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Optimum Design of 3D Reinforced Concrete Building Frames 

with the Flower Pollination Algorithm 
 

Panagiotis E. Mergos a,* 
 

a Department of Civil Engineering, City, University of London, London EC1V 0HB, UK 

 

Abstract.  
The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is 

inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation as 

well as high computational performance and it has been found to outperform other well-established algorithms in 

a range of diverse optimization problems. The present study applies, for first time, the FPA to the computationally 

challenging optimum design of real-world 3D reinforced concrete (RC) building frame structures after a set of 

appropriate modifications to its original formulation. To serve this goal, a new computationally efficient 

framework for the optimum design of 3D RC frames is developed that is interacting with the well-known software 

SAP2000 for the purposes of structural analysis and design. The framework is then applied to the minimum 

material cost design of a 4-storey and a 12-storey RC building in accordance with Eurocode regulations. It is 

found that the FPA exhibits better or similar computational performance than other well-established algorithms 

in these optimization tasks. Furthermore, parameter tuning analysis reveals the FPA parameter values that 

maximize its computational performance in the optimum structural design of 3D RC building frames. 

 

Keywords: Structural optimization; Flower pollination algorithm; Reinforced concrete; Building frames; 

Parameter tuning 

 

1 Introduction 

 

In many complex, multi-modal design problems in industry and engineering, tracking of global 

optimum solutions remains a highly challenging task. Often, conventional optimization 

methodologies do not perform adequately in this class of problems as they may get trapped in 

local optima. In these cases, the use of nature-inspired metaheuristic algorithms is 

recommended (Yang 2008). There is a high number of efficient metaheuristic optimisation 
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algorithms in literature, including the Genetic Algorithm (GA) (Holland 1975), Simulated 

Annealing (SA) (Kirkpatrick et al. 1983), Cuckoo Search (CS) (Yang and Deb 2009), Firefly 

Algorithm (Yang 2010), Particle Swarm Optimization (PSO) (Kennedy 2011) and many 

others.  

Recently, the Flower Pollination Algorithm (FPA) was developed (Yang 2012), which is a 

population-based metaheuristic optimization algorithm inspired by the evolution process of 

flowering plants. FPA is characterised by simplicity and flexibility in its formulation as well 

as high efficiency in its computational performance (Yang 2012, Abdel-Basset and Shawky 

2018, Alyasseri et al. 2018). Furthermore, many studies show that it can outperform other well-

established metaheuristic optimization algorithms (e.g. Yang 2012, Bekdas et al. 2015, Mergos 

and Mantoglou 2020). A simple explanation of the efficiency of FPA is based on the fact that 

it is imitating the reproduction process of flowering plants. The latter has been so successful 

that flower species dominate the landscape of earth (Walker 2009). As a result, FPA has been 

adopted by many optimization studies and it has been applied successfully to numerous 

optimization problems in diverse scientific fields, including electrical and power systems (e.g. 

Abdelaziz et al. 2016a, Abdelaziz et al. 2016b, Singh and Salgotra 2018), computer gaming 

(e.g. Abdel-Raouf et al. 2014), meteorology (e.g. Heng et al. 2016), image science (Zhou et al. 

2016) and many others (Abdel-Basset and Shawky 2018, Alyasseri et al. 2018).  

Nevertheless, the applications of FPA to structural engineering problems are limited. Bekdas 

et al. (2015) used FPA to minimize the weight of 2D and 3D steel truss structures. They found 

that the FPA is competitive with other state-of-the-art metaheuristic algorithms. Nigdeli et al. 

(2016a) examined the application of FPA to several basic structural engineering optimization 

problems. They found that FPA is effective to find the optimum solutions of these problems. 

Furthermore, Nigdeli et al. (2016b) used the FPA for the optimum tuning of mass dampers for 

earthquake-resistant structures concluding that FPA is efficient in tracking precise optimal 

values for this design task. Bekdas (2018) applied FPA to the cost-optimal design of post-

tensioned axially symmetric cylindrical walls finding that FPA is one of the most robust 

algorithms for this optimization problem. Mergos and Mantoglou (2020) applied FPA to the 

optimum design of reinforced concrete retaining walls and compared its performance with 

other well-esta blished optimization algorithms. It was found that FPA outperforms GA and 

PSO in this optimization problem. Ulusoy et al. (2020) used the FPA to actively control multi-

story structures considering soil-structure interaction. Toklu et al. (2020) employed FPA to the 

structural analysis of plates for plane-stress conditions with nonlinear stress-strain equations. 
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Finally, Kayabekir et al. (2020) examined the effects of soil geotechnical properties on the 

optimal dimensions of restricted reinforced concrete retaining walls by employing the FPA. 

Extensive research has been conducted over the past decades on the optimum structural design 

of reinforced concrete structures. However, most of the previous research efforts focus either 

on single structural members (i.e. beams, columns and others) (e.g. Yeo and Gabai 2011, 

Medeiros and Kripka 2014, Mergos 2018b) or planar concrete frames (e.g. Paya et al. 2008, 

Akin and Saka 2015, Kaveh et al. 2020a, 2020b). Indeed, there is limited amount of research 

work on the optimum design of real-world 3D RC frames mainly due to the complexity and 

significant computational cost involved in the structural design of these systems (Sarma and 

Adeli 1997).  

Fadaee and Grierson (1996) presented the minimum cost design of a one-bay, one-story 3D 

RC frame using the optimality criteria approach in accordance with the ACI-318 code. Balling 

and Yao (1997) conducted a comparative study of the optimum design of space RC frames 

following the ACI-318 code by examining one-, two- and four-story building frames subjected 

to vertical and lateral loads with the aid of sequential quadratic programming or a gradient-

based method. Sahab et al. (2005) investigated the cost-optimization of RC flat slab buildings, 

according to the British Code of Practice BS 8110 (BSI 1997), using a multi-level optimization 

procedure combining exhaustive search and a hybrid genetic algorithm. Govindaraj and 

Ramasany (2007) examined the optimum detailed design of a 4-story space RC frame based 

on Indian Standards specifications and using a genetic algorithm. Sharafi et al. (2012) applied 

a heuristic approach for the cost optimization of the preliminary layout design of 3D RC frames 

using the ant colony optimization algorithm and adopting an alternative objective function that 

simplifies the optimization problem. Three RC flat slab buildings with different structural 

features and number of storeys were examined. Kaveh and Behnam (2013) examined the 

optimal design of 3D multi-story RC buildings using the Charged System Search (CSS) and 

the enhanced charged system search (ECSS) algorithms. The designs are based on the ACI-

318 design code. Three-story and 7-story RC buildings are considered. The objective function 

is taken as the weight of the structure. Lagaros (2014) developed a general-purpose real-world 

structural design optimization computing platform employing eight different metaheuristic 

optimization algorithms but not the FPA. The platform was applied to the minimum cost design 

of four 3D structures, including two RC buildings, leading to cost savings in the order of 20-

30% with respect to conventional structural designs. Esfandiari et al. (2018) applied the 

DMPSO optimization algorithm, which combines multi-criteria decision making and the PSO 

algorithm, to minimize the construction cost of 3D RC frames while satisfying the limitations 
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and specifications of the ACI-318 (ACI Committee 318, 2019) design code. Dehnavipour et 

al. (2019) used the PSO optimization algorithm to minimize the cost of a 3D six-story RC 

frame building according to the ACI-318 specifications. Martins et al. (2020) designed 

optimally a 3D building RC frame of five storeys and three bays in each horizontal direction 

for minimum economic cost according to Eurocode 2 (CEN 2000) by using a gradient-based 

algorithm in combination with a multi-start strategy approach. 

It can be concluded from the previous literature review that the FPA algorithm has not yet been 

applied to the computationally challenging task of optimizing the structural design of real-

world 3D RC building frames. This is despite the fact that FPA has been proven highly efficient 

in many other optimization problems and despite the urgent need for optimizing these 

structural systems that are associated with massive economic and environmental impacts on a 

global scale (Lagaros 2018).  

In this study, a new computationally efficient framework for the optimum structural design of 

real-world 3D RC building frame structures is developed. Furthermore, the developed 

framework employs, for first time, the FPA to this demanding optimization problem after a set 

of appropriate modifications. The performance of the FPA is compared with other well-

established optimization algorithms and conclusions are made with respect to its computational 

efficiency. Finally, a parameter tuning study is conducted to identify the FPA parameter values 

that maximize its computational performance in this optimization problem. 

 

2 Framework for the optimum structural design of RC building frames 

 

2.1 Optimization framework description 

 

The structural design of RC building frames can be stated in the form of a single-objective 

optimization problem with discrete design variables as follows: 

 

Minimize: 𝑓𝑓(𝒙𝒙) 

Subject to: 𝑔𝑔𝑗𝑗(𝒙𝒙) ≤ 0, 𝑗𝑗 = 1 𝑡𝑡𝑡𝑡 𝑚𝑚  (1) 

Where:  

𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) 

𝑥𝑥𝑖𝑖 ∈ 𝑫𝑫𝑖𝑖 = �𝑑𝑑𝑖𝑖1,𝑑𝑑𝑖𝑖2, … ,𝑑𝑑𝑖𝑖𝑘𝑘𝑖𝑖� , 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑑𝑑 
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In this formulation, 𝑓𝑓(𝒙𝒙) is the objective function and x is the design solution vector that 

comprises of d independent design variables xi (i = 1 to d). The design variables xi take values 

from discrete values sets Di = (di1, di2, …, diki), where dit (t = 1 to ki) is the t-th possible discrete 

value of design variable xi and ki is the total number of possible discrete values of xi. 

Furthermore, the solution should be subject to m number of constraints gj(x) ≤ 0 (j = 1 to m). 

The specification of the optimization problem components in the case of structural design of 

RC building frames examined in this study is described in the following. 

In optimization problems, the input data are divided into design parameters that are assumed 

fixed and design variables that change values during the solution process. In this study, 

geometry, boundary conditions, material properties, concrete cover and loading of RC frames 

are treated as design parameters. Therefore, the present study examines solely sizing 

optimization of RC building frames, where only RC members cross-sectional characteristics 

need to be determined including both the concrete cross-sectional dimensions and the 

configuration of the steel reinforcement. More specifically, in this study, concrete cross-

sections are treated as independent design variables and then steel reinforcement is calculated, 

for a given arrangement of cross-sections in the RC building frame, following standard 

structural design procedures in accordance with Eurocode 2 (EC2) (CEN 2000) and Eurocode 

8 (EC8) (CEN 2004) for low ductility class (DCL) design guidelines. This approach greatly 

reduces the number of independent design variables and thereby the size of the search space 

allowing the optimization algorithms to track faster and more robustly optimum solutions of 

complex concrete frames (Mergos 2018a).  Furthermore, it is most suitable for the design 

methodologies prescribed in codes of practice, such as EC2 (CEN 2000) and EC8 (CEN 2004), 

that employ elastic structural analysis procedures based exclusively on the geometric 

dimensions of concrete sections and not the placed steel reinforcement (Mergos 2018a, 2018c).  

The concrete sections are taken from discrete cross-section lists pre-specified by the designers 

in accordance with standard construction practices. For simplicity, square cross-sections are 

assumed herein for concrete columns and rectangular cross-sections for concrete beams with 

steel reinforcement configurations, as shown in Fig. 1. 

Consistently with the previous assumptions, each design variable xi (i = 1 to d), in the 

optimization problem of Eq. (1), represents a different concrete cross-section given to one or 

more concrete members belonging to the same group of members. Hence, the number of design 

variables d (i.e. number of problem dimensions) coincides with the number of different cross-

sections in the concrete frame. The design variables xi assume only integer values representing 

the position indices of the sections in the corresponding lists of cross-sections set by the 
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designers. Therefore, it holds 𝑥𝑥𝑖𝑖 ∈ 𝑫𝑫𝑖𝑖 =  (1, 2, … ,𝑘𝑘𝑖𝑖) , where ki is the total number of sections 

in the list of sections attributed to section i. 
 

  

Fig. 1: Assumed concrete cross-sections and steel reinforcement configurations; a) column 

sections; b) beam sections 

 

The objective function 𝑓𝑓(𝒙𝒙) in the optimum design of RC building frames considered 

herein is the sum of concrete and reinforcing steel material costs. These materials costs are 

taken as the sums of the individual costs of all structural members (i.e. beams and columns) 

comprising the RC frames. Therefore, 𝑓𝑓(𝒙𝒙) can be expressed by Eq. (2), where Vc (m3) 

represents the total volume of concrete and ms (kg) the total mass of steel reinforcement of all 

structural members including both longitudinal and transversal reinforcing bars. In Eq. (2), 𝑓𝑓𝑐𝑐𝑐𝑐 

and 𝑓𝑓𝑠𝑠𝑐𝑐 are the prices of concrete per unit volume and reinforcing steel per unit mass, 

respectively. Clearly, more comprehensive objective functions can be used to represent the 

construction cost or even better the life-cycle economic cost and/or environmental impact of 

RC structures (Mergos 2018b, Mergos 2018c, Yucel et al. 2021). Nevertheless, the adopted 

objective function is deemed adequate for the purposes of this study focusing mostly on the 

efficiency of optimization algorithms in the structural design of RC building frames. 

 

 𝑓𝑓(𝒙𝒙) = 𝑉𝑉𝑐𝑐(𝒙𝒙) · 𝑓𝑓𝑐𝑐𝑐𝑐 + 𝑚𝑚𝑠𝑠(𝒙𝒙) · 𝑓𝑓𝑠𝑠𝑐𝑐      (2) 

 

The design constraints gj(x) ≤ 0 (j = 1 to m) herein reflect the provisions for the structural 

design of concrete building frames of EC2 (CEN 2000) and EC8 (CEN 2004) for ductility 

class low (DCL). This includes structural detailing rules and safety verifications for the 

serviceability (SLS) and ultimate (ULS) limit state in terms of either displacements or forces.  

 

2.2 Software application STROLAB 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

  

hc 

h c
 

As,tot / 4 

 

 

   

 
 

As,tot / 4 

Aswx / sx 

Aswy / sy 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

   

h b
 

As,top 

Asw / s 

bb 
As,bot 

   

   

   



7 

For the goals of the present research, a new MATLAB (MathWorks 2020a) application, 

namely STROLAB (STRuctural Optimization LABoratory), was developed. STROLAB is 

interacting, for the purposes of structural analysis and design, with the well-established 

structural analysis and design software SAP2000 (CSI 2020) via its Application Programming 

Interface (API). STROLAB can be applied to the optimum design of a range of structural 

systems, including 3D reinforced concrete building frames, by employing different 

optimization algorithms. 

The use of STROLAB is straightforward. The user generates a structural model in SAP2000 

employing standard procedures to specify materials, cross-sections, geometry, boundary 

conditions and loads. The user should also provide input related to the structural design of the 

model such as the design code and the design load combinations. Next, the user determines in 

STROLAB the lists of possible cross-sections attributed to each cross-section of the SAP2000 

structural model. Additional information related to structural optimization, such as unit 

materials costs and optimization algorithm preferences, is also provided in STROLAB.  

The application then sets the optimization problem and calls an optimizer to select sections 

from the sections lists. Next, STROLAB calls SAP2000 to execute structural analysis and 

design of the structural model using the sections selected by the optimizer. All other parameters 

of the structural model are kept the same as in the original SAP2000 file created by the user. 

Then, STROLAB reads the results of the structural design, checks whether the design 

constraints are fulfilled in SAP2000 and calculates the cost of the objective function. The afore-

described procedure is repeated until terminated by the optimizer either because it converges 

to an optimal solution or because it reaches the maximum number of iterations specified by 

the user.  

 

2.3 Optimization framework implementation 

 

In this section, the procedures followed herein to address the optimization framework of §2.1 

are discussed in more detail. Following the development of the structural model of the RC 

building frame in SAP2000 by the user, STROLAB sets the optimization problem and calls 

the optimizer to select column and beam sections, in the form of Fig. 1, from lists of sections 

pre-specified by the user. Next, STROLAB calls SAP2000 to conduct structural analysis for 

the various load cases (e.g. dead, live, wind, earthquake loads) specified by the user. Then, 

SAP2000 calculates the design action effects (i.e. internal moments, shears and axial forces) 
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using the design load combinations specified by Eurocode 0 (EC0) (CEN 2002) Eq. (6.10) for 

persistent and transient design situations and Eq. (6.12) for seismic design situations.  

Next, STROLAB calls SAP2000 to conduct structural design of the concrete members for the 

ULS based on EC2 (CEN 2000) guidelines. For each design load combination, RC frame 

members are designed at a number of equally spaced cross-sections along their lengths. In the 

present study, eleven cross-sections are designed for each beam member and three for each 

column member.  

Concrete beams are designed for major direction bending, shear and torsion (CSI 2016). Beam 

flexural reinforcement (i.e. As,top and As,bot in Fig. 1) is calculated using the simplified stress 

block of EC2 §3.1.7(3). Tension reinforcement is typically calculated, whereas compression 

reinforcement is only added when required to obtain a balanced failure type. No moment 

redistribution is assumed. The calculated tension steel reinforcement should be between a 

minimum and a maximum value specified by the code. For beam shear design, the design shear 

resistance of the concrete member without shear reinforcement VRd,c is first calculated as well 

as the maximum design shear force that the beam can sustain without crushing of the diagonal 

concrete compression struts VRd,max. The design shear force VEd should be lesser than VRd,max. 

If VEd is between VRd,c and VRd,max then the required shear reinforcement (i.e. Asw / s in Fig. 1) 

is calculated using the variable  strut inclination method of EC2. In any case, the provided 

shear reinforcement should be greater than the minimum required by EC2. For torsion, the 

need for additional torsional reinforcement is first examined. If additional torsional 

reinforcement is required, then this is provided in the form of additional stirrups and 

longitudinal reinforcement. Furthermore, an upper limit for the combination of the design shear 

force and torsional moment is examined to avoid crushing of the compressive concrete struts 

(CSI 2016).  

For column members, the longitudinal reinforcement As,tot (Fig. 1) is designed for combined 

biaxial bending moments and axial load effects (i.e. Mx + My + N). To serve this goal, 3D axial 

force-biaxial bending moment interaction surfaces are generated for a range of reinforcement 

ratios between the minimum and maximum permissible values (CSI 2016). The interaction 

surfaces are generated assuming concrete and reinforcing steel material laws and mechanical 

properties prescribed in §3.1 and §3.2 of EC2. To calculate the design action effects, the first 

order bending moments and axial forces are first established for each design load combination. 

The design bending moments are then increased for geometric imperfections based on EC2 

§3.2. For slender columns, the resulting moments are further increased to account for second-

order effects by using the nominal curvature method (EC2, §5.8.8). The longitudinal steel 
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reinforcement is then determined so that the design action points (Mx, My, N) of all design load 

combinations are within the interaction surface and that the maximum utilization factor is close 

to unity. The design of columns for shear is very similar to the design of beams except for the 

effect of the axial force on the shear capacity of the concrete member without shear 

reinforcement. Furthermore, the shear design for column members takes place in both 

horizontal directions to calculate the corresponding required shear reinforcement areas (i.e. 

Aswx / sx and Aswy / sy in Fig. 1). 

For the serviceability limit state, SAP2000 does not conduct a check for beam deflections (CSI 

2016). To address this design requirement, the limiting span-to-depth ratio approach is adopted 

in this study as an additional check to SAP2000 (Moss and Brooker 2006). This method 

conservatively ensures that span deflections do not exceed the span length divided by 250. 

To establish the objective function 𝑓𝑓(𝒙𝒙) of Eq. (2) for RC building frames, the mass of 

reinforcing steel must be determined in addition to the volume of the concrete members. To 

serve this goal, STROLAB reads the required flexural and shear steel reinforcement areas of 

the column and beam concrete members as calculated by SAP2000 at different design sections 

along the member lengths, following the design procedures described previously. Then, for 

simplicity, it assumes that the steel areas of the design sections are extended till the 

neighbouring design sections of the same member with lower reinforcement demands. Clearly, 

more elaborated approaches can be used to imitate real-life construction practices. However, 

this is not judged as crucial for the purposes of this study, which focusses on the efficiency of 

different optimization algorithms. 

The design constraints gj(x) (j = 1 to m), in the present study, are also closely related to the 

EC2 structural design procedures described above. A design constraint is assumed not to be 

satisfied when the corresponding design checks cannot be fulfilled by any permissible amount 

of steel reinforcement in the concrete sections. This is the case because only the concrete 

sections are treated as independent variables herein. More particularly, a design constraint for 

the ULS of a column or a beam design section is assumed not to be satisfied when the required 

steel reinforcement in the section exceeds the maximum permissible by EC2. Furthermore, a 

design constraint for the ULS of a column or a beam design section is assumed not to be 

satisfied when the design shear forces and torsional moments at the section exceed the 

maximum capacity of the concrete member compressive struts according to EC2. In addition, 

a beam section is assumed not to fulfil the SLS design constraints when the check for 

deflections of the corresponding beam members cannot be satisfied.  
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3 Flower Pollination Algorithm 

 

3.1 Original FPA 

 

FPA imitates the process of reproduction of flowering plants. Like other biological systems, 

the ultimate goal of flower species is reproduction that is achieved by pollination. Flower 

pollination, that is mainly related to pollen transfer, can be either abiotic or biotic (Glover 

2007, Yang 2012). In the former type of pollination, pollen is transferred via water and/or wind 

diffusion. Perhaps the most well-known example of abiotic pollination is the grass (Glover 

2007, Yang 2012). Typically, abiotic pollination takes place in short distances. Therefore, it 

can be considered as a local optimization mechanism (Yang 2012). In biotic pollination, pollen 

transfer occurs by insects and animals (e.g. bees, birds, bats, butterflies) that are called 

pollinators. Pollinators are able to fly rather long distances. Hence, biotic pollination can be 

assumed as a global optimization scheme (Yang 2012). It is also worth noting that the flight 

behaviour of pollinators shares similar characteristics to Lévy flights (Pavlyukevich 2007, 

Yang 2012). An additional feature of flower pollination is the so-called flower constancy. More 

specifically, some pollinators have the tendency to select specific flower species and bypass 

others (Yang 2012). In this manner, pollinators transfer more pollen to the same species 

ensuring guaranteed nectar intake and avoiding the risks related to exploring new flower 

species. The afore-described characteristics of flower pollination process have been idealized 

in the following basic rules of FPA: 

  

1. Biotic pollination is treated as a global optimization mechanism with pollinators 

performing Lévy flights. 

2. Abiotic pollination is treated as a local optimization mechanism. 

3. Flower constancy is considered by assuming that the reproduction probability is 

proportional to the similarity of flowers involved. 

4. The type of pollination mechanism (biotic or abiotic) is governed by a random 

switching probability p in [0, 1]. 

 

In the following, for simplicity, it is assumed that each plant develops one flower, which 

produces only one pollen gamete (Yang 2012). Following this assumption, there exists no need 

to differentiate between pollen gametes, flowers and plants.  
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In FPA, a solution vector xi is represented by a flower i. The algorithm applies two different 

search procedures: the global and local pollination. Following the first and third rules of FPA, 

the global pollination procedure could be represented mathematically by the following 

equation: 

 

 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ (𝒈𝒈∗ − 𝒙𝒙𝑖𝑖𝑡𝑡), (3) 

 

where 𝒙𝒙𝑖𝑖𝑡𝑡represents flower i at iteration t, g* is the best flower of all the population of flowers 

at iteration t, 𝜆𝜆 is a constant, γ is a scaling factor to control the step size, 𝐿𝐿(𝜆𝜆) > 0 is the Lévy 

flight step size that represents the strength of the pollination and is drawn from the Lévy 

distribution given below, where Γ(𝜆𝜆) is the standard gamma function and s > 0.  

 

 𝐿𝐿~
𝜆𝜆Γ(𝜆𝜆) sin�𝜋𝜋𝜋𝜋2 �

𝜋𝜋
∙ 1
𝑠𝑠1+𝜋𝜋

,    (𝑠𝑠 > 0),  (4) 

 

 
 

Fig. 2: Pseudo-code of FPA 

 

On the other hand, the local pollination rule (second rule) and flower constancy (third rule) are 

represented by the following equation, where 𝒙𝒙𝑗𝑗𝑡𝑡and 𝒙𝒙𝑘𝑘𝑡𝑡  are different flowers of the same 

population and ε is drawn from a uniform distribution in [0, 1].   

 

Set objective min f (x), x = (x1, x2, …, xd) 
Initialize a population of n flowers with random procedures. 
Evaluate objective function values of the initial population. 
Determine the best solution g* of the initial population. 
Determine the value of switch probability p ϵ [0, 1] 
while (t < MaxIteration) 
 for i = 1 : n (for all flowers of the population) 
  if rand < p 
   Draw a d-dimensional Lévy distribution step vector L  
   Do global pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ (𝒈𝒈∗ − 𝒙𝒙𝑖𝑖𝑡𝑡) 
  else 
   Draw ε from a uniform distribution in [0, 1] 
   Select randomly j and k among all flowers of the population. 
   Do local pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ (𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘𝑡𝑡 )   
  end if 
  Evaluate objective function values of new solutions. 
  When better than previous, update new solutions in the population. 
 end for 
 Determine the best solution g* of the new population. 
end while 
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 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ �𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘𝑡𝑡 �.   (5) 

 

Following the fourth rule, the type of flower pollination (local or global) is controlled by a 

switch probability p in [0, 1]. Summarizing the previous information, the pseudo code of FPA 

is shown in Fig. 2, where d represents the number of problem dimensions and n is the size of 

flowers population.  

 

3.2 Modifications to the original FPA 

 

The original FPA, shown in Fig. 2, has been formulated for unconstrained optimization 

problems. To address the design constraints of RC building frames in the optimization 

framework of §2.1, the penalty function approach is adopted herein. According to this 

approach, a large (penalty) value is added to the objective function when the design constraints 

are not satisfied. Moreover, the original FPA considers only continuous design variables. To 

account for the fact that the design variables xi, in the optimization framework of the present 

study, assume only integer values, the continuous design variables of the original FPA are 

rounded to their nearest integer values.  

The computational cost of the present optimization framework is increased due to the interface 

between SAP2000 and MATLAB and the requirement of conducting detailed structural 

designs of complex 3D RC building frames. The latter involves running multiple structural 

(FEA) analyses and calculating the required steel reinforcement at numerous locations in order 

to determine the objective function (see Eq. 2) and check the design constraints of each trial 

design. For example, the computational time required, on average, for a trial design of the 4-

storey and 12-storey buildings examined later in this study are approximately 7s and 17s, 

respectively, on a personal computer using one core of an Intel i5–7500 processor with 

operating frequency 3.40 GHz. Therefore, it is important that the calls to SAP2000 and the 

subsequent structural design calculations are avoided when feasible.  

In FPA, the position of each flower is updated only when it yields lesser costs than its previous 

location. To take advantage of this FPA provision, the cost of the new solution vector of each 

flower is first calculated assuming minimum steel reinforcement areas and prior to calling 

SAP2000 to conduct structural design. If this lower bound of the new cost is higher than the 

previous cost of the flower, then the position of the flower is not updated, and the 

corresponding structural analysis and design is avoided. Moreover, a memory matrix is used 

in the developed framework that stores all previous trial designs and their corresponding costs. 
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If the optimization algorithm returns to a previous design solution, then the cost of this design 

solution is revoked from the memory matrix instead of repeating the structural analysis and 

design calculations for the same design solution. To accommodate all previous considerations, 

a modified version of the FPA algorithm is employed in this study as presented in Fig. 3. 

 

 
Fig. 3: Pseudo-code of modified FPA 

 

4 Case studies 

 

4.1 Four-storey RC building frame 

 

The structure under examination in this section is a four-storey regular RC building 3D frame 

with storey height of three meters (Fig. 4). The building is doubly symmetric in plan and 

consists of 3 bays in each direction with an equal span length of 5m. Concrete C25/30 and 

reinforcing steel B500C materials are used following EC2 (CEN 2000) specifications. 

Concrete cover to longitudinal rebars centroid is assumed to be 50mm. For simplicity and 

Set objective min f (x), x = (x1, x2, …, xd) 
Initialize a population of n flowers with random procedures. 
Do structural design and evaluate RC frame costs including possible penalty terms of the initial population. 
Determine the best solution g* of the initial population. 
Determine the value of switch probability p ϵ [0, 1] 
while (t < MaxIteration) 
 for i = 1 : n (for all flowers of the population) 
  if rand < p 
   Draw a d-dimensional Lévy distribution step vector L  

   Do global pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑑𝑑 �𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ �𝒈𝒈∗ − 𝒙𝒙𝑖𝑖𝑡𝑡�� 

  else 
   Draw ε from a uniform distribution in [0, 1] 
   Select randomly j and k among all flowers of the population. 

   Do local pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑑𝑑 �𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ �𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘𝑡𝑡 ��   

  end if 
  if 𝒙𝒙𝑖𝑖𝑡𝑡+1 coincides with a previous design  
   Get objective function value from memory matrix. 
  else 
   Evaluate cost of RC frame assuming minimum reinforcement ratios. 
   if RC frame cost with minimum reinforcement ratios is lower than previous solution 

Do structural design and evaluate RC frame cost including possible penalty terms. 
   end if 
  end if 
  When better than previous, update new solutions in the population. 
 end for 
 Determine the best solution g* of the new population. 
end while 
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because of double symmetry, one rectangular section is used for all exterior beams of the first 

3 storeys and one section for all interior beams of the same storeys. Furthermore, one additional 

rectangular beam section is applied to all exterior beams of the top storey as well as one 

additional section for all interior beams of the same storey. The beams of the top storey are 

considered different than the rest of the building to account for the increased dead loads of the 

roof as explained below. In addition to the beam sections, one section is assumed for all interior 

columns, one section for all corner columns and one section for all other perimeter columns. 

Therefore, 4 different beam sections and 3 different column sections are used in the RC frame 

leading to a total of 7 independent design variables in the optimization problem (i.e. d = 7).  

Concrete beams are assumed to have rectangular cross-sections and concrete columns square 

cross-sections. More particularly, beams assume sections from a list of 8 rectangular sections 

with a width of bb = 0.30m and heights hb increasing from 0.30m to 0.65m with a step of 0.05m 

(Fig. 1). Moreover, columns are assigned sections from a list of 8 possible square sections with 

sizes increasing from hc = 0.30m to 0.65m with a step of 0.05m (Fig. 1). Therefore, the search 

space of this optimization problem is set to 87 potential design solutions.  

 

 
Fig. 4: Four-storey 3D RC building frame 

 

The structure is designed for both static loads and wind loads. Slab loads are transferred 

manually to the beams since slabs do not represent part of the structural model and they are 

not considered in the optimization problem. The total dead load of the slabs, inclusive of self-

weight and additional dead load, is 6 kN/m2 for all stories except for the top storey, where it 

becomes 16 kN/m2 due to the existence of a rooftop garden. Slabs live load is assumed to be 5 

kN/m2 for all storeys apart from the top storey, where it is taken as 2 kN/m2. In addition to the 

vertical loads, a lateral uniform wind pressure of 1.5 kN/m2 is assumed to act to the external 
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surfaces of the building. The structure is designed for static and wind loads according to the 

provisions of EC2 (CEN 2000). Material unit costs are taken as 𝑓𝑓𝑐𝑐𝑐𝑐 = 100 €/𝑚𝑚3 and 𝑓𝑓𝑠𝑠𝑐𝑐 =

1 €/𝑘𝑘𝑔𝑔 respectively. 

Figure 5 shows comparisons of the mean optimization histories exhibited by the FPA and the 

GA, PSO and SA optimization algorithms after 3500 (= 500·d) objective function evaluations 

(i.e. trial structural design solutions). The GA (Holland 1975) is a metaheuristic optimization 

algorithm imitating Darwin’s theory of evolution. GA gradually modifies populations 

(generations) of candidate solutions (individuals) until the improvement of next generations is 

below a pre-specified tolerance. Individuals of next generations (children) are formed from 

selected individuals of previous generations (parents) based on their objective function values. 

PSO (Kennedy 2011) is another metaheuristic population-based optimization algorithm 

inspired by the motion of bird flocks and schools of fish. Candidate solutions are represented 

by particles the movement of which is influenced by both their known local best positions and 

the global best-known position in the search-space. SA (Kirkpatrick et al. 1983) is inspired by 

the annealing process in metallurgy that involves heating a material and then gradually 

lowering the temperature to decrease defects, thus minimizing the energy of the system. To 

mimic the annealing process, SA iteratively moves a candidate solution according to a variable 

temperature parameter. 

Five independent runs are applied for each optimization algorithm to account for the random 

procedures employed in each of these algorithms. For FPA, a population size of n = 25 flowers, 

a lambda value of λ = 1.5 and a scaling factor of γ = 1 are assumed in this comparison. Figure 

5a shows the comparisons with FPA when the switch probability value is p = 0.5 and Fig. 5b 

when p = 0.8. For all other algorithms, default parameter values are used as specified in 

MATLAB R2020b – Global Optimization Toolbox (MathWorks 2020b).  

It is interesting to note in Fig. 5 that all mean optimization histories converge to almost the 

same minimum cost after approximately 700 function evaluations. The FPA with p = 0.5 seems 

to converge, on average, more slowly than the other algorithms but with p = 0.8 the FPA seems 

to be converging at a similar pace to the other algorithms. SA seems to be converging faster 

than all algorithms at the first steps of the analyses. It is also worth noting that all algorithms, 

after 5 independent runs, find the same optimum design solution with a minimum cost of 

approximately 12,477 Euros. Nevertheless, not all algorithm runs converge to the same 

optimum solution. For GA, SA and FPA with p = 0.5, the success rate is 100% meaning that 

all 5 independent runs of these algorithms converge to the best solution. For PSO and FPA 

with p = 0.8 the success rates are 80% and 60% respectively. When the latter algorithms did 
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not track the best solution, they converged to a slightly more expensive solution with only 

0.1% higher cost.  

  
Fig. 5: Comparison of FPA with other optimization algorithms with a) p = 0.5; b) p = 0.8  

 

Table 1 presents the cross-sectional dimensions of the obtained optimum solution of the RC 

building frame. Furthermore, Fig. 6 shows the calculated flexural and shear steel reinforcement 

areas of the exterior and interior frames of the optimum solution of the concrete building as 

calculated by SAP2000. The zero shear reinforcement area requirements of the concrete 

columns mean that the minimum shear reinforcement areas must be placed in these members. 
 

  

  
 
Fig. 6: Steel reinforcement areas of the obtained optimum design solution: a) flexural reinforcement (mm2) - 
exterior frames; b) flexural reinforcement – interior frames (mm2); c) shear reinforcement – exterior frames 
(mm2/mm); d) shear reinforcement – interior frames (mm2/mm) 
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Table 1: Optimum design solution cross-sections 

Members group 

 

Optimal 

Cross 

section (m) 
Exterior beams – storeys 1 - 3 0.30 X 0.30 

Interior beams – storeys 1 - 3 0.40 X 0.30 

Exterior beams – storey 4 0.35 X 0.30 

Interior beams – storey 4 0.45 X 0.30 

Interior columns 0.45 X 0.45 

Perimeter columns 0.35 X 0.35 

Corner columns 0.30 X 0.30 

 

In addition to the previous comparisons, Table 2 and Fig. 7 present the results of a parametric 

study conducted to identify the optimal FPA parameter setting (n, p, γ, λ) to address this 

optimization problem. In this parametric study, a reference parameter set with n = 25 flowers, 

λ = 1.5, γ = 1 and p = 0.5 is initially employed and then each parameter takes different values, 

while keeping the other parameters fixed, to investigate how it affects the performance of the 

algorithm. 

Figure 7a shows the effect of the population size on the convergence performance of the FPA 

with respect to function evaluations. It can be deducted that as the population sizes increases 

the rate of convergence decreases. Indeed, the population size of n = 10 demonstrates the 

highest rate of convergence. Table 2, however, shows that this population size demonstrates 

only 60% success rate in finding the best design solution as opposed to the larger population 

sizes with 100% success rates. Therefore, as n decreases the convergence rate increases but the 

reliability of the final solution decreases. 

Furthermore, Fig. 7b presents the effect of the switch probability to the performance of the 

algorithm. It is seen that as the switch probability increases the speed of convergence of the 

algorithm is enhanced with the p = 0.8 value demonstrating best performance in the first 

iteration steps. However, the latter probability value achieves only 60% success rate when the 

other switch probabilities achieve 100%. Hence, increasing the switch probability seems to be 

improving the speed of the algorithm but it can also undermine the quality of the final solution. 

Moreover, Fig. 7c examines the influence of the scaling factor on the mean iteration histories 

of the FPA. It is noted that a scaling factor of γ = 1.0 offers the fastest convergence to the 

algorithm while maintaining 100% success rate in the final solutions. Therefore, this scaling 

factor value offers the best computational performance among the different γ values. 
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Table 2: FPA parametric analyses results 

Parameters setting Minimum cost Mean cost  
Success 

rate 

n p γ λ  (€) (€)  
25 0.5 1 1.5 12477.0 12477.0 100% 

25 0.8 1 1.5 12477.0 12480.6 60% 

25 0.2 1 1.5 12477.0 12477.0 100% 

50 0.5 1 1.5 12477.0 12477.0 100% 

25 0.5 1 1.0 12477.0 12477.0 100% 

25 0.5 1 2.0 12477.0 12487.4 20% 

25 0.5 10 1.5 12477.0 12477.0 100% 

25 0.5 0.1 1.5 12477.0 12477.0 100% 

10 0.5 1 1.5 12477.0 12480.6 60% 

 

Finally, Fig. 7d examines the role of λ values to the performance of the FPA. It is noted that 

lambda values of 1 and 1.5 offer very similar convergence performance that significantly 

exceeds the performance of λ = 2. The latter λ value has also only 20% success rate as opposed 

to 100% success rates for λ = 1 and 1.5. Hence, the λ values of 1 and 1.5 seem to be offering 

the best algorithm performance in this optimization problem. 
 

  

  
Fig. 7: Mean optimization histories of FPA parametric analyses with respect to a) n; b) p; c) γ; d) λ 

 

c) d) 

a) b) 
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4.2 Twelve-storey RC building frame 

 

The studied structure herein is a twelve-storey RC building 3D frame with storey height of 

three meters (Fig. 8). The building is doubly symmetric in plan and consists of 3 bays in each 

direction with an equal span length of five meters. Concrete C25/30 and reinforcing steel 

B500C materials are used in accordance with EC2 (CEN 2000) specifications. Concrete cover 

to longitudinal rebars centroid is assumed to be 50mm. For simplicity and because of double 

symmetry, one rectangular section is used for all exterior beams of two consecutive storeys 

and one section for all interior beams of two consecutive storeys. Furthermore, one section is 

assumed for all interior columns, one section for all corner columns and one section for all 

other perimeter columns. Therefore, twelve different beam sections and three different column 

sections are employed in this frame model leading to a total of 15 independent design variables 

in the optimization problem (i.e. d = 15).  

Concrete beams are assumed to have rectangular and concrete columns square cross-sections. 

More particularly, beams assume sections from a list of 10 rectangular sections with a width 

of bb = 0.30m and heights increasing from hb = 0.30m to 1.20m with a step of 0.1m (Fig. 1). 

Moreover, columns are assigned sections from a list of 10 possible square sections with sizes 

increasing from hc = 0.30m to 1.20m with a step of 0.10m (Fig. 1). Based on the previous, the 

search space of this optimization problem is set to 1015 potential design solutions.  

The structure is designed for both static loads and seismic loads. Slab loads are transferred 

manually to the beams since slabs do not represent part of the structural model and they are 

not considered in the optimization problem. The total dead load of the slabs, inclusive of self-

weight and additional dead load, is 6 kN/m2 for all stories except for the top storey, where it 

becomes 16 kN/m2 due to the existence of a rooftop garden. Slabs live load is assumed 2 kN/m2 

for all storeys.  

The structure is designed for static loads according to the provisions of EC2 (CEN 2000). 

Furthermore, the building frame is designed for seismic loads in accordance with EC8 (CEN 

2004) for ductility class low (DCL). The seismic action is represented by the Type 1 elastic 

response spectrum of EC8 (CEN 2004) for soil type D. The building is classified as importance 

class II and the corresponding importance factor amounts to one. The reference peak ground 

acceleration is equal to 0.36g that is representative of seismic zone III in Greece. A behaviour 

factor q of 1.5 is used for determining the design response spectrum. For the damage limitation 

requirement of EC8, it is assumed that inter-storey drifts are limited to 0.75% for the frequent 

design earthquake, which is required by EC8 for buildings having non-structural elements of 
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ductile materials attached to the structure (CEN 2004). Furthermore, to limit large lateral 

displacements the top displacement of the building is limited to 1% of the total height under 

the design earthquake. 

 

 
Fig. 8: 12-storey 3D RC building frame 

 

Figure 9 presents a comparison of the optimal materials costs predicted by the FPA and the 

GA, PSO and SA optimization algorithms after 7500 (= 500·d) function evaluations. Five 

independent runs are applied for each optimization algorithm to account for the random 

procedures employed in each of these algorithms. For FPA, a population size of n = 25 flowers, 

a switch probability of p = 0.5, a lambda value of λ = 1.5 and a scaling factor of γ = 1 are 

assumed in this comparison. For all other algorithms, default parameter values are used as 

specified in MATLAB R2020b – Global Optimization Toolbox (MathWorks 2020b).  

Figure 9a compares, in the form of box plots, the obtained costs at the end of the 5 independent 

runs for the various optimization algorithms. The box plots show the minimum, maximum and 

median (red line) material costs in Euros. Inside the boxes, the 25th to 75th percentiles are 

contained. It is clear that the FPA provides significantly better minimum costs than all other 

XY X
Z

Y
Z
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algorithms. As a matter of fact, it is found that almost all FPA runs offer better final costs than 

the best runs of all other algorithms.  

Furthermore, Fig. 9b shows the mean convergence histories of the five independent runs of the 

different optimization algorithms. It is shown that the GA and PSO algorithms initially appear 

to converge faster to their optimal predictions. However, after a certain point (ranging between 

1500 and 2000 function evaluations), it looks that they are trapped in local optima and they 

only marginally further improve their final costs. On the other hand, the FPA converges to the 

optimal solutions slower than the GA and PSO and at a similar pace to the SA algorithm in the 

first evaluation steps. Nevertheless, the FPA continues to gradually improve its predictions and 

it offers better predictions than all other algorithms after, approximately 4500 function 

evaluations on average. Interestingly, the FPA seems to be further and constantly improving 

its predictions even after this stage leading to importantly better average predictions at the end 

of the analyses. These results clearly demonstrate the high degree of diversification of this 

algorithm, which is able to track global optimum solutions in complex and large-scale 

problems, where other algorithms are trapped in local optima (Yang 2012).  

Figure 9c shows the optimization histories of the runs of the different algorithms with the best 

final costs. The best solution found by FPA has a final cost of 192,694.3 Euros that is 

significantly lower than the best solutions of the other algorithms. The cross-sectional 

dimensions of this design solution are presented in Table 3. Furthermore, Fig. 10 shows the 

exterior and interior frames of the obtained optimum solution of the RC building with the 

corresponding cross-sections drawn to scale. As expected, section sizes are larger for the beams 

of the lower stories than the upper stories, due to the higher seismic demands at the lower 

stories. Furthermore, the sizes of the interior beams at the upper floors are higher than the 

exterior beams at the same floors since they undertake higher static loads. It is also interesting 

to observe that the perimeter columns have smaller sections than the interior columns and that 

the corner columns are smaller than the rest of the perimeter columns.  

Figure 11 shows the lateral deflection response of the obtained optimum solution under the 

design earthquake. Similar response is observed for all frames in both directions due to the 

symmetry of the building. The top displacement is equal to 0.358 m (0.99%), which is 

marginally smaller than the 1% limit set by the design requirements. Furthermore, inter-storey 

drifts are less than 0.75% for the more-frequent earthquake. In addition, Table 4 shows the 

modal periods of vibration and the cumulative effective mass ratios for the modes contributing 
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more than 90% of the total mass of the building. The fundamental period of vibration of the 

building is 1.099s. The base shear is equal to 8510.5 kN in both directions. 

  

 

 

Fig. 9: Comparison of FPA with other optimization algorithms after 5 independent runs a) box plots of 

minimum costs; b) mean optimization histories; c) optimization histories of runs with best final costs 

 
Table 3: Optimum design solution cross-sectional dimensions (in m) 

Beams Groups 

Storeys 
Exterior 

Beams 

Interior 

Beams 

1 - 2 1.2 X 0.3 1.2 X 0.3 

3 – 4 1.2 X 0.3 1.2 X 0.3 

5 - 6 0.3 X 0.3 1.0 X 0.3 

7 - 8 0.3 X 0.3 0.7 X 0.3 

9 - 10 0.3 X 0.3 0.7 X 0.3 

11 - 12 0.3 X 0.3 0.4 X 0.3 

Columns Groups 

Interior columns 0.9 X 0.9 

Perimeter columns 0.7 X 0.7  

Corner columns 0.5 X 0.5 

 

a) b) 

c) 
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Fig. 10: Optimum design solution with cross-sections drawn to scale: a) exterior; b) interior frames 

 

 
Fig. 11: Lateral deflection response of the optimum solution under the design earthquake (displacements in m) 

 

Table 4: Modal responses of the obtained optimum design solution 

  
Cumulative effective mass 

ratios 

Mode Period (sec) X-direction Y-direction 

1 1.099 0.302 0.349 

2 1.099 0.651 0.651 

3 0.361 0.687 0.811 

4 0.361 0.847 0.847 

5 0.356 0.847 0.847 

6 0.205 0.898 0.869 

7 0.205 0.921 0.921 

 

In addition to the comparisons with other algorithms, Figs. 12 and 13 present the results of a 

parametric study conducted to identify the best FPA parameters settings for this optimization 

X

Z

X

Z

X
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problem. Figure 12 presents box plots of the optimum costs obtained by FPA after 5 

independent runs with 7500 maximum function evaluations and Fig. 13 the corresponding 

mean optimization histories. Similarly to the previous worked example, a reference parameter 

setting with n = 25 flowers, λ = 1.5, γ = 1 and p = 0.5 is initially used and then each parameter 

assumes different values to investigate its effect on the computational performance of the 

algorithm. 

Figures 12a and 13a show the effect of the population size on the performance of the FPA. It 

can be seen that n = 25 offers the best performance in terms of final costs while the convergence 

rate is similar to n = 10 in the first iteration steps. The n = 50 population size seems to be 

providing the slowest convergence to the optimum solution.  

Moreover, Figs. 12b and 13b illustrate the influence of the switch probability to the 

computational performance of FPA. It is observed that the p = 0.2 and p = 0.5 values offer 

rather similar performances of FPA with the p = 0.2 value to be providing less scatter in the 

final solutions but to be slightly slower in the first iteration steps. The p = 0.8 switch probability 

yields the worst final costs but it seems to be performing well in the first iteration steps. 

 

  

  
Fig. 12: Box plots of FPA parametric analyses after 5 independent runs with respect to a) n; b) p; c) γ; d) λ 

a) b) 

c) d) 
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Fig. 13: Mean optimization histories of FPA after 5 independent runs with respect to a) n; b) p; c) γ; d) λ 

 

Furthermore, Figs. 12c and 13c examine the influence of the scaling factor γ on the 

performance of FPA. It is found that the γ = 1 scaling factor value not only drives to 

significantly better final costs, but it also converges faster than the other scaling factors. 

Finally, Figs. 12d and 13d investigate the role of λ values to the performance of the FPA. 

Similarly to the previous RC frame, the λ = 2 value yields the worst computational 

performance. However, in this example, the λ = 1.5 parameter value seems to be providing 

significantly better final costs than λ = 1 despite the fact that the two λ values converge at a 

similar rate in the first calculation steps. 
 

5 Conclusions 

  

The Flower Pollination Algorithm (FPA) is a recently developed population-based 

metaheuristic optimization algorithm imitating the evolution mechanisms of flowering plants. 

FPA is characterised by simplicity in its formulation as well as high computational 

performance and it has been found to outperform other established optimization algorithms in 

a range of diverse optimization problems. Furthermore, the optimum design of real-world 3D 

c) d) 

a) b) 
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reinforced concrete building frame structures is a computationally challenging optimization 

problem, associated with massive economic and environmental impacts, that has only been 

addressed by a very limited number of research studies and optimization algorithms in the past. 

Therefore, it is meaningful to investigate the computational performance of the FPA in this 

optimization problem. 

For the purposes of the present study, a new computationally efficient framework, supported 

by the new MATLAB application STROLAB (i.e. Structural Optimization Laboratory), is 

developed for the optimum design of 3D reinforced concrete building frames. STROLAB is 

employing, for the goals of structural analysis and design, the well-established integrated 

software SAP2000 (CSI 2020) via its Application Programming Interface (API).  

The developed framework uses, for first time in this study, the FPA to the optimum design of 

real-world 3D reinforced concrete building frames after a set of modifications to its original 

formulation to improve the speed of calculations and to account for the constraints set by 

design regulations as well as the discrete nature of the design variables in this optimization 

problem. More specifically, the structural designs of a four-storey and a twelve-storey 3D RC 

building frames for minimum material costs and in accordance with Eurocode 2 (CEN 2000) 

and Eurocode 8 (CEN 2004) for Low Ductility Class provisions are examined. The 

performance of the FPA is compared with other well-established optimization algorithms such 

as SA, GA and PSO and conclusions are made with respect to its solution efficiency. 

Furthermore, a parametric study is conducted to determine the FPA parameter values that 

maximize its computational performance in this optimization problem. 

It is found that the FPA obtains similar results to the well-established optimization algorithms 

for the small-scale optimization problem of the four-storey RC frame and that it outperforms 

these algorithms for the larger-scale optimization problem of the twelve-storey building. This 

finding confirms the high degree of diversification of this algorithm that enables it to track 

global optima of complex and large-scale problems, where other algorithms are trapped in local 

optimum solutions (Yang 2012). It is also worth noting that FPA may be converging slower 

than the other algorithms at the first iteration steps, but this can be improved by selecting 

appropriate values for its controlling parameters. 

Moreover, parametric studies show that the FPA converges faster as the population size 

decreases. However, very small population sizes may not drive to the best designs at the end 

of the analyses. A population size of n = 25 found to offer a good compromise between speed 

of convergence and robustness in this study. The switch probability p is another parameter 

affecting the performance of FPA. It is found that as p increases the convergence rate of the 



27 

FPA may increase in the first iteration steps. Nevertheless, very high p values may undermine 

the quality of the final solutions. Herein, a switch probability value of p = 0.5 found to offer 

good combinations of convergence speed and quality of final solutions for the FPA algorithm. 

In terms of the scaling factor γ, it is observed that γ = 1 offers the best computational 

performance in terms of both convergence rate and quality of final solutions. The same holds 

for the λ parameter when this is set as λ = 1.5. 
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