points forms the bound-

ary that contains f (−1 ≤ δi ≤ 1 : δi ∈ R,∀i). Figure 4.3 shows an example of convexhull

for a randomly selected 8×8 matrix. As this figure shows, the boundary around the extreme

point generate a convexhull.

Remark 4.2.1. The analysis that follows is based on [8]. Consider (for fixed γ ≥ 1) the

locus of the points in the complex plane defined by equation |γ − e11| = a2|γ−1 − e11|.

Taking e11 = x+ jy gives:

|γ − e11|2 = a2
2|γ−1 − e11|2 ⇔ (γ − x)2 + y2 = a2

2

{(
γ−1 − x

)2
+ y2

}
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Figure 4.3: Example of convexhull over a set of point for all combinations of f (δi = 0,±1) in an
objective 8× 8 matrix.

Equivalently:

x2 − 2γx+ γ2 + y2 = a2
2

{
x2 − 2γ−1x+ γ−2 + y2

}
⇔(

a2
2 − 1

)
x2 − 2x

(
a2

2 − γ2

γ

)
+
(
a2

2 − 1
)
y2 =

γ4 − a2
2

γ2
⇔

x2 − 2x
a2

2 − γ2

γ(a2
2 − 1)

+ y2 =
γ4 − a2

2

(a2
2 − 1)γ2

This eventually can be written as:

[
x− a2

2 − γ2

γ(a2
2 − 1)

]2

+ y2 =

[
a2γ
−1γ

2 − 1

a2
2 − 1

]2

and corresponds to a circle in the complex plane, C(γ), with centre (xc, yc) in which

xc(γ) =
a2

2 − γ
γ
(
a2

2 − 1
) , yc = 0

and radius

r(γ) =
a2

γ

γ2 − 1

a2
2 − 1

respectively.
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Note that r(1) = 0 and thus the circle collapses to the point (1, 0) when γ = 1. Without

loss of generality we assume that 1 /∈ Z for otherwise µ(M) = 1. In addition

a2
2 − 1

a2

dr(γ)

dγ
= 1 + γ−2 > 0

and the radius r(γ) becomes unbounded as γ → ∞ (with linear asymptotic growth). We

call this set of circle, Apollonius set. Further note that since:

(
a2

2 − 1
)
xc =

a2
2

γ
− γ ⇒ d

dγ

((
a2

2 − 1
)
xc
)

= −a2
2γ
−2 − 1 < 0

the circle’s centre moves to the left as γ increases. Further since xc → −1 in the limit as

γ →∞ we can conclude by continuity (and compactness and convexity of Z) that there is

a unique minimal value of γ = γ0 for which C(γ0)∩Z 6= ∅ at which C(γ0) either includes

a vertex of Z or is tangent to one of its sides. Figure 4.4 shows a set of Apollonius circles

drawn for 1.1 ≤ γ ≤ 1.45 with steps of 0.1. The figure shows how the Apollonius circle

moves to the left with increasing diameter as γ growth.

Figure 4.4: A set of Apollonius circles starting for 1.1 ≤ γ ≤ 1.45 with steps of 0.1.

This is summarised by reformulating Lemma 4.2.2 as follows:

Lemma 4.2.4. γE1 = min{γ : C(γ) ∩ Z(ε1, ε2, . . . , εp) 6= ∅}.
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Proof. Follows immediately from above discussion.

In the following section we will present an algorithm for calculating E1 using the

Lemma 4.2.4 which relies on a (computationally efficient) enumeration of the vertices of

Z(ω1, ω2, . . . , ωp), along with a probabilistic bound when the enumeration is computation-

ally prohibitive.

The approach can in principle be extended to the case of non-linear or "correlated"

uncertainty structures. Let BRs∞ be the unit ball in Rs with respect to the infinity norm,

i.e. BRs∞ = [−1 1]s and assume that δ1 be a vector of real uncertain parameters. Let

δ := [δ1 . . . δs]
′ ∈ [−1 1]s is a vector of real uncertain parameters. Let ψ : BRs∞ → Rp

be a contractive function, i.e. δ ∈ BRs∞ ⇒ ‖ψ(δ)‖∞≤ 1, such that ψ(0) = 0. Let

ψ(δ) := [ψ1(δ) . . . ψp(δ)]
′ define the diagonal uncertainty structure:

Ψδ =
{

diag
(
ψ1(δ)Ik1 , . . . , ψp(δ)Ikp

)
: δ ∈ BRs∞

}
(4.38)

where n =
∑p

i=1 ki. Note that the assumption |ψi(δ)| ≤ 1 for all δ ∈ BRs∞ =

[−1 1]s is not really restrictive and can be enforced by carrying out the maximisation

ωi := max‖δ‖≤1 |ψi(δ)|, scaling the ψ′s as ω−1
i ψ(δ)→ ψi(δ) and absorbing the scaling ωi

in the corresponding elements of M .

Let u1 and vi be the singular vector of M corresponding to the largest singular value of

M as partitioned in equation (4.29) and define ei = v∗1iui1 ∈ C, i = 1, 2, . . . , p and set

ei = αi + jβi, αi, βi ∈ R, for i = 1, 2, . . . , p as before. Consider the set:

D =

{
p∑
i=1

ψi(δ)ei : δ ∈ BRs∞

}
⊆ C

Assume that ψ is a continuous function, so that Ψδ and D are compact subsets of Rs and C

respectively. Let γ0(M) be the structured stability radius, i.e.

γ0(M) = min {γ : det(A− γE) = 0, E ∈ Ψδ}

Then we have the following theorem:

Theorem 4.2.3. Let γl = min {γ : D ∩ C(γ) 6= 0}, Then γl(M) ≤ γ0(M).

Proof. Similar to the proof of Lemma 4.2.4

Example 4.2.1. Let
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M =


0.0991 + 0.1747i 0.1889 + 0.1076i 0.3233 + 0.2270i

0.0501 + 0.3534i 0.1925 + 0.2575i 0.1470 + 0.3651i

0.2549 + 0.3496i 0.2778 + 0.2444i 0.2779 + 0.1111i


and consider the diagonal structure:

Ψ(δ1, δ2) = {diag (δ1, δ2, δ1δ2) : δ1, δ2 ∈ R,−1 ≤ δ2 ≤ 1,−1 ≤ δ2 ≤ 1}

The left and right singular vector associated to the largest singular value of M are

u1 =
[
−0.2598− 0.3969i −0.0709− 0.6131i −0.3691− 0.5078i

]T
v∗1 =

[
−0.5869 + 0.0000i −0.4899 + 0.1976i −0.5673 + 0.2337i

]
so that e1 = 0.1525 + 0.2329i, e2 = 0.1559 + 0.2864i, e3 = 0.3281 + 0.2018i. Thus

D = {δ1e1 + δ2e2 + δ1δ2e3 : −1 ≤ δ1 ≤ 1,−1 ≤ δ2 ≤ 1}

Set D is shown in Figure 4.5 along with a the minimum-area ellipse containing D and

the touching Apollonius circle of minimum value γl = 2.07 which is therefore a lower

bound to the structured distance to singularity of M . To verify that this is indeed a lower

bound, the square (δ1, δ2) ∈ [−1 1]2 was uniformly discretised (with a step equal to

0.01) and the smallest singular value of the matrix I3− γmin(δ1, δ2)EA−1 was calculated,

where E = V ∗∆U , ∆ = diag(δ1, δ2, δ1δ2) and γmin(δ1, δ2)EA−1 is the minimising γ

of σmin(I3 − γRA−1) in the interval [0 γl] (obtained approximately by discretion of this

interval with a step equal to 0.01).

It can be observed from Figure 4.5 that unlike the linear structures, the shape of bound-

ary enclosing all the pattern is not convex and highly depends on the values of M . It can

also be noticed that the result of this method gives a considerably tighter bound for this

example. This is specifically due to the position and the shape of the boundary that gives

extra room for the Apollonius circle to grow bigger. This is of course due to nonlinear of

∆.

The graph of the function (δ1, δ2)→ σmin(I3− γEA−1) is shown in Figure 4.6 below,

along with the corresponding level contours of the function in Figure 4.7. The minimum

value of the function is approximately 0.465 so the matrix singularity is never attained in

this interval.
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Figure 4.5: Set E11, minimum area ellipse and touching (minimum γ) Apollonius circle

4.2.2 Second relaxation: m = 1 case

We start by stating the expression for bound γEφ2
(M) in the m = 1 case.

Lemma 4.2.5. [9] Let A = diag(1, a2, . . . , an) with 1 < a2 ≤ a3 ≤ . . . ≤ an and φ ∈ R,

0 ≤ φ < 1, be given. Then

γEφ2
(M) = min{‖∆‖ : det(A−∆) = 0, |∆11| < φ} =

√
a2 − φ(a2 − 1)

where ∆11 denotes the (1, 1) element of ∆. Further all optimal rank-reducing perturbations

are given as

diag

 φ γEφ2
(M)ejθ

γEφ2
(M)ejθ −φ

 ,∆33

 (4.39)

where 0 ≤ θ < 2π, ∆33 ∈ C(n−2)×(n−2) and ‖∆33‖< γEφ2
.

Proof. See [9]

As argued in the previous section the best choice for φ is obtained by carrying out the
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Figure 4.6: The graph of the function (δ1, δ2)⇒ σmin(I3 − γEA−1)

maximisation in equation (4.28). Let ei = αi + jβi, αi, βi ∈ R, for i = 1, 2, . . . , p. Then

φ2
0 = max


∣∣∣∣∣
m∑
i=1

δi(αi + jβi)

∣∣∣∣∣
2

: |δi| ≤ 1


= max


∣∣∣∣∣
(

m∑
i=1

δiαi

)
+ j

(
m∑
i=1

δiβi

)∣∣∣∣∣
2

: |δi| ≤ 1


= max


(

m∑
i=1

δiαi

)2

+

(
m∑
i=1

δiβi

)2

: |δi| ≤ 1


(4.40)

Thus

φ0 = max
{√

δ′Γδ : ‖δ‖∞≤ 1
}

(4.41)

where δ′ =
[
δ1 . . . δp

]
∈ Rp and

Γ = Γ′ ∈ Rp×p, (Γ)ij = αiαj + βiβj , i = 1, 2, . . . , p, j = 1, 2, . . . , p
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Figure 4.7: The contours of the function (δ1, δ2)⇒ σmin(I3 − γEA−1)

for example the m = 2 case gives

Γ =

 α2
1 + β2

1 α1α2 + β1β2

α1α2 + β1β2 α2
1 + β2

1


Remark 4.2.2. Maximisation of a convex function over convex set gives optimum at the

boundary of the constrained region.

Problem (4.41) is a maximisation of a rank-2 convex quadratic form with box-constraints.

This gives us the tightest possible bound in this class:

γEφ2
(M) ≤ γE1(M) ≤ γ∆(M)

or equivalently

µEφ2
(M) ≥ µE1(M) ≥ µ∆(M)

Remark 4.2.3. A link between the two relaxations can be established by noting the scaling

which allows us to transform the results in Lemma 4.2.2 to those of Theorem 4.2.2. Let
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0 ≤ φ < 1 and consider the problem:

γE1(M) = min
|z′∆z|≤φ

det(A−δ)=0

‖∆‖= min
δ11≤φ

min
γ>1

|γ2−δ11|=a2|1−γ|

γ (4.42)

By using the change of variables e11 = γ−1δ11 and applying Lemma 4.2.2

γE1(M) = min
e11≤γ−1φ

min
γ>1

|γ−e11|=a2|1−γ|

γ (4.43)

Thus, according to our geometric interpretation we seek to find the minimum γ for which

the Apollonius circle C(γ) touches a circle with centre the origin and radius φγ−1. Thus

the condition for optimally is:

a2
2 − γ2

γ(a2 − 1)
− a2

a2
2 − 1

γ2 − 1

γ
=
φ

γ
(4.44)

which simplifies after some algebra to the condition
a2 − γ2

a2 − 1
= φ or equivalently γ =√

φ+ (1− φ)a2 which is precisely the bound given in Lemma 4.2.5. Note that, as expected,

the lower the value of φ the tighter the bound. Note also that for any set e11 ∈ E11 the bound

on the structured distance to singularity obtained via relaxation 2 cannot be tighter that the

bound obtained via relaxation 1 provided the corresponding optimisation problem can be

solved exactly.

Remark 4.2.4. Let

α =
[
α1 α2 . . . αp

]′
, β =

[
β1 β2 . . . βp

]′
and Ω =

 α′

β′


Then:

Γ = αα′ + ββ′ and φ0 = max
‖δ‖∞≤1

√
δ′Γδ = max

‖δ‖∞≤1
‖Ωδ‖

Thus φ0 = max{‖z‖ : z ∈ Z(Ω)}, i.e. the maximum distance of the vertices of the

Zonotope with generator Ω from the origin. Thus, one possible way to calculate φ0 is to

enumerate all vertices of Z(Ω)} (e.g. via the "reverse enumeration algorithm" [42], [1],

discussed in the next section), evaluate the distances of the vertices from the origin and

select the largest one. An alternative approach, when the full enumeration of the vertices

is not possible, is to solve the problem approximately via SDP relaxations. Let Q = −Γ,

Q = Q′ ≤ 0 and consider the (primal) quadratic optimisation problem with box constraints
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[73]:

min{δ′Qδ : ‖δ‖∞ ≤ 1} (4.45)

The dual problem can be formulated as:

max
λ≥0

d(λ), d(λ) = inf
δ∈Rp

δ′(Q+ diag(λ))δ − 1′λ

(where 1′ denotes the row vector of ones) or equivalently in SDP form:

max−1′λ s.t. Q+ diag(λ) ≥ 0, λ ≥ 0

Let v(P ) and v(D) be the value of the primal and dual problem, respectively, so that g =

v(P ) − v(D) is the duality gap. Reference [73] shows that a lower bound of g is given by

ξr+1η
2(θ∗), where r is the nullity of Q + diag(λ0)), ξr+1 the smallest positive eigenvalue

of Q + diag(λ0), λ0 the optimal dual solution and θ∗ a parameter in the interval 0 ≤ θ ≤

1 which maximises the function η(θ). This leads to a tighter lower bound of the primal

problem, ν = v(D) + ξr+1η
2(θ∗) ≤ v(P ). The computation of η(θ∗) can be reduced

to cell enumeration of hyperplane arrangement in discrete geometry which has complexity

O(pr+1) and hence can be computed in polynomial time for fixed r [73]. Thus, if ν ≥ −1

we have that φ0 ≤ φ :=
√
−ν ≤ 1 and

√
a2 − φ(a2 − 1) is a lower bound of the structured

distance to singularity.

Relaxation 2 can also be extended to non-linear or "correlated" structures. Define the

nonlinear diagonal structure Ψδ as in the previous section. Let u1 and v1 be the singular

vector of M corresponding to the largest singular value of M as partitioned in equation

(4.29) and define ei = v∗1iui1 ∈ C, i = 1, 2, . . . , p and set ei = αi + jβi, αi, βi ∈ R, for

i = 1, 2, . . . , p as before. Carry out the maximisation

φ2 = max


(

m∑
i=1

ψiαi

)2

+

(
m∑
i=1

ψiβi

)2

: BRs∞

 (4.46)

or equivalently:

φ0 = max
{√

ψ(δ)′Γψ(δ) : ‖δ‖∞≤ 1
}

(4.47)

where

Γ = ΓT ∈ Rm×n,Γij = αiαj + βiβj
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Then γφ0(M) =
√
a2 + φ0(1− a2) which give a bound to the structured distance to sin-

gularity that improves on the unstructured bound a1 = 1 (In fact this still folds if φ0 is

substituted by any upper bound of φ0 which is less that 1).The approach will be developed

fully in future work. Here it is illustrated with a simple example:

Example 4.2.2. Consider the same matrix M and diagonal structure as in previous Exam-

ple . Then φ2
0 can be found by maximising the quadratic function:

BΨ(δ1,δ2) = {diag (δ1, δ2, δ1δ2) : δ1, δ2 ∈ R,−1 ≤ δ2 ≤ 1,−1 ≤ δ2 ≤ 1}

Let ei = αi + jβi, i = 1, 2, 3. Then φ2
0 can be found by maximising the quadratic

function:

F (δ1, δ2) =
[
δ1 δ2 δ1δ2

]
α2

1 + β2
1 α1α2 + β1β2 α1α3 + β1β3

∗ α2
2 + β2

2 α2α3 + β2β3

∗ ∗ α2
3 + β2

3




δ1

δ2

δ1δ2


subjected to the constraints −1 ≤ δ1 ≤ 1 and −1δ2 ≤ 1. Hence e1 = 0.1525 +

0.2329i, e2 = 0.1559 + 0.2864i, e3 = 0.3281 + 0.2018i. Hence

Γ =


0.0775 0.0905 0.0970

0.0905 0.1063 0.1089

0.0970 0.1089 0.1484


Note that F 2(δ1, δ2) may be expressed in full as:

F 2(δ1, δ2) = (α2
1 + β2

1)2δ2
1 + (α2

2 + β2
2)2δ2

2 + (α1α2 + β1β2)δδ2

+ (α1α3 + β1β3)δ2
1δ2 + (α2α3 + β2β3)δ1δ

2
2 + (α2

3 + β2
3)2δ2

1δ
2
2

In this case

F 2(δ1, δ2) = 0.006δ2
1 + 0.0113δ2

2 + 0.0905α1α2

+ 0.0970δ2
1δ2 + 0.1089δ1δ

2
2 + 0.0220δ2

1δ
2
2

The level contours of F (δ1, δ2) are shown in Figure 4.8 below. F (δ1, δ2) is maximised

at (δ0
1 , δ

0
2) = (1, 1), the maximum value being F (δ0

1 , δ
0
2) = 0.9618. Thus the corresponding

value of γl2 = 1.0724. As expected this is a less tight bound than γl1.
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Figure 4.8: Level contours of f

4.3 Aspects of algorithmic implementation

In this section we discuss issues related to the efficient implementation of some methods

outlined earlier. We start with the algorithmic implementation of the geometric method

suggested in Lemma 4.2.4 which identifies the optimal bound as the intersection of a Zono-

tope and a parametric family of (Apollonius) circles. First we establish an easily computable

upper bound on µE1(M) which is obviously a lower bound of γ∆(M):

Theorem 4.3.1. Assume that ξ :=
∑n

i=1 |<(ei)| ≤ 1. Then

γl(M) :=
1

2

√
ξ2(1− a2)2 + 4a2 −

ξ

2
(a2 − 1) ≤ γE1(M) ≤ γ∆(M) (4.48)

Further γl(M) = γE1(M) if and only if ξ ∈ Z .

Proof. Consider Figure 4.9 that gives a graphical interpretation of Theorem 4.3.1

Define

ξ = max
z∈Z
<(z) = max

|δi|≤1

n∑
i=1

δi<(ei) =

n∑
i=1

|<(ei)| (4.49)
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Figure 4.9: Graphical interpretation of Theorem 4.3.1

and assume that ξ ≤ 1. Due to convexity there is at least one vertex of Z with real part

equal to ξ. Consider the vertical line <(z) = ξ which divides C into two half-planes. ξ is

contained in the half-plane <(z) ≤ ξ. Since

γ = γl :=
1

2

√
ξ2(1− a2)2 + 4a2 −

ξ

2
(a2 − 1) ≥ 1 (4.50)

is the positive root of the equation

ξ = xc(γ)− r(γ) =
a2

2 − γ2

γ
(
a2

2 − 1
) − a2

γ

γ2 − 1

a2
2 − 1

the circle C(γl) with centre the point (xc(γl), 0) and radius r(γl) lies in the half-plane

<(z) ≥ ξ. Thus Z ∩ C(γl) = ∅ except in the case ξ ∈ Z and hence γl ≤ γE1(M) with

γl = γE1(M) if and only if ξ ∈ Z

One possible way of making use of Lemma 4.2.4 is to follow the following procedure:

(i) Enumerate all vertices of Z .

(ii) Sort them in terms of their argument (between 0 and 2π, say).
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(iii) List the Zonotope’s edges (line-segments linking consecutive vertices).

(iv) Calculate the values of γ for which C(γ) goes through a vertex or is tangent to an

edge. The minimum of all these values is the required bound γE1 .

Note that the Zonotope vertices form a subset of all 2p points of the form
∑p

i=1 δiei

where the δi’s take the extreme values ±1 (in fact due to central symmetry 2p−1 evalua-

tions are enough). Thus, in principle, the vertices of the Zonotope could be obtained by

constructing the convex hull of these 2p points. Although this approach works for small p

is becomes computationally prohibitive as p increases. Thus a more efficient enumeration

method is needed in this case. The main objective in vertex enumeration, is still to find an

algorithm of low computational complexity (e.g. polynomial or linear-time)[59]. One of the

first enumeration algorithms in graph-based problems was proposed by Read et al. [60] and

is known as Backtracking. A linear-time algorithm was first proposed by Dyer [61]. This

uses a depth-first search and a balanced tree data structure [59]. Other efficient enumeration

algorithms include [59], [60], [61], [28], [29], [63] and [39]. Avis and Fukuda introduced

an algorithm known as reverse search [42] for enumerating the vertices of a zonotope. It is

known that for a zonotope Z(ω1, . . . , ωp) with p generating vector, ωi ∈ Rq, i = 1, 2, . . . , q

the number of vertices |vert(Z)| is bounded as

|vert(Z)| ≤ 2

q−1∑
i=0

(
p− 1

i

)
(4.51)

and the bound is tight if the generating vectors are in general position. The reverse enumer-

ation algorithm is efficient both in terms of computational time and memory requirements

and is highly parallelisable. It is typically implemented in the dual setting of central ar-

rangement of p oriented hyper planes in Rq which are normal to the generating vectors ωi.

See [1] for details.

It is possible to avoid the solution of 2|vert(Z)| − 1 scalar problems corresponding to

step (iv) above after carrying out the Zonotope’s vertex enumeration. This can be achieved

by obtaining the ellipse of minimum area which contains all vertices of the Zonotope (and

thus by convexity the entire Zonotope). In this way we can obtain a lower bound on γE1(M).

Since Zonotope Z is centrally symmetric, the optimal ellipse will be centred at the origin

and hence is described by an equation of the form:

H =
{
z ∈ R2| zTEz = 1 and zTEz ≤ 1∀z ∈ Z

}
(4.52)
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where for E ∈ R2×2, E = ET > 0. The area of the ellipse is
π√

det(E)
and hence the

optimisation problem takes the form:

min
E=E∗>0

π√
det(E)

s.t.

 =ξi
<ξi

 ∈ H(E), , i = 1, 2, . . . , |vert(Z)| (4.53)

where ξi ∈ C are the vertices of Z . To turn this to a convex problem, set Q = E1/2; then

since z∗Ez ≤ 1⇔ ‖Qz‖≤ 1 an equivalent form of the optimisation problem is:

min
Q

log|Q−1| s.t.Q = Q∗ > 0, ‖Q‖

 =ξi
<ξi

 ≤ 1, i = 1, 2, . . . , |vert(Z)| (4.54)

The last set of constraint be written in the form of Linear Matrix Inequalities(LMI’s:

 I2 Q

 <ei
=ei


[
<ei =ei

]
Q 1

 ≥ 0, i = 1, 2, . . . , |vert(Z)|

This is now a convex optimisation problem and can be solved in a variety of ways.

e.g. interior-point method or DRN algorithm [74]. Here we use a the Conditional Gradient

Ascent algorithm and used the MATLAB code provided by [75]. To find the intersection

point we make both ellipse and circle equation equal and will calculate the associated γl

where gives a single intersection point. The solution is a polynomial equation of degree

four which depending on the value of γ can have zero, one, two, three or four independent

solutions, but only the γ associated with one real repeated solution (the smallest circle) will

be accepted.

The above method relies on the enumeration of the vertices of Z which may be imprac-

tical for high dimensional problems. It is possible to find an ellipse containing Z directly

from the generating matrix Ω without enumerating the vertices:

Lemma 4.3.1. Let Ω ∈ R2×p with rank(Ω) = 2 and singular value decomposition Ω =

UΣV ′1 with Σ = diag(Σ), UU ′ = U ′U = I2 and V ′1V1 = I2. Then Z ⊆ E := {x ∈ R2 :

x′(p−1UΣ−2U ′)x ≤ 1}.
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Proof. First note that if δ ∈ Rp, ‖δ‖∞ ≤ 1⇒ ‖δ‖ ≤ √p and hence:

Z(Ω) = {Ωδ : ‖δ‖∞ ≤ 1} ⊆ {√pΩδ : ‖δ‖ ≤ 1} := P0

Hence, if V ′2 is the orthogonal complement of V ′1 so that [V1 V2] is square orthogonal,

P0 =
{√

pUΣV ′1δ : ‖δ‖ ≤ 1
}

Changing variables x = V ′δ,

P0 =
{√

pUΣV ′1V x : ‖x‖ ≤ 1
}

= {√pUΣx1 : ‖x1‖ ≤ 1}

where x1 = [I2 02,p−2]x. It now follows that

P0 = E :=
{
y ∈ R2 : p−1y′UΣ−2U ′y ≤ 1

}
Take y ∈ P0 so that y =

√
pUΣx1, ‖x1‖ ≤ 1. Then x1 = 1√

pΣ−1U ′y and

x′1x1 ≤ 1 ⇒ p−1y′UΣ−2U ′y ≤ 1

so that y ∈ E . Conversely if y ∈ E then ‖ 1√
pΣ−1U ′y‖ ≤ 1, so y can be written as

y =
√
pUΣx1 for some x1 with ‖x1‖ ≤ 1, so that y ∈ P0.

Remark 4.3.1. If rank(Ω) = 1 we get a degenerate ellipse consisting of a line segment with

centre the origin.

Remark 4.3.2. Calculating the minimum value of γ such that the Apollonius circle C(γ)

intersects the ellipse E gives a lower bound of the structured distance to singularity. The

bound may be conservative, although enumeration of the vertices of Z is avoided.

Example 4.3.1. Figure 4.10 shows a zonotope corresponding to a randomly generated

matrix M ∈ C9×9 and a diagonal uncertainty structure with 9 real elements. This is ap-

proximated by the minimum-area ellipse containing the 18 vertices of the zonotope and

the ellipse constructed via Lemma 4.3.1. The figure also shows the three Apollonius cir-

cles touching the Zonotope and the both ellipses. The corresponding lower bounds to the

structured distance to singularity is γl = 1.585, γl = 1.565 and γl = 1.530, respectively.
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Figure 4.10: Using an enclosed ellipse to find a bound

4.4 A randomised algorithm to calculate an upper bound on the

structured singular value

It is been argued previously that in the linear uncertainty case the calculation of a lower

bound of the structured distance to singularity requires the enumeration of the vertices of

a Zonotope. This can be effectively achieved using several deterministic algorithms, e.g.

the reverse-enumeration algorithm described previously. In high dimensional problems,

however, even efficient deterministic algorithms are impractical due to high computational

complexity. In this case one can rely on randomised algorithms which approximate the

Zonotope by generating only a subset of its vertices. Here we extend the method described

in chapter 2 to obtain a probabilistic bound on γl1.

Consider a Zonotope with generator a matrix Ω ∈ Rq×m where q ≤ p. In the special

case considered in this section (m = 1) q = 2 and the Zonotope is two-dimensional. Recall

also that p is the number of uncertainty parameters δi. Suppose that the columns of Ω

(
[
<(ei) =(ei)

]′
) satisfy the following two (generic) conditions: (i) No column of Ω is
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the zero vector, and (ii) no two columns of Ω are scalar multiples of each other. Then the

Zonotope generated by Ω, i.e. Z = {Ωδ : δ ∈ [−1 1]p} is in general position and its

number of its vertices is

|vert(Z)| = 2

q−1∑
i=0

(
p− 1

i

)
(|vert(Z)| = 2p if q = 2). Then, under the above assumption, for δ ∈ Rp such that Ω′δ has

all nonzero elements, the point v defined the mapping v = m(δ) := Asign(A′δ) is a vertex

of Z(ω1, . . . , ωp). From central symmetry v ∈ vert(Z)⇒ −v ∈ vert(Z). Moreover, if

H =

q⋃
i=1

{
δ ∈ Rp : ω̂′δ = 0

}
where ω̂′i are the rows of Ω, i = 1, 2, . . . , q, then the mapping m : Rq \ H → vert(Z)

is well defined and onto [40]. A randomisation algorithm can now be used to enumerate

the vertices of Z . The algorithm updates a list of vertices (initialised as the empty list) by

drawing independent samples δ ∈ Rp from a p-dimensional standard Gaussian distribution,

computing v+ = Ωsign(Ω′δ) and v− = −v+ and adding them to the list (unless they

are already listed). The algorithm can proceed until all vertices have been enumerated, or

terminate after a fixed number of iterations. In the later case only a subset of vertices will

be (in general) enumerated. The convex hull of these vertices will be a subset of Z .

The Zonotope approximation of reference [40] proceeds by characterising the prob-

ability that any particular vector δ ∈ Rp maps to a particular vertex via map m. This

probability is characterised by a geometric feature, in particular, the vertex’s normal cone.

Specifically, it can be shown that under the previous assumption, the inverse function of m,

m−1 : vert(Z)→ Rq is m−1(v) = inv(NZ(v)) where:

NZ(v) =
{
δ ∈ Rp : δ′(z − v) ≤ 0 for all z ∈ Z

}
is the normal cone of v. This allows to assign a probability measure on the vertices of

vi ∈ Z , i.e.

Pv[vi] := Pδ[NZ(vi)] = Pδ[int(NZ(vi))] = Pδ[{δ ∈ Rp : Ω sign(Ω′δ) = vi}]

Note that since the volume of the normal cone of a "sharp" vertex (weighted by the stan-

dard Gaussian density function) is larger than the weighted volume of a "flat" vertex, a

"sharp" vertex gets mapped to more frequently relative to a "flat" vertex. This is important,
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since "sharp" vertices contribute more significantly to the shape of the Zonotope than "flat"

vertices and hence, if retained, result to a better approximation. This allows to estimate

(probabilistically) the number of iterations of the randomised algorithm needed to gener-

ated any vertex of the Zonotope. It also allows for the derivation of a (probabilistic) bound

on the Hausdorff distance between Z and its approximation, defined as the convex hull of

the subset of vertices generated by the randomised algorithm executed with a fixed number

of iterations. This is stated after the following definition:

Let v ∈ vert(Z). We define the simplicial constant of v to be

αZ(v) := inf
x
{‖v − x‖ : x ∈ conv(vert(Z) \ {v})}

Note that this is the Hausdorff distance between Z and its subset conv(vert(Z) \ {v}). The

concept Hausdorff distance and Normal cone has been discussed in details at chapter 2. The

following Theorem now follows:

Theorem 4.4.1. [40] Let Z(ω1, . . . , ωp) to be a Zonotope with its generating vectors in

general position. Given ε > 0 and δ1 > 0 choose b > diam(Z) and p1 as

p1 >
log (|vert(Z)|/ε)
log (1/(1− k))

(4.55)

where

k =

(
1

2
(1− sin (arctan(b/δ)))

) 1
2

(4.56)

Let V be the subset of Z’s vertices produced by the randomised algorithm after p1 itera-

tions. Let h(Z, conv(V )) be the Hausdorff distance between sets Z and conv(V ). Then:

h(Z, conv(V )) ≤ |vert(Z) \ V |
2

δ1 (4.57)

with probability at least 1− 2aε where a = |vert(Z) \ UZ |/2 and

UZ = {v ∈ vert(Z) : αZ(v) ≥ δ1}

Proof. See [40].

We can now prove the following Corollary which gives a probabilistic lower bound to

the structured distance to singularity.
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Corollary 4.4.1. Let all variables be defined as in Theorem 4.4.1 Let P be a compact

superset of conv(V ) such that

h(P, conv(V )) ≥ |vert(Z) \ V |
2

δ1 (4.58)

and 1 /∈ P . Let also

γl(M) = min{γ : γ ≥ 1,P ∩ C(γ) 6= ∅} (4.59)

Then γl(M) ≤ γ∆(M) with probability at least 1− 2aε.

Proof. Conditions given by equations (4.57) and (4.58) imply that P ⊇ Z with probability

at least 1 − 2aε. The existence of the indicated minimum in equation (4.59) follows from

the compactness of P . The inequality γl(M) ≤ γ∆(M) follows from Theorem 4.2.4.

Note that if we use the randomised enumeration algorithm defined in theorem 4.4.1,

some of the vertices could be omitted. This makes the approximated polytope to have a

smaller boundary. Therefore, the same circuit that touched the original Zonotope may leave

some gap to the new one. In other words, γ will increase as the circle (with a larger radius)

is pushed to the left before the tangency condition occurs. Note that this gives tighter upper

bound on µ but there is a risk that the optimiser fall within the omitted area where the

upper bound loses its validity. Figure 4.11 illustrates how the randomised algorithm could

potentially eliminate the optimiser.

Figure 4.11: An example that the optimiser is omitted by the the randomised algorithm
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In Figure 4.11, the red polygon shows the original Zonotope related to δ11 and blue

boundary is the approximate polytope generated by the randomised algorithm. Thus the

area between the Zonotope and the reduced polytope, i.e. the triangles, is omitted by the

randomised algorithm. Assume that the contours show the actual optimisation of the main

problem where the optimiser falls exactly in the omitted area. Now the γ = γ1 related

to middle circle is the exact solution of the µ-problem. Morever, the γ = γ0 = µ−1
0

corresponding to the smaller circle which is tangential to the original Zonotope is smaller

than the solution, γ = γ1 = µ−1
1 , i.e.

µ0 ≤ µ1

Now imagine that the randomised algorithm omits the vertex shown in Figure 4.11. The

result would be the blue Zonotope. The C(γ) then will increase in area and shifted to the

left in order to contact with the randomised polytope for a larger γ say γ2. Using the same

justification, γ2 ≥ γ0 and thus

µ2 ≤ µ0

This means that the upper bound could potentially be smaller than the actual solution and

hence is not be a valid result. A solution proposed in this work to overcome this issue

is to extend the randomised polytope so that the extended polytope constructed from the

partially enumerated vertices contains the exact (but unknown) one with a high probability.

To achieve this, however, we need a measure that identifies by how much the Zonotope

should be extended to ensure all the original vertices are inside the extended polytope.

Corollary 4.4.1 suggests that if we expand the randomised polytope by αδ, then with a

probability of at least 1− 2αδ the new (extended) polytope includes the original Zonotope.

The advantage of extended polytope is that it has the same number of vertices as the one

obtained from the randomised algorithm. Since the extended polytope has a larger area,

though, it pushes the tangential circle to the left and hence the corresponding γ is smaller

than the one associated with the original Zonotope (green boundary in Figure 4.11). Thus

µ∆(M) ≤ {γ−1
0 , polytope(Z)} ≤ {γ−1

0 , polytope(U ′)}

Remark 4.4.1. The best bound is obtained when the Housdorff distance between conv(V )

and the extended polytope P is equal to the bound given in the right-hand-side of equation

(4.57). The construction of P which achieves this is straightforward.
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4.5 Numerical experiment

To demonstrate this method a 9 × 9 matrix M is randomly selected and is normalised so

that its largest singular value is equal to one. Here M = Mr + jMi, where Mr ∈ R9×9 and

Mi ∈ R9×9, where:

Mr =



0.02 0.08 0.13 0.06 0.05 0.01 0.07 0.12 0.07

0.06 0.14 0.13 0.11 0.12 0.10 0.01 0.03 0.09

0.05 0.11 0.12 0.12 0.037 0.09 0.08 0.10 0.05

0.07 0.10 0.14 0.09 0.13 0.11 0.03 0.01 0.01

0.09 0.07 0.03 0.01 0.11 0.15 0.08 0.12 0.13

0.02 0.04 0.08 0.14 0.08 0.06 0.05 0.10 0.02

0.13 0.08 0.09 0.01 0.04 0.04 0.05 0.14 0.05

0.09 0.04 0.14 0.08 0.04 0.13 0.11 0.01 0.09

0.02 0.05 0.10 0.02 0.11 0.12 0.08 0.13 0.15


and

Mi =



0.08 0.06 0.02 0.07 0.14 0.08 0.07 0.04 0.04

0.15 0.05 0.15 0.01 0.09 0.01 0.01 0.11 0.01

0.03 0.15 0.07 0.13 0.04 0.13 0.11 0.15 0.07

0.06 0.10 0.00 0.04 0.03 0.06 0.00 0.05 0.09

0.10 0.06 0.01 0.04 0.06 0.08 0.14 0.11 0.02

0.01 0.01 0.02 0.09 0.00 0.08 0.11 0.01 0.07

0.11 0.11 0.13 0.07 0.13 0.10 0.14 0.09 0.10

0.06 0.10 0.07 0.05 0.09 0.05 0.08 0.06 0.12

0.12 0.01 0.08 0.10 0.03 0.01 0.03 0.11 0.05


The uncertainty structure is assumed diagonal with 9 uncertain parameters. This gives

rise to a Zonotope Z with p = 18 vertices shown in Figure 4.12. The figure also shows the

minimum-area ellipse containing the Zonotope, the ellipse constructed via Lemma 4.3.1

and the vertical straight line through the vertex of the Zonotope with maximum real part.

In addition the Figure shows the Apollonius circles of minimal parameter values γ = γl

which touch the Zonotope Z , each of the the two ellipses and the vertical straight line,

respectively. The corresponding values of γl which corresponds to lower bounds on the

structured distance to singularity of M are summarised in Table 4.1. Fig. 4.12 shows the

results of several algorithms presented in the paper when applied to M .
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Table 4.1: Summary of lower bounds

Method Lower bound (γl)
Exact Zonotope Z 1.520
Minimum-area Ellipse containing Z 1.512
A-priori Ellipse (Lemma 7) 1.490
Extended 4-vertex Zonotope (P = 88%) 1.420
Vertical line through vertex with max real part 1.117

Next the randomised algorithm was applied to the problem with parameters δ1 = 0.04

and ε = 0.02. It was assumed that on termination the randomised algorithm enumerates

only 4 out of 16 vertices whose convex hull P is shown in Figure 4.12. Note that all

the omitted vertices have flat angles so P is the most probable outcome of the randomised

algorithm. To obtain a probabilistic bound P was extended by the estimate of the Haussdorf

distance υδ1/2 = 0.14, where υ = 14 is the number of omitted vertices. Note that although

in this case the extended polytope well covers the original one, this can be guaranteed only

probabilistically when the vertices of Z cannot be fully enumerated. The corresponding

probability in this case is P = 1− ε× 2υ/2. In this example this is P = 1− 0.01× 27/2 =

88%. Therefore, the result of this method, γl = 1.420 (µu = 0.704) is guaranteed with

a probability of 88%. Note that in general the choice of the most appropriate method is a

compromise between accuracy (derivation of a tight bound) and computational complexity.

We conclude the chapter by illustrating the numerical performance of the algorithm.

This time M = Mr + jMi (truncated to 3 decimal places) was defined as:

Mr =



−0.166 −0.059 −0.116 −0.000 0.109 −0.097 −0.066 0.039 −0.096

−0.009 −0.029 −0.005 −0.018 0.005 −0.030 −0.018 0.005 0.001

0.040 0.098 0.023 0.060 −0.018 0.110 0.059 −0.028 0.004

0.026 −0.013 0.022 −0.014 −0.020 −0.008 0.001 −0.000 0.021

−0.087 0.033 −0.065 0.044 0.061 0.015 −0.002 0.008 −0.073

0.126 −0.107 0.091 −0.102 −0.091 −0.082 −0.023 0.005 0.117

−0.171 0.015 −0.121 0.049 0.118 −0.020 −0.029 0.024 −0.122

0.006 0.027 0.002 0.017 0.000 0.028 0.016 −0.006 −0.004

0.000 0.163 −0.004 0.115 0.013 0.171 0.080 −0.040 −0.047


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Figure 4.12: Numerical experiment with different methods

and

Mi =



0.125 −0.256 0.097 −0.207 −0.103 −0.238 −0.093 0.038 0.156

0.031 −0.023 0.020 −0.022 −0.021 −0.020 −0.005 0.002 0.026

−0.105 0.102 −0.078 0.093 0.074 0.081 0.024 −0.007 −0.099

0.001 0.025 −0.000 0.020 0.001 0.028 0.015 −0.006 −0.007

0.011 −0.105 0.008 −0.071 −0.014 −0.105 −0.048 0.021 0.032

0.043 0.123 0.023 0.076 −0.013 0.138 0.067 −0.034 −0.008

0.061 −0.229 0.053 −0.174 −0.060 −0.218 −0.095 0.043 0.107

−0.027 0.020 −0.016 0.022 0.021 0.012 −0.000 0.001 −0.023

−0.144 0.073 −0.104 0.083 0.100 0.044 0.000 0.009 −0.121


The uncertainty structure in this case was defined as:

∆ = {diag(δ1I3, δ2I3, δ3I3) : δi ∈ R, i = 1, 2, 3} (4.60)

The singular value decompositionM = UΣV ∗ was carried out via Matlab’s svd.m function.
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The corresponding Zonotope

Z = {v∗1∆u1 : ∆ = diag(δ1I3, δ2I3, δ3I3),−1 ≤ δi ≤ 1, i = 1, 2, 3} (4.61)

(in which u1 and v1 denote the first columns of matrices U and V , respectively), has 6

vertices (and 2 internal points out of the total of 23 = 8 extreme combinations of v∗1∆u1

when δi = ±1). The convex (D-iteration) bound of µ∆(M) was calculated via Matlab’s

function mussv.m as µ̄1 = 0.282. The corresponding bound obtained by the intersection of

Z with the family of Apollonius circles is µ̄2 = 0.300. The computational times needed to

perform the calculation were t1 = 0.1976 s and t2 = 0.0080 s, respectively, corresponding

to a speed-up factor of about 25 times when our method is applied. This is likely to further

improve as the complexity of the problem increases. For the present problem, the largest

computational load is the computation of the singular value decomposition. This could be

avoided as what is really required is the pair of singular vectors corresponding to the largest

singular value of M and this can be obtained efficiently by an alternative algorithm, e.g. the

power method applied to MM∗ and M∗M .

To compare the numerical efficiency of the two algorithms 1000 complex matrices of

dimension 9 × 9 were generated randomly in Matlab and the ratio of the corresponding

computational times was calculated in each case. The uncertainty structure remains the

same as in equation (4.60). The histogram of the speed-up factor obtained with the proposed

method is shown in Figure 4.13.

Figure 4.13: Speed-up factor

The average speed-up factor is 95.29 and the standard deviation of the distribution is

91.91. The minimum and maximum factors observed in the simulation were 5.24 and
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669.69, respectively.

4.6 Summary

The problem of obtaining bounds on the structured singular value of a matrix M subject to

real parametric uncertainty has been considered in this chapter. The method relies on two

relaxation techniques involving the projection of the uncertainty in the "most critical direc-

tion" as defined by the set of optimal (maximum norm) unstructured perturbations. The first

relaxation leads to the maximisation of a convex quadratic function with box constraints (for

which convex bounds are possible). The second relaxation reduces to a geometric problem

involving the intersection of a Zonotope and a family of Apollonius circles. This can be

solved, provided the vertices of the Zonotope can be fully or partially enumerated. If full

enumeration is possible (e.g. via an efficient algorithm based on "reverse-enumeration") a

deterministic bound is obtained. For high dimensional problems, however, this may not be

feasible computationally and we may need to rely on a randomisation algorithm produc-

ing only partial enumeration of the vertices. In this case, it may still be possible to obtain

a probabilistic bound using the estimate of the Hausdorff distance between the true (but

unknown) Zonotope and the convex hull of the polytope constructed from the partially enu-

merated vertices. Our approach is extended to the correlated-uncertainty case or when the

uncertain perturbations enter the model in a nonlinear way. Several computational examples

are included in this chapter to illustrate the main results of our work.
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Chapter 5

Greatest Common Divisor(GCD): A

Structured Singular Value Approach

5.1 Introduction

It is known that the computation of the Greatest Common Divisor (GCD) of two polyno-

mials is a non-generic problem [76] with many application in engineering fields e.g. alge-

braic control methods, distance to controllability or observability, determinantal assignment

problems, Robust Control, stability of dynamic systems subject to structured perturbations,

Linear Systems, Numerical Analysis and other Engineering fields. This area is the subject

of several researches in recent years who have attempted to introduce effective numerical

calculations for the solution of the problem [77], [38] and [78]. Karcanias et al. in 1984

developed a non-generic techniques for calculating the nearest common root of polynomials

with applications in the field of systems and control [77].

In [79] the notation of the "approximate coprimeness" of two polynomials has been in-

troduced. This is defined as a minimum magnitude perturbation in polynomial’s coefficient

vectors such that the perturbed polynomials have a common root. Finding perturbations of

this type is equivalent to the solution of the structured distance to singularity , or equiva-

lently a structures singular value (µ) problem. The main advantage of this transformation is

that it leads to various numerical techniques from the area of robust control which may be

used to find a solution or approximate bounds to GCD problem.

Hence, the concept of "approximately coprimeness" can be defined as a distance from

the nearest common divisor in an appropriate sense. Similar definition of "almost zeros" was

first introduced in [31]. This definition has been reformulated to the notion of "approximate
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GCD" which is, in fact, based on the relaxation of the conditions defining the exact GCD,

see [32], [33], [34], [35], [36], [37] and references therein. Reference [80] proposed one

of the most recent methods for calculating the distance of a set of co-prime polynomials to

the set of polynomials sharing a common root. The technique is based on singular values

to define and solve approximate GCD problems by converting the corresponding Sylvester

matrix in the GCD problem to a diagonal matrix compatible to µ problem. A disadvantage

of this method is that the size of equivalent objective matrix in the µ problem will increase

considerably. To have a sense of how significant this could be, imagine that we want to

solve a GCD problem of degree 10 by converting it to the µ problem. The equivalent M

matrix would be 200 × 200. This will significantly increase the computational expense of

the µ problem. We have mentioned in Chapter 4 that the structured singular value method is

often computationally demanding. One way of overcoming this issue, which has been noted

in most of references mentioned earlier, is to ignore the structure of the problem and use

the singular value as an approximate measure of singularity (and thus loss of coprimeness).

This, however, gives a loose bound which is far from the optimal solution in many cases. In

this Chapter, we propose using the Lehtomaki approach [16] to perturbations matrix with

a Sylvester structure. This gives an upper bound tighter than the largest singular value

while avoiding exact calculations of high complexity. The advantages of this approach are

illustrated via a numerical example. We use similar notation as in previous Chapters.

5.2 Minimum distance to common root of polynomials

A recent approach introduced in [79] proposes an algorithm for calculating the distance of

two polynomials from non-coprimeness, i.e. the minimum size perturbations in the poly-

nomial coefficients so that the two polynomials share a common root. It is shown that

the problem is equivalent to the structured distance to singularity of the Sylvester matrix

constructed from the nominal coefficients of the two polynomials.

The associated perturbation matrix inherits the structure of the Sylvester resultant ma-

trix. Ignoring this structure, the smallest singular value of the Sylvester resultant matrix

could be taken as an indicator for the distance to singularity. This, however, may be conser-

vative. In the following subsection the problem of deriving a µ problem associated with the

minimum distance to singularity is described.
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5.2.1 Problem definition

Considering the definition of µ problem

γ∆ =
1

µ∆ (M)
= min

det(I−M∆)=0
∆∈∆

‖∆‖ (5.1)

We first start with the following two Theorems from [79] that show how to define a

Sylvester matrix related to two polynomials and how to formulate the problem of estimating

the nearest common root in a µ framework.

Theorem 5.2.1. [79] Let Sm,n(a, b) be the Sylvester matrix related to two polynomial

a(s) = sm + αm−1s
m−1 + αm−2s

m−2 + · · ·+ α0

b(s) = sn + βn−1s
n−1 + βn−2s

m−2 + · · ·+ β0

(5.2)

with ∂a(s) = m and ∂b(s) = n, i.e.

Sm,n(a, b) =



1 αm−1 . . . α0 0 . . . 0

0 1 αm−1 . . . α0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 1 αm−1 . . . α0

1 βm−1 . . . β0 0 . . . 0

0 1 βm−1 . . . β0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 1 βm−1 . . . β0



∈ C(m+n)×(m+n) (5.3)

Then, Rank(Sm,n(a, b)) = n+m− ∂φ(s). Here, ∂ denotes the degree of the polynomial

and φ is the GCD of a(s), b(s).

Proof. see [79] and references therein.

Theorem 5.2.1 shows that nullity of Sylvester matrix Sm,n(a, b), identifies the degree

of the GCD of a(s), b(s). The following theorem establishes a connection between GCD

and µ problems.

Theorem 5.2.2. [79]

Let

1. a0(s) and b0(s) be two co-prime polynomial with ∂a(s) = m and ∂b(s) = n respec-

tively.
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2. Sm,n(a0, b0) be the Sylvester matrix corresponding to a0(s) and b0(s).

3. ∆ be the following set of block diagonal perturbations: following structured

∆ = {diag (δm−1In, . . . , δ0In, εn−1Im, . . . , ε0Im) : δi, εi ∈ C} (5.4)

4. M = −ZS−1
m,n (a0, b0) Θ, where

Θ =

 In . . . In 0n,m . . . 0n,m

0m,n . . . 0m,n Im . . . Im

 ∈ Rn+m,2nm

Z ′ =
[ (

Z0
nm

)′
. . .

(
Zm−1
nm

)′ (
Z0
nm

)′
. . .

(
Zm−1
nm

)′ ] ∈ Rn+m,2nm

(5.5)

in which

Zknm =
[

0n,k+1 In 0n,m−k−1

]
for k = 0, 1, . . . ,m− 1.

And also lets a(s) = and b(s) be the perturbed polynomials,

a(s) =a0(s) + δ(s) = sm + (αm−1 + δm−1)sm−1 + · · ·+ α0 + δ0

b(s) =b0(s) + ε(s) = sm + (βm−1 + εm−1)sm−1 + · · ·+ β0 + ε0

Then

‖µ‖ = max {|δ0|, . . . , |δm−1|, |ε0|, . . . , |εm−1|}

and the minimum norm of ‖∆‖ such that a(s) and b(s) have a common route is µ∆)−1(M).

Proof. The Sylvester equivalent matrix Sm,n(a0, b0) is nonsingular due to the assumption

that a0(s) and b0(s) are coprime. Perturbing both polynomials as. a(s) = a0(s) + δ(s)

and b(s) = b0(s) + ε(s) result in a perturbation on the Sylvester matrix Sm,n(a, b) =

Sm,n(a0, b0) + E where E denotes the ‘perturbation matrix’:
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E =



0 δm−1 . . . δ0 0 . . . 0

0 0 δm−1 . . . δ0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 0 δm−1 . . . δ0

0 εm−1 . . . ε0 0 . . . 0

0 0 εm−1 . . . ε0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 0 εm−1 . . . ε0


Matrix E can now be factored as E = Θ∆Z, where Θ and Z are defined in (5.5) and ∆ is

defined in (5.4).

Clearly ∆ is diagonal and

max {|δ0|, . . . , |δm−1|, |ε0|, . . . , |εm−1|} = ‖∆‖

Since Sm,n(a0, b0) loses rank if and only if the polynomials a(s) and b(s) have a common

root, the problem is equivalent to

min ‖∆‖ such that det(Sm,n(a0, b0) + Θ∆Z) = 0 and ∆ ∈∆ (5.6)

Using the matrix identity,

det(I +BC) = det(I + CB) (5.7)

we conclude that

det (Sm,n(a0, b0) + Θ∆Z) = 0⇔ det
(
I + ZS−1

m,n(a0, b0)Θ∆
)

= 0⇔ det (I −M∆) = 0

(5.8)

Hence the problem becomes

min {‖∆‖ : det (I −M∆) = 0,∆ ∈∆} = µ−1
∆ (M)

Remark 5.2.1. Note that GCD problem with a Sylvester matrix of dimension (n + m) ×

(n+m) is equivalent to a µ problem of a matrix of dimensions 2nm× 2nm
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Converting the GCD to a µ problem allows us to use existing algorithms for the solution

of the approximate GCD problem at the disadvantage that the dimensionality of the problem

increases significantly. Therefore, conversion to a µ problem may not be a cost efficient

method for large scale systems. In the following section, we adapt the Lehtomaki approach

to find a tight bound to the µ problem which can be used to estimate the value of the

structured singular value using straightforward calculations.

As a practical example of GCD in control systems we can name the "Distance to Un-

controllability", which refers to controllablity of a given linear time-invariant system [81].

A system represented by state space with parameters A and B is state controllable if and

only if the matrix

S(A,B) :=
[
A AB . . . An−1B

]
is full rank. This involves rank computation. In fact, checking the controllability prop-

erty requires a numerical test on the parameters of a specific representation of the system.

Now consider two polynomials a(s) and b(s) in frequency domain. The single-input single-

output system S(a(s), b(s)) is controllable if an only if a(s) and b(s) are co-prime[82]. This

is exactly the GCD problem of two polynomials.

5.2.2 Lehtomaki Approach

Considering Sm,n(a, b) in (5.3), let the corresponding perturbation matrix, ∆ belongs to the

following structured set:

∆ = {



0 δm−1 . . . δ0 0 . . . 0

0 0 δm−1 . . . δ0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 0 δm−1 . . . δ0

0 εn−1 . . . ε0 0 . . . 0

0 0 εn−1 . . . ε0 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . 0 εn−1 . . . ε0



: δi, εi ∈ C} (5.9)
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Thus, we need to solve the following structured distance to singularity problem:

min
det(Sm,n(a,b)+∆)=0

∆∈∆

‖∆‖ (5.10)

Let Sm,n(a, b) have a singular value decomposition

Sm,n(a, b) = UΣV ∗ =
[
u1 u2 . . . un

]

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σn




v∗1

v∗2
...

un


where ui ∈ Cn×i, vi ∈ Cn×i for i = 1 . . . n.

Then

det (Sm,n(a, b) + ∆) = 0⇔

det (UΣV ∗ + ∆) = 0⇔

det(Σ + U∗∆V ) = 0

(5.11)

The last statement is due to the orthogonality of U and V . Now we impose a constrain

on ∆ which does not allow a projection equal to σn in the most sensitive direction, unv∗n.

Problem (5.10) is thus relaxed to

min
(Σ+U∗∆V )=0

∆∈∆
|un∆v∗n|≤φ<σn

‖∆‖ (5.12)

The optimal value of Problem (5.12) is [16]:

‖U∗∆V ‖ =
√
σnσn−1 + φ(σn − σn−1) (5.13)

which implies that if the norm of ∆ is less than the value in the right hand side of (5.12)

then Σ + U∗∆V is nonsingular,

Note that φ is an arbitrary non-negative parameter between 0 and σn. Setting φ = 0

gives the maximum distance to singularity
√
σnσn−1, while setting φ = σn recovers the

unstructured distance to singularity equal to σn. Hence, the more |un∆v∗n| is restricted, the

better the bound achieved.
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Now, assume that ∆ varies in the structured set of unit ball B∆. What is the minimum

value of φ compatible with this structure, i.e. the smallest possible φ for which |v∗n∆un| ≤ φ

for all ∆ in B∆? Clearly, the optimal φ is obtained by solving:

max
∆∈B∆

|v∗nδun| = φ (5.14)

Note that values of φ is the largest of the optimal value could be used and would result in

a lower bound on the structured distance to singularity (equivalent upper bound to the struc-

tured singular value) by applying equation (5.13). The tightest possible bound, however, is

obtained by using the optimal value of φ given by (5.14).

The above discussion is summarised in the following Lemma:

Lemma 5.2.1. Let M , σn, σn−1, Σ and U be as defined as above and define

µ∆ (M) :=
1

min {‖∆‖ : ∆ ∈∆, det((A− U∗∆V )) = 0}
(5.15)

where ∆ has the structure defined in (5.9). Then

µ∆(M) ≤

(
σn

√
σn−1

σn
+ φ̃0

(
1− σn−1

σn

))−1

(5.16)

where

φ̃0 = max
∆∈B∆

|un∆v∗n| (5.17)

Proof. Suppose B∆ denote the unit ball as defined in chapter 4,

B∆ = {∆ ∈∆ : ‖∆‖≤ 1}

Thus (5.14) implies that

max
∆∈∆

|v∗n∆un| = φ

⇒ max
∆∈∆

|un
∆

‖∆‖
v∗n| = φ‖∆‖−1

⇒ max
∆̃∈B∆

|un∆̃v∗n| = φ̃σn‖∆‖−1

where ∆̃ =
∆

‖∆‖
and 0 ≤ φ̃ =

φ

σn
≤ 1 .

Thus, if

|un∆̃v∗n| ≤ φ̃σn‖∆‖−1 ∀∆ ∈ B∆, 0 ≤ φ̃ ≤ 1
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then from (5.13)

min
∆∈∆

det(A+U∗∆V )=0

‖∆‖≥ σn

√
σn−1

σn
+ φ̃

(
1− σn−1

σn

)
(5.18)

Equivalently, if

max
∆̃∈B∆

det(un∆̃v∗n) = φ̃0 ≤ 1 (5.19)

then µ∆ has an upper bound of

(
σn

√
σn−1

σn
+ φ̃0

(
1− σn−1

σn

))−1

(5.20)

Although Lemma 5.2.1 provide a better upper bound to the structured singular value

compare to the norm of M , it still requires solving an optimisation problem in (5.19). This

optimisation is not an easy problem to solve due to the structure of B∆. Thus we can define

a set with a more convenient structure which contains B∆. Define:

∆̄ = {∆ ∈∆ : |δi| ≤ 1, |εj | ≤ 1,∀ 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} (5.21)

Solving (5.19) over ∆ ∈ ∆̄ is now straightforward, however, the question that is raised

is whether a tighter set could be found that includes B∆? In other words, can we find

a tighter subset, ¯θ∆ where B∆ ⊆ ¯θ∆ for any 0 < θ ≤ 1? Figure 5.1 gives a visual

interpretation of the set inclusion where θ0 =
{

min θ : s.t.β∆ ⊆ θ∆
}

.

Figure 5.1: Different structured perturbation subsets

The following lemma gives a negative answer to the question posed above.
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Lemma 5.2.2. Let ∆ and B∆ are as defined previously; Then

θ0 =
{

min θ : s.t. B∆ ⊆ θ∆
}

= 1

Proof. Assume there exist a 0 ≤ θ < 1 in which B∆ ⊆ θ∆ this means that for each ∆1 ∈

B∆ there exists ∆2 ∈∆ such that ∆1 ⊆ ∆2. This implies ‖∆1‖< ‖∆2‖. Now consider the

perturbation matrix, ∆ ∈∆, in 5.9 and let ∆1,∆2 ∈∆ where ∆1 = {∆ ∈ B∆, ‖∆‖= 1}

and ∆2 =
{

∆ ∈∆,∆2 = 1, δi = 0, εj = 0 for other i, j
}

. It is obvious that ‖∆2‖= 1

which is in contradiction with ‖∆1‖< ‖∆2‖. Hence, θ = 1.

Lemma 5.2.2 shows that the set defined in (5.21) is the tightest set with the given struc-

ture that includes B∆. Note that the problem over the set in 5.2.1 is more convenient and

can be readily be solved.

Lemma 5.2.3. Assume all the variables of Lemma 5.2.1 and let

φ̃0 = max
∆∈∆̄

|un∆̃v∗n| = max
|δi|≤1
|εi|≤1

|
m∑
i=1

δixi +
n∑
j=1

εjyj | (5.22)

where xi, yi ∈ C are defined explicitly from the term un∆̃v∗n and ∆̄ is defined in (5.21).

Then if

m∑
i=1

|xi|+
n∑
j=1

|yj | < 1 (5.23)

µ∆ has an upper bound of

µ∆ ≤


√√√√√σnσn−1 +

 m∑
i=1

|xi|+
n∑
j=1

|yj |

 (σ2
n − σnσn−1)


−1

(5.24)

Proof. The maximiser in (5.22) occurs when all δi and εi are at their maximum absolute

values with a sign that makes xi and yi positive, hence

φ̃0 = max
∆∈∆̄

|un∆̃v∗n|

= max
|δi|≤1
|εi|≤1

|
m∑
i=1

δixi +

n∑
j=1

εjyj |

=
m∑
i=1

|xi|+
n∑
j=1

|yj |

(5.25)
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Thus, the distance to the singularity is bounded by

√√√√√σnσn−1 +

 m∑
i=1

|xi|+
n∑
j=1

|yj |

 (σ2
n − σnσn−1) (5.26)

As required, Lemma 5.2.3 gives an estimate to the distance of the two polynomials

from having a common root without the need to undergo the expensive computation of the

structured singular value of a high dimensional matrix. This is demonstrated in the next

section with a numerical example.

5.2.3 Numerical Example

We select two simple polynomial of degree 2 and 3 which have a common root.

a(s) = s3 − 8.29s2 + 21.12s− 15.68

b(s) = s2 − 8.70s+ 18.77

The roots of each polynomial are

ra = [3.95, 3.02, 1.31]

rb = [4.74, 3.95]

We can see that 3.95 is a common root of the two polynomials. We now perturbed the

coefficients by small amounts

δ =
[

0 −0.10 0.10 −0.08
]

ε =
[

0 −0.08 −0.05
]

corresponding to a ∆ matrix in the form of (5.9)

∆ =



0 −0.10 0.10 −0.08 0

0 0 −0.10 0.10 −0.08

0 −0.08 −0.05 0 0

0 0 −0.08 −0.05 0

0 0 0 −0.08 −0.05


(5.27)
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Note that the norm of the above perturbation matrix is ‖∆‖= 0.1903. Nonetheless, this is

not the smallest norm of a perturbation matrix that result in singularity. In other words a

∆ with smaller norm may cause singularity. However, it can be taken as an index to test

the final result in this example. Perturbing these two polynomials result in two co-prime

polynomials,

a0(s) = s3 − 8.39s2 + 21.05s− 15.60

b0(s) = s2 − 8.78s+ 18.74

whose roots are

ra0 = [4.44, 2.59, 1.35]

rb0 = [5.13, 3.65]

The corresponding Sylvestor matrix is

S3,2(a0, b0) =



1 −8.39 21.05 −15.60 0

0 1 −8.39 21.05 −15.60

1 −8.78 18.74 0 0

0 1 −8.78 18.74 0

0 0 1 −8.78 18.74


which has eigenvalues

λ(S3,2(a0, b0)) = {30.89, 13.66∓ j4.46, 0.05,−0.03}

As we can see, the Sylvester matrix has some eigenvalues close to 0. This is due to

the fact that the Sylvester matrix is close to singularity and a small perturbation (‖∆‖≤

0.1903) may result in singularity. Now referring to theorem 5.2.1, the transformation

M = −ZS−1
m,n (a0, b0) Θ where

ZT =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1


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and

Θ =



1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1


gives

M =

−31.7 141.9 −31.7 141.9 −31.7 141.9 31.7 −130.5 118.1 31.8 −130.5 118.1

−7.6 34.7 −7.6 34.7 −7.6 34.7 7.6 −31.7 28.9 7.5 −31.7 28.9

−7.6 34.7 −7.6 34.7 −7.6 34.7 7.6 −31.7 28.9 7.5 −31.7 28.9

−1.8 8.7 −1.8 8.7 −1.8 8.7 1.8 −7.9 7.2 1.8 −7.9 7.2

−1.8 8.7 −1.8 8.7 −1.8 8.7 1.8 −7.9 7.2 1.8 −7.9 7.2

−0.5 2.2 −0.5 2.2 −0.5 2.2 0.5 −2.0 1.8 0.5 −2.0 1.8

−31.7 141.9 −31.7 141.9 −31.7 141.9 31.7 −130.5 118.1 31.8 −130.5 118.1

−7.6 34.7 −7.6 34.7 −7.6 34.7 7.6 −31.7 28.9 7.5 −31.7 28.9

−1.8 8.7 −1.8 8.7 −1.8 8.7 1.8 −7.9 7.2 1.8 −7.9 7.2

−7.6 34.7 −7.6 34.7 −7.6 34.7 7.6 −31.7 28.9 7.5 −31.7 28.9

−1.8 8.7 −1.8 8.7 −1.8 8.7 1.8 −7.9 7.2 1.8 −7.9 7.2

−0.5 2.2 −0.5 2.2 −0.5 2.2 0.5 −2.0 1.8 0.5 −2.0 1.8


which is the objective matrix for the equivalent µ problem. First, it can be observed that the

size of M matrix grows compared to the Sylvester matrix of the original GCD problem.

We first use D-iteration techniques [6] to calculate the convex upper bound on µ using

Matlab software. The result is

0.0719 ≤ γ∆(M) = µ−1
∆ (M) ≤ 0.0748

Note that this value is considerable better than the smallest singular value of S3,2(a0, b0) =

0.0010. However, as mentioned earlier, it is been achieved at the cost of solving a µ problem

over 12×12 matrix. The improved estimation offers the unstructured distance to singularity,

while avoiding the expensive calculation required by the computation of µ. To apply the

131



proposed method, first we check condition (5.23):

|v∗n∆un| =

|
[
−0.1411 0.6141 0.1402 −0.5676 0.5110

]


0 δ2 δ1 δ0 0

0 0 δ2 δ1 δ0

0 ε1 ε0 0 0

0 0 ε1 ε0 0

0 0 0 ε1 ε0





−0.3257

0.6806

0.6554

−0.0332

−0.0036


| =

|0.306δ2 − 0.113δ1 + 0.002δ0 − 0.294ε1 + 0.109ε0|

Thus

φ̃0 = max
∆∈∆̄

|un∆̃v∗n|

=

m∑
i=1

|xi|+
n∑
j=1

|yj |

= 0.306 + 0.113 + 0.002 + 0.294 + 0.109

= 0.824 < 1

Applying (5.26) then gives

γ∆ =
√

0.001× 0.78 + 0.824 (0.0012 − 0.001× 0.78) = 0.012

It is seen that with a trivial calculation, an improved bound is achieved. Although the result

is not as tight as the convex bound, it is considerably tighter compared to the singular value

without having to apply the costly D-iteration method. To compare the distance to singular-

ity of the proposed method with the greatest singular value and D-iteration estimate of µ,

a comparison over 70 random examples with the the same value range fulfilling condition

(5.19) has been carried out.

The hardware and software used to run the algorithm have the following specification:

• CPU: 1 (4 Cores) Processor Intel Core i5 2400s

• RAM: 4GB DDR3

• Graphic: Radeon HD 6770M
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• Software: Matlab 9.5 R2018a

Figure 5.2 shows the result.

Figure 5.2: 70 other examples

Table 5.1: The proposed method in compare to the other conventional methods

Measures Distance to singularity CPU time(ms)
D-iteration 0.0719 302.03

Greatest singular value 0.0010 0.20
Proposed Method 0.0120 95.34

Table 5.1 shows the D-iteration method gives the wider distance to singularity (tighter

upper bound on µ∆). However, the corresponding CPU time is significantly longer than

those of the other methods. On the other hand, calculating the largest singular value is the

fastest method but it offers the loosest bound. The bound obtained by the proposed method

offers a reasonable compromise between these two extremes.

Zonotope can also be applied when polynomial coefficients (and M) are complex and

perturbations as assumed real. Thus all the proposed method in chapter 4 are applicable.

This remains to be studied in the future works.

5.3 Summary

The Greatest Common Divisor (GCD) of two polynomials is considered in this chapter

where the GCD problem is converted to an equivalent structured singular value problem.

This involves a significant increase in the size of the problem and thus may not be the most

cost efficient solution. A method is proposed in this chapter that is directly applicable to
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Sylvester uncertainty structures before converting to a µ problem. This method will avoid

solving a costly high dimentional µ problem whilst it offers a bound tighter than the largest

singular value. A numerical example compares the proposed method with the µ bounds

obtained by the largest singular value and the convex relaxation ("D-iteration") method.
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Chapter 6

Conclusions

In this chapter we summarise the results of this work . We also propose new areas of

research that follow naturally from the results presented in this thesis. Two classical NP-

hard problems, i.e. the general real µ problem and Quadratic Integer Programming problem

are the main subjects of this thesis. The conventional methods to approach these problems

are mainly deterministic. Time and space complexity is always a fundamental issue in

these methods which could make them impractical if the control system has a large scale

with many entries. This thesis deal with this part of the problem and aimed to generalise

a convex approach to find an a probabilistic cost efficient bounds on both problems. The

main motivation to study the QIP and µ problems is their unique applications in control

systems. In addition, the various striking similarities existing in both solutions motivates

their simultaneous study. Hence, the solutions of both approaches are similar and that one

set of results can be applied to the other problem. Some of these similarities between the

two problems that have been studying in this thesis is summarised in Table 6.1.

6.1 Randomised Algorithm to obtain an upper bound on QIP

A Randomised algorithm is proposed in chapter 2 for calculating an upper bound of the QIP

problem. It is known that the convex relaxation of the problem reduces to a Reduced-Rank

QIP (RRQIP) problem which is equivalent to the enumeration of the vertices of a Zonotope.

The proposed approach derives an estimate of the Hausdorff distance between the Zonotope

and its approximation, defined as the convex hull of the partially enumerated vertices of the

Zonotope that are obtained by random sampling.

In current methods, the duality gap of the problem, i.e. the distance between the convex

upper bound and the optimal solution, could be reduced provided the RRQIP problem can
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µ-problem QIP problem
µ−1 = min ∆∈∆

det(I−∆M)=0
‖∆‖ γ := maxx∈{−1,1}n x

′Qx

Formulate and solve dual:
Get (µ0, D0)
s.t. minD∈∆‖D1/2MD−1/2‖
M ← µ−1

0 D
1/2
0 MD

−1/2
0

Formulate and solve dual:
Get(γ,D0)
s.t. γ = min trace(D)
s.t. D = diag(D), D −Q ≥ 0

Sufficient condition for zero duality gap
(µ = µ if null(I −MM∗) = 1)

Sufficient condition for zero duality gap
(γ = γ if null(D0 −Q) = 1)

Duality gap can be breached if we can
solve a rank-m, µ problem or get a bound
less than 1:
max∆∈∆ ρ(∆U1v

∗
1)

Duality gap can be breached if we can
solve a rank-r QIP problem of the form
γr = 1

n maxx∈{−1,1}n x
′V V ′x

Improved bound obtained via the solution
of an eigenvalue problem

Improved bound can be obtained by calcu-
lating the eigenvalues of a symmetric ma-
trix

Table 6.1: Common characteristic of µ-problem and QIP

be solved. This is equivalent to the full enumeration of the vertices of the corresponding

Zonotope. Although this can be achieved by a polynomial-time algorithm, the computa-

tion may still be intractable for problems of high-dimensionality. It was shown that even

with incomplete enumeration when the full enumeration is computationally infeasible, an

improved probabilistic bounds could be obtained. The bound may be further improved by

combining the proposed randomised approach with the solution of a sequence of deter-

ministic QIP problems of increasing rank. In other words, the proposed method derives

a decreasing sequence of upper bounds to the solution of the QIP problem by solving a

sequence of auxiliary QIP problems of increasing rank. This is useful in practice since it

can exploit fully the available computational resources to obtain the tightest bound possible

with a pre-specified probability. By identifying the optimal transition between deterministic

(full) and randomised (partial) vertex enumeration, it is also possible to obtain the tightest

bound compatible with the available computational resources. This was the first major

contribution of this work which is titled as "Propose a cost-efficient method for breaching

the gap between the QIP problem andits convex relaxation" in introduction. The proposed

method is demonstrated by the graphical interpretation of solution in a the form of 2 dimen-

sional Zonotope.

First the algorithm features was evaluated and it was shown that the algorithm tend to

enumerate those key vertices which contribute more in forming the Zonotope with higher

probability. The proposed method is further improved to overcome the feature that the
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approximate Zonotope may omit the optimiser and hence the upper bound breaches the so-

lution of QIP. This was based on extending the gap between the QIP problem and its upper

bound just sufficiently to cover all vertices which could potentially be selected by the algo-

rithm, even with low probability. The overall result thus is valid with a certain probability.

It was also shown that the trade-off between accuracy, speed and probability is always ad-

justable by selecting the algorithm’s predefined parameters appropriately. Furthermore, a

new probabilistic condition is derived for which the reduced rank QIP guarantees that the

duality gap of the original problem is breachable. The validity of the proposed method has

been illustrated by several numerical examples.The bound may also be further improved

by combining the proposed randomised approach with the solution of a sequence of deter-

ministic QIP problems of increasing rank. This is a minor contribution titled as "Improved

the convex bound by combining the proposed randomised approach with the solution of a

sequence of deterministic QIP problems of increasing rank" in the introduction.

6.2 Semidefinite upper bounds on µ-problem

In chapter 3 and chapter 4, µ-problem was the focus of the research.

In chapter 3, the problem of finding the smaller distance to the singularity,i.e.

γ = min {‖∆‖ : det (A−∆) = 0}

where A is a positive definite diagonal matrix was considered. This problem has a well

known solution. The solution is novel if you constraint it further, e.g. require that the (1,1)

block is a fixed matrix. The problem has been studied under different conditions imposed

on the k×k leading block of ∆, ∆11 representing different classes of uncertainty. When we

impose the constraint that ‖∆‖ ≤ 1 the optimum value of γ increases and the optimisation

reduces to an eigenvalue problem. This result has been used in chapter 4 where the problem

of obtaining bounds on the structured singular value of a matrix M subject to real para-

metric uncertainty has been considered. The method relies on two relaxation techniques

involving the projection of the uncertainty in the "most critical direction" as defined by the

set of optimal (maximum norm) unstructured perturbations. The first relaxation leads to the

maximisation of a convex quadratic function with box constraints (for which convex bounds

are possible).

The second relaxation reduces to a geometric problem involving the intersection of a
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Zonotope and a family of Apollonius circles. This can be solved, provided the vertices

of the Zonotope can be enumerated. If full enumeration is possible (e.g. via an efficient

algorithm based on "reverse-enumeration") a deterministic bound is obtained. For high

dimensional problems, however, this may not be feasible computationally and we may need

to rely on a randomisation algorithm producing only partial enumeration of the vertices. In

this case, it may still be possible to obtain a probabilistic bound using the estimate of the

Hausdorff distance between the true (but unknown) Zonotope and the convex hull of the

polytope constructed from the partially enumerated vertices.

Both relaxations have been further studied in the special case where the multiplicity

of the largest singular value, m, is equal to 1. This results in proposing a probabilistic

method of calculating a convex upper bound on µ which is one of the main contributions

as mentioned in introduction. The optimisation problem associated with the first relaxation

has been specifically derived. Our approach is extended to the correlated-uncertainty case

or when the uncertain perturbations enter the model in a nonlinear way. This was another

main contribution as titled "Extend the main results of the proposed method to the distance

to singularity problems with "correlated" or nonlinear descriptions of uncertainty" in intro-

duction.

Approximate methods for estimating γ have also been considered. First an immedi-

ate low-cost upper bound on γ has been obtained by considering the intersection of an

Apollonius circle with the line ξ = maxz∈Z <(z). This bound could be obtained without

enumerating the vertices of the corresponding Zonotope, Z , which is equivalent to solving

2|vert(Z)| − 1 scalar problems. It was also shown that avoiding the solution of these scalar

problems is possible by constructing the ellipse of minimum area which contains all ver-

tices of the Zonotope (and thus by convexity the entire Zonotope). In this way obtaining

a lower bound on the structured distance to singularity is possible. The method of finding

this ellipse however requires the enumeration of the vertices of Z which may be impractical

for high dimensional problems. Hence, a method is proposed which constructs an ellipse

containing Z directly from the generating matrix without enumerating the vertices.

A link between the two relaxations has been established by noting the scaling which al-

lows us to transform the results between the two relaxation methods. Several computational

examples are included to illustrate the main results of our work.

138



6.3 A method applicable directly to the GCD problem without

converting it to an equivalent µ-problem

In chapter 5, the Greatest Common Divisor (GCD) of two polynomials is considered. The

aim was to identify the minimum-magnitude perturbations in the coefficients of the poly-

nomials so that the perturbed polynomials have a common root. It was shown that in this

approximation, GCD problem is equivalent to the calculation of a structured singular value

of a matrix. This however involves a significant increase in the size of the problem and thus

may not be the most cost efficient solution. A method is proposed that is directly applicable

to Sylvester uncertainty structures before converting to a µ problem. A numerical example

compares the proposed method with the µ bounds obtained by the largest singular value and

the convex relaxation ("D-iteration") method.

6.4 Suggestions for Future Research

In this section some suggestions for future research work related to the the results of this

thesis are suggested.

In the proposed randomised algorithm, the number of iterations is calculated based on

some adjustable parameters that identify the accuracy and the probability of the method.

Note that the number of iterations does not necessarily coincide with the number of the

selected vertices. To clarify this point, imagine a case in which all n iteration return the

same vertex. The probability of randomised algorithm can be altered depending on how

tight we need the upperbound to be (i.e. the required accuracy). An idea is to calculate

the probability based both on accuracy and the number of iterations i.e. define a number

of vertices (for example 75% of the total) and find the probability that the algorithm can

identify the maximiser by enumerating this number of vertices only. This approach can

give better flexibility to define a trade-off between accuracy and computational cost. For

example, for an application in which 50% validity is acceptable, the corresponding number

of required iterations is calculated. The maximiser is then obtained by the algorithm after

this number of iterations and so the result is acceptable with 50% probability. Figure 6.1

illustrate the idea.

Alternatively, an algorithm could be designed based on the number of vertices, instead

of the number of iterations. This could also lead to additional flexibility by developing

clearer trade-offs between accuracy, computational cost and probability.
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Figure 6.1: Calculating the probability based on the number of iteration and accuracy

It is also mentioned in chapter 2 that the probability that the maximiser occurs at a flat

vertex is low in general. Depending on the direction of the eigenvectors this probability will

vary. The feasibility and the cost of such calculation in each case remain to be studied in

future work.

A limitation of the proposed method for µ-problem, was the assumption that the largest

singular value of M is non repeated, i.e. m = 1. The case m > 1 involves the solution

of a non-convex eigenvalue problem which is likely to prove computationally demanding.

Extension of our method to address the general case will be the focus of future work.

The method of finding a convex upper bound on µ-problem was based on the idea of

imposing artificial structure by bounding the magnitude of the projection of the perturbation

in the most critical direction to be less than σmin(M). This will then increase the norm of

nearest destabilising perturbations for I − ∆M to lose rank. With the same justification,

imposing an additional constraint on the projection of ∆ in the second most critical direction

could also increase the stability radius. This is an interesting part which is worth more

consideration in future work.

The approximate GCD problem in Chapter 5 involves two polynomials. However, our

method can be further extended to the cases where more than two polynomials are involved.
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This will make the Sylvester matrix non-square and hence the standard Lehtomaki approach

is not applicable. We have also considered real polynomial coefficients in studying the

problem. This can further extended to a case where the coefficients are complex while the

perturbations are real, i.e. the complex coefficients-real perturbation case. Is this case the

proposed method of Chapter 4 is applicable. These parts remained to be studied in future

work.
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Appendix A

Appendix

A.1 Proof of Lemma 3.2.1

Lemma A.1.1. For a class of uncertainty where ∆11 = Cm×m

γ∆∈Cm×m = min {‖∆‖ : det (A−∆) = 0} = σmin(A) = 1 (A.1)

and the set of all optimal ∆ is given by

D =


 W 0

0 In−m




1 0 0

0 ∆22 ∆23

0 ∆32 ∆33


 W ∗ 0

0 In−m

 ∈ Cn×n

 (A.2)

where

WW ∗ = W ∗W = Im, and , ‖

 ∆22 ∆23

∆32 ∆33

 ‖ ≤ 1

Proof. It is obvious that

∆ =

 1 0

0 0

 ∈ Cn×n

is the simplest form that can make A−∆ singular which prove that γCm×m = 1. To prove

(A.2), let ‖∆‖ = 1 and A −∆ is singular. Thus (A−∆)x = 0 where ‖x‖ = 1. Assume

x =
[
x∗1 x∗2

]
where x1 ∈ Cm, hence,

(A − ∆)x = 0 ⇒

 Ax = ∆x

x∗A∗ = x∗∆∗
⇒ x∗A∗Ax = x∗∆∗∆x ⇒ x∗A2x =

x∗∆∗∆x⇒ ‖Ax‖2= ‖∆x‖2
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from

 1 = a1 < a2 < ... < an

‖x‖2=
∑
x2
i = 1

⇒ ‖Ax‖2=
∑n

i=1 a
2
ix

2
i ≥ 1 1©

on the other hand:

‖Ax‖≤ ‖A‖�
��>

1
‖x‖ ⇒ ‖Ax‖≤ ‖A‖= 1⇒ ‖Ax‖≤ 1 2©

1© and 2©⇒

 ‖Ax‖≤ 1

‖Ax‖≥ 1
⇒ ‖Ax‖= 1⇒ x∗A2x = 1⇒ x∗∆∗∆x = 1

x2 = 0⇒ (A−∆)

x1

0

 =

A1 −∆11 −∆12

∆21 A2 −∆22

x1

0

 =

0

0

⇒
(A1 −∆11)x1

∆21x1

 =

0

0


(A1 −∆11)x1 = 0⇒ A1x1 = ∆11x1

The equality in 1© hold only if x1 =


1

0
...

0

 any other combination makes ‖Ax‖2> 1.

Therefore

A1x1 = ∆11x1 = ζ ′∆ζx1 =


1

0
...

0

 = x1

∆11x1 = x1 ⇒ ‖∆11x1‖= ‖x1‖

‖x1‖= 1

⇒ ‖∆11‖≥ 1

‖∆11‖≤ ‖∆‖= 1


⇒ ‖∆11‖= 1

All such ∆ can be represented by (A.2).
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A.2 Proof of Lemma 3.2.2

Lemma 3.2.2

Let A = diag(A1, A2) ∈ Rn×n with

A1 =

 Im1 0

0 A22

 ∈ Rm×m

and

A2 =

 a3Im3 0

0 A44

 ∈ R(n−m)×(n−m)

Assume that 1 < σ(A22), 0 < a3 < σ(A44), and 1 < a3. Then the structured distance to

singularity is

γ0m×m := min {‖∆‖ : det (A−∆) = 0, ζ∗∆ζ = 0} =
√
a3 =:

√
σ(A1)σ(A2) (A.3)

Furthermore all optimal rank reducing perturbations are generated by

W



0 0 0
√
a3 0 0

0 0 0 0 ∆13 ∆14

0 0 0 0 ∆23 ∆24

√
a3 0 0 0 0 0

0 ∆31 ∆32 0 ∆33 ∆34

0 ∆41 ∆42 0 ∆43 ∆44


W ∗ = W∆W ∗ (A.4)

where W = diag(W1, Im2 ,W3, Im4) ∈ Cn×n is unitary and

wwwwwwwwwwww


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44



wwwwwwwwwwww
≤
√
a3 (A.5)

Proof. First we verify that all ∆ of the form of (A.4) have norm
√
a3:

145



∆∆∗ =



0 0 0
√
a3 0 0

0 0 0 0 ∆13 ∆14

0 0 0 0 ∆23 ∆24

√
a3 0 0 0 0 0

0 ∆31 ∆32 0 ∆33 ∆34

0 ∆41 ∆42 0 ∆43 ∆44





0 0 0
√
a3 0 0

0 0 0 0 ∆∗31 ∆∗41

0 0 0 0 ∆∗32 ∆∗42

√
a3 0 0 0 0 0

0 ∆∗13 ∆∗23 0 ∆∗33 ∆∗43

0 ∆∗14 ∆∗24 0 ∆∗34 ∆∗44



=



a3 0 0 0 0 0

0 Φ1 Φ2 0 Φ3 Φ4

0 Φ5 Φ6 0 Φ7 Φ8

0 0 a3 0 0 0

0 Φ9 Φ10 0 Φ11 Φ12

0 Φ13 Φ14 0 Φ15 Φ16


where
Φ1 = ∆13∆∗13 + ∆14∆∗14 Φ4 = ∆13∆∗43 + ∆14∆∗44 Φ7 = ∆23∆∗33 + ∆24∆∗34

Φ2 = ∆13∆∗23 + ∆14∆∗24 Φ5 = ∆23∆∗13 + ∆24∆∗14 Φ8 = ∆23∆∗43 + ∆24∆∗44

Φ3 = ∆13∆∗33 + ∆14∆∗34 Φ6 = ∆23∆∗23 + ∆24∆∗24 Φ9 = ∆33∆∗13 + ∆34∆∗14

Φ10 = ∆33∆∗23 + ∆34∆∗24 Φ13 = ∆43∆∗13 + ∆44∆∗14 Φ14 = ∆43∆∗23 + ∆44∆∗24

Φ11 = ∆31∆∗31 + ∆32∆∗32 + ∆33∆∗33 + ∆34∆∗34

Φ12 = ∆31∆∗41 + ∆32∆∗42 + ∆33∆∗43 + ∆34∆∗44

Φ15 = ∆31∆∗31 + ∆42∆∗32 + ∆43∆∗33 + ∆44∆∗34

Φ16 = ∆41∆∗41 + ∆42∆∗42 + ∆43∆∗43 + ∆44∆∗44

If we do the following transpose in rows/columns, the norm will not change

Transpose



Row2⇔ Row4

Coloum2⇔ Coloum4

Coloum3⇔ Coloum4

Row3⇔ Row4

∆∆∗ then will be
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∆∆∗ =



a3 0 0 0 0 0

0 a3 0 0 0 0

0 0 Φ1 Φ2 Φ3 Φ4

0 0 Φ5 Φ6 Φ7 Φ8

0 0 Φ9 Φ10 Φ11 Φ12

0 0 Φ13 Φ14 Φ15 Φ16



Thus

‖∆‖22= ‖∆∆∗‖= max


‖

a3 0

0 a3

 ‖, ‖


Φ1 Φ2 Φ3 Φ4

Φ5 Φ6 Φ7 Φ8

Φ9 Φ10 Φ11 Φ12

Φ13 Φ14 Φ15 Φ16

 ‖


Note that


Φ1 Φ2 Φ3 Φ4

Φ5 Φ6 Φ7 Φ8

Φ9 Φ10 Φ11 Φ12

Φ13 Φ14 Φ15 Φ16

 =


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44




0 0 ∆∗31 ∆∗41

0 0 ∆∗32 ∆∗42

∆∗13 ∆∗23 ∆∗33 ∆∗43

∆∗14 ∆∗24 ∆∗34 ∆∗44

 =


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44




0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44



∗

therefore:

‖∆‖22= ‖∆∆∗‖= max


‖

a3 0

0 a3

 ‖, ‖


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44

 ‖
2


We know from (A.5) that

wwwwwwwwwwww


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44



wwwwwwwwwwww
≤
√
a3
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therefore ‖∆‖22= ‖∆∆∗‖= ‖

a3 0

0 a3

 ‖ = a3 ⇒ ‖∆‖ =
√
a3

Now we show all ∆ of the form (A.4) satisfy det(A−∆) = 0.Note that

det(A−W∆W ∗) = 0⇔ det(W ∗AW −∆) = 0 and

W ∗AW =



W ∗1 Im1W1 0 0 0

0 Im2A22Im2 0 0

0 0 a3W
∗
3W3 0

0 0 0 Im4A44Im4


=



Im1 0 0 0

0 A22 0 0

0 0 a3 0

0 0 0 A44


= A

Therefore det(A − ∆) = det(W ∗AW − ∆) = det(A − ∆). On the other hand

det(A−∆) = 0 means that there exists a non-zero vector x for which (A−∆)x = 0. The

block diagonal structure of A and ∆ gives

A−∆ =



1 0 0 −√a3 0 0

0 Im1−1 0 0 −∆13 −∆14

0 0 A22 0 −∆23 −∆24

−√a3 0 0 a3 0 0

0 −∆31 −∆32 0 a3Im3−1 −∆33 −∆34

0 −∆41 −∆42 0 −∆43 A44 −D44


(A.6)

Define x =
[
a3 0 0 −√a3 0 0

]T
gives

(A−∆)x =



1 0 0 −√a3 0 0

0 Im1−1 0 0 −∆13 −∆14

0 0 A22 0 −∆23 −∆24

−√a3 0 0 a3 0 0

0 −∆31 −∆32 0 a3Im3−1 −∆33 −∆34

0 −∆41 −∆42 0 −∆43 A44 −D44





a3

0

0

−√a3

0

0


=



0

0

0

0

0

0


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Hence det(A−∆) = 0. Since ‖∆‖ =
√
a3 this is an upper bound.

Now let x =

 x′1

x′2

 ∈ Cn which x1 ∈ Cm. It is clear that x2 6= 0 because

If x2 = 0⇒

 A1 ∗

∗ ∗

 x′1

0

 = 0⇒ A1x
′
1 = 0

However A1 is full rank and thus x′1 = 0 is in contradiction of x 6= 0. On the other

hand x′1 is also non-zero vector because if x′1 = 0 then

(A−∆)x = 0, let ∆ =

 0 D12

D21 D22

, thus

(A−∆)x =

 A1 −D12

−D21 A2 −D22

 0

x′2

⇒ (A2−D22)x′2 = 0⇒ det(A2−D22) = 0

To fulfil this condition min {‖D22‖} ≤ σ(A22) ≤ a3 that gives ‖∆‖ ≥ ‖D22‖ ≥ a3 >
√
a3 which is contradiction of ‖∆‖ ≤ √a3. Hence, x1 6= 0 and x2 6= 0.

Now let Z = diag(z1, z2) where z1 = x1/‖x1‖ and z2 = x2/‖x2‖. Then

(A−∆)x = 0⇒ (A−∆)Z

 ‖x1‖

‖x2‖

 = 0⇒ det

 z∗1A1z1 0

0 z∗2A2z2

− Z∗∆Z


Since z1 ∈ Cm×m and z2 ∈ C(n−m)×(n−m), then

 z∗1A1z1 0

0 z∗2A2z2

 ∈ C2×2.This

can be consider as a case which det(A−∆) = 0, s.t. ∆11 = δ ∈ C : |δ| ≤ φ where φ = 0,

thus base on sec 3.2.

{‖Z∗∆Z‖: det

 z∗1A1z1 0

0 z∗2A2z2

− Z∗∆Z
 = 0} ≥

√
|z∗1A1z1||z∗2A2z2| ≥

√
a3

(A.7)

This is due to the fact that z1 and z2 are orthogonal and ‖z∗1A1z1‖ = ‖A1‖ = 1.

Similarly ‖z∗2A2z2‖ = ‖A2‖ = a3. On the other hand ‖Z∗‖‖∆‖‖Z‖≥ ‖Z∗∆Z‖ and

‖Z∗‖= ‖Z‖= ‖z1‖= ‖z2‖= 0 which gives ‖∆‖≥ ‖Z∗∆Z‖≥ √a3. Since the (1, 1) entry

of Z∗∆Z is zero(from the definition), Z∗∆Z will be in the form of
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D∆φ
=


 0

√
a3e

jθ

√
a3e
−jθ 0

 : θ ∈ R

 (A.8)

Note that since z∗1A1z1 and z∗2A2z2 are scaler, ∆ ∈ C2×2 and thus ∆33 is not available.

In addition, if z1 =
[
z∗11 z∗22

]∗
and z2 =

[
z∗33 z∗44

]∗
, we have

z∗1A1z1 =
[
z∗11 z∗22

] Im1 0

0 A22

 z11

z22

 = z∗11z11 + z∗22A22z22

z∗2A2z2 =
[
z∗33 z∗44

] a3Im3 0

0 A44

 z33

z44

 = a3z
∗
33z44 + z∗44A44z44

Because z∗22A22z22 and z∗44A44z44 are scaler we replace them by positive real number

z1A1z
∗
1 = z∗11z11 + α

z∗2A2z2 = a3z
∗
33z44 + β

where α, β ∈ R ≥ 0. It is obvious that the minimum happens when both α and β are equal

to zero which requires z22 = 0 and z44 = 0 . In other word the equality in (A.7) happens if

and only if z1 =
[
z∗11 0

]∗
and z2 =

[
z∗33 0

]∗
.

Therefore
√
a3 is the lower bound and so far (A.3) has been proved. Now we show that all

the structured ∆ which fulfil (A.3) are in form of (A.4).Let any minimiser in (A.3) be as

∆ =

 0m×m ∆12

∆21 ∆22

 ∈ Cn×n

And let each partition be defined as follow

∆12 =

 ∆̂11 ∆̂12

∆̂21 ∆̂22

 , ∆21 =

 ∆̄11 ∆̄12

∆̄21 ∆̄22

 , ∆22 =

 ∆̃11 ∆̃12

∆̃21 ∆̃22


Where ∆̂11 ∈ Cm1×m3 , ∆̄11 ∈ Cm3×m1 and ∆̃11 ∈ Cm3×m3

150



From previous argument

det

 z∗1A1z1 0

0 z∗2A2z2

−
 0 z∗1∆12z2

z∗2∆21z1 z∗2∆22z2

 = 0 (A.9)

Note that [
z∗11 0

] Im1 0

0 A22

 z11

0

 = ‖z11‖2 = 1

[
z∗33 0

] a3Im3 0

0 A44

 z33

0

 = a3‖z11‖2 = a3

Thus

det

 1 0

0 a3

−
 0 z∗1∆12z2

z∗2∆21z1 z∗2∆22z2

 = 0 (A.10)

Parametrize ∆ based on (A.8)

 0 z∗1∆12z2

z∗2∆21z1 z∗2∆22z2

 =

 0
√
a3e

jθ

√
a3e
−jθ 0


Therefore

z∗1∆12z2 =
[
z∗11 0

] ∆̂11 ∆̂12

∆̂21 ∆̂22

 z33

0

 = z∗11∆̂11z33 = ejθ
√
a3

z∗2∆21z1 =
[
z∗33 0

] ∆̄11 ∆̄12

∆̄21 ∆̄22

 z11

0

 = z∗33∆̄11z11 = e−jθ
√
a3

z∗2∆22z2 =
[
z∗33 0

] ∆̃11 ∆̃12

∆̃21 ∆̃22

 z33

0

 = z∗33∆̃11z33 = 0

for some θ ∈ (−π, φ]. Next define any two unitary completions U⊥ and V⊥ of ejθz11

and z33, respectively, to construct unitary matrices W1 =
[
ejθz11 U⊥

]
and W3 =[

z33 V⊥

]
and consider the product
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 W ∗1 0

0 Im2

∆12

 W3 0

0 Im4

 =


e−jθz∗11 0

U∗⊥ 0

0 Im2


 ∆̂11 ∆̂12

∆̂21 ∆̂22

 z33 V⊥ 0

0 0 Im4



=


e−jθz∗11∆̂11z33 e−jθz∗11∆̂11V⊥ e−jθz∗11∆̂12

U∗⊥∆̂11z33 U∗⊥∆̂11V⊥ U∗⊥∆̂12

∆̂21z33 ∆̂12V⊥ ∆̂22



=


��

���
���:

√
a3

e−jθz∗11∆̂11z33 ��
���

���: 0

e−jθz∗11∆̂11V⊥ ���
���:

0

e−jθz∗11∆̂12

��
���

�: 0
U∗⊥∆̂11z33 U∗⊥∆̂11V⊥ U∗⊥∆̂12

���
�: 0

∆̂21z33 ∆̂12V⊥ ∆̂22


Defining

=

 U∗⊥∆̂11V⊥ U∗⊥∆̂12

∆̂12V⊥ ∆̂22

 =

 E13 E14

E23 E24


gives

 ∆̂11 ∆̂12

∆̂21 ∆̂22

 =

 W1 0

0 Im2



√
a3 0 0

0 E13 E14

0 E23 E24


 W ∗3 0

0 Im4



similar argument for ∆21 and ∆22 gives

 ∆̄11 ∆̄12

∆̄21 ∆̄22

 =

 W3 0

0 Im4



√
a3 0 0

0 E31 E41

0 E41 E42


 W ∗1 0

0 Im2



 ∆̃11 ∆̃12

∆̃21 ∆̃22

 =

 W3 0

0 Im4




0 Ẽ23 Ẽ24

Ẽ32 E33 E34

Ẽ42 E43 E44


 W ∗3 0

0 Im4


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Combine all together gives

∆ =

 0m×m ∆12

∆21 ∆22

 = W ∗


0 0 ∆̂11 ∆̂12

0 0 ∆̂21 ∆̂22

∆̄11 ∆̄12 ∆̃11 ∆̃12

∆̄21 ∆̄22 ∆̃21 ∆̃22

W

=



W ∗1 0 0

0 Im2 0 0

0 0 W ∗3 0

0 0 0 Im4





0 0 0
√
a3 0 0

0 0 0 0 E13 E14

0 0 0 0 E23 E24

√
a3 0 0 0 Ẽ23 Ẽ24

0 E31 E32 Ẽ32 E33 E34

0 E41 E42 Ẽ42 E43 E44





W1 0 0

0 Im2 0 0

0 0 W3 0

0 0 0 Im4



since‖∆‖ =
√
a3 any non-zero entry in the row/column which contain

√
a3 will result

in a norm greater than
√
a3. Therefore all Ẽij = 0 and thus all optimal rank reducing

perturbation are generated by



W ∗1 0 0

0 Im2 0 0

0 0 W ∗3 0

0 0 0 Im4





0 0 0
√
a3 0 0

0 0 0 0 E13 E14

0 0 0 0 E23 E24

√
a3 0 0 0 0 0

0 E31 E32 0 E33 E34

0 E41 E42 0 E43 E44





W1 0 0

0 Im2 0 0

0 0 W3 0

0 0 0 Im4



which is identical to (A.4).

A.3 Proof of Lemma 3.2.3

Lemma 3.2.3 For matrices A and ζ, as defined previously, let ∆11 ∈ Cm×m has the same

structure as section 3.2.6 where ‖∆11‖ ≤ 1 and det (I −∆11) 6= 0. Then

min
det(A−∆)=0
ζ∗∆ζ=∆11

‖∆‖ = min
‖(γ2I−∆11)(I−∆11)−1‖=am+1

γ>1

γ (A.11)
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Proof. First consider the following lemma which can be deduced from [83]:

Lemma A.3.1. [9] Let the following are true:

• H =

 H11 H12

H21 H22


• U is complex matrix

• (I −H11U)−1, H−112 and H−112 exist

Thus

1. If det(H) 6= 0, then Φ = Fu (H,U)⇔ U = Fu
(
H−1,Φ

)
2. If det(H) 6= 0 and det(U) 6= 0, then [Fu (H,U)]−1 = Fu

(
H−1, U−1

)
3. If H is γ−unitary, i.e HH∗ = H∗H = γ2I for some γ > 0, then ‖Fu (H,U) ‖=

γ ⇔ ‖U‖= γ−1

4. If H is γ−unitary,then ‖Fu (H,U) ‖< γ ⇔ ‖U‖< γ−1

5. If H is γ−unitary, det(I −H11) 6= 0, H11 is an square matrix and ‖H11‖≤ 1, then

‖Fu (H, I) ‖= ‖
(
γ2I −H11

)
(I −H11)−1 ‖

Proof. For the complete proof refer to [83].

Since ‖∆11‖ ≤ 1, for any γ > 1 there exist γ−unitary completion of ∆11 of the form

∆γ
1 =

 ∆11 ∆γ
13

∆γ
31 ∆33

 ∈ C2m×2m ∆γ
0 =


∆11 0 ∆γ

13 0

0 0 0 γIn−m

∆γ
31 0 ∆33 0

0 γIn−m 0 0

 ∈ C2n×2n

Taking ∆ =

 ∆11 0

0 am+1In−m

, gives

det(A−∆) = det

 A1 −∆11 0

0 A2 − am+1In−m

 = 0
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Since ‖∆11‖ ≤ 1⇒ ‖∆‖ = max {‖∆11‖, ‖am+1In−m‖} = am+1 and hence am+1 is

an upper bound on equation (3.22) we can assume γ ≤ am+1.

Define Xγ
A = Fu

[
(∆γ

0)
−1
, A
]
, thus

Xγ
A = Fu

[
(∆γ

0)
−1
, A
]

= Fu [(∆γ
0)∗, A] = Fu




∆∗11 0 (∆γ

31)∗ 0

0 0 0 γIn−m

(∆γ
13)∗ 0 (∆33)∗ 0

0 γIn−m 0 0

 , A
⇒

Xγ
A =

 ∆∗33 0

0 0

+

 (∆γ
13)∗ 0

0 γIn−m

 A1 0

0 A2

×

 Im 0

0 In−m

−
 ∆∗11 0

0 0

 A1 0

0 A2


−1

×

 (∆γ
31)∗ 0

0 γIn−m


=

 ∆∗33 0

0 0

+

 (∆γ
13)∗A1 0

0 γA2

 Im −∆∗11A1 0

0 In−m

−1  (∆γ
31)∗ 0

0 γIn−m


=

 ∆∗33 0

0 0

+

 (∆γ
13)∗A1 0

0 γA2

 (I −∆∗11A1)−1∆∗31 0

0 γIn−m


=

 ∆∗33 + (∆γ
13)∗A1(I −∆∗11A1)−1(∆γ

31)∗ 0

0 γ2A2

 =

 Fu [(∆γ
1)−1, A1

]
0

0 γ2A2

 =

diag
(
Fu
[
(∆γ

1)
−1
, A1

]
, γ2A2

)
⇒ Xγ

A =: diag (Xγ
1 , X

γ
2 )

Note that since A1 = 1/σ1.Im and σ1 = 1 (normalized), we replace A1 by I , hence,

from the above definition

Xγ
1 = Fu

[
(∆γ

1)
−1
, I
]

Xγ
2 = γ2A2

referring to part 2 of the lemma A.3.1

Xγ
1 = Fu

[
(∆γ

1)
−1
, I
]

= [Fu (∆γ
1 , I)]

−1 ⇒ (Xγ
1 )
−1

= Fu [(∆γ
1) , I]

From part 3 of lemma A.3.1, also, since ∆γ
1 is γ−unitary and ‖I‖ = 1 < γ, thus

‖ (Xγ
1 )
−1 ‖ = ‖Fu [(∆γ

1) , I] ‖ > γ ⇒ 1

‖ (Xγ
1 ) ‖

> γ ⇒

1

σ(Xγ
1 )

>
1

σ(Xγ
1 )

> γ ⇒ σ (Xγ
1 ) < γ−1
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On the other hand

σ (Xγ
2 ) = σ

(
γ−2A2

)
= γ−2σ (A2) = γ−2am+1 , since γ ≤ am+1 ⇒


σ (Xγ

2 ) ≥ 1

am+1

σ (Xγ
1 ) <

1

am+1

which gives

σ (Xγ
2 ) > σ (Xγ

1 )

Now define

Φγ
∆ := Fu

[
(∆γ

0)
−1
,∆
]

for any ∆ ∈ Cn×n.

From part 4 of the lemma A.3.1

‖Fu
[
(∆γ

0)
−1
,∆
]
‖= ‖Φγ

∆‖= γ−1 if and only if ‖∆‖= γ (A.12)

On the other hand, from part 1 of the lemma A.3.1

Φγ
∆ := Fu

[
(∆γ

0)
−1
,∆
]
⇔ ∆ := Fl

[
∆γ

0 ,Φ
γ
∆

]
(A.13)

Hence, Φγ
∆ and ∆11 need to be of the same size which gives Φγ

∆ ∈ Cm×m.

Assume Φγ
∆ =

 A B

C D

, we have

∆ = Fl
[
∆γ

0 ,Φ
γ
∆

]
⇒

 ∆11 ∆12

∆21 ∆22

 = Fl




∆∗11 0 (∆γ

31)∗ 0

0 0 0 γIn−m

(∆γ
13)∗ 0 (∆33)∗ 0

0 γIn−m 0 0

 ,
 A B

C D


⇒
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 ∆11 ∆12

∆21 ∆22

 =

 ∆11 0

0 0

+

 ∆γ
13 0

0 γIn−m

 A B

C D

I −
 ∆33 0

0 0

 A B

C D

−1  ∆γ
31 0

0 γIn−m

 =

 ∆11 0

0 0

+

 ∆γ
13 0

0 γIn−m

 A B

C D

 Im −∆33A −∆33B

0 In−m

−1  ∆γ
31 0

0 γIn−m

 =

 ∆11 0

0 0

+

 ∆γ
13A ∆γ

13B

γC γD

 (Im −∆33A)−1 (Im −∆33A)−1∆33B

0 In−m

 ∆γ
31 0

0 γIn−m

 =

 ∆11 0

0 0

+

 ∆γ
13A(Im −∆33A)−1∆γ

31 ∆γ
13A(Im −∆33A)−1∆33B + ∆γ

13B

γC(Im −∆33A)−1∆γ
31 γC∆γ

13A(Im −∆33A)−1∆33B + γD

⇒
∆11 = ∆11 + ∆γ

13A(Im −∆33A)−1∆γ
31 (A.14)

For that, ∆γ
13A(Im −∆33A)−1∆γ

31 has to be identical to zero matrix. Since ∆γ
13 and ∆γ

31

are γ−unitary, they cannot be zero matrices. Similarly, (Im − ∆33A) shall be invertable

and hence cannot be identical to zero. Therefor A = 0 and thus

ζ∗∆ζ = ∆11 ⇔ ζ∗Φγ
∆ζ = 0 (A.15)

From part 2 of the lemma A.3.1

Xγ
A := Fu

[
(∆γ

0)
−1
, A
]
⇔ A = Fl

[
(∆γ

0) , Xγ
A

]
(A.16)
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Thus, from (A.13) and (A.16),

det (A−∆) = det
(
Fl
[
∆γ

0 , X
γ
A

]
−Fl

[
∆γ

0 ,Φ
γ
∆

])
= det

(
Fu
[
(∆γ

0)
−1
, A
]
−Fu

[
(∆γ

0)
−1
,∆
])

= det
(
Xγ
A − Φγ

∆

) (A.17)

Hence, from (A.12), (A.15) and (A.17), we have

min
det(A−∆)=0
γ=‖∆‖

ζ∗∆ζ=∆11

γ = min
det(Xγ

A−Φγ∆)=0

‖Φγ∆‖=γ
−1

ζ∗Φγ∆ζ=0

γ (A.18)

Now all the conditions in right hand side,


det
(
Xγ
A − Φγ

∆

)
= 0

‖Φγ
∆‖= γ−1

ζ∗Φγ
∆ζ

, can be replaced by

√
σ (Xγ

1 )σ (Xγ
2 ) ≤ γ−1, i.e. based on Lemma 3.2.2, for ∆ := Φγ

∆ and A := Xγ
A, and

since Xγ
A = diag (Xγ

1 , X
γ
2 ), we have

min
{
‖Φγ

∆‖: det
(
Xγ
A −∆γ

Φ

)
= 0, ζ∗Φγ

∆ζ = 0
}

=
√
σ (Xγ

1 )σ (Xγ
2 )

From the second condition, ‖Φγ
∆‖= γ−1, thus

min
{
γ−1 : det

(
Xγ
A −∆γ

Φ

)
= 0, ζ∗Φγ

∆ζ = 0
}

=
√
σ (Xγ

1 )σ (Xγ
2 )⇒

√
σ (Xγ

1 )σ (Xγ
2 ) ≤ γ−1

Hence, (A.18), can be reduced to

min
det(A−∆)=0
γ=‖∆‖

ζ∗∆ζ=∆11

γ = min
det(Xγ

A−Φγ∆)=0

‖Φγ∆‖=γ
−1

ζ∗Φγ∆ζ=0

γ = min√
σ(Xγ

1 )σ(Xγ
2 )≤γ−1

γ = min
‖(Xγ

1 )−1‖≤am+1

γ (A.19)
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