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ABSTRACT In this paper, optimum design of engineering problems is considered by means of the
Atomic Orbital Search (AOS), a recently proposed metaheuristic optimization algorithm. The mathematical
development of the algorithm is based on principles of quantum mechanics focusing on the act of electrons
around the nucleus of an atom. For numerical investigation, 20 of well-known constrained design problems in
different engineering fields are considered; some of which have been benchmarked by the 2020 Competitions
on Evolutionary Computation (CEC 2020) for real-world optimization purposes. Statistical results including
the best, mean, worst and standard deviation of multiple optimization runs are reported for the AOS
algorithm. These results are compared to similar data from previous metaheuristic algorithms found in the
literature to establish the efficiency and usefulness of the AOS. It is concluded that the AOS has acceptable
behavior in dealing with all the considered constrained optimization problemswhile themaximum difference
of about 40% between the best optimum values of the AOS and other approaches is noted for the robot gripper
benchmark problem.

INDEX TERMS Atomic orbital search, engineering design, competition on evolutionary computation,
constrained optimization.

I. INTRODUCTION
Optimization is a process of maximizing or minimizing a
predefined objective function whichmay be subjected tomul-
tiple design constraints. This is relevant to decision-making
and to engineering design across disciplines and stakeholders.
For example, chief executive officers aim to maximize the
overall profit from investments in engineering construction
and infrastructure. Further, practicing engineers aim to mini-
mize resources and materials used in designing components,
structures, or processes. In this regard, optimization is a ubiq-
uitous approach to facilitate rationalized decision-making and
engineering design. Indeed, inventory, production, machine
learning, design procedures andmachine scheduling are some
of the important problems addressed by optimization in engi-
neering fields.

The two most important facets of optimization are the
solution algorithms and the mathematical formulation of

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

the optimal design problem. Optimization algorithms should
be conceptualized properly by an established mathematical
model to support computationally efficient optimization solu-
tions. Additionally, mathematically rigorous formulations or
numerical descriptions of the optimal design problems are
also required. The latter facet is addressed based on the
physics of engineering problems and on developments in
computer science. However, the development of efficient
optimization algorithms leading to improved optimal solu-
tions for complex problems is a field of open research. Whilst
gradient-based optimization methods have been utilized for
many years for the purpose, they are known to have numerous
deficiencies which led to the birth and pursue ofmetaheuristic
optimization algorithms. The latter algorithms involve an
iterative procedure in which an optimum solution is sought
by conducting some random perturbations and search loops
which are defined by drawing inspiration from the lifestyle
of different leaving creatures (bio-inspired) or other physics-
based concepts. Some of the most well-knownmetaheuristics
optimization algorithms are the Genetic Algorithm (GA) [1],
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FIGURE 1. Atomic orbital model and electron density configuration.

Ant Colony Optimization (ACO) [2], Particle Swarm Opti-
mization (PSO) [3], Imperialistic Competitive Algorithm
(ICA) [4], Firefly Algorithm (FA) [5], Whale Optimization
Algorithm (WOA) [6], Symbiotic Organisms Search (SOS)
[7], Ray Optimization Algorithm (ROA) [8], Flower Polli-
nation Algorithm (FPA) [9], Earthworm optimization algo-
rithm (EWA) [10], Crystal Structure Algorithm (CryStAl)
[11], Material Generation Algorithm (MGA) [12], Heat
Transfer Search (HTS) algorithm [13], Teaching Learning
Based Optimization (TLBO) algorithm [14], Passing vehi-
cle search (PVS) algorithm [15], Group Teaching Optimiza-
tion (GTO) algorithm [16], Aquila Optimizer (AO) [17],
Capuchin Search Algorithm (CSA) [18], Archimedes Opti-
mization Algorithm (AOA) [19], and the Chaos Game Opti-
mization (CGO) algorithm [20] and [21]. It also should
be noted that some of the standard algorithms have been
improved or hybridized for specific applications [22]–[34].

Besides, some of the other challenges in optimization
of engineering design problems can be mentioned as the
epsilon constraint based HTS algorithm for optimization of
multi-objective engineering design problems [35], Layout
optimization of wind farms with an improved version of
TLBO [36], design optimization of engineering problems
by a hybrid approach of TLBO and the Neural Network
Algorithm (NNA) [37], Symbiotic Organisms Search (SOS)
algorithm for optimum design of multi-objective constrained
engineering problems [38], Bayesian optimization (BO) for
optimum design of engineering design problems, optimum
design of real-world problems by Seagull Optimization Algo-
rithm (SOA) [39] and the BlackWidow Optimization (BWO)
algorithm for optimization purposes in engineering applica-
tions [40].

In this paper, optimum design of engineering problems
is considered by means of the Atomic Orbital Search
(AOS), which is a recently proposed metaheuristic algorithm
by Azizi [41]. This algorithm is developed based on the
quantum-based atomic model which follows principles of
quantum mechanics governing the act of electrons around
the nucleus of an atom. For numerical investigation, 20 of
the well-known constrained design problems in different
engineering fields are considered, some of which have been

benchmarked by the 2020 Competitions on Evolutionary
Computation as CEC 2020 [42] for real-world optimization
purposes. For statistical investigation, 25 independent opti-
mization runs are conducted by considering 200000 objec-
tive function evaluations to evaluate the statistical results
including the best, mean, worst and standard deviation while
the results of other algorithms are also provided from the
literature for conducting a comparative study.

II. ATOMIC ORBITAL SEARCH (AOS) ALGORITHM
A. PHYSICAL MOTIVATION
In this section, the AOS algorithm is presented in detail
focusing on the inspirational concept of the approach along-
side its mathematical model. This algorithm is inspired by
the principles of quantum mechanics and the atomic orbital
model, proposed by Erwin Schrodinger. In this model, elec-
trons are assumed to move in waves with uncertain location
instead of orbiting in set paths around the nucleus. In this
regard, clouds of probability called orbitals are defined based
on the probability of electron location. In the atomic theory
developed based on quantum mechanics, an atomic orbital
represents the wave-like behavior of electrons in atoms by
means of a mathematical function. This mathematical func-
tion is utilized for calculating the probability of finding any
electron in any specific region around the nucleus of an atom.
In other words, the atomic orbital represents specific physical
regions or spaces surrounding the nucleus which are probable
locations of electrons (Fig. 1A). In Fig. 1B a snapshot of
an atom is illustrated in which the electrons are moving
around the nucleus by changing their instant positions with
a wave-like behavior. In this setting, the electrons behave
like a cloud of charge which instantly change their position
over time. As presented in Fig. 1C, the positions of electrons
around the nucleus are not deterministically defined so the
location of electrons around nucleus is defined by means of
probability density diagrams. The space around nucleus of
an atom is divided into spherical concentric thin imaginary
layers with specific radius of r to measure the probability
of electrons being located at any specific distance from the
nucleus (Fig. 1D). Since the volume of each specific layer
increases faster than the probability density of that layer
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FIGURE 2. Schematic representation of atomic quantum staircase analogy.

(Fig. 1E), the total probability of detecting any electron in the
outer imaginary layers is higher than detecting it in the inner
ones.

According to the atomic orbital model, electrons in the
ground state of energy are located within imaginary layers
around the nucleus. For each imaginary layer with radius, r, a
quantum number, n, is assigned which represents the energy
level of the electrons positioned in that layer. The layers with
higher n values represent the orbitals with larger r values and
higher energy levels while the layers with smaller n values
correspond to lower energy levels with smaller r values. The
electrons in the cloud of charge around nucleus are excited by
the interactions with other particles, moving into magnetic
fields and also by acts of photons (lights) which result in
energy emission or absorption in the atom. In this regime,
some binding energy is determined for each electron which
represents the amount of energy required for removing the
electron from its orbital. Considering the quantum staircase
analogy, movement of electrons between different orbitals
are possible, resulting in changes to their energy levels. In
this regard, if an electron absorbs an amount of energy less
than the electron binding energy, it will undergo a transition
to an outer orbital with higher energy value. Besides, if an
electron emits an amount of energy more than the electron
binding energy, it will be repositioned in an inner orbital with
lower energy value. The schematic representation of quantum
staircase analogy in atoms is illustrated in Fig. 2.

B. MATHEMATICAL MODEL
The AOS algorithm is inspired by the previously mentioned
principles of atomic orbital model in which the emission and
absorption of energy by atoms alongside the electron density
configuration are in perspective. As the first step, several

solution candidates, X, are considered which correspond to
the position of electrons around the nucleus of the atom. The
solution candidates are taken as the cloud of electrons around
the nucleus of an atom while the search space is defined as
a spherical space, divided into concentric imaginary layers.
Mathematically, this is written as

X =



X1
X2
...

Xi
...

Xm


=



x11 x21 · · · x j1 · · · xd1
x12 x22 · · · x j2 · · · xd2
...

...
...

. . .
...

x1i x2i · · · x ji · · · xdi
...

...
...

. . .
...

x1m x2m · · · x jm · · · xdm


,

{
i = 1, 2, . . . ,m.
j = 1, 2, . . . , d .

(1)

where Xi is the i-th solution candidate (electron) in the search
space (electron cloud around nucleus of atom); m is the
total number of solution candidates or electrons in the search
space; xi,j is the j-th decision variable of the i-th solution
candidate; d is the dimension of the considered problem.

A random initialization procedure is employed for deter-
mining the initial positions of the electrons around the
nucleus. Following the atomic model, each electron has a
specific state of energy which is defined as the objective
function of the solution candidates to be minimized. There-
fore, the electrons with lower energy levels are represented by
solution candidates with better (lower) values of the objective
function while the solution candidates with worse (higher)
values of objective function are utilized for electrons with
higher energy levels. The following notation is introduced
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FIGURE 3. Schematic presentation of imaginary layers around nucleus.

accordingly

E =



E1
E2
...

Ei
...

Em


, i = 1, 2, . . . ,m. (2)

where E is the vector of objective function values; Ei is the
energy level of i-th solution candidates;m represents the total
number of solution candidates or electrons in the search spac

To represent the imaginary layers around nucleus math-
ematically, a random integer number, n, is assigned corre-
sponding to the number of spherical imaginary layers, L,
around the nucleus of atom. The imaginarily created layers
represent the wave-like behavior of electrons around nucleus
while the layer with smallest radius, L0, indicate the nucleus
location and the rest, Li the location of electrons. These
aspects are presented in Fig. 3.

Based on the quantum-inspired atomic model, the instant
locations of electrons are represented by an electron proba-
bility density diagram. This is mathematically modeled using
a Probability Density Function (PDF). The latter is a mathe-
matical function which specifies the probability of a variable
value to lie within a predefined range. The PDF is used for
distributing the solution candidates to the imaginary layers
around nucleus. To this end, a sorting process is conducted in
which the solution candidates with better objective function
values (higher PDF values) are positioned in the inner layers
with lower energy levels while the candidates with worse
objective function values (lower PDF values), are located
in the outer layers. In this regard, any of the Weibull, nor-
mal, logistic or Kernel PDF can be adopted for this pur-
pose. Herein, the log-normal Gaussian distribution function

is utilized. The position determination for electrons (solution
candidates) with a log-normal Gaussian distribution function
is schematically illustrated in Fig. 4. In this distribution, the
overall existence probability of the electrons in the second
layer (L1 to L2) is higher than the first layer (L0 to L1) which
represents the real wave-like behavior of the electrons in the
quantum-based atomic model.

Using the above position determination process for the
electrons, the solution candidates are distributed in different
layers. The vector Xk containing the candidates in n different
layers and their objective function Ek values are represented
as follows

Xk
=



X k1
X k2
...

X ki
...

Xnp


=



x11 x21 · · · x j1 · · · xd1
x12 x22 · · · x j2 · · · xd2
...

...
...

. . .
...

x1i x2i · · · x ji · · · xdi
...

...
...

. . .
...

x1p x2p · · · x jp · · · xdp


,


i = 1, 2, . . . , p.
j = 1, 2, . . . , d .
k = 1, 2, . . . , n.

(3)

Ek
=



Ek1
Ek2
...

Eki
...

Enp


,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(4)

where X ki is the i-th candidate positioned in the k-th layer; n
is the total number of imaginarily layers; p shows the number
of candidates in the k-th layer; d represents the dimension
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FIGURE 4. Position determination of electrons (solution candidates) with PDF distribution.

for considered problem; Eki represents the values of objective
function for the i-th candidate positioned in the k-th layer. The
best candidate in the k-th layer is considered as the electron
with lowest levels of energy, LEk , and the global best of all
solution candidates represents the electronwith lowest energy
level, LE , at the nucleus location (Azizi 2020).

According to the principles of the atomic orbital model,
the electrons are taken to be in the ground state of energy
level. The concept of binding state in quantum-based atomic
model represents the fact that electrons are not affected by
others in this state. This attribute is mathematically modeled
by considering the independency of solution candidates in
the search space. In addition, the binding energy represents
the energy amount that is required to move an electron to a
different layer. To this end, the concepts of binding state and
binding energy are mathematically modeled by considering
the mean values of the position vectors and the objective
function values of the solution candidates. For each of the
considered imaginary layers, the binding state and binding
energy are calculated as

BSk =

∑p
i=1 X

k
i

p
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(5)

BEk =

∑p
i=1 E

k
i

p
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(6)

where BSk is the binding state and BEk is the binding energy
of the k-th imaginary layer.

Since the overall energy level of an atom is evaluated
by considering the binding state and binding energy of all
the electrons, the mathematical presentation of the mean
values of the position vectors and the objective function
of the solution candidates in the entire search space are

FIGURE 5. Pseudo-code of the AOS algorithm.

written as

BS =

∑m
i=1 Xi
m

, i = 1, 2, . . . ,m. (7)

BE =

∑m
i=1 Ei
m

, i = 1, 2, . . . ,m. (8)

In the quantum atomic model, electrons with different
energy states change their location and move between differ-
ent layers with different states of energy. This phenomenon
is due to the act of photons to electrons as well as to inter-
actions with other particles and magnetic fields. Herein, this
phenomenon is utilized for updating the solution candidates
during the optimization process in the mathematical model
of the AOS algorithm. Specifically, the position of the solu-
tion candidates placed in the imaginary spherical layers is
updated by considering the absorption or emission of photons
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FIGURE 6. Flowchart of the AOS algorithm.

alongside other interactions with particles, while accounting
for the energy level of electrons and the binding energy of the
imaginary layers.

To facilitate the mathematical representation of the posi-
tion updating process in the AOS algorithm, a randomly
generated number, ϕ, uniformly distributed in the range of
[0,1], is assigned to each electron to represent the probability
of action of photons or other interactions. To distinguish
between different interactions on electrons, the photon rate,
PR, parameter is introduced to represent the probability of
different interactions on electrons. For ϕ ≥ PR, the act of
photons on the electrons becomes possible. In this case, the

energy level, Eki , for the i-th electron or solution candidate,
X ki , in the k-th layer is compared to the binding energy of
the k-th layer, BEk . If Eki ≥ BEk , the solution candidates
(electrons) emit some amount of energy (photon). Depending
on the energy, the electron could reach the binding state, BS,
of the atom or even the lowest state of energy, LE , in the atom.
The position updating step for this case is written as

X ki+1 = X ki +
αi × (βi × LE − γi × BS)

k
,{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(9)
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TABLE 1. Basic characteristics of the considered engineering design problems.

where X ki is the current and X ki+1 is the updated i-th solution
candidate (electron position) at the k-th imaginary layer;
αi, βi and γi are uniformly distributed random numbers
in the range of [0,1] which govern the amount of emitted
energy.

On the antipode, if Eki < BEk , the energy level of the i-th
solution candidate in the k-th layer is lower than the binding
energy of the considered layer so energy absorption becomes
probable. In this case, the solution candidates (electrons)
absorb some amount of energy (photon). Depending on the
energy, the electron could reach the binding state of the k-th
layer, BSk , or even the lowest state of energy, LEk , of the
considered layer. The position updating step for this case is
written as

X ki+1 = X ki + αi ×
(
βi × LEk − γi × BSk

)
,{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(10)

For ϕ < PR, the absorption or emission of photons on
electrons are not likely so moving into magnetic fields or
interactions with other particles are in perspective. In this
case, the position updating step for the solution candidates
is written as

X ki+1 = X ki + ri,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(11)

where ri is a random number uniformly distributed in the
range of [0,1].

Further to the above updating steps, the boundary violation
of solution candidates alongside the termination criterion
are also considered in the mathematical model of the AOS
algorithm. In this regard, a flag is implemented in the AOS in
which a boundary control for violating decision variables is
determined while a predefined number of objective function
evaluations or iterations can be utilized as termination crite-
ria. In Fig. 5, the pseudo-code of AOS algorithm is provided
while the flowchart of the algorithm is presented in Fig. 6.
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TABLE 2. Best results of different approaches for the industrial
refrigeration system problem.

III. BENCHMARK ENGINEERING DESIGN PROBLEMS
Constraint optimization problems emerge naturally in opti-
mal engineering design in which precise handling of design
constraints must be accounted for in minimizing/maximizing
the objective function. In this regard, the AOS algorithm is
herein applied to 20 well-known constrained design problems
in different engineering fields are considered, some of which
being benchmarked by the 2020 Competitions on Evolution-
ary Computation as CEC 2020 for real-world optimization
purposes. In Table 1, a brief description of these design
provided is provided.

IV. NUMERICAL INVESTIGATION
The results of the numerical study including the best optimum
values of the AOS and other alternative algorithms alongside
results statistics including the mean, worst and standard devi-
ation are presented in this section. A simple penalty approach
is considered as the constraint handling approach in dealing
with these constraint problems.

A. INDUSTRIAL REFRIGERATION SYSTEM
This engineering design problem considers the optimum
design of an industrial refrigeration system which has
14 design variables (x1 ∼ x14) and 15 inequality design con-
straints. The complete mathematical formulation of this prob-
lem is presented by Andrei [43]. The best results of the AOS
algorithm are presented in Table 2 alongside results from
other optimization approaches. In addition, the mean, worst
and standard deviation statistics for the AOS and alternative
algorithms are provided in Table 3. It is seen that AOS is able
to provide improved best and statistical results than the other
metaheuristic approaches which represents the capability of
the algorithm in dealing with difficult optimization problems.

B. THREE-BAR TRUSS
The total weight optimization of a three-bar truss structure
is considered in this design example in which the objective
function is formulated by determining the minimum required
cross-sectional areas for the truss bars. This engineering

FIGURE 7. Visualization of the three-bar truss problem.

FIGURE 8. Visualization of the planetary gear train problem.

design problem has two design variables including the cross-
sectional areas of the oblique bars (A1) and straight bar (A2)
while there are only three inequality design constraints. In
Fig. 7, a schematic presentation of this constraint design
problem is shown. Gandomi et al. [44] provides the related
mathematical formulations.

In Table 4, the best result of multiple optimization runs for
the AOS and other algorithms in dealing with the three-bar
truss problem are presented in which the optimum design
variables and constraints are also provided. Most of the
recently developed metaheuristics are capable of finding a
similar optimum value; however, the AOS algorithm has also
the ability of providing the so far best found optimum solution
in this case. The statistical results of different approaches for
this problem are also presented in Table 5 for comparative
purposes. It is obvious that the AOS algorithm provides much
better statistical results than previous approaches.

C. PLANETARY GEAR TRAIN
In this engineering design problem, the optimization of max-
imum errors in the gear ratio of the planetary gear train in the
automobiles is considered. There are nine design variables
including six integer variables for the number of teeth in the
gears (N1, N2, N3, N4, N5 and N6) and three discrete design
variables considering the modules of the first (m1) gear, the
number of planet gears (P), and the modules of the second
(m2) gear. This problem has ten inequality and one equality
design constraints. In Fig. 8, a schematic presentation of
this constraint design problem is prepared while Savsani and
Savsani [15] provides the related mathematical formulations.
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TABLE 3. Statistical results for the industrial refrigeration system problem considering different approaches.

TABLE 4. Best results of different approaches for the three-bar truss problem.

TABLE 5. Statistical results for the three-bar truss problem considering different approaches.

TABLE 6. Best results of different approaches for the planetary gear train
problem.

In Table 6 and Table 7, the best and statistical results
of the different metaheuristic algorithms including the AOS
algorithm are presented for the planetary gear train problem.
By comparing the best and statistical results of different
approaches, it is demonstrated that the AOS performs bet-
ter than previous algorithms in dealing with this complex
engineering design problem with different continues and dis-
crete design variables.

D. STEP-CONE PULLEY
In this engineering design problem, the total weigh optimiza-
tion of a step-cone pulley is considered in which there are
five design variables for the width of the pulley (w) and the
diameters of the steps in the pulley (d1, d2, d3, and d4). This
problem has three equality and eight inequality design con-
straints. In Fig. 9, a schematic presentation of this constraint
design problem is prepared while Rao [45] have provided the
related mathematical formulations.

For the step-cone pulley problem, the best results of differ-
ent optimization runs considering the AOS and other alterna-
tives are presented in Table 8 while the statistical results are
provided in Table 9. It is found that the AOS is capable of pro-
viding outstanding best and statistical results in dealing with
this problem. It also should be noted that the AOS provides
lower values for the mean, worst and standard deviation of
the results.

E. ROBOT GRIPPER
The robot gripper problem is one of the difficult engineering
design problems in which the difference of the minimum and
maximum force in the gripper is sought to be minimized
by considering the displacement ranges of the gripper. This
problem has seven design variables including the geometric
properties of the robot while there are also seven inequality
design constrains in the problem definition. In Fig. 10, a
schematic presentation of this constraint design problem is
prepared while Rao et al. [14] provide the related mathemat-
ical formulations.
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TABLE 7. Statistical results for the planetary gear train problem considering different approaches.

TABLE 8. Best results of different approaches for the step-cone pulley problem.

TABLE 9. Statistical results for the step-cone pulley problem considering different approaches.

FIGURE 9. Visualization of the step-cone pulley problem.

The best results of the AOS and other approaches for the
considered robot gripper problem are presented in Table 10
while the optimum design variables and design constraints
are also provided for comparative purposes. In Table 11, the
statistical results of different approaches consideringmultiple
optimization runs are also presented. It is concluded that the
AOS provides outstanding results than the other metaheuris-

FIGURE 10. Visualization of the robot gripper problem.

tics. The maximum difference between the best results of the
AOS and other algorithms is about 40%.

F. HYDRO-STATIC THRUST BEARING
In this engineering design problem, the optimum configura-
tion of bearing power loss in the hydro-static thrust bearing
system is considered in which four design variables including
the recess radius (R0), bearing step radius (R), flow rate (Q)
and the oil viscosity (µ) with seven inequality design con-
straints are considered in the problem formulation. In Fig. 19,
a schematic presentation of this constraint design problem
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TABLE 10. Best results of different approaches for the robot gripper
problem.

FIGURE 11. Visualization of the hydro-static thrust bearing problem.

is prepared while Rao et al. [14] have provided the related
mathematical formulations.

Table 12 and Table 13 provide the best and statistical
results of multiple optimization runs for the AOS and other
approaches in dealing with the hydro-static thrust bearing
design problem. The data demonstrate that the AOS can
provide better results than the other metaheuristics while it
yields improved statistical results in terms of mean of runs,
worst run and standard deviation values.

G. FOUR-STAGE GEAR BOX
In this design example, the weight optimization of a gear box
with four stage is considered which has 22 design variables
for determining the positions of the gear and pinion, num-
ber of teeth and blank thickness with 88 design constraints.
The complete mathematical formulation of this problem is

FIGURE 12. Visualization of the ten-bar truss example.

presented in [42]. In Table 14, the best results of the AOS
algorithm considering multiple optimization runs are pre-
sented in which the design variable are also provided for
clarification. The statistical results for the AOS and some
other metaheuristics are also presented in Table 15 for com-
parative purposes. It can be concluded that the AOS algorithm
provides competitive best and statistical results in dealing
with the four-stage gear box as a complex engineering design
problem.

H. TEN-BAR TRUSS
The weight optimization of a truss structure with ten struc-
tural elements is considered in this design example which has
ten design variables for the cross-sectional areas of structural
bars (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) with three
inequality constraints. In Fig. 19, a schematic presentation of
this constraint design problem is shown while Yu et al. [46]
provide the related mathematical formulations.

In Table 16, the best results of multiple optimization runs
for different metaheuristics including the AOS algorithm in
dealing with the ten-bar truss design example are presented.
Regarding the fact that this example is one of the well-known
real-size design examples in the structural optimization field,
there is a challenging competition in finding the optimum
weight of this truss structure. By comparing the best results
of AOS to the reported results of other alternatives, it is
concluded that AOS provides outstanding optimum values. In
addition, the statistical results of the AOS algorithm including
the mean, worst and standard deviation of multiple optimiza-
tion procedures are also provided in Table 17 for having a
valid judgment.

I. ROLLING ELEMENT BEARING
In the rolling element bearing design example, the optimum
tuning of the load-carrying capacity rolling element bearing
system is considered in which a total number of five design
variables including the ball diameter (Db), inner raceway cur-
vature coefficient (fi), total number of balls (Z ), pitch diame-
ter (Dm), the outer raceway curvature coefficient (f0) and the
specific design parameters of the system (KDmin, KDmax , ε, e,
ζ ) with nine inequality design constraints are considered in
the problem definition. In Fig. 13, a schematic presentation
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TABLE 11. Statistical results for the robot gripper problem considering different approaches.

TABLE 12. Best results of different approaches for the hydro-static thrust bearing problem.

TABLE 13. Statistical results for the hydro-static thrust bearing problem considering different approaches.

TABLE 14. Best results of different approaches for the four-stage gear
box problem.

of this constraint design problem is shown while Gupta et al.
[47] provide the related mathematical formulations.

FIGURE 13. Visualization of the rolling element bearing problem.

In Table 18, the best results of the AOS and other meta-
heuristic algorithms are presented for the rolling element
bearing design example alongside the optimum design vari-
ables. The statistical results including the mean of runs,
worst run and standard deviation of multiple optimization
runs are also provided in Table 19 for competitive pur-
poses. Based in the results, it is concluded that the AOS is
capable of providing very competitive results among other
approaches.

J. GAS TRANSMISSION COMPRESSOR
In this engineering design problem, the design optimization
of a gas transmission compressor is considered which has
four design variables with one inequality design constraint.
The complete mathematical formulation of this problem is
presented by Kumar et al. [42]. The best results of the
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TABLE 15. Statistical results for the four-stage gear box problem considering different approaches.

TABLE 16. Best results of different approaches for the ten-bar truss example.

TABLE 17. Statistical results of the AOS algorithm for the ten-bar truss problem.

TABLE 18. Best results of different approaches for the rolling element bearing example.

TABLE 19. Statistical results for the rolling element bearing problem considering different approaches.

AOS algorithm in dealing with this problem are presented in
Table 20 while the statistical results for different approaches

are also provided in Table 21 for comparative purposes. Since
the results of other metaheuristics were not provided with
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TABLE 20. Best results of different approaches for the gas transmission
compressor problem.

accurate digits, it can be concluded that the results of the AOS
is somehow better than the results of other metaheuristics.

K. TENSION OR COMPRESSION SPRING-CASE 2
This problem is an extension of the tension or compression
spring while the difference between this case and the standard
version of this problem is in the objective functions and the
design variables. In this case, the volume minimization of the
required steel wire for a helical tension or compression spring
is considered while three continuous, discrete and integer
design variables (d, D, N) are considered for problem defini-
tionwith a total number of eight inequality design constraints.
The mathematical formulation and comprehensive descrip-
tion of this constraint example is provided by He et al. [48].

In Table 22, the best result of different approaches for the
case 2 of tension or compression spring problem are provided
in which the optimum values for the design variables and
design constraints are also presented. It can be concluded that
the AOS algorithm achieves better results than the other alter-
native algorithms. The statistical results of the AOS algorithm
including the mean of runs, worst run and standard deviation
of multiple optimization runs are also included in Table 23
for a comparison.

L. GEAR TRAIN
In this design problem, the optimization of a compound gear
train is considered in which the overall ratio of the gears
is to be minimized. There are four design variables for the
number of teeth in the gears of the system (zd , zb, za, zf ) with
only one inequality design constraint. In Fig. 14, a schematic
presentation of this constraint design problem is shown while
Zelinka and Lampinen [49] provide the related mathematical
formulations.

In Table 24, the best results of the AOS and some other
metaheuristic alogirthms in dealing with the gear train design
problem are presented alongside the optimum design vari-
ables. Since the main aim of this problem is to reach a lower
ratio of the gears, the AOS is capable of providing the lowest
possible minimum value for this ratio in the optimization pro-
cess. In addition, the statistical results of different approaches
are presented in Table 25 in which the superiority of the AOS
algorithm in terms of mean of multiple runs, worst run and
standard deviation results is seen.

FIGURE 14. Visualization of the gear train problem.

M. HIMMELBLAU’S FUNCTION
Himmelblau’s function is a well-known nonlinear benchmark
constraint optimization problem which has been utilized as
test function for performance evaluation of different novel
and improved metaheuristic algorithms. This problem has
five design variables with six inequality constraints while
the complete mathematical presentation of this problem is
provided by Himmelblau [50]. In Table 26, the best results of
different metaheuristic algorithms are provided for evaluating
her overall performance of the AOS algorithm in which the
optimum design variables and design constraints are also
included. It is seen that the AOS yields acceptable results
in dealing with this problem. Statistical results of different
optimization runs including the mean of results, worst run
and standard deviation are also presented in Table 27 for
comparison.

N. TOPOLOGY OPTIMIZATION
Herein, the material layout optimization of a simply sup-
ported structural element in dealing with a predefined set
of loadings is considered. This problem has 30 design
variables which considers the geometric configuration of
the element with 30 inequality design constraints. In
Fig. 15, a schematic presentation of the problem is shown
while Sigmund [51] provides the related mathematical
formulations.

In Table 28, the best result of the AOS algorithm is
provided alongside the optimum design variables. Statis-
tical results of different metaheuristic algorithms based
on different optimization runs including the mean of
results, worst run and standard deviation values are
reported in Table 29. It is found that the AOS algo-
rithm provides improved statistical results compared to other
approaches.
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TABLE 21. Statistical results for the gas transmission compressor problem considering different approaches.

TABLE 22. Best results of different approaches for the tension or compression spring (Case 2).

TABLE 23. Statistical results of the AOS algorithm for the tension or compression spring (Case 2).

TABLE 24. Best results of different approaches for the gear train problem.

TABLE 25. Statistical results for the gear train problem considering different approaches.

O. STEEL I-SHAPED BEAM
In this design example, the minimization of vertical displace-
ment in a simply-supported steel I-shaped beam is consid-
ered in which there are four design variables including the
width of the flanges (b), height of the web (h), thickness
of the web (tw), and the thickness of the flanges (tf ) with
two inequality design constraints. In Fig. 16, a schematic
presentation of this constraint design problem is prepared

while Gandomi et al. [44] provide the related mathematical
formulations.

The best results of different optimization algorithms
including the AOS algorithm are presented in Table 30
while the optimum design variables are also included. In
addition, statistical results of different optimization runs
are also provide in Table 31 for having a valid compara-
tive investigation. It is seen that the AOS yields improved
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TABLE 26. Best results of different approaches for the Himmelblau’s function.

TABLE 27. Statistical results of AOS algorithm for the Himmelblau’s function.

FIGURE 15. Visualization of the topology optimization problem.

FIGURE 16. Visualization of the steel I-shaped beam problem.

results in dealing with this kind of complex optimization
problem.

P. PISTON LEVER
In his problem, the volume optimization of the required oil in
the piston lever is considered to optimally tune the position
of the piston. There are four design variables in this problem
including the H, B, X and D which represent the position
of the piston with only four inequality design constraints.
In Fig. 17, a schematic presentation of this constraint design
problem is prepared while Gandomi et al. [44] provide the
related mathematical formulations.

In Table 32, the best results of AOS and other metaheuristic
algorithms are presented while the statistical results includ-
ing the mean of the results, worst run and standard devia-
tion of multiple optimization runs are provided in Table 33.

TABLE 28. Best AOS result for the topology optimization problem.

By comparing the results, it is found that the AOS outranks
the other approaches.

Q. CORRUGATED BULKHEAD
In this problem, the weight minimization of a corrugated
bulkhead in tankers is considered. The problem has 4
design variables including the width (b), length (l), depth
(h) and thickness (t) of the bulkhead with 6 inequality
constraints. The problem is mathematically presented by
Gandomi et al. [44]. Table 34 reports the best results of the
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TABLE 29. Statistical results for the topology optimization problem considering different approaches.

TABLE 30. Best results of different approaches for the steel I-shaped beam problem.

TABLE 31. Statistical results for the steel I-shaped beam problem considering different approaches.

FIGURE 17. Visualization of the piston lever problem.

TABLE 32. Best results of different approaches for the piston lever
problem.

AOS and other metaheuristic algorithms including the opti-
mum design variables while the statistical results are also

provided in Table 35 for comparative purposes. It is seen that
AOS is competitive.

R. CANTILEVER BEAM
In this design example, the weight minimization of a can-
tilever beam with 5 stepped hollow square sections is consid-
ered. There are 5 design variables including the width of the
beam in different cross sections (x1, x2, x3, x4 and x5) with
only one inequality design constraints. Gandomi et al. [44]
provide the related mathematical formulations.

In Table 36, the best results of different metaheuristic
alongside the results of AOS are presented for comparative
purposes. The optimum design variables are also provided
for clarity. By comparing the obtained results of the AOS
to the results of other algorithms, it is concluded that the
AOS provides improved results. For completeness, the AOS
statistical results are presented in Table 37.

S. TUBULAR COLUMN
In this problem, the material and construction cost optimiza-
tion of a tubular column is sought. There are three design vari-
ables including the average column section thickness (t) and
average diameter of the column section (d) and six inequality
design constraints. In Fig. 18, a schematic presentation of
this problem is shown while Gandomi et al. [44] provide the
related mathematical formulations.
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TABLE 33. Statistical results for the piston lever problem considering different approaches.

TABLE 34. Best results of different approaches for the corrugated bulkhead problem.

TABLE 35. Statistical results for the corrugated bulkhead problem considering different approaches.

TABLE 36. Best results of different approaches for the cantilever beam problem.

TABLE 37. Statistical results for the cantilever beam problem considering AOS algorithm.

FIGURE 18. Visualization of the tubular column problem.

In Table 38, the best results of different metaheuristics
including the AOS algorithm are presented for comparative

FIGURE 19. Visualization of the reinforced concrete beam.

purposes while the statistical results are also presented in
Table 39 based on multiple optimization runs. It is found that
the AOS performs better in this problem.

T. REINFORCED CONCRETE BEAM
Herein, the cost optimization of a reinforced concrete beam
is sought. There are three design variables including the
steel area (As), beam depth (h) and beam width (b) and
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FIGURE 20. Convergence history of the AOS for different constraint problems.
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FIGURE 20. (Continued.) Convergence history of the AOS for different constraint problems.

TABLE 38. Best results of different approaches for the tubular column problem.

two inequality design constraints. In Fig. 19, a schematic
presentation of the problem is shown while Gandomi et al.
[44] provide the mathematical formulation.

In Table 40, the best results of different approaches includ-
ing the AOS algorithm are presented. It is seen that the AOS
provides better results than other algorithms. For complete-
ness, statistical AOS results from different optimization runs
are presented in Table 41.

V. CONVERGENCE HISTORY
In this section, the convergence behavior of the AOS algo-
rithm in dealing with the considered constraint optimization
problems is presented to demonstrate the convergence trends
of the AOS to the optimum values of the objective functions
in each of the considered problems. In Fig. 20, these con-
vergence curves are illustrated in which the best results of 25
independent runs are determined for the considered problems.
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TABLE 39. Statistical results for the tubular column problem considering different approaches.

TABLE 40. Best results of different approaches for the reinforced concrete beam problem.

TABLE 41. Statistical results for the reinforced concrete beam problem considering AOS algorithm.

VI. CONCLUSION
Optimum design of engineering problems has been addressed
in this paper by means of the Atomic Orbital Search (AOS).
The inspirational concept of this algorithm stems from the
quantum-based atomic model relying on principles of quan-
tum mechanics. For numerical investigation, 20 well-known
constrained design problems in different engineering fields
have been considered corresponding to real-life optimization
benchmark design problems. By evaluating the results of the
AOS algorithm in dealing with the considered engineering
design problems, it was found that AOS has better perfor-
mance in most cases as evidenced by comparing to the results
of other metaheuristic algorithms from the recent literature.
The maximum difference between the best optimum values
of the AOS and other approaches are about 40% for robot
gripper problem. In addition, the results of the AOS algorithm
in dealing with three of the considered design examples
including the four-stage gear box problem, rolling element
bearing and the corrugated bulkhead are very competitive
regarding the results of other approaches. The herein reported
results renders the AOS a promising approach to tackle large-
scale complex engineering optimization problems such as
optimization-driven design of building structures under grav-
itational, wind, and seismic loads [22], [25], [30], [75], [76].
Such applications are left for future work.
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