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Exactly solvable quantum systems from point transformations

Exactly solvable time-dependent non-Hermitian

quantum systems from point transformations
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Abstract: We demonstrate that complex point transformations can be used to construct

non-Hermitian first integrals, time-dependent Dyson maps and metric operators for non-

Hermitian quantum systems. Initially we identify a point transformation as a map from an

exactly solvable time-independent system to an explicitly time-dependent non-Hermitian

Hamiltonian system. Subsequently we employ the point transformation to construct

the non-Hermitian time-dependent invariant for the latter system. Exploiting the fact

that this invariant is pseudo-Hermitian, we construct a corresponding Dyson map as the

adjoint action from a non-Hermitian to a Hermitian invariant, thus obtaining solutions to

the time-dependent Dyson and time-dependent quasi-Hermiticity equation together with

solutions to the corresponding time-dependent Schrödinger equation.

1. Introduction

Point transformations are time-dependent canonical transformations used in classical me-

chanics for a long time [1]. In this context they are designed to extend standard trans-

formations of the configuration coordinates to the entire phase space of a system. In the

1950s they were utilized for the first time by DeWitt in quantum mechanics [2,3] in trying

to settle the ambiguity problem of operator ordering. This problem always emerges in

the quantization process of a theory when one seeks the quantum analogues for classical

expressions involving at least two factors whose mutual Poisson bracket does not vanish.

In addition to solving fundamental conceptual issues in quantum mechanics, point

transformations have also been used to map simple exactly solvable models to more com-

plicated systems, including their solutions [4], thus obtaining nontrivial information about

the latter. Exploiting the fact that point transformations preserve conserved quantities [1],

Zelaya and Rosas-Ortiz [5] recently showed that they may be employed to compute time-

dependent invariants or first integrals for Hermitian Hamiltonian systems. Here we demon-

strate that when complexifying these transformations they may also be used to construct
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time-dependent invariants for non-Hermitian systems. The explicit knowledge of these con-

served quantities then allows to aid the construction of time-dependent Dyson maps, and

therefore metric operators, by finding a similarity transformation. Proceeding in this man-

ner one has simplified the original problem of defining meaningful inner products as one

has circumvented solving the more complicated time-dependent Dyson equation or time-

dependent quasi-Hermiticity equation. Technically one has therefore reduced the problem

to finding the adjoint action that maps a non-Hermitian invariant to a Hermitian one, in

analogy to the familiar problem for Hamiltonians with the difference that the map may

become explicitly time-dependent.

Our manuscript is organized as follows: In section 2 we outline the general scheme in

form of a four-step method leading to solutions of the time-dependent Schrödinger equation

for an explicitly time-dependent non-Hermitian Hamiltonian including a metric operator

that ensures unitary time-evolution between the obtained states. In section 3 we carry out

the first step in our procedure and set up a point transformation for various Hermitian

and non-Hermitian reference Hamiltonians leaving a number of functions free that will be

fixed in the next step when specifying a concrete non-Hermitian target Hamiltonian. In

section 4 we take this target Hamiltonian to be the time-dependent Swanson model. In

the next steps we construct an invariant for this model and subsequently a Dyson map

and metric operator. In section 5 we carry out the same steps for another non-Hermitian

target Hamiltonian, a time-dependent harmonic oscillator with complex linear term. Our

conclusions are stated in section 6.

2. Invariants and Dyson maps from point transformations

Our starting problem is having to make sense of a non-Hermitian explicitly time-dependent

HamiltonianH(x, t) 6= H†(x, t) satisfying the time-dependent Schrödinger equation (TDSE)

H(x, t)φ(x, t) = i~∂tφ(x, t). (2.1)

Unlike as for Hermitian Hamiltonians we do not only have to solve equation (2.1) for the

wavefunction φ(x, t), but we also have to find a suitable time-dependent metric operator

ρ(t) for these solutions to become physically meaningful in a well-defined inner product

〈· |·〉ρ(t) := 〈· |ρ(t)·〉 [6–15], similarly to the time-independent scenario [16–18]. In principle

one has to solve for this purpose the time-dependent Dyson equation or the time-dependent

quasi-Hermiticity equation

h(t) = η(t)H(t)η−1(t) + i~∂tη(t)η(t)
−1, H†(t) = ρ(t)H(t)ρ−1(t) + i~∂tρ(t)ρ

−1(t), (2.2)

respectively, for η(t) or ρ(t) = η†(t)η(t). Here h(t) = h†(t) is the time-dependent Hermitian

counterpart to H(t). While in many cases this is achievable, the construction of η(t) and

ρ(t) is technically involved as demonstrated in [9–15,19].

The main purpose of this paper is to present an alternative approach to finding ρ(t)

and η(t) by exploiting point transformations and first integrals. As a starting point one as-

sumes that there exists an exactly solvable time-independent reference Hamiltonian H0(χ)
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satisfying the one-dimensional TDSE

H0(χ)ψ(χ, τ) = i~∂τψ(χ, τ ), (2.3)

with χ denoting the coordinate and τ the time in this system. One may then relate (2.3)

to the first TDSE (2.1) by means of a complex point transformation

Γ : H0-TDSE → H-TDSE, [χ, τ , ψ(χ, τ )] 7→ [x, t, φ(x, t)] . (2.4)

Here ψ and φ are understood to be implicit functions of (χ,τ ) and (x,t), respectively,

defined by the equations (2.1) and (2.3). The variables χ, τ , ψ are treated in general as

functions of the independent variables x, t, φ as

χ = P (x, t, φ), τ = Q(x, t, φ), ψ = R(x, t, φ). (2.5)

In practice one may relax some of the (x, t, φ)-dependences of the functions P , Q, R or is

even forced to do so for concrete systems. We refer here to H0 and H, as reference and

target Hamiltonians respectively, not to be confused with their corresponding Hermitian

counterparts h0 and h in case they are non-Hermitian.

Having identified the point transformation Γ on the level of the TDSEs one may

subsequently apply it exclusively to the time-independent Hamiltonian H0(χ) as

Γ : H0(χ) → IH(x, t). (2.6)

Since real point transformations preserve conserved quantities [1], and IH(x, t) acquired

a time-dependence via the point transformation Γ, it is suggestive to assume that also

complex point transformations have this property and that IH(x, t) is actually the time-

dependent conserved Lewis-Riesenfeld invariant [20] for the non-Hermitian time-dependent

Hamiltonian H(x, t) in (2.1) satisfying

i~
dIH
dt

= i~∂tIH + [IH ,H] = 0. (2.7)

Since H is non-Hermitian, also its first integral, the invariant IH , must be non-Hermitian,

which is evident from (2.7).

As argued successfully in [13, 21–23] one can map this non-Hermitian invariant IH to a

Hermitian invariant Ih by means of a time-dependent similarity transformation η(t) as

η(t)IH(t)η−1(t) = Ih(t). (2.8)

Remarkably the map η(t) is indeed the Dyson map solving the first equation in (2.2) and the

Hermitian operator Ih is the Lewis-Riesenfeld invariant for the Hermitian time-dependent

Hamiltonian h(t), identified in (2.2), satisfying

i~
dIh
dt

= i~∂tIh + [Ih, h] = 0. (2.9)

The metric operator is the simply obtained as ρ(t) = η†(t)η(t).

– 3 –
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In summary, we have proposed a four step method that leads not only to the solutions

of the TDSE (2.1), but also to explicit expressions for the Dyson maps and metric opera-

tors. The first step consists of selecting a suitable time-independent reference Hamiltonian

H0(χ), Hermitian or non-Hermitian, and point transform it’s corresponding TDSE (2.3).

In the second step we fix the free parameters by matching the transformed TDSE with

a TDSE (2.1) for a non-Hermitian target Hamiltonian H(t), hence identifying the point

transformation Γ by means of (2.4). In the third step we obtain the invariant IH(t) by

acting with Γ on the time-independent reference Hamiltonian H0(χ) and in the fourth step

we construct the Dyson map η as a similarity transformation by means of (2.8). In case

the TDSE for H0(χ) is solvable we obtain by construction also the solutions to the original

TDSE for H(x, t). Here our main focus is, however, on the construction of IH , Ih, η and

ρ. Let us now demonstrate how this four step strategy is carried out for some concrete

time-dependent non-Hermitian Hamiltonian.

3. Point transforming the reference Hamiltonian

One of the simplest choices for an exactly solvable reference Hamiltonian H0(χ) is the

time-independent Hermitian harmonic oscillator

H0(χ) =
P 2

2m
+

1

2
mω2χ2, m, ω ∈ R. (3.1)

First we identify the point transformation of H0(χ) in general terms. Expressing the

momentum operator P in the position representation P = −i~∂χ, we act with the point

transformation Γ on the TDSE (2.3). Simplifying the general functional dependence as

stated in (2.5) to

χ = χ(x, t), τ = τ(t), ψ = A(x, t)φ(x, t), (3.2)

we convert all terms in the TDSE from the (χ, τ , ψ) to the (x, t, φ)-variables, hence obtain-

ing the point transformed differential equation

i~φt +
~
2

2m

τ t
χ2
x

φxx +B0(x, t)φx − V0(x, t)φ = 0, (3.3)

with

B0(x, t) = −i~
χt

χx

+
~
2

2m

τ t
χ2
x

(

2
Ax

A
−
χxx

χx

)

, (3.4)

V0(x, t) =
1

2
mτ tχ

2ω2 − i~

(

At

A
−
Axχt

Aχx

)

−
~
2

2m

τ t
χ2
x

(

Axx

A
−
Axχxx

Aχx

)

. (3.5)

This form of equation (3.3) agrees with the previously derived expression in [5], where also

more details of the computation can be found. However, we allow for a major difference

by admitting the potential V0 of the target Hamiltonian to be complex. The first two

assumptions in (3.2) on the functional dependence when compared to the most general

dependence χ(x, t, φ), τ(x, t, φ) are made for convenience to simplify the calculation. The
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last factorization property of ψ in (3.2) is already made in anticipation on the structure of

the target differential equation. Since the TDSE is a linear equation in the fields it does

not contain a φ2x term so that ψφφ = 0. Hence the linear dependence of ψ on φ.

The reference Hamiltonian is a choice and in order to allow for comparison we shall

explore here some further simple options

H
(1)
0 (χ) =

P 2

2m
(3.6)

H
(2)
0 (χ) = H0(χ) + aχ, a ∈ R, (3.7)

H
(3)
0 (χ) = H0(χ) + ibχ, b ∈ R, (3.8)

H
(4)
0 (χ) = H0(χ) + a{χ,P}. (3.9)

We note that the reference Hamiltonian does not have to be Hermitian. Then the general

form of the point transformed differential equation (3.3) associated with each these refer-

ence Hamiltonians remains the same, yet the explicit forms of B0(x, t) (3.4) and V0(x, t)

(3.5) differ. For the choices (3.6)-(3.9) we obtain

B1(x, t) = B0(x, t), V1(x, t) = V0(x, t)−
1

2
mω2χ2τ t, (3.10)

B2(x, t) = B0(x, t), V2(x, t) = V0(x, t) + aχτ t, (3.11)

B3(x, t) = B0(x, t), V3(x, t) = V0(x, t) + ibχτ t, (3.12)

B4(x, t) = B0(x, t) +
2ia~χτ t
χx

, V4(x, t) = V0(x, t)−
2iaχ~Axτ t

Aχx

− ia~τ t. (3.13)

In order to proceed to the second step in the procedure we need to select a specific target

Hamiltonian.

4. The time-dependent Swanson model as target Hamiltonian

As a concrete example for a target Hamiltonian we consider here a prototype non-Hermitian

Hamiltonian system, the time-dependent version of the Swanson Hamiltonian [24]. In terms

of bosonic creation a and annihilation operators a†, its time-dependent version is usually

written in the form

H̃S(t) = ω(t)
(

a†a+ 1/2
)

+ α̃(t)a2 + β̃(t)
(

a†
)2
, (4.1)

which is clearly non-Hermitian when α̃ 6= β̃
∗
. Dyson maps for the time-independent and

time-dependent version were found in [25, 26] and [19], respectively. In order to apply

the point transformations it is more convenient to convert the Hamiltonian into coordinate

and momentum variables x, p, which is easily achieved. Using the standard representations

a = (x+ ip)/2 and a† = (x− ip)/2 we obtain

H̃S(t) =
1

2

[

ω(t)− α̃(t)− β̃(t)
]

p2+
1

2

[

ω(t) + α̃(t) + β̃(t)
]

x2+
i

2

[

α̃(t)− β̃(t)
]

{x, p}+
ω(t)

2
.

(4.2)
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Expressing the time-dependent function α̃(t), β̃(t), ω(t) in terms of new time-dependent

functions α(t), Ω(t) and M(t) as

α̃ =
MΩ2

4
−

1

4M
+ α, β̃ =

MΩ2

4
−

1

4M
− α, ω =

MΩ2

2
+

1

2M
, (4.3)

the Hamiltonian is converted into the simpler form

HS(x, t) := H̃S(t)−
ω(t)

2
=

p2

2M(t)
+
M(t)

2
Ω2(t)x2+ iα(t){x, p}, M,Ω ∈ R, α ∈ C, (4.4)

which is evidently still non-Hermitian for α 6= 0. The Swanson Hamiltonian is PT -

symmetric for PT : x → −x, p → p, i → −i and all time-dependent coefficient functions

transforming as PT : M,Ω, α → M,Ω, α. Since α = αr + iαi is complex, this requires re-

quires PT : αr → αr, αi → −αi. We notice here that the option α ∈ C, rather than α ∈ R,

does not exist in the time-independent case when one wishes to maintain the PT -symmetry

of the Hamiltonian.

We will explore here two versions of this target Hamiltonian. In one we keep the mass

time-independent by setting the time-dependent coefficient in the kinetic energy term to

a constant, M(t) → m, and in the other option we take the mass term to be generically

time-dependent [27,28]. Let us now identify the point transformation Γ according to (2.4)

for the specified pairs of Hamiltonians.

4.1 Point transformations ΓS
i from H i

0(χ) to HS(x, t)

4.1.1 Point transformation ΓS
0 : H0(χ) → HS(x, t), time-independent mass

Having specified the target Hamiltonian as HS(x, t), with m time-independent, we express

the corresponding TDSE (2.3) in the position representation as

i~φt +
~
2

2m
φxx − 2~α(t)xφx − ~α(t)φ−

1

2
mΩ(t)x2φ = 0. (4.5)

Taking H0(χ) as reference Hamiltonian, the direct comparison with equation (3.3) leads to

the three constraints

τ t
χ2
x

= 1, B0(x, t) = −2~α(t)x, V0(x, t) =
1

2
mΩ(t)x2 + ~α(t). (4.6)

Apart from being a complex equation, the first constraint in (4.6) is the same as the one

found in [5], where it was solved by

τ(t) =

∫ t ds

σ2(s)
, and χ(x, t) =

x+ γ(t)

σ(t)
, (4.7)

but now with γ(t) and σ(t) potentially being complex functions. Using these expressions

in the second constraint in (4.6) yields the equation

i
~

m

Ax

A
+ γt + 2iαx− (x+ γ)

σt
σ

= 0, (4.8)
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which may be solved by

A(x, t) = exp

{

im

~

[(

γt − γ
σt
σ

)

tx+
(

itα−
σt
2σ

)

x2 + δ(t)
]

}

, (4.9)

where δ(t) is a complex valued function corresponding to the integration constant in the x

integration. Proceeding with these expressions to the third constraint in (4.6) yields

−i~
σt
2σ

−
m

2

(

2γγt
σt
σ

+ γ2t + γ2
σ2t
σ2

−
ω2γ2

σ4
− 2mδt

)

(4.10)

+
mγ

σ

[

σtt −
γtt
γ
σ −

ω2

σ3

]

x+
m

2σ

[

σtt −
(

2iαt − 4α2 − Ω
)

σ −
ω2

σ3

]

x2 = 0.

The x-independent term in (4.10) vanishes for

δ(t) =
γ

2σ
(σγt − γσt)−

i~

2m
log σ. (4.11)

Furthermore, we recognize that the square brackets of the coefficient functions for the x and

x2 dependent terms amount both to the ubiquitous nonlinear Ermakov-Pinney equation

[29,30] with the constraint

κ(t) :=
γtt
γ

= 2iαt − 4α2 −Ω. (4.12)

The general solution to this version of the Ermakov-Pinney (EP) equation, as given by the

coefficient functions, can be constructed in terms of the two fundamental solutions u(t)

and v(t) to the equations ü +κ(t)u = 0, v̈ + κ(t)v = 0 as

σ(t) =
(

Au2 +Bv2 + 2Cuv
)1/2

, (4.13)

where the constants A, B, C are constrained as C2 = AB − ω2/W with Wronskian W =

uv̇ − vu̇. Given that κ(t) is now complex, the time τ and the coordinate χ inevitably

become complex, unless we take αt = 0. As we see from (4.3) the latter option still keeps

all the coefficients time-dependent although in a somewhat more restricted form.

4.1.2 Point transformation Γ̂S
0 : H0(χ) → HS(x, t), time-dependent mass

Let us now switch on the time-dependence in the mass so that we have to compare the

transformed equation (3.3) with

i~φt +
~
2

2M(t)
φxx − 2~α(t)xφx − ~α(t)φ−

1

2
M(t)Ω2(t)x2φ = 0, (4.14)

instead of (4.5). The direct comparison then changes the three constraints (4.6) into

τ t
mχ2x

=
1

M(t)
, B(x, t) = −2~α(t)x, V (x, t) =

1

2
M(t)Ω2(t)x2 + ~α(t). (4.15)

Thus, also the first constraint in (4.15) differs now from the one found in [5] as a result

of the introduction of an explicit time-dependent mass. As we show next, this change

– 7 –
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from a time-independent to a time-dependent mass permits us to keep the time τ and the

coordinate χ to be real for more generic time-dependent coefficient functions. Taking a

general form for the mass as

M(t) = mσ(t)n, (4.16)

allows us to easily to distinguish between the time-independent and time-dependent cases,

with the former recovered for n = 0. The first constraint in (4.15) is now solved by

τ(t) =

∫ t

σ(y)rdy and χ(x, t) =
x+ γ(t)

σ(t)s
, (4.17)

where we identify n = −r − 2s. Using these expressions in the second constraint in (4.15)

yields the equation

σr+2s h

m

Ax

A
− iγt + is(x+ γ)

σt
σ

+ 2αx = 0, (4.18)

which may be solved by

A(x, t) = exp

{

imσ−1−r−2s

~

[

(σγt − sγσt) x+

(

iασ −
1

2
sσt

)

x2 + δ(t)

]}

, (4.19)

where δ(t) is a complex valued function corresponding to the integration constant in the x

integration. Proceeding with these expressions to the third constraint in (4.15) yields

− i~
qσ1+r+2sσt

2
+
m

2

[

2(1 + r + 2s)δσt − 2σδt + σ2γ2t − 2sγσγtσt + γ2
(

s2σ2t − ω2σ2+2s
)]

−m
{

γω2σ2r+2 − σ[r + 2s]γtσt + γs
[

(r + s+ 1)σ2t − σσtt
]

+ σ2γtt
}

x+

1

2
m

{

2iασ[r + 2s]σt − 2iσ2αt − s[r + s+ 1]σ2t + σ
[

σ
(

4α2 − ω2σ2r +Ω2
)

+ sσtt
]}

x2 = 0.

(4.20)

The x-independent term in (4.20) vanishes for

δ(t) =
γ

2
(σγt − sγσt) + σ1+r+2s

(

c1 −
is~

2m
log σ

)

, (4.21)

where c1 is a constant. The term proportional to x2 in (4.20) is a non-linear second order

differential equation in σ. To ensure that σ is real, hence our space-time is real, we set the

imaginary term to be equal to zero

αr [(r + 2s)σt − 4σαi]− σ(αr)t = 0. (4.22)

This equation is satisfied for

αi =
1

4
∂t ln

(

σr+2s

αr

)

. (4.23)

We notice from here that since αi ∝ ∂t it does indeed transform as αi → −αi under PT

as is required for HS to be PT -symmetric. The terms proportional to x2 and x vanish for

σtt = σ

[

2αr

(

2Ω2αr + 8α3
r + (αr)tt

)

− 3 (αr)
2
t

2rα2
r

]

+

(

r
2 + 1

)

σ2t
σ

−
2ω2σ2r+1

r
, (4.24)
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and

γtt =
γ

2r





s
(

16α4
r − 3 (αr)

2
t + 2αr(αr)tt

)

α2
r

+ 4sΩ2 −
(r + 2s)

(

2ω2σ2r+2 + rsσ2t
)

σ2



(4.25)

+
(r + 2s)γtσt

σ

respectively. These equations can be reduced to solvable ones for specific choices of r, s,

αi, αr and γ. We discuss now some special choices.

αi = 0

Setting now αi = 0, we can solve directly for αr in (4.23), obtaining

αr = c2σ
r+2s. (4.26)

Taking the mass to be time-independent and hence α to be time-independent by setting

r = −2s and s = 1, equations (4.24) and (4.25) reduce to

σtt = −4c2σ +
ω2

σ3
− σΩ2 and γtt = −γ

(

4c2 +Ω2
)

, (4.27)

respectively. Both of these equations are solvable, with the first being the nonlinear

Ermakov-Pinney equation [29, 30]. Another interesting choice is to take r = −s − 1 with

s = −1, in doing so we end up with

σtt =
4c2

σ3
− σω2 + σΩ2 and γtt = −γ

(

4c2

σ4
+Ω2

)

−
2γtσt
σ

(4.28)

where again the first equation is a version of the nonlinear EP equation. However, now the

Ermakov-Pinney equation is real without any restrictions on α(t), so that also the time

τ and the coordinate χ are real. The second equation is a damped harmonic oscillator

equation, which we may solve or simply take the integration constant γ to be zero.

γ = 0

Instead, setting γ = 0 and parametrizing

αr = σ−2−r, (4.29)

reduces equation (4.24) to

σtt =
−ω2σ2r+1 + 4σ−2r−3 + σΩ2

r + 1
, (4.30)

with α now being being genuinely complex

α = αr − i
r + s+ 1

2
∂t ln (σ) . (4.31)
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Choosing r = 0 or r = −2 results in equation (4.30) being the respective EP equations

given by

σtt =
4

σ3
+ σ

(

Ω2 − ω2
)

, or σtt =
ω2

σ3
− σ

(

Ω2 + 4
)

. (4.32)

As we have taken γ = 0 we do not need to select a concrete value for s.

When setting r = −2 we do not need to choose a concrete form for αr, as in this case

equation (4.24) reduces to the Ermakov-Pinney equation

σtt =
ω2

σ3
− f(t)σ, with f = 4α2

r −
3 (αr)

2
t

4α2
r

+
(αr)tt
2αi

+Ω2. (4.33)

γ 6= 0

When γ 6= 0, we still have the same parametrization of αr and choices for r as in the

previous section, but we now have to restrict s so that equation (4.24) becomes solvable.

For instance, when r = −2 and s = 1, we obtain

γtt = −γ(4 + Ω2), (4.34)

which is solvable.

4.1.3 Point transformations Γ̂S
1,2,4 : H

(1,2,4)
0 (χ) → HS(x, t), time-dependent mass

Let us next explore the point transformations that result when changing the reference

Hamiltonian, but keeping the target Hamiltonian to beHS(x, t) with time-dependent mass.

Considering now the second constraint in (4.6) together with (3.10)-(3.13) we can identify

the fields Ai(x, t) for the reference Hamiltonians (3.6)-(3.9). Solving the constraints we

find

A1(x, t) = A2(x, t) = A(x, t), A4(x, t) = A(x, t) exp

[

amσ−2s

i~

(

2γx+ x2
)

]

, (4.35)

such that the Ai(x, t) are identical for the same Bi(x, t). Solving next the third constraint

in (4.6) for (3.6)-(3.9) we notice that we always require (4.23) to hold in order to ensure

that space-time remains real. In contrast, the other time-dependent functional coefficient

δ and the constraining equations for σ and γ vary for each reference Hamiltonians. We

obtain

H
(1)
0 : δ

(1)
0 = δ, σ

(1)
tt = σtt +

2ω2σ1+2r

r
, γ

(1)
tt = γtt +

(r + 2s)ω2γσ2r

r
,

H
(2)
0 : δ

(2)
0 = δ − σ1+r+2s a

2m

∫ t

γσr−s, σ(2) = σ, γ
(2)
tt = γtt −

aσ2r+s

m
,

H
(4)
0 : δ

(4)
0 = δ + 2aσ1+r+2s

∫ t

γσ−1−2s(sγσt − σγt), σ
(4)
tt = σtt +

8a2σ1+2r

r
,

γ
(4)
tt = γtt +

4a2(r + 2s)γσ2r

r
.

Here we understand that σtt and γtt are to be replaced by the right hand sides of equations

(4.24) and (4.25), respectively.
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4.2 Non-Hermitian invariants from ΓS
i

Having constructed the various point transformations Γj
i that relate the TDSEs (2.1) and

(2.3) for Hj(x, t) and H i
0(χ), respectively, we proceed to the third step in our scheme and

employ the point transformations now to act on H i
0(χ) exclusively, as specified in (2.6). In

this way we obtain directly the invariant IH for the non-Hermitian Hamiltonian H.

4.2.1 Non-Hermitian invariant from ΓS
0 , time-independent mass

Acting with ΓS
0 , as constructed in section 4.1.1, on H0(χ) we obtain the invariant

IH(x, t) =
σ2

2m
p2 +m

(

γω2

σ2
+ 2iα(σ2γt − γσσt)− σσtγt + γσ2t

)

x+ σ (σγt − γσt) p

+
1

2
σ [2iασ − σt] {x, p}+

m

2

[

(σt − 2iασ) 2 +
ω2

σ2

]

x2 (4.36)

+
m

2

(

γ2ω2

σ2
+ γ2σ2t + σ2γ2t − 2γγtσσt

)

.

We verified that the expression for IH in (4.36) does indeed satisfy the Lewis-Riesenfeld

equation (2.7). Thus IH(x, t) is the non-Hermitian invariant or first integral for the non-

Hermitian Hamiltonian H(x, t). We stress that the invariant has been obtained by a direct

calculation and did not involve any assumption or guess work on the general form of the

invariant, which one usually has to make when solving (2.7) directly.

4.2.2 Non-Hermitian invariant from Γ̂S
0 , time-dependent mass

Similarly acting with Γ̂S
0 , as constructed in section 4.1.2, on H0(χ) we obtain the invariant

ÎH(x, t) =
σ2s

2m
p2 +

(

σ−rγt − γsσ−r−1σt
)

p+
4iσα2

r + rαrσt − σαrt

4αrσr+1
{x, p}

+
4mω2α2

rσ
2r+2 −m

(

4σα2
r − irαrσt + iσαrt

)

2

8α2
rσ

2(r+s+1)
x2

+
2γmω2αrσ

2r+2 +m (σγt − γsσt)
(

4iσα2
r + rαrσt − σαrt

)

2αrσ2(r+s+1)
x

+
1

2
mσ−2(r+s+1)

[

γ2ω2σ2r+2 + (σγt − γsσt)
2
]

(4.37)

Once more we convince ourselves that ÎH(x, t) does indeed satisfy (2.7).
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4.2.3 Non-Hermitian invariant from Γ̂S
1,2,4, time-dependent mass

The action of Γ̂S
1,2,4 from section 4.1.3 on H

(1,2,4)
0 (χ) yields the invariants

I
(1)
H (x, t) =

σ2s

2m
p2 +

(

σ−rγt − γsσ−r−1σt
)

p+
4iσα2

r + rαrσt − σαrt

4αrσr+1
{x, p}

−
m

(

4σα2
r − irαrσt + iσαrt

)

2

8α2
rσ

2(r+s+1)
x2

+
m (σγt − γsσt)

(

4iσα2
r + rαrσt − σαrt

)

2αrσ2(r+s+1)
x

+
1

2
mσ−2(r+s+1) (σγt − γsσt)

2, (4.38)

I
(2)
H (x, t) =

σ2s

2m
p2 +

(

σ−rγt − γsσ−r−1σt
)

p+

(

4iσα2
r + rαrσt − σαrt

)

4αrσr+1
{x, p}

+
4mω2α2

rσ
2r+2 −m

(

4σα2
r − irαrσt + iσαrt

)

2

8α2
rσ

2(r+s+1)
x2

+
2aαrσ

2r+s+2 + 2γmω2αrσ
2r+2 +m (σγt − γsσt)

(

4iσα2
r + rαrσt − σαrt

)

2αrσ2(r+s+1)
x

+
1

2σ2(r+s+1)
γσ2r+2

(

2aσs + γmω2
)

+m (σγt − γsσt)
2 (4.39)

and

I
(4)
H (x, t) =

σ2s

2m
p2 +

(

σ−rγt − γsσ−r−1σt
)

p+
4iσα2

r + rαrσt − σαrt

4αrσr+1
{x, p}

+
−4m

(

4a2 − ω2
)

α2
rσ

2r+2 −m
(

4σα2
r − irαrσt + iσαrt

)

2

8α2
rσ

2(r+s+1)
x2

+
−2γm

(

4a2 − ω2
)

αrσ
2r+2 +m (σγt − γsσt)

(

4iσα2
r + rαrσt − σαrt

)

2αrσ2(r+s+1)
x

+
1

2σ2(r+s+1)
m

[

(σγt − γsσt)
2 − γ2

(

4a2 − ω2
)

σ2r+2
]

(4.40)

Let us now compare the invariants obtained. First of all we notice that all our invariants

can be brought into the form

IH = arp
2 + brp+ (cr + ici) {x, p}+ (dr + idi)x

2 + (er + iei) x+ fr, (4.41)

where we abbreviated the complex time-dependent coefficient functions in IH and sep-

arate them into real and imaginary parts by denoting x = xr + ixi with xr, xi ∈ R,

x ∈ {a, b, c, d, e, f}. When written in this form we notice a very peculiar property that for

all of our invariants the time-dependent coefficient functions are related to each other as

ei
2br

=
di
4cr

=
ci
2ar

= αrmσ
−r−2s. (4.42)

As we will see in the next subsection this property is responsible for the fact that all

invariants lead to same Dyson map. Notice that when using the conventions as in (4.41)
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for the Hamiltonian HS(x, t) and employing the same parameterization for M(t) and α(t),

the last relation also holds for the coefficients in the Hamiltonian. We also note that if we

were to take a→ ia in H
(4)
0 (χ), with c2 → −c2, the associated invariant would still posses

the same properties as a only appears squared in it. When comparing the expressions for

the invariants I
(i)
H one needs to keep in mind that the constraining equations also change

with i.

4.3 Dyson maps and metric operators

We may now carry out the last step in our scheme and construct a Dyson map by acting

adjointly on the invariants IH . We can verify that the Dyson map constructed in [19] does

indeed map IH to a Hermitian invariant. Alternatively, when utilizing the property (4.42)

we also find a time-independent Dyson map

η = exp
(

−αrmσ
−r−2sx2

)

, (4.43)

with the associated time-dependent Hermitian invariant

Ih = arp
2 + brp+ cr{x, p}+

(

dr + 4m2arα
2
rσ

−2r−4s
)

x2 + erx+ fr. (4.44)

The corresponding Hermitian Hamiltonian is computed to be

h =
σr+2s

2m
p2 +

(

2mα2
rσ

−r−2s +
1

2
mσ−r−2sΩ2

)

x2 +
1

4
∂t ln

(

σr+2s

αr

)

{x, p}, (4.45)

which is an extended version of the time-dependent harmonic oscillator with time-dependent

mass. For the special choice αr = σr+2s the coefficient function α(t) becomes real, the

Dyson map becomes time-independent and h reduces to the time-dependent harmonic os-

cillator.

5. The time-dependent harmonic oscillator with complex linear term as

target Hamiltonian

To further illustrate the method and demonstrate the importance of the choice of H0(χ)

we consider next the time-dependent harmonic oscillator with a time-dependent complex

linear term

HCL(x, t) =
p2

2M(t)
+

1

2
M(t)Ω2(t)x2 + iβ(t)x, M,Ω, β ∈ R, (5.1)

which has been studied previously in [21, 31]. As a reference Hamiltonian we take now

H
(3)
0 (χ) as defined in (3.8). We have also considered H0(χ) as a reference Hamiltonian

which leads to a point transformation that renders space-time to be complex.
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5.1 Point transformation ΓCL
3 from H

(3)
0 (χ) to HCL(x, t)

We have already identified the equations for B3(x, t) and V3(x, t) for the reference Hamilto-

nian H
(3)
0 (χ) in (3.12). Comparing now with the time-dependent Schrödinger equation for

the target Hamiltonian (2.3) in the position representation we find the three constraints

τ t
mχ2

x

=
1

M(t)
, B(x, t) = 0, V (x, t) =

1

2
M(t)Ω2(t)x2 + iβ(t)x. (5.2)

The first constraint in (5.2) is solved in the same way as in section 4.1.2, i.e. by equations

(4.17), together with (4.16). Substituting these expressions into the second constraint in

(5.2) and then solving for the field A(x, t) yields

A(x, t) = exp

{

imσ−1−r−2s

~

[

(σγt − sγσt)x−
1

2
sσtx

2 + δ(t)

]}

, (5.3)

where δ(t) is a complex time-dependent function associated with the integration carried

out in x. Next we use all of our determined expressions in the third constraint in (5.2),

obtaining

0 = −m
[

ω2σ2r+2 + s(r + s+ 1)σ2t − σ
(

sσtt + σΩ2
)]

x2 + 2iσr+2
(

βσ2s − bσr+s
)

x

+ 2m
[

σ(r + 2s)γtσt + γs
(

σσtt − (r + s+ 1)σ2t
)

− σ2γtt − γω2σ2r+2
]

x− ihsσtσ
r+2s+1

+m
{

2σt [δ(r + 2s+ 1)− γsσγt] + γ2s2σ2t + σ
[

σγ2t − 2δt
]}

− γσ2r+2
(

γmω2 + 2ibσs
)

.

(5.4)

Firstly we notice that the x-dependent term in (5.4) contains an imaginary term which

would result in space-time becoming complex. However, when setting

β = bσr−s, (5.5)

the imaginary term vanishes and space-time remains real. Secondly we find that the x-

independent terms in (5.4) vanishes for

δ(t) =
γ

2
(σγt − sγσt) + σ1+r+2s

(

c1 −
is~

2m
log σ − i

∫ t bγσr−s

m

)

. (5.6)

Finally, the remaining terms proportional to x2 and x result in the two second order

auxiliary differential equations

σtt =
ω2σ2r+2 − σ2Ω2

sσ
+

(r + s+ 1)σ2t
σ

and γtt =
(r + 2s)γtσt

σ
− γΩ2, (5.7)

respectively. As discussed in the previous section there are different choices of r and s for

which these equations reduce into versions with known solutions. As before, we shall not

select concrete values for r and s so we keep the derivation of the invariant and subsequent

Dyson map as general as possible.
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5.2 Non-Hermitian invariant from ΓCL
3

Acting with ΓCL
3 , as constructed in the previous section on H

(3)
0 (χ) we obtain the invariant

IH(x, t) =
σ2s

2m
p2 + (σ−rγt − γsσ−r−1σt)p−

1

2
sσ−r−1σt{x, p}

+
1

2
mσ−2(r+s+1)

(

ω2σ2r+2 + s2σ2t
)

x2

σ−2(r+s+1)
[

msσt (γsσt − σγt) + σ2r+2
(

γmω2 + ibσs
)]

x

+
1

2
σ−2(r+s+1)

[

m (σγt − γsσt)
2 + γσ2r+2

(

γmω2 + 2ibσs
)]

. (5.8)

We have verified that this expression does indeed satisfy the Lewis-Riesenfeld equation

(2.7).

5.3 Time-dependent Dyson map and metric operator

To determine the time-dependent Dyson map associated with the non-Hermitian invariant

(5.8) we use the following abbreviated version of the invariant

IH = arp
2 + brp+ cr{x, p} + drx

2 + (er + iei)x+ fr + ifi, (5.9)

using the same conventions as in (4.41).

Making now the general Ansatz for the Dyson map

η(t) = eǫ(t)peλ(t)x, ǫ, λ ∈ R, (5.10)

we compute the adjoint action of the Dyson map on all the operators that appear in

the non-Hermitian invariant. We find that (5.10) maps IH(x, t) indeed to a Hermitian

counterpart when the following constraints are satisfied

ǫ =
arfi

arer − brcr
, λ =

crǫ

ar
, ei =

2(c2r − ardr)fi
brcr − arer

. (5.11)

The time-dependent functions from above do indeed satisfy these equations and when using

the explicit expressions for the coefficient functions from (5.8) the time-dependent Dyson

map results to

η(t) = exp

(

bσs

mω2
p

)

exp

(

−
bsσ−1−r−sσt

ω2
x

)

, (5.12)

with σ to be determined by the auxiliary equation (5.7). The corresponding Hermitian

invariant is computed to

Ih(x, t) =
σ2s

2m
p2 + (σ−rγt − γsσ−r−1σt)p −

1

2
sσ−r−1σt{x, p}

+
1

2

m

σ2(r+s+1)

(

ω2σ2r+2 + s2σ2t
)

x2 +
m

σ2(r+s+1)

[

γω2σ2r+2 + sσt (γsσt − σγt)
]

x

+
b2 + γ2m2ω4σ−2s

2mω2

+m
(

γ2s2σ2t + σ2γ2t
)

2σ2(r+s+1)
. (5.13)
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Finally we use the Dyson map (5.10) in the time-dependent Dyson equation (2.2) to com-

pute the corresponding Hermitian Hamiltonian as

h(t) =
σr+2s

2m
p2 +

1

2
mσ−r−2sΩ2x2 +

b2σ−r−2
(

σ2Ω2 − s2σ2t
)

2mω4
, (5.14)

which is a time-dependent harmonic oscillator with a time-dependent free term.

6. Conclusions

We have demonstrated that point transformations can be utilized to construct non-Hermitian

invariants for non-Hermitian Hamiltonians. In turn these invariants may then be used to

construct Dyson maps simply in form of similarity transformations, which automatically

satisfy the time-dependent Dyson equation (2.2). Thus we have bypassed solving this more

complicated equation directly. When starting from an exactly solvable reference Hamil-

tonian the scheme yields also the solution for the TDSE of the target Hamiltonian. By

construction the solutions only form an orthonormal system when equipped with a metric

operator that is obtained trivially from the constructed Dyson map. We have shown that

several different reference Hamiltonians may lead to the same Dyson map.

It would be interesting to explore the scheme further by starting with more complicated

choices of the solvable reference Hamiltonian. However, the scheme is of course not limited

to exactly solvable models and we could also start with a non-exactly solvable model as

a reference system. In such a setting the scheme would still yield an exact invariant and

an exact metric operator. Approximated wavefunctions could then be obtained by using

the procedure proposed in [32]. Another interesting challenge is to extend the scheme to

higher dimensional systems.
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