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Abstract 

 

  Starting from the solutions of the governing differential equations of motion in free vibration, 

the frequency dependent mass and stiffness matrices of bar and beam elements have been 

derived in this paper, but importantly, their equivalency with the corresponding dynamic 

stiffness matrix is established. In sharp contrast to series solutions, reported in the literature, 

explicit expressions for each term of the frequency dependent mass and stiffness matrices of 

bar and beam elements are generated in concise form through the application of symbolic 

computation and their relationship with the single dynamic stiffness matrix (which contains 

both the mass and stiffness properties) for each of the two element types is highlighted. The 

theory is demonstrated by numerical results. By splitting the dynamic stiffness matrix into 

frequency dependent mass and stiffness matrices and at the same time retaining the exactness 

of results, the investigation paves the way for future research to overcome the difficulty to 

include damping in the dynamic stiffness research which has not been possible earlier. 

Furthermore, the frequency dependent mass and stiffness matrices derived in this paper permit 

the application of the Wittrick-Williams algorithm to compute with certainty the exact natural 

frequencies of structures comprising bar and beam elements. 
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1. Introduction 

 

  The concept of frequency dependent mass and stiffness matrices for bars and beams was first 

introduced by Przemieniecki [1] more than half a century ago which he later included in his 

classical text [2]. Przemieniecki ingeniously generated the elements of the frequency dependent 

mass and stiffness matrices for bars and beams using exact shape functions obtained from the 

solution of the governing differential equations in free vibration. To this end, he successfully 

developed the expressions for the elements of both mass and stiffness matrices for bar elements 

in explicit analytical (algebraic) form, but for beam elements, the task appeared to be too 

difficult. Consequently Przemieniecki [2] resorted to series expansions of the elements of the 

mass and stiffness matrices as a function of the square of the frequency. He demonstrated how 

the natural frequencies of bar and beam elements can be obtained accurately with the help of 

the frequency dependent mass and stiffness matrices. Essentially, he truncated the frequency-

dependent series of the mass and stiffness matrices for bars and beams using just two terms in 

his expansion and he showed that even with two terms in the series, his method gives much 

better accuracy for natural frequencies than the conventional finite element method (FEM) 

which of course, uses frequency-independent mass and stiffness matrices. Przemieniecki’s 

work [1, 2] is of great significance, particularly for modal analysis in the high frequency range 

which is often required as an important prerequisite in the statistical energy analysis (SEA) 

method [3-6] because the modal density of structures in the high frequency range is usually 

very high [7, 8]. The need for high frequency vibration analysis of classical structures like bars 

and beams with great accuracy is particularly significant when carrying out energy flow 

analysis [9, 10]. For such applications, the traditional FEM which is generally most effective 

within low and perhaps medium frequency range, may give inaccurate or unreliable results. 

  Przemieniecki’s original idea of developing frequency dependent mass and stiffness matrices 

was picked up in later years by a few investigators [11-15]. For instance, Paz and Dung [11] 

carried out a theoretical investigation using a power series expansion for a beam element by 

including the effect of an axial force in their theory so that both free vibration and buckling 

analyses can be carried out. They did not present any numerical results but provided the 

expressions for the elements of the stiffness, mass and geometric matrices of beams using first 

and second order terms. Downs [12] used dynamic discretization method and generated an 

equivalent mass matrix of a beam in ascending power of the square of the frequency and 

formulated the deformation function in power series in a similar manner. He demonstrated the 



application of his method by numerical results for natural frequencies, using eight segments in 

his dynamic discretization model. Melosh and Smith [13] applied frequency-dependent mass 

and stiffness matrices of a bar element to investigate the free vibration characteristics of trusses. 

Their investigation was principally focused on bar elements and their assemblies, and they did 

not include beam elements in their analysis. By contrast, Fergusson and Pilkey [14] considered 

frequency-dependent mass matrices of structural elements solely from a theoretical standpoint 

and their theory was by and large general. They essentially showed that the Taylor series 

expansion of consistent mass matrix with appropriate stiffness matrix leads to the dynamic 

matrix, and acceptable accuracy of results can be obtained by truncating the frequency 

dependent shape function of a given order. Several years later, the method of frequency-

dependent mass and stiffness matrices for bar and beam elements based on power series 

expansion of frequencies (originally proposed by Przemieniecki [1, 2]) was further extended 

by Dumont and de Oliveira [15] when they solved the response problem of plane frames. The 

authors calculated the dynamic response for arbitrarily applied loads at nodes. They also 

calculated the response by imposing arbitrary initial displacements at some chosen nodes. 

 

  In all the above investigations including Przemieniecki’s original contribution [1, 2], the 

frequency-dependent mass and stiffness matrices for beam elements were developed in series 

form and no one appears to have made any attempt to derive explicit exact expressions for each 

of the elements of the frequency-dependent mass and stiffness matrices. The reason for this 

may be attributed to the fact that the level of complexity in such derivation is quite substantial 

in that the algebra becomes unwieldy. However, with the advent of symbolic computing [16-

19], it appears that the problem can be overcome. One of the purposes of this paper is to take 

full advantage of symbolic computation to generate explicit expressions for the elements of the 

frequency-dependent mass and stiffness matrices of bar and beam elements in an exact sense, 

without resorting to power series expansion which unavoidably leads to approximation 

resulting from truncation errors. 

  At this point, it would be instructive to introduce the readers (who are not familiar with the 

subject) to the concept of the dynamic stiffness matrix of a structural element. The concept was 

pioneered by Kolousek [20]. In simple terms, the dynamic stiffness matrix of a structural 

element is a single frequency-dependent matrix which contains both the mass and stiffness 

properties of the element and the matrix is derived from the exact shape function obtained from 

the exact solution of the governing differential equations of motion of the structural element 



undergoing free natural vibration. The dynamic stiffness matrix of a structural element 

constitutes the fundamental basis of the dynamic stiffness method (DSM) [21-25] in free 

vibration analysis for which the Wittrick-Williams algorithm [26] is generally used as solution 

technique. The assembly procedure to form the overall dynamic stiffness of the final structure 

before applying the Wittrick-Williams algorithm, is similar to that of the finite element method 

(FEM), but of course, unlike the FEM for which separate mass and stiffness matrices are 

assembled, DSM needs only one matrix, called the dynamic stiffness matrix, to assemble. The 

publications of Williams and Wittrick [27], Akesson [28], Williams and Howson [29] and 

Howson et al. [30] provide useful information about the application of the DSM in the context 

of bar and beam elements in frameworks. In a relatively recent publication, Naprstek and 

Fischer [31] presented a formulation for static and dynamic analysis of beam assembles using 

a differential system on an oriented graph. Their formulation was sufficiently general, but they 

considered the differential operators to be linear and symmetrical. It is interesting to note that 

their method had all the essential features of the DSM. In a follow-up paper [32], they gave a 

different, but important perspective of the DSM by introducing polynomial and hyperbolic 

approximations for the dynamic stiffness elements of bar and beam members. 

 

  A secondary, but important purpose of this paper is to show that the frequency dependent 

mass and stiffness matrices of bar and beam elements derived in this paper can be related to 

their corresponding dynamic stiffness matrices. The equivalency between the two systems of 

matrices has far reaching consequences in structural dynamics because it extends the 

applicability of DSM in a wider context to enable free vibration and response analyses with the 

inclusion of damping which have not been possible before.  

  Clearly, the dynamic behaviour of a structure is predominantly influenced by its mass and 

stiffness properties. In this respect, the estimation of mass properties of a structure is relatively 

easy and is generally non-controversial whereas the estimation of its stiffness properties is 

significantly harder, and often gives rise to difficulty. The frequency-dependent stiffness matrix 

used in the existing DSM does not distinguish between the mass and stiffness properties of a 

structure because it treats both properties combinedly in a unitary manner, rather than 

considering them separately. Thus, in the existing DSM, it is impossible to investigate the 

independent effects of the mass and stiffness properties of a structure when predicting its 

overall dynamic behaviour. On the contrary, the current investigation based on separate 



developments of frequency-dependent mass and stiffness matrices of a structure (and yet 

retaining the exactness of the analysis like the DSM), offers flexibility to the designers to 

manipulate the mass and stiffness properties of the structure to produce desirable dynamic 

effects. 

  Furthermore, the proposed method overcomes the limitation of the FEM in that the number 

of eigenvalues that can be meaningfully extracted in FEM is restricted to the size of the mass 

and stiffness matrices with obviously, the higher order eigenvalues becoming considerably less 

accurate. In the proposed method, the accuracy as well as the number of eigenvalues that can 

be computed are not compromised in any way, and the results are always exact and independent 

of the number of elements used in the analysis. For instance, by using a single element, any 

number of eigenvalues to any desired accuracy can be computed using the proposed method, 

which of course, is impossible in FEM. 

 

2. Problem statement and theoretical formulation 

2.1 Fundamental preliminaries 

  Within the framework of a given displacement field, the mass (m) and stiffness (k) matrices 

of a structural element can be generally derived from the consideration of the kinetic and 

potential energies. In the usual notation, m and k are given by [2, 33-35] 

𝐦 = ∫ 𝜌 𝐍T 𝐍 𝑑𝑣
𝑉

      (1) 

and  

𝐤 = ∫ 𝐁T
𝑉

 𝐃 𝐁 𝑑𝑣      (2) 

where  is the density of material for the structural element, N is the shape function which 

relates the displacements within the element to nodal displacements (Note that the boundary 

value of the shape function is either zero or one.), B is the matrix which relates the strains 

within the element to nodal displacements, D is the matrix which defines the constitutive law, 

i.e., the stress-strain relationship and the integration is carried out throughout the entire volume 

of the element. It should be noted that for one dimensional element such as a bar or a beam, 

the D matrix is effectively a matrix with only one term, i.e., it is a 1×1 matrix, containing 

simply the Young’s modulus E of the material.  



  For a uniform and prismatic bar or beam element, the volume integral of Eqs. (1) and (2) 

reduces to a single integral along the length coordinate [2, 33-35]. Thus, if X-axis is chosen to 

be the (centroidal) axis of the bar or the beam, Eqs. (1) and (2) become 

 

𝐦 = 𝜌𝐴 ∫ 𝐍T 𝐍 𝑑𝑥
𝐿

0
      (3) 

and for a bar element, 

𝐤 = 𝐸𝐴 ∫ 𝐁T 𝐁
𝐿

0
 𝑑𝑥      (4) 

whereas for a beam element, 

𝐤 = 𝐸𝐼 ∫ 𝐁T 𝐁 
𝐿

0
𝑑𝑥      (5) 

where A and I are the area and second moment of area of the bar or beam cross-section, 

respectively. 

  In the finite element formulation, the shape function N for a bar or a beam is assumed to be a 

function which depends on the length coordinate x, but importantly, the shape function is 

assumed to be frequency independent. For instance, N is assumed to be a linear function of x 

for a bar whereas it is assumed to be cubic function in x for a beam if there is no distributed 

load on the beam. In the derivation which follows, the shape function N will be formulated 

from the exact solution of the governing differential equations of motion of a bar and a beam 

undergoing free natural vibration. Clearly, N will be frequency dependent in such cases.  

  In a rectangular Cartesian coordinate system, Fig. 1 shows a bar or a beam element of length 

L with the centroidal axis coinciding with the X-axis of the coordinate system. The origin is 

taken to be at the left-hand end which will be considered as node 1 whereas the right-hand end 

at a distance L will be considered as node 2 in the subsequent text.  

                      Y 

 

 

 

 

 

 

 

 

Fig. 1. Coordinate system and notation for a bar or a beam element. 
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x 
dx 

L 

0 



2.2 Frequency dependent mass and stiffness matrices for a bar element 

  Referring to Fig. 1, the governing differential equation of a bar in axial or longitudinal 

vibration can be obtained by considering the equilibrium of an elemental length dx or by energy 

formulation using Lagrange’s equation or Hamilton’s principle. In the usual notation, the 

governing differential equation of the bar in free vibration is given by [2, 33, 36] 

𝐸𝐴
𝜕2𝑢

𝜕𝑥2 − 𝜌𝐴
𝜕2𝑢

𝜕𝑡2 = 0         (6) 

where u is the axial displacement of a point at a distance x,  is the density of the bar material, 

A is the cross-sectional area of the bar so that A represents the mass per unit length, E is the 

Young’s modulus of the bar material so that EA represents the axial or extensional rigidity of 

the bar. 

  If harmonic oscillation is assumed,  

                        𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡       (7) 

where U is the amplitude of axial displacement in longitudinal free vibration and  is the 

angular or circular frequency of oscillation. 

  Substituting Eq. (7) into Eq. (6) and introducing the non-dimensional length 𝜉 =
𝑥

𝐿
 gives  

𝑑2𝑈

𝑑𝜉2 +
𝜔2

𝑐2 𝑈 = 0       (8) 

where  

𝑐2 =
𝐸𝐴

𝜌𝐴𝐿2       (9) 

  The general solution of the differential equation, Eq. (8) is given by 

𝑈(𝜉) = 𝐴1 sin
𝜔

𝑐
𝜉 + 𝐴2 cos

𝜔

𝑐
𝜉             (10) 

where A1 and A2 are arbitrary constants of integrations. 

  Referring to Fig. 2, in which the left-hand and right-hand nodes of the bar are 1 and 2 located 

at  = 0 and 1, i.e. x = 0 and x = L, with nodal displacements U1 and U2, respectively, the 

constants A1 and A2 in Eq. (10) can now be eliminated to relate the displacement U() within 

the bar element to the nodal displacements U1 and U2. This essentially refers to the concept of 

the shape faction which in this case is exact and frequency dependent, unlike the case with the 



traditional finite element method. Thus, the relationship between U() and U1 and U2 can be 

shown as 

{𝑈(𝜉)} = [𝑁1 𝑁2] {
𝑈1

𝑈2
}               (11) 

where the frequency dependent shape functions are given by 

𝑁1 = cos
𝜔𝜉

𝑐
− sin

𝜔𝜉

𝑐
cot

𝜔

𝑐
;  𝑁2 = sin

𝜔𝜉

𝑐
cosec

𝜔

𝑐
              (12) 

 

                 U1            1                                                              2            U2 

                             (x = 0,  =0)                                       (x = L,  = 1) 

 

Fig. 2. End conditions for the displacements of a bar in axial motion 

  The strain 𝜀𝑥(𝑥) =
𝑑𝑈

𝑑𝑥
=

1

𝐿

𝑑𝑈

𝑑𝜉
 within the bar element can now be related to the nodal 

displacement U1 and U2 so that the B matrix of Eqs. (2) and (4) for the bar can be formulated. 

The strain 𝜀𝑥(𝑥) is related to nodal displacements as follows. 

{𝜀𝑥(𝑥)} =
1

𝐿
[
𝑑𝑁1

𝑑𝜉

𝑑𝑁2

𝑑𝜉
] {

𝑈1

𝑈2
} = 𝐁 {

𝑈1

𝑈2
}             (13) 

where the B matrix relating the strain within the bar to its nodal displacements is given by 

                                 𝐁 =
1

𝐿
[
𝑑𝑁1

𝑑𝜉

𝑑𝑁2

𝑑𝜉
]  

  =
𝜔

𝑐𝐿
[− (sin

𝜔𝜉

𝑐
+ cot

𝜔

𝑐
cos

𝜔𝜉

𝑐
) (cosec

𝜔

𝑐
cos

𝜔𝜉

𝑐
)]            (14) 

  Now with the help of Eqs. (3), (4), (12) and (14), the frequency dependent mass and stiffness 

matrices of the bar in axial or longitudinal vibration can be derived as follows: 

𝐦𝐚(𝜔) = 𝜌𝐴 ∫ [
𝑁1

𝑁2
] [𝑁1 𝑁2]

𝐿

0
𝑑𝑥 = 𝜌𝐴𝐿 ∫ [

𝑁1
2 𝑁1𝑁2

𝑁1𝑁2 𝑁2
2 ] 𝑑𝜉

1

0
= [

𝑚11
𝑎 𝑚12

𝑎

𝑚12
𝑎 𝑚22

𝑎 ]            (15) 

  Substituting the frequency dependent shape functions N1 and N2 from Eq. (12) into Eq. (15) 

and carrying out the integration gives the explicit algebraic expressions for the frequency 

dependent mass matrix of the bar in axial or longitudinal vibration as follows. (Note that all 



necessary algebraic manipulation required here and elsewhere in this paper was greatly assisted 

by symbolic computation [16-19].) 

𝑚11
𝑎 (𝜔) = 𝑚22

𝑎 (𝜔) =
𝜌𝐴𝐿𝑐

2𝜔
cosec

𝜔

𝑐
(
𝜔

𝑐
cosec

𝜔

𝑐
− cos

𝜔

𝑐
) ;   

                               𝑚12
𝑎 (𝜔) =  

𝜌𝐴𝐿𝑐

2𝜔
cosec

𝜔

𝑐
(1 −

𝜔

𝑐
cot

𝜔

𝑐
)               (16) 

  Similarly, the frequency dependent stiffness matrix of the bar in axial or longitudinal vibration 

can be derived with the help of Eqs. (4) and (14) to give  

      𝐤𝐚(𝜔) = 𝐸𝐴 ∫ 𝐁T𝐁
𝐿

0
𝑑𝑥 = 𝐸𝐴𝐿 ∫ 𝐁T𝐁

1

0
𝑑𝜉 =  [

𝑘11
𝑎 𝑘12

𝑎

𝑘21
𝑎 𝑘22

𝑎 ]           (17) 

where  

𝑘11
𝑎 (𝜔) = 𝑘22

𝑎 (𝜔) =
𝐸𝐴𝜔

2𝐿𝑐
cosec

𝜔

𝑐
(
𝜔

𝑐
cosec

𝜔

𝑐
+ cos

𝜔

𝑐
) ; 

                            𝑘12
𝑎 (𝜔) = 𝑘21

𝑎 (𝜔) = −
𝐸𝐴𝜔

2𝐿𝑐
cosec

𝜔

𝑐
(1 +

𝜔

𝑐
cot

𝜔

𝑐
)              (18) 

  The above frequency dependent mass and stiffness matrices 𝐦𝐚(𝜔) and 𝐤𝐚(𝜔) in axial 

motion can be related to the corresponding dynamic stiffness matrix 𝐤𝐃
𝐚 (𝜔) of the bar as 

follows. 

𝐤𝐚(𝜔) − 𝜔2𝐦𝐚(𝜔) = 𝐤𝐃
𝐚 (𝜔)               (19) 

where 𝐤𝐃
𝐚 (𝜔) is given by [29] 

𝐤𝐃
𝐚 (𝜔) =  [

𝑘11𝐷
𝑎 𝑘12𝐷

𝑎

𝑘21𝐷
𝑎 𝑘22𝐷

𝑎 ]                (20) 

with  

𝑘11𝐷
𝑎 = 𝑘22𝐷

𝑎 =
𝐸𝐴

𝐿

𝜔

𝑐
cot

𝜔

𝑐
;   𝑘12𝐷

𝑎 = 𝑘21𝐷
𝑎 = −

𝐸𝐴

𝐿

𝜔

𝑐
cosec

𝜔

𝑐
            (21) 

  In the context of the relationship between the frequency-dependent mass and stiffness 

matrices with the dynamic stiffness matrix as shown in Eq. (19), it is worth noting that Richard 

and Leung [37] gave a theorem and its proof that the partial derivative of the dynamic stiffness 

matrix with respect to the square of the frequency gives the frequency dependent mass matrix.  

  Przemieniecki [2] gave the frequency-dependent mass and stiffness matrices for a bar using 

only two terms and obtained the frequency equation in quadratic form (quadratic in terms of 



the square of the circular frequency, i.e., quadratic in 2). His frequency-dependent mass and 

stiffness matrices are given by (see pages 283 and 337 of [2]). 

𝐦𝐏
𝐚(𝜔) =

𝜌𝐴𝐿

6
[
2 1
1 2

] +
2𝜌𝐴𝐿

45
(
𝜔

𝑐
)
2

[
1

7

8
7

8
1
]              (22) 

and 

𝐤𝐏
𝐚(𝜔) =

𝐸𝐴

𝐿
[

1 −1
−1 1

] +
𝐸𝐴

45𝐿
(
𝜔

𝑐
)
4

[
1

7

8
7

8
1
]              (23) 

  Based on Eqs. (22) and (23), Przemieniecki [2] calculated the first ten natural frequencies of 

a cantilever bar using a varying number of elements in the analysis (see his Table 12.5 on page 

338). His results were better than the conventional finite element method, but understandably 

his results were approximate and dependent on the number of elements, unlike the present 

analysis in which a single element can be used to determine any number of natural frequencies 

within any desired accuracy. 

 

2.2 Frequency dependent mass and stiffness matrices for a beam element 

 

  The procedure for the derivation of the frequency-dependent mass and stiffness matrices for 

a beam element undergoing free bending (or flexural) vibration is similar, but somehow more 

complicated than that of a bar element given above. The level of complexity increases because 

of the increase in the degrees of freedom when the shape function involves both bending 

displacement and bending rotation.  Nevertheless, the approach which starts from the solution 

of the governing differential equation of motion of the element in free vibration and employing 

the shape function to obtain the frequency-dependent mass and stiffness matrices is similar.  

  The governing differential equation of motion of a beam (see Fig. 1) exhibiting free bending 

or flexural vibration in the usual notation is given by [2, 33, 36] 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 = 0                (24) 

  As was the case with axial vibration, harmonic oscillation is assumed so that 𝑤 = 𝑊𝑒𝑖𝜔𝑡and 

the non-dimensional length parameter  = x/L is introduced in Eq. (24) to give 



𝑑4𝑊

𝑑𝜉4 − 𝛽4𝑊 = 0                (25) 

where W is the amplitude of the bending or flexural vibration and  is given by  

𝛽 = √
𝜌𝐴𝐿4𝜔2

𝐸𝐼

4
                 (26) 

  The solution of the governing differential equation Eq. (25) is given by [33, 36] 

𝑊 = 𝐴1 cosh𝛽𝜉 +𝐴2 sinh 𝛽𝜉 +𝐴3cos 𝛽𝜉 +𝐴4 sin 𝛽𝜉            (27) 

where A1 – A4 are arbitrary constants of integration. 

  The slope or bending rotation  is given by 

𝛩 =
𝑑𝑊

𝑑𝑥
=

1

𝐿

𝑑𝑊

𝑑𝜉
=

𝛽

𝐿
(𝐴1 sinh𝛽𝜉 + 𝐴2 cosh𝛽𝜉 − 𝐴3 sin 𝛽𝜉 + 𝐴4 cos 𝛽𝜉)               (28) 

  Referring to Fig. 3, the end conditions (or boundary conditions) for W and  at nodes 1 and 

2 can now be applied to Eqs. (27) and (28) to eliminate the constants A1- A4. The end conditions 

are: at node 1 (x =0, i.e.  = 0), W = W1 and  = 1 and at node 2 (x = L, i.e.  = 1), W = W2 

and  = 2. In this way, the shape function which relates displacement within the element in 

terms of the nodal displacements can be obtained, particularly by taking advantage of symbolic 

computation [16-19]. 

                                     W1                                                        W2 

                               1                                                                2              

                                       1                                                       2 

                             (x = 0,  =0)                                       (x = L,  = 1) 

                 Fig. 3. End conditions for the displacements of a beam in flexural motion. 

  The task of eliminating the constants A1 – A4 from Eq. (27) and expressing the displacement 

W in terms of the nodal displacements to generate the frequency dependent shape functions 

was not easy, but this was greatly assisted by the application of symbolic computation [16-19]. 

The following relationship was obtained after expending some effort. 

{𝑊(𝜉)} = [𝑁1 𝑁2    𝑁3 𝑁4] {

𝑊1

𝛩1

𝑊2

𝛩2

}               (29) 



where the shape functions N1, N2, N3 and N4 are given by 

𝑁1 = (𝜇1 cosh𝛽𝜉 − 𝜇4 sinh 𝛽𝜉 + 𝜇2 cos 𝛽𝜉 + 𝜇4 sin 𝛽𝜉)             (30) 

𝑁2 =
𝐿

𝛽
(𝜇3 cosh𝛽𝜉 + 𝜇2 sinh 𝛽𝜉 − 𝜇3 cos 𝛽𝜉 + 𝜇1 sin 𝛽𝜉)             (31) 

𝑁3 = (−𝜇5 cosh𝛽𝜉 + 𝜇7 sinh𝛽𝜉 + 𝜇5 cos 𝛽𝜉 − 𝜇7 sin 𝛽𝜉)             (32) 

𝑁4 =
𝐿

𝛽
(𝜇6 cosh𝛽𝜉 − 𝜇5 sinh 𝛽𝜉 − 𝜇6 cos 𝛽𝜉 + 𝜇5 sin 𝛽𝜉)             (33) 

with 

𝜇1 = (cosh𝛽 cos 𝛽 + sinh 𝛽 sin 𝛽 − 1)/𝛥               (34) 

𝜇2 = (cosh 𝛽 cos 𝛽 − sinh𝛽 sin 𝛽 − 1)/𝛥               (35) 

𝜇3 = (cosh 𝛽 sin 𝛽 − sinh𝛽 cos 𝛽)/𝛥               (36) 

𝜇4 = (cosh 𝛽 sin 𝛽 + sinh𝛽 cos 𝛽)/𝛥               (37) 

𝜇5 = (cosh 𝛽 − cos 𝛽)/𝛥                 (38) 

𝜇6 = (sinh𝛽 − sin 𝛽)/𝛥                 (39) 

𝜇7 = (sinh𝛽 + sin 𝛽)/𝛥                 (40) 

𝛥 = 2(cosh𝛽 cos𝛽 − 1)                 (41) 

  The frequency-dependent mass matrix of the beam can now be derived with the help of Eq. 

(3) and the shape functions given by Eqs. (30)-(33) as follows. 

𝐦𝐛(𝜔) = 𝜌𝐴 ∫ [

𝑁1

𝑁2

𝑁3

𝑁4

] [𝑁1 𝑁2 𝑁3 𝑁4]
𝐿

0
𝑑𝑥 = 𝜌𝐴𝐿 ∫ [

𝑁1

𝑁2

𝑁3

𝑁4

] [𝑁1 𝑁2 𝑁3 𝑁4]
1

0
𝑑𝜉       (42) 

  Substituting the shape functions N1, N2, N3 and N4 from Eqs. (30)-(33) into Eq. (42) and 

performing the integration and after extensive algebraic manipulation using REDUCE [16], the 

4×4 frequency-dependent mass matrix was obtained in the following form. 

𝐦𝐛(𝜔) =

[
 
 
 
 
𝑚11

𝑏

𝑚12
𝑏

𝑚13
𝑏

𝑚14
𝑏

𝑚12
𝑏

𝑚22
𝑏

𝑚23
𝑏

𝑚24
𝑏

𝑚13
𝑏

𝑚23
𝑏

𝑚33
𝑏

𝑚34
𝑏

𝑚14
𝑏

𝑚24
𝑏

𝑚34
𝑏

𝑚44
𝑏 ]

 
 
 
 

              (43) 



The 4×4 frequency-dependent stiffness matrix follows from Eq. (5) in a similar manner to give 

𝐤𝐛(𝜔) = 𝐸𝐼 ∫ 𝐁T𝐁
𝐿

0
𝑑𝑥 = 𝐸𝐼𝐿 ∫ 𝐁T𝐁d𝜉 =

[
 
 
 
 
𝑘11

𝑏

𝑘12
𝑏

𝑘13
𝑏

𝑘14
𝑏

𝑘12
𝑏

𝑘22
𝑏

𝑘23
𝑏

𝑘24
𝑏

𝑘13
𝑏

𝑘23
𝑏

𝑘33
𝑏

𝑘34
𝑏

𝑘14
𝑏

𝑘24
𝑏

𝑘34
𝑏

𝑘44
𝑏 ]

 
 
 
 

1

0
          (44) 

where the B matrix in terms of the shape functions N1, N2, N3 and N4 is given by 

𝐁 =
1

𝐿2 [
𝑑2𝑁1

𝑑𝜉2

𝑑2𝑁2

𝑑𝜉2

𝑑2𝑁3

𝑑𝜉2

𝑑2𝑁4

𝑑𝜉2 ]              (45) 

  By extensive algebraic manipulation with the help of symbolic computation [16-19], the 

individual elements of the frequency dependent mass and stiffness matrices mb and kb were 

generated in explicit analytical form. This was indeed a formidable task, the details of which 

are not reported here for brevity, but the final expressions of the mass and stiffness elements 

are obtained in surprisingly concise form. The six independent elements of the frequency-

dependent mb and kb matrices are given below. 

   𝑚11
𝑏 (𝜔) = 𝑚33

𝑏 (𝜔) =
𝜌𝐴𝐿

2𝛽
(𝜈1𝜇5

2 − 2𝜈2𝜇5𝜇7 + 𝜈3𝜇7
2)               (46) 

    𝑚22
𝑏 (𝜔) = 𝑚44

𝑏 (ω) =
𝜌𝐴𝐿3

2𝛽3 (𝜈3𝜇5
2 − 2𝜈2𝜇5𝜇6 + 𝜈1𝜇6

2)      (47) 

    𝑚12
𝑏 (𝜔) = −𝑚34

𝑏 (𝜔) =
𝜌𝐴𝐿2

2𝛽2
{𝜈1𝜇5𝜇6 + 𝜈3𝜇5𝜇7 − 𝜈2(𝜇5

2 + 𝜇6𝜇7)}    (48) 

    𝑚13
𝑏 (𝜔) =

𝜌𝐴𝐿

2𝛽
(𝜈2𝜇4𝜇5 + 𝜈7𝜇2𝜇5 + 𝜈9𝜇2𝜇7 + 𝜈11𝜇1𝜇7 − 𝜈5𝜇1𝜇5 − 𝜈3𝜇4𝜇7)   (49) 

    𝑚14
𝑏 (𝜔) = −𝑚23

𝑏 (𝜔) =
𝜌𝐴𝐿2

2𝛽2
(𝜈3𝜇4𝜇5 + 𝜈5𝜇1𝜇6 − 𝜈2𝜇4𝜇6 − 𝜈7𝜇2𝜇6 − 𝜈9𝜇2𝜇5 − 𝜈11𝜇1𝜇5) (50) 

     𝑚24
𝑏 (𝜔) =

𝜌𝐴𝐿3

2𝛽3
(𝜈1𝜇3𝜇6 + 𝜈4𝜇2𝜇6 + 𝜈8𝜇1𝜇5 − 𝜈2𝜇3𝜇5 − 𝜈6𝜇1𝜇6 − 𝜈10𝜇2𝜇5)   (51) 

and 

    𝑘11
𝑏 (𝜔) = 𝑘33

𝑏 (𝜔) =
𝐸𝐼𝛽3

2𝐿3
(𝜈1𝜇5

2 − 2𝜈2𝜇5𝜇7 + 𝜈3𝜇7
2)               (52) 

    𝑘22
𝑏 (𝜔) = 𝑘44

𝑏 (ω) =
𝐸𝐼𝛽

2𝐿
(𝜈3𝜇5

2 − 2𝜈2𝜇5𝜇6 + 𝜈1𝜇6
2)      (53) 

    𝑘12
𝑏 (𝜔) = −𝑘34

𝑏 (𝜔) =
𝐸𝐼𝛽2

2𝐿2
{𝜈1𝜇5𝜇6 + 𝜈3𝜇5𝜇7 − 𝜈2(𝜇5

2 + 𝜇6𝜇7)}    (54) 

    𝑘13
𝑏 (𝜔) =

𝐸𝐼𝛽3

2𝐿3
(𝜈2𝜇4𝜇5 + 𝜈7𝜇2𝜇5 − 𝜈6𝜇2𝜇7 + 𝜈4𝜇1𝜇7 − 𝜈5𝜇1𝜇5 − 𝜈3𝜇4𝜇7)   (55) 

    𝑘14
𝑏 (𝜔) = −𝑘23

𝑏 (𝜔) =
𝐸𝐼𝛽2

2𝐿2
(𝜈3𝜇4𝜇5 + 𝜈5𝜇1𝜇6 − 𝜈2𝜇4𝜇6 − 𝜈7𝜇2𝜇6 + 𝜈6𝜇2𝜇5 − 𝜈4𝜇1𝜇5) (56) 

     𝑘24
𝑏 (𝜔) =

𝐸𝐼𝛽

2𝐿
(𝜈1𝜇3𝜇6 + 𝜈11𝜇2𝜇6 + 𝜈8𝜇1𝜇5 + 𝜈9𝜇1𝜇6 − 𝜈2𝜇3𝜇5 − 𝜈10𝜇2𝜇5)   (57) 



where 

𝜈1 = 𝐶2 + 2𝑗𝐶4 + 2𝑗𝐶5 + 𝐶8 + 2𝛽     (58) 

𝜈2 = 𝐶1 + 2𝑗𝐶6 − 𝐶7       (59) 

𝜈3 = 𝐶2 + 2𝑗𝐶4 − 2𝑗𝐶5 − 𝐶8      (60) 

𝜈4 = 𝐶1 − 𝐶3 + 𝑗𝐶6       (61) 

𝜈5 = 𝐶2 + 𝑗𝐶4 + 𝑗𝐶5 + 𝛽      (62) 

𝜈6 = 𝐶3 + 𝑗𝐶6 − 𝐶7       (63) 

𝜈7 = 𝑗𝐶4 + 𝑗𝐶5 + 𝐶8 + 𝛽      (64) 

𝜈8 = 𝑗𝐶4 − 𝑗𝐶5 − 𝐶8 + 𝛽      (65) 

𝜈9 = 𝐶3 − 𝑗𝐶6 + 𝐶7 − 2       (66) 

𝜈10 = 𝐶2 + 𝑗𝐶4 − 𝑗𝐶5 − 𝛽      (67) 

𝜈11 = 𝐶1 + 𝐶3 + 𝑗𝐶6 − 2      (68) 

 

with j = 1 for the elements of kb and j = −1 for the elements of mb and C1 – C8 are given by 

 

𝐶1 = cosh2 𝛽;  𝐶2 = cosh𝛽 sinh𝛽; 𝐶3 = cosh𝛽 cos𝛽 ;  𝐶4 = cosh𝛽 sin𝛽 (69) 

𝐶5 = sinh𝛽 cos𝛽 ;  𝐶6 = sinh𝛽 sin𝛽;  𝐶7 = cos2𝛽;  𝐶8 = cos𝛽 sin𝛽  (70) 

 

  The above frequency-dependent mass and stiffness matrices 𝐦𝐛(𝜔) and 𝐤𝐛(𝜔) in bending or 

flexural motion can be related to the corresponding dynamic stiffness matrix 𝐤𝐃
𝐛(𝜔) of the 

beam as follows. 

𝐤𝐛(𝜔) − 𝜔2𝐦𝐛(𝜔) = 𝐤𝐃
𝐛(𝜔)               (71) 

 

where 𝐤𝐃
𝐛(𝜔) is given by [29] 

𝐤𝐃
𝐛(𝜔) =

[
 
 
 
 
𝑘11𝐷

𝑏   

𝑘21𝐷
𝑏

𝑘31𝐷
𝑏

𝑘41𝐷
𝑏

𝑘12𝐷
𝑏   

𝑘22𝐷
𝑏

𝑘32𝐷
𝑏

𝑘42𝐷
𝑏

𝑘13𝐷
𝑏   

𝑘23𝐷
𝑏

𝑘33𝐷
𝑏

𝑘43𝐷
𝑏

𝑘14𝐷
𝑏

𝑘24𝐷
𝑏

𝑘34𝐷
𝑏

𝑘44𝐷
𝑏 ]

 
 
 
 

               (72) 

 

where 



𝑘11𝐷
𝑏 = 𝑘33𝐷

𝑏 =
𝐸𝐼𝛽3

𝐿3
(𝐶4 + 𝐶5)/(1 − 𝐶3)                 (73) 

𝑘22𝐷
𝑏 = 𝑘44𝐷

𝑏 =
𝐸𝐼𝛽

𝐿
(𝐶4 − 𝐶5)/(1 − 𝐶3)                  (74) 

𝑘12𝐷
𝑏 = 𝑘21𝐷

𝑏 = −𝑘34𝐷
𝑏 = −𝑘43𝐷

𝑏 =
𝐸𝐼𝛽2

𝐿2 𝐶6/(1 − 𝐶3)                (75) 

𝑘13𝐷
𝑏 = 𝑘31𝐷

𝑏 = −
𝐸𝐼𝛽3

𝐿3
(𝐶9 + 𝐶10)/(1 − 𝐶3)     (76) 

𝑘14𝐷
𝑏 = 𝑘41𝐷

𝑏 = −𝑘23𝐷
𝑏 = −𝑘32𝐷

𝑏 =
𝐸𝐼𝛽2

𝐿2
(𝐶12 − 𝐶11)/(1 − 𝐶3)   (77) 

𝑘24𝐷
𝑏 = 𝑘42𝐷

𝑏 =
𝐸𝐼𝛽

𝐿
(𝐶10 − 𝐶9)/(1 − 𝐶3)     (78) 

with 

𝐶9 = sin𝛽;  𝐶10 = sinh𝛽;  𝐶11 = cos𝛽;  𝐶12 = cosh𝛽    (79) 

  As was the case with a bar, Przemienicki [2] obtained the frequency-dependent mass and 

stiffness matrices for a beam using only two terms (see Eqs. 10.140-10.145 on pages 286-287 

of [2]), but he did not report any results for the natural frequencies of a beam using his method. 

His expression for the frequency-dependent mass and stiffness matrices are given below. (Note 

that there is a typographical error in Eq. 10.144 on page 287 of Przemieniecki’s book [2]. The 

second diagonal term within k0 matrix should be 4L2, not 4L.) 

𝐦𝐛(𝜔) =
𝜌𝐴𝐿

420
[

156 
22𝐿
54

−13𝐿 

 22𝐿  
4𝐿2

13𝐿
−3𝐿2 

54  
13𝐿
156

−22𝐿

−13𝐿
−3𝐿2

−22𝐿
   4𝐿2

] +

𝛽4𝜌𝐴𝐿 [

0.729746
0.153233𝐿
0.659142

−0.144386𝐿

  

0.153233𝐿
0.0325248𝐿2

0.144386𝐿
−0.0314082𝐿2

  

0.659142
0.144386𝐿
0.729746

−0.153233𝐿

  

−0.144386𝐿
−0.0314082𝐿2

−0.153233𝐿
  0.0325248𝐿2

] × 10−3               (80) 

and 

𝐤𝐛(𝜔) =
𝐸𝐼

𝐿3 [

12 
6𝐿

−12
6𝐿

     

 6𝐿  
4𝐿2 
−6𝐿
 2𝐿2  

−12 
−6𝐿

 
12

−6𝐿
  

 6𝐿
 2𝐿2

−6𝐿
 4𝐿2

] +

𝛽8 𝐸𝐼

𝐿3  [

0.364872
   0.0766162𝐿

0.329571
−0.0721933𝐿

  

0.0766162𝐿
0.0162624𝐿2

0.0721933𝐿
−0.0157041𝐿2

    

0.329571

 
0.0721933𝐿
0.364872

−0.0766162𝐿

  −0.0721933𝐿

  
−0.0157041𝐿2

−0.0766162𝐿
0.0162624𝐿2

] × 10−3              (81) 

  Although Prezemieniecki’s frequency-dependent mass and stiffness matrices shown above 

are approximate, unlike the ones derived from the current theory (which gives exact 

expressions for the elements of the matrices), it should be recognised that Prezemieniecki’s 

matrix expressions give more accurate results than the FEM [34-35]. 



  In the limiting case when the frequency parameter 𝛽 = √
𝜌𝐴𝐿4𝜔2

𝐸𝐼

4
  tends to zero, the frequency-

dependent mass and stiffness matrices derived above, become the corresponding frequency-

independent mass and stiffness matrices encountered in the FEM. However, it should be noted 

that in the explicit mass and stiffness element expressions given above, the stiffness parameter 

() must not be literally zero, but for computational purposes, a negligibly small value of the 

frequency () which defines the frequency parameter (), say  = 0.0001 rad/s, can be used 

for practical and realistic problems to capture the degenerate cases of the FEM mass and 

stiffness matrices, and thus avoiding any possible numerical overflow or ill-conditioning.  

  It is worth noting that although Kolousek [20] did not split the frequency-dependent dynamic 

stiffness matrices of bar and beam elements into corresponding frequency-dependent mass and 

stiffness matrices unlike the present paper, he nevertheless, expanded the dynamic stiffness 

matrices in terms of the frequency parameter, using many more terms in the series than the 

only two terms used by Przemieniecki [1, 2].  

  The frequency-dependent mass and stiffness matrices of the bar and beam elements derived 

above using the present theory can now be combined by superimposing Figs. 2 and 3 to give 

Fig. 4 and by using the relationship of Eqs. (15)-(18) and Eqs. (43) and (44) to enable the free 

vibration analysis of frameworks to be made. Referring to the displacement arrangements of 

Fig. 4, the frequency dependent mass and stiffness matrices with both axial and bending 

displacements can be expressed as 

𝐦(𝜔) =

[
 
 
 
 
 
 
𝑚11

𝑎 0 0    𝑚12
𝑎 0 0

0 𝑚11 
𝑏 𝑚12

𝑏 0 𝑚13
𝑏 𝑚14

𝑏

0 𝑚12
𝑏 𝑚22

𝑏 0 𝑚23
𝑏 𝑚24

𝑏

𝑚12
𝑎 0 0 𝑚22

𝑎 0 0

0 𝑚13
𝑏 𝑚23

𝑏 0 𝑚11
𝑏 −𝑚12

𝑏

0 𝑚14
𝑏 𝑚24

𝑏 0 −𝑚12
𝑏 𝑚22

𝑏 ]
 
 
 
 
 
 

    (82) 

and 

𝐤(𝜔) =

[
 
 
 
 
 
 
𝑘11

𝑎 0 0    𝑘12
𝑎 0 0

0 𝑘11 
𝑏 𝑘12

𝑏 0 𝑘13
𝑏 𝑘14

𝑏

0 𝑘12
𝑏 𝑘22

𝑏 0 𝑘23
𝑏 𝑘24

𝑏

𝑘12
𝑎 0 0 𝑘22

𝑎 0 0

0 𝑘13
𝑏 𝑘23

𝑏 0 𝑘11
𝑏 −𝑘12

𝑏

0 𝑘14
𝑏 𝑘24

𝑏 0 −𝑘12
𝑏 𝑘22

𝑏 ]
 
 
 
 
 
 

    (83) 

where the elements of m() and k() have already been defined in Eq. (16), and Eqs. (46) to 

(51) and Eq. (18) and Eqs. (52) to (57), respectively. 



 

                                     W1                                                        W2 

             U1                1                                                              2            U2  

                                       1                                                       2 

                             (x = 0,  =0)                                       (x = L,  = 1) 

Fig. 4. Beam element showing axial displacement, bending displacement, and bending rotation. 

 

3. Application of the theory 

 

The equivalency of the frequency-dependent mass and stiffness matrices of Eqs. (82) and (83) 

with the dynamic stiffness matrix enables one to formulate the dynamic stiffness 𝐤𝐃(𝝎) of a 

beam element which includes both axial and bending deformations, as follows 

𝐤𝐃(𝜔) = 𝐤(𝜔) − 𝜔2𝐦(𝜔)                (84) 

Now the frequency-dependent mass and stiffness matrices k() and m() of all individual 

elements in a structure can be assembled using the conventional transformation technique as 

generally employed in the FEM. Thus, the overall frequency dependent master mass and 

stiffness matrices K() and M() and hence the overall master dynamic stiffness matrix KD() 

of the final structure can be obtained, as follows. 

𝐊𝐃(𝜔) = 𝐊(𝜔) − 𝜔2𝐌(𝜔)                (85) 

  It is now possible to apply the well-established algorithm of Wittricks and Williams [26] to 

𝐊𝐃(𝜔) to determine the natural frequencies and the subsequent mode shapes of the structure. 

The Wittrick-Williams algorithm has been given widespread coverage in the literature and 

there are hundreds of papers on its application, see for example [21-25]. Therefore, the details 

of the working principles of the algorithm are not repeated here, but it should be noted that the 

algorithm gives with absolute certainty the number of natural frequencies that exists below an 

arbitrarily chosen trial frequency rather than calculating them directly. As successive trial 

frequencies can be chosen, one can establish the upper and lower bounds of any natural 

frequency to any desired accuracy. This simple feature of the algorithm is generally applied to 

compute the natural frequencies and then recover the mode shapes of a structure. 

 



4. Results and discussion 

 

  The first set of results was computed for a cantilever bar exhibiting axial or longitudinal 

vibration using the present theory (which utilises exact frequency-dependent mass and stiffness 

matrices and applies the Wittrick-Williams algorithm), Przemieniecki’s approximate theory 

based on quadratic frequency-dependent mass and stiffness matrices [2] and the conventional 

finite element theory [34, 35] which uses frequency-independent mass and stiffness matrices. 

The present theory gave exact results which were confirmed by the exact solution obtained 

from the solution of the governing differential equation [33, 36]. It should be noted that the 

results from the present theory are independent of the number of elements used in the analysis 

and the exact results can be obtained by using even a single element. This contrasts with 

Przemieniecki’s method [2] and the traditional FEM [34, 35] for which the results are 

dependent on the number of elements used in the analysis. 

  The first ten axial or longitudinal natural frequencies 𝜔𝑖
𝑎(𝑖 = 1, 2, 3, … 10) of the cantilever 

bar computed using Przemieniecki’s theory [2] and the finite element theory [34, 35] were 

factored by the corresponding exact natural frequencies 𝜔𝑖
𝑒(𝑖 = 1, 2, 3, . . .10) computed from 

the current theory. The ratios of the natural frequencies 
𝜔𝑖

𝑎

𝜔𝑖
𝑒  (𝑖 = 1, 2, 3, … .10) are shown in 

Table 1 for different number of elements used in Przemieniecki’s theory and the FEM. The 

ratios for the latter are shown in the parenthesis. It can be observed that Przemienicki’s theory 

which retains only two terms in the frequency-dependent mass and stiffness matrices yields 

much better results than those from the FEM, particularly with increasing number of elements. 

For instance, when using 10 elements (N = 10), Przemieniecki’s theory gives around 5% error 

in the seventh natural frequency whereas the corresponding error when using the FEM is 

around 16% when compared with the results computed using the present theory. As expected, 

the error is much larger in the FEM in relation to Przemieniecki’s method, but the error is 

expected to grow in Przemieniecki’s method when computing higher order natural frequencies 

accurately. Thus, for free vibration analysis in the high frequency range, as demanded by the 

statistical energy method [3-6], Przemieniecki’s theory [2] may not be adequate, let alone the 

FEM, when the usefulness of the present theory will become apparent. 

  Comparing results with the present (exact) theory, Fig. 5 shows percentage errors incurred in 

the fifth natural frequency of the cantilever bar when using the FEM [34, 35] and 

Przemieniecki’s method [2] for different values of the number of elements (N) used in the 



analysis. Although the error decreases with increasing number of elements, it is expected that 

in the high frequency range, the error may become unacceptably large.  

 

Table 1.  The first ten natural frequency ratios 
𝜔𝑖

𝑎

𝜔𝑖
𝑒  (𝑖 = 1, 2, 3, … .10) for a cantilever bar in 

axial or longitudinal vibration using Przemieniecki’s method [2] and conventional finite 

element method [34, 35] for a range of number of elements (N) used in the analysis.  

i 
Natural frequency ratio 

𝜔𝑖
𝑎

𝜔𝑖
𝑒 

N = 2 N = 4 N = 6 N = 8 N = 10 

1 
1.00146 

(1.02586) 

1.00009 

(1.00644) 

1.00002 

(1.00286) 

1.00001 

(1.00161) 

1.000002 

(1.00103) 

2 
1.06874 

(1.19458) 

1.00674 

(1.05832) 

1.00146 

(1.02586) 

1.00048 

(1.01451) 

1.00019 

(1.00928) 

3  1.04053 

(1.15348) 

1.00992 

(1.07191) 

1.00341 

(1.04048) 

1.00146 

(1.02586) 

4  1.08296 

(1.19145) 

1.03233 

(1.13649) 

1.01184 

(1.07918) 

1.00522 

(1.05080) 

5   1.06874 

(1.19458) 

1.02861 

(1.12791) 

1.01311 

(1.08369) 

6   1.07458 

(1.17279) 

1.05437 

(1.17693) 

1.02650 

(1.12278) 

7    1.08042 

(1.20139) 

1.04588 

(1.16329) 

8    1.06603 

(1.15942) 

1.06874 

(1.19458) 

9     1.08363 

(1.19781) 

10     1.05928 

(1.15006) 

 



 

Fig. 5. The effect of the number of elements on the percentage error incurred in the fifth 

longitudinal (axial) natural frequency of a cantilever bar using the finite element method [34, 

35] and Przemieniecki’s method [2] when compared to the present (exact) method. 

                                 Finite element method;                                 Przemieniecki’s method. 

 

  The next set of results were computed for the first fifteen natural frequencies of a cantilever 

beam in bending or flexural vibration (𝜔𝑖
𝑏;  𝑖 = 1, 2, 3, … .15) using Przemieniecki method [2] 

and FEM [34, 35] with N number of elements where N was taken to be 2, 4, 6, 8 and 10. Using 

only one element the same number of natural frequencies were computed using the present 

theory (𝜔𝑖
𝑒;  𝑖 = 1, 2, 3, … .15) which gave exact results. The ratios of the natural frequencies 

𝜔𝑖
𝑏

𝜔𝑖
𝑒  (𝑖 = 1, 2, 3, … .15) are shown in Table 2 for different values of the number of elements (N) 

used in Przemieniecki’s method and FEM. The ratios for the latter are shown in the parenthesis. 

0

2

4

6

8

10

12

14

16

18

20

6 7 8 9 10 11 12

Number of elements (N)

%
 e

rr
o
r



Table 2.  The first fifteen natural frequency ratios 
𝜔𝑖

𝑎

𝜔𝑖
𝑒  (𝑖 = 1, 2, 3, … .15) for a cantilever beam 

in bending of flexural vibration using Przemieniecki’s method [2] and FEM [34, 35] for a range 

of number of elements (N) used in the analysis.  

Frequency 

No 

(i) 

Natural frequency ratio 
𝜔𝑖

𝑏

𝜔𝑖
𝑒 

N = 2 N = 4 N = 6 N = 8 N = 10 

1 1.00000 

(1.00048) 

1.00000 

(1.00003) 

1.00000 

(1.00000) 

1.00000 

(1.00000) 

1.00000 

(1.00000) 

2 1.00043 

(1.00849) 

1.00000 

(1.00123) 

1.00000 

(1.00025) 

1.00000 

(1.00008) 

1.00000 

(1.00003) 

3 1.06309 

(1.21816) 

1.00021 

(1.00774) 

1.00001 

(1.00183) 

1.00000 

(1.00061) 

1.00000 

(1.00025 

4 1.50349 

(1.80430) 

1.00128 

(1.01452) 

1.00014 

(1.00644) 

1.00002 

(1.00224) 

1.00000 

(1.00095) 

5 
 

1.03017 

(1.14149) 

1.00083 

(1.01503) 

1.00011 

(1.00579) 

1.00002 

(1.00252) 

6 
 

1.08012 

(1.22721) 

1.00172 

(1.01666) 

1.00048 

(1.01189) 

1.00009 

(1.00540) 

7 
 

1.18967 

(1.39295) 

1.02320 

(1.12238) 

1.00148 

(1.01987) 

1.00032 

(1.00997) 

8 
 

1.44339 

(1.71670) 

1.04365 

(1.15794) 

1.00197 

(1.01767) 

1.00091 

(1.01630) 

9 
  

1.08602 

(1.23191) 

1.02026 

(1.11394) 

1.00204 

(1.02308) 

10 
  

1.15155 

(1.3399) 

1.03133 

(1.13114) 

1.00213 

(1.01317) 

11 
  

1.21888 

(1.43617) 

1.05409 

(1.17456) 

1.01866 

(1.10931) 

12 
  

1.38746 

(1.65086) 

1.08877 

(1.23421) 

1.02541 

(1.11724) 

13 
   

1.13538 

(1.30792) 

1.03993 

(1.14633) 

14 
   

1.18611 

(1.38576) 

1.06135 

(1.18616) 

15 
   

1.21052 

(1.43148) 

1.09032 

(1.23553) 



  Clearly Przemieniecki’s method though approximate unlike the present method, gives much 

better results than the FEM. For instance, the error incurred using 8 elements in 

Przemieniecki’s method is around 3% in the tenth natural frequency whereas the corresponding 

error in FEM using the same number of elements is around 13%. In comparison with the current 

exact method, Fig. 6 shows the percentage error in the fifth natural frequency of the cantilever 

beam as a function of the number of elements used in the analysis when applying 

Przemieniecki’s method and FEM, respectively.  

 

Fig. 6. The effect of the number of elements on the percentage error incurred in the fifth 

bending natural frequency of a cantilever beam using the finite element method [34, 35] and 

Przemieniecki’s method [2] when compared to the present (exact) method. 

                                 Finite element method;                                 Przemieniecki’s method. 
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  The final set of results was obtained for a three-step beam shown in Fig. 7 for which three 

degrees of freedom (U, W and ) are allowed at each node. Each of the three components AB, 

BC and CD of the beam has hollow circular cross-section with outer diameters d1, d2 and d3, 

thicknesses t1, t2 and t3 and lengths L1, L2 and L3, respectively. 

  The data used in the analysis are as follows: 

     d1 = 0.25 m,  d2 = 0.20 m,  d3 = 0.30 m,  t1 = t2 = t3 = 0.01 m,  L1 = L2 = L3 = 1 m 

The material used is steel with Young’s modulus E = 200 GPa and density  = 7850 kg/m3 

 

 

 

 

 

 

 

 

 

                      L1                                    L2                                    L3 

 

Fig. 7. A three-step beam with hollow circular cross-section and with cantilever boundary 

condition. 

 

  Two types of idealisation were used in the analysis when using FEM [34, 35] and 

Przemieniecki’s method [2]. In the first case, each of the three components AB, BC and CD of 

the beam is idealised as one element so that the total number of elements N is 3 whereas in the 

second case, each of the three components AB, BC and CD is split into two elements of equal 

length so that the total number of elements N becomes 6. Exact results were computed applying 

the present theory and by using one element for each component of the beam, i.e., N = 3. 

 

d1 d3 

d2 
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B 
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t1 
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t2 

t3 



  The first five natural frequencies of the three-step beam using N = 3 and N =6 when using 

Przemieniecki’s method [2] and FEM [34, 35] are shown in Table 3 alongside the results 

computed using the present (exact) theory. The axial and bending natural frequencies are 

identified by letters A and B as shown in the table. The percentage errors incurred when using 

Przemieniecki’s method and FEM are shown in the parenthesis. Clearly, the 6-element 

idealisation predicts the first five natural frequencies accurately by both FEM and 

Przemieniecki’s method, as shown in the table. However, when 3-element idealisation is used, 

the error in FEM can be quite large in comparison with Przemieniecki’s method. For example, 

the error in fifth natural frequency for this idealisation in FEM is 21.8% whereas in 

Przemieniecki’s method it is around (6.24%). 

 

 

Table 3. Natural frequencies of a three-step cantilever beam using finite element method, 

Przemieniecki’s method and the current method.  

 

 

i 

 

i 

(rad/s) 

 

Mode 

type 

Finite element [34, 35] and Przemieniecki’s [2] methods Present 

method 

(exact) 

3-Element Idealisation 

(N= 3) 

6-Element Idealisation 

(N= 6) 

FEM  Przemieniecki FEM Przemieniecki 

1 1 B 144.42 

(0.03%) 

144.38 

(0.00%) 

144.40 

(0.02) 

144.38 

(0.00%) 

144.38 

2  B 916.04 

(0.36%) 

912.70 

(0.00%) 

912.98 

(0.03%) 

912.65 

(0.00) 

912.65 

3 3 A 2494.6 

(1.00%) 

2470.5 

(0.02%) 

2476.1 

(0.25%) 

2469.9 

(0.00) 

2469.9 

4 4 B 2814.8 

(1.12%) 

2785.1 

(0.05%) 

2788.8 

(0.18%) 

2783.1 

(0.02%) 

2783.7 

5 5 B 7069.6 

(21.8%) 

6168.6 

(6.24%) 

5848.9 

(0.73%) 

5814.9 

(0.15%) 

5806.5 

 

 



 

 

5. Conclusions 

 

  The frequency dependent mass and stiffness matrices for bar and beam elements are derived 

in explicit algebraic forms using the exact shape functions obtained from the exact solutions of 

the governing differential equations in free vibration. The application of symbolic computation 

has broadened the scope of the investigation and made the derivation possible. The equivalency 

of the frequency dependent mass and stiffness matrices with the corresponding dynamic 

stiffness matrix is established which enabled the application of the Wittrick-Williams algorithm 

to be made when computing the natural frequencies of structures in a robust and accurate 

manner. The natural frequencies from the present theory are compared with those obtained 

from the conventional finite element theory, and Przemieniecki’s theory which used 

approximate expressions for the frequency-dependent mass and stiffness matrices. The 

accuracy of the finite element method against Przemieniecki’s method and the current method 

is assessed using illustrative numerical examples. The theory developed paves the way to 

account for the damping effect in free vibration and response analyses when using the dynamic 

stiffness method, which hitherto had not been possible. It is in the context of free vibration 

analysis of bars, beams and their assembles in the high frequency range as required in the 

statistical energy analysis method, the theory developed in this paper is expected to be most 

effective and useful. 
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