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Abstract 

In this paper, the free vibration characteristics of Sigmoid Functionally Graded Material (S-

FGM) Levy-type plates are investigated by developing the Dynamic Stiffness Method (DSM) 

through the application of the Wittrick-Williams algorithm, as solution technique. Kirchoff-

Love Plate Theory (KLPT) and Hamilton principle are utilised to derive  the governing 

equation of motion and associated natural boundary conditions. Based on two power-law 

distribution functions, the material properties are gradually varied along the thickness direction. 

Using the proposed theory, a substantial number of numerical examples showing the natural 

vibration characteristics of plates made of sigmoid functionally graded material are illustrated 

to demonstrate the accuracy of the method. Some numerical results are compared with 

published results and found to be in excellent agreement. An extensive investigation is carried 

out and the results are examined and discussed in detail. The variations of material properties 

such as the Young’s modulus ratio and density ratio are seen to affect the natural frequencies 

of S-FGM plates significantly. The proposed method is not only accurate but also, quite simple 

and straightforward to compute the natural frequencies and mode shapes of S-FGM plates. The 

results presented can be used as benchmark solution for further investigation of FGM plates. 
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1. Introduction 

 

Functionally graded materials (FGM) are in general microscopically non-homogeneous 

composites in which the material properties vary continuously and smoothly along some 

specified directions to achieve desired characteristics or functionality [1, 2]. Material scientists 

in Japan appear to be the first who conceived the concept of FGM in the early 1980s [3]. FGM 

is generally constructed to operate in a high thermal environment and consists of a combination 

of ceramic and metal in which ceramic provides high thermal resistance, and the metal resists 

large stresses [4,5]. Continuous and smooth variation of the volume fractions of the two or 

more constituent materials in FGM eliminates the debonding between the interfaces under 

extreme loading conditions unlike conventional laminated composite materials. Thus, FGM is 

being used in aerospace industry along with a number of other applications in engineering fields, 

such as, in nuclear reactors, optics, automobile, electronics, energy sources, biomedical, 

chemical, shipbuilding industry, amongst others. Computer circuit industry also makes wide use 

of FGM. Of late, it is being used in smart structures, such as, Functionally Graded Piezoelectric 

Materials (FGPM) [6,7]. An FGM plate is generally modelled by Power law (P-FGM), 

Exponential law (E-FGM) and Sigmoid law (S-FGM) distributions. Power-law distribution has 

been used by Jin and Paulino [8]; Yang and Munz [9]; Talha and Singh [10]; Uymaz et al. [11]; 

Atmane et al. [12] ; Zhao et al. [13]; Neves et al. [14] whereas exponential law distribution 

features in the works of Jin and Batra [15]; Delale and Erdogan [16]; Gu and Asaro [17]; 

Erdogan and Wu [18]; Jin and Noda [19]; Erdogan and Chen [20]. These investigators 

discussed the effects of the variation of material properties on the stress distribution and 

vibration characteristics of FGMs. However, it should be recognised that the stress 

concentrations somehow exist in one of the interfaces in both power-law and exponential law 

distributions. This is because even though the material is continuous, it rapidly changes its 

properties. To circumvent this problem, Chung and Chi [21] proposed a sigmoid functionally 

graded plate (S-FGM) where two power-law functions are used to achieve a new volume fraction. 

The merit of the sigmoid functionally graded plate lies in the fact that it can reduce stress 

concentration more effectively. Stress concentrations do not occur to any appreciable extent at 

the interface of the materials when the FGM plate is modelled by sigmoid law distributions. 

Chi and Chung [22] highlighted that the stress intensity factors of a cracked FGM plate can 

decrease substantially by using sigmoid law distribution. Additionally, they investigated the 

mechanical behavior of rectangular FGM plates under transverse load and illustrated the 

variations of the volume fraction of the constituents of the  material along the transverse 

direction  when using a power law, exponential law and sigmoid law distribution [23].  

Many researchers have studied the dynamic behavior and vibration characteristics of Sigmoid 

Functionally Graded Material (S-FGM) plates using different plate theories as explained below. 

Jung et al. [24] studied the free and forced vibration of S-FGM plates embedded on Pasternak’s 

elastic foundation based on the four-variable refined Higher Order Shear Deformation Plate 

Theory. Fazzolari [25] focused attention on the modal characteristics of both P-FGM and S-

FGM plates subjected to ultra-high temperature environment by using Hierarchical Higher 

order Equivalent Single layer Plate Theory. Jung et al. [26] computed the deflection and 

eigenvalue of S-FGM microplates resting on an elastic foundation by the modified couple stress 

theory. Wang and Zu [27] presented large amplitude frequency response of S-FGM plate 

containing porosity, based on Von Karman nonlinear plate theory. In their work, the volume 

fraction of the constituents containing porosity varied along thickness direction according to 
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the sigmoid law distribution. Wang and Zu [28] reported a nonlinear vibration analysis of 

longitudinally moving S-FGM plate based on the Von Karman nonlinear plate theory. Apart 

from the literature available on the study of S- FGM plates, there are several other publications 

on the study of the sigmoid functionally graded beam as well. For instance, the analysis 

undertaken by Ben-Oumrane et al. [29] on the static and bending analysis of S-FGM 

rectangular beam under uniformly distributed transverse load subjected to simply supported 

boundary conditions based on Aydogdu model is an appropriate example. Ebrahimi and Barati 

[30] reported the wave propagation in nanoscales S-FGM beams embedded in elastic 

foundation subjected to longitudinal magnetic field by nonlocal strain gradient theory and the 

Euler–Bernoulli beam model. 

At this juncture, it is to be pointed out that the mid-surface and neutral surface in a homogeneous 

isotropic plate generally coincide whereas in the case of the FGM plate, they do not. The reason 

for the non- coincidence in the latter is that the elastic properties vary along the transverse 

direction. In the context of the  FGM , many researchers (Yin et al. [31] ; Kim and Lee [32]; 

Lee et al. [33]; Zhang [34]; Zhang and Zhou [35]) employed the approach of the neutral surface 

variation in the constitutive equation of the FGM plate. Consequently, they found that by 

selecting a proper reference plane, the coupling between the membrane and curvature modes can 

be eliminated. Furthermore, Abrate [36] took up the issue for the mechanics of functionally 

graded plates and elaborated on their tendency to act as a homogeneous and  isotropic plate if  

the new reference plane is properly selected. In addition, Han et al. [37] carried out the dynamic 

instability analysis of sigmoid FGM plates considering physical  neutral surface resting on 

Pasternak elastic foundations based on four-variable refined plate theory. On the other hand, 

Eltaher et al. [38] determined the physical neutral axis and obtained the eigenvalues of modified 

FG nanobeams on the basis of Euler–Bernoulli beam theory. They discussed the effects of the 

nonlocal parameter, elasticity ratio and density ratio on the eigenvalues of macro and nano beams. 

Zhang [39] presented the modelling of functionally graded beams based on higher order shear 

deformation theory (HSDT) and by properly accounting for the neutral surface. Ding et al. [40] 

discussed the geometrical nonlinear vibration analysis of FG Euler Bernoulli beam in tandem 

with neutral surface lying on the elastic foundation by using Von Kármán’s plate theory. 

In the current work, the computation of eigenvalues and eigenmodes for the natural vibration 

of sigmoid functionally graded plates by an exact method known as the Dynamic Stiffness 

method (DSM) is proposed. The DSM is a powerful analytical method for free vibration 

analysis of structures and is well-known as a better alternate to the Finite Element Method 

[FEM]. The DSM has found wide applications and acceptance in recent years. It is based on 

exact shape functions, obtained from the exact solution of the governing differential equations. 

Hence, it is also called an  exact method [41]. Since, the results from this method does not depend 

on the number of elements, it ensures much better accuracy and computational efficiency[42] 

when compared with the finite element method (FEM). When dealing with high frequency 

vibration and when better accuracy is required, the use of the DSM is most effective. The basic 

building block in DSM is the frequency dependent dynamic stiffness matrix that comprises both 

mass and stiffness properties of individual elements. Unlike the FEM, there are no separate mass 

and stiffness matrices for each element in the DSM. FEM deals with linear eigenvalue problems 

whereas DSM deals with nonlinear eigenvalue problems. The elements of DSM are generally 

transcendental functions of the frequency and the application of Wittrick-Williams (W-W) 

algorithm as solution technique is extremely advantageous [43]. 
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During our research, we carried out a detailed literature review and found that the papers 

published by Banerjee and his co-workers [44–48] and Ghorbel et al [49, 50] are probably the 

most notable contributions in recent years dealing with the free vibration characteristics of 

isotropic and orthotropic plates using DSM. Others researchers namely Boscolo and Banerjee 

[51–53]; Liu and Banerjee [54, 55]; Fazzolari et al. [56]; Thinh et al. [57] successfully employed 

the DSM with the application of the Wittrick-Williams algorithm to compute the eigenvalue and 

eigenvectors of composite plates. Subsequent developments followed. For instance, Pagani et 

al.[58] formulated the DSM with the application of the Wittrick–Williams algorithm in 

computing the eigenvalue of composite beams subjected to different boundary conditions 

whereas Marjanović et al. [59] formulated the DSM for computing the eigenvalue of transversely 

isotropic multilayered rectangular plates subjected to different boundary conditions. The authors 

of [59] included the effects of various parameters such as face to core module ratio, face to core 

thickness ratio and shear deformation on the free vibration behaviour of sandwich plates. 

Employing a different approach in contrast to the previous ones, Kolarevic et al. [60] utilized the 

superposition technique and projection method to develop the DSM of rectangular plate 

assemblies. They used boundary layer function to change the three coupled Euler-Lagrange 

equations of motion into two uncoupled equations of motion. By contrast, Gupta and Talha [61] 

examined the influence of porosity on the flexural response of gradient plate using non-

polynomial higher-order shear and normal deformation theory. The results for the degenerate 

case when an orthotropic or functionally graded or porous plate boils down to an isotropic plate 

as the limiting case, can be compared with the ones reported by Leissa in his classic paper [62]. 

It is noted, after carefully going through the pertinent literature that various researchers have used 

various methods [63-66] for computing the eigenvalues and eigenmodes of FGM plates, but to 

the best of the authors’ knowledge, research leading to the analysis of free vibration 

characteristics of sigmoid functionally graded plate using the DSM has apparently not taken 

place, prior to the current one. Consequently, the novelty of the present work is principally the 

use of the DSM with the application of the Wittrick-Williams algorithm to determine the 

eigenvalues and eigenmodes of the sigmoid functionally graded plates and generate some new 

knowledge. The results obtained from the DSM are compared with published results for some 

cases. The effects of different parameters of the S-FGM plate on its free vibration characteristics 

are discussed in detail. It is observed that the results obtained from DSM are highly accurate and 

can be used as a benchmark solution for further research on S-FGM plates. 

The layout of the rest part of the paper is as follows. Following this section on introduction, 

section 2 describes the mathematical modelling for the sigmoid functionally graded plate 

considering the neutral surface. The formulation of DSM for a Levy type S- FGM plate based on 

Kirchhoff-Love plate theory is outlined in section 3. The assembly procedure for the DSM and 

application of the Wittrick–Williams algorithm are presented in section 4. Section 5 describes a 

comparative study and a parametric investigation showing the effects of material properties on 

the frequency parameters of S-FGM plates. The conclusions of the investigation are presented in 

section 6. 

2. Theory 

2.1 Mathematical modelling for sigmoid functionally graded plate 

In Fig. 1, an S-FGM plate which is an amalgamation of metal and ceramic is shown. The plate 

has a length L, width b and thickness h. The S-FGM plate comprises pure ceramic and pure metal 
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on the upper and the lower surfaces, respectively. The material density 𝜌(𝑧𝑚𝑠) and Young’s 

modulus E(𝑧𝑚𝑠) vary continuously and smoothly in the thickness direction by two power-law 

functions (sigmoid law). Note that the suffices ms and ns in this paper indicate middle surface 

and neutral surface of the plate, respectively. Poisson’s ratio is assumed to be constant because 

the influence of the Poisson’s ratio (which has a value of around 0.3 and does not vary markedly 

in metal and ceramic) on the behaviour of the FGM plate seems to be  much less signifant than 

that of the Young’s modulus and density. Several researchers  have employed the  power law, 

exponential law and sigmoid law to define the volume fractions, but in the present study as 

already mentioned sigmoid law is used to define the volume fraction of  the material.  

The sigmoid law requirement is very important because due to this assumption, the stress 

concentration more or less disappears at the interface of the materials of an S-FGM plate. The 

variation of volume fractions 𝑉𝑓(𝑧𝑚𝑠) of the constituents of the S-FGM plate  through the 

thickness  direction is given by two power law functions [21]. 

𝑉𝑓
(1)(𝑧𝑚𝑠) =

1

2
(
ℎ/2+𝑧𝑚𝑠
ℎ/2

)
𝑘
            for        − ℎ/2 ≤ 𝑧𝑚𝑠 ≤ 0

𝑉𝑓
(2)(𝑧𝑚𝑠) = 1 −

1

2
(
ℎ/2−𝑧𝑚𝑠
ℎ/2

)
𝑘
      for        0 ≤ 𝑧𝑚𝑠 ≤ ℎ/2

               (1) 

where 𝑘 denotes the non-negative material gradient index that controls the volume fraction of 

the material in the thickness direction. 

By using the rule of mixture, the material properties (P) are graded through the thickness 

direction according to the Voigt model [67-74] as follows. (Note that Ref. [74] highlighted the 

advantages and disadvantages of various models, e.g. Reuss, Voigt and Mori-Tanaka model.) 

𝑃1(𝑧𝑚𝑠) = 𝑉𝑓
(1)(𝑧𝑚𝑠)𝑃𝑐 + [1 − 𝑉𝑓

(1)(𝑧𝑚𝑠)]𝑃𝑚                 for     − ℎ/2 ≤ 𝑧𝑚𝑠 ≤ 0  

𝑃2(𝑧𝑚𝑠) = 𝑉𝑓
(2)(𝑧𝑚𝑠)𝑃𝑐 + [1 − 𝑉𝑓

(2)(𝑧𝑚𝑠)]𝑃𝑚                 for        0 ≤ 𝑧𝑚𝑠 ≤ ℎ/2      

          (2) 

where 𝑃1(𝑧𝑚𝑠) and 𝑃2(𝑧𝑚𝑠) represents the typical material properties such as Young’s modulus 

(𝐸), material density (𝜌) and Poisson’s ratio (𝜇). 𝑃c and 𝑃m are the material properties of the 

ceramic and metal, respectively. 

The Young’s modulus and material density for the S-FGM plate vary along the transverse 

direction by the two power-law distribution function as shown in Fig. 2 (a) and (b), respectively.   

2.2 Kirchoff- Love plate theory  

 According to Kirchoff- Love plate theory, the deformation field of an arbitrary point (x, y, zms) 

at any arbitrary time ‘t’ can be expressed as [62] 

𝑢(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝑚𝑠𝜑𝑦(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝑚𝑠𝜑𝑥(𝑥, 𝑦, 𝑡)                        (3) 

𝑤(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡)  =  𝑤0(𝑥, 𝑦, 𝑡) 

where, 𝑢, 𝑣, 𝑤 are the displacement field of a point on the middle plane of the plate in the 

respective 𝑥, 𝑦, 𝑧 direction, 𝑢0 and 𝑣0 are the membrane displacements and 𝑤0 is the  transverse 
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displacement of a point on the middle plane, 𝜑𝑥 and 𝜑𝑦 are the bending rotations about the 𝑥 

and 𝑦 axes, respectively.  

The strain related to the above displacement field can be expressed  as  

                                         {𝜀} = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} = {𝜀0𝑥𝑥} − 𝑧𝑚𝑠{𝑘
0
𝑥𝑥}                                                      (4) 

in which 𝜀0𝑥𝑥 and 𝑘0𝑥𝑥 are the in-plane strains, and bending and twisting curvatures, 

respectively. 

2.3  Neutral Surface  

 

Unlike homogeneous isotropic plates, the neutral surface of an S-FGM plate does not coincide 

with the mid surface of the plate. This is due to the variation of material properties along the 

thickness direction of the plate. Thus, neutral surface of an S-FGM plate will no longer be at 

the mid-surface. Figure 3 shows the position of neutral surface and middle surface for an S-

FGM plate which are separated by a distance ‘𝑎’. 

As the neutral surface  takes a new coordinate system, its position can be defined  as follows. 

                                                                 𝑧𝑚𝑠 = 𝑧𝑛𝑠 + 𝑎                             (5) 

If the governing differential equation is based on the neutral surface, the S-FGM plate can be 

handled relatively easily because the coupling between the membrane and bending deformation 

in Kirchoff-Love plate theory will not be present.  

The displacement fields which account for the position of the neutral surface are given below. 

                                    𝑢 = −𝑧𝑛𝑠
𝜕𝑤

𝜕𝑥
= −(𝑧𝑚𝑠 − 𝑎)

𝜕𝑤

𝜕𝑥
 

                                    𝑣 = −𝑧𝑛𝑠
𝜕𝑤

𝜕𝑦
= −(𝑧𝑚𝑠 − 𝑎)

𝜕𝑤

𝜕𝑦
      (6) 

                                    𝑤 = 𝑤0(𝑥, 𝑦, 𝑡)  

The expressions for strain related to the above displacement field can be written  as  

                                                                  {𝜀} = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} = −𝑧𝑛𝑠

{
 
 

 
 
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝑦}
 
 

 
 

           (7) 

In Eq. (7), 𝜀𝑥𝑥 and 𝜀𝑦𝑦  are normal strains and  𝛾
𝑥𝑦

 is the shearing strain, respectively. 

From the generalized Hooke's law, the stress is related to strain  as 

𝜎 = [𝑄]{𝜀} 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} = [

𝑄
11

𝑄
12

0

𝑄
21

𝑄
22

0

0 0 𝑄
66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾
𝑥𝑦

}        (8) 
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where 𝜎𝑥𝑥, 𝜎𝑦𝑦  and 𝜏𝑥𝑦 are the normal and shear stresses, respectively. 

The elastic constants (𝑄 = 𝑄𝑖𝑗) can be expressed as  

𝑄𝑖𝑗 =
𝐸(𝑧𝑛𝑠)

1−𝜇2
[

1 𝜇 0
𝜇 1 0

0 0
1−𝜇

2

  ]                        (9) 

where (𝑖, 𝑗 =1, 2, 6) and  is the Poisson’s ratio already defined before. 

The neutral surface is the surface in the cross-section of the plate where the material of the 

plate is not under any stress. The position of the neutral surface can be calculated by putting 

the total axial forces at the cross-section of the plate to zero, i.e 

         ∑𝐹𝑥 = ∫ 𝜎𝑥𝑥
ℎ/2−𝑎

−ℎ/2−𝑎
𝑑𝐴 = 0                                           (10) 

where 𝑑𝐴 = 𝑏𝑑𝑧𝑛𝑠 

Substituting Eq. (7) into Eq. (10) leads to 

                                                        b  ∫ 𝐸(𝑧𝑛𝑠)𝑧𝑛𝑠
𝜕2𝑤

𝜕𝑥2
𝑑

ℎ/2−𝑎

−ℎ/2−𝑎
𝑧𝑛𝑠 = 0               (11) 

where 𝑏 is the width of the plate.  

As the material properties vary along  the transverse  direction by two power-law functions, 

the above expression can be written  as: 

                         𝑏 [∫ 𝐸1(𝑧𝑛𝑠)𝑧𝑛𝑠
𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑛𝑠

0

−ℎ/2−𝑎
+ ∫ 𝐸2(𝑧𝑛𝑠)𝑧𝑛𝑠

𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑛𝑠

ℎ/2−𝑎

0
] = 0                    (12) 

By varying the integration from 𝑧𝑛𝑠 to 𝑧𝑚𝑠, Eq. (12) is written as 

        𝑏 [∫ 𝐸1(𝑧𝑚𝑠)(𝑧𝑚𝑠 − 𝑎)
𝜕2𝑤

𝜕𝑥2
0

−ℎ/2
𝑑𝑧𝑚𝑠 + ∫ 𝐸2(𝑧𝑚𝑠)(𝑧𝑚𝑠 − 𝑎)

ℎ/2

0

𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑚𝑠] = 0                  (13) 

This implies,  

𝑏 [∫ 𝐸1(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠 − 𝑎∫ 𝐸1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
0

−
ℎ

2

0

−
ℎ

2

+ ∫ 𝐸2(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠 − 𝑎
ℎ

2
0

∫ 𝐸2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
ℎ

2
0

] = 0  
 

Therefore, the location of neutral surface can be determined from the following equation 

𝑎 =
∫ 𝐸1(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠+
0
−ℎ/2 ∫ 𝐸2(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠

ℎ/2
0

∫ 𝐸1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠+∫ 𝐸2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
ℎ/2
0

0
−ℎ/2

     

                         or,                       

𝑎 =

ℎ

4
(𝐸𝑐−𝐸𝑚)+

ℎ(𝐸𝑚−𝐸𝑐)

2(𝑘+2)(𝑘+1)

(𝐸𝑐+𝐸𝑚)
   =

ℎ (
1

4
(𝐸𝑟𝑎𝑡−1)+

(1−𝐸𝑟𝑎𝑡)

2(𝑘+2)(𝑘+1)
) 

(𝐸𝑟𝑎𝑡+1)
                                               (14) 

where 

              𝐸𝑟𝑎𝑡 = 𝐸𝑐/𝐸𝑚                                                                                                                                    (14a) 
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One can notice from the Eq. (14) that the nondimensional shift (a/h) of the S-FGM plate 

depends upon the value of Young’s modulus ratio (𝐸𝑐/𝐸𝑚) and the material gradient index (k). 

The influence of the material gradient index (k) on the non-dimensional shift (a/h) for different 

𝐸𝑐/𝐸𝑚 is shown in Fig. 4. It is observed from Fig. 4 that when 𝐸𝑐/𝐸𝑚 = 1, the non-dimensional 

shift (a/h) is zero for the values of material gradient indices (k =0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20). 

This is due to the fact that the neutral surface and mid surface of the plate coincide and 

subsequently, the plate behaves like a homogeneous isotropic plate. In addition, it is apparent  

from Fig. 4 that when 𝐸𝑐/𝐸𝑚 ≠ 1, the non-dimensional shift increases significantly for  values 

of k< 2 and becomes almost constant when k increases beyond the value of 2 (i.e. the value of  

non-dimensional shift (a/h) becomes an asymptotic curve as the value of k increases for a 

specific value of 𝐸𝑐/𝐸𝑚 ). It is found that as the ratio 𝐸𝑐/𝐸𝑚  increases, the neutral surface of the 

S-FGM plate shifts from the mid-surface and approaches towards the upper surface which is rich 

in ceramic.  This happens mainly because the ceramic constituent of the S-FGM plate has higher 

stiffness than the metallic constituent.  

The material property functions and volume fractions 𝑉𝑓(𝑧𝑛𝑠) of the different types of FGM 

plates based on the neutral surface are shown in Table 1 [24].  

Considering the shift in the neutral surface, the governing equation of motion and associated 

natural boundary conditions of the S-FGM plate are obtained using Hamilton’s principle, as 

shown below.  

Governing differential equation: 

   𝐷∗ (
𝜕4𝑤0

𝜕𝑥4
+ 2

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤0

𝜕𝑦4
) + 𝐼0

𝜕2𝑤0

𝜕𝑡2
= 0   

(15) 

Natural boundary conditions: 

                                      𝑉𝑥 = −𝐷
∗ (

𝜕3𝑤0

𝜕𝑥3
+ (2 − 𝜇)

𝜕3𝑤0

𝜕𝑥𝜕𝑦2
)                                          

  𝑀𝑥𝑥 = −𝐷
∗ (

𝜕2𝑤0

𝜕𝑥2
+ 𝜇

𝜕2𝑤0

𝜕𝑦2
)                                                                                                                                 

where 𝑉𝑥  is the shear force (tranverse force), 𝑀𝑥𝑥 is the bending moment and 𝐷∗ is the effective 

flexural rigidity, 𝐼0 is inertial coefficients and 𝜇 is the Poisson’s ratio for the S-FGM plate.  The 

explicit expressions of 𝐷∗and  𝐼0 used in Eq. (15) are given in Appendix A. 

 

3. Formulation of the dynamic stiffness matrix for the S- FGM plate  

 

The steps adopted in the formulation of the DSM for the S-FGM plate are as follows:  

(i) The partial differential equation of motion (Eq. (15)) for the S- FGM plate is first solved by 

assuming harmonic oscillation, (ii)  Next, generic boundary conditions are applied to the edges 

of the Levy-type S-FGM plate for both  forces and displacements which are essentially the 

expressions of displacement, rotation, shear force and bending moment, (iii) Finally, the 

constants of integration are eliminated from the solution by establishing the relationship 

between the harmonically varying forces with those of the corresponding displacements to 

formulate the DSM. 

(16) 
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The solution of Eq. (15) is sought in the traditional Levy form, i.e. the opposite edges of the 

plate are simply supported, which satisfies the boundary conditions in the following form: 

𝑤0(𝑥, 𝑦, 𝑡) = ∑ 𝑊𝑚

∞

𝑚=1

(𝑥)𝑒𝑖𝜔𝑡 sin(𝛼𝑚𝑦) 
 

(17) 

                                                                      

where 𝜔 is the angular or circular frequency, 𝑊𝑚 is the amplitude of 𝑤0(𝑥, 𝑦, 𝑡) and  𝛼𝑚= 
𝑚𝜋

𝐿
 

Obviously, 𝑚 is the number of half sine waves in the 𝑥 -direction with 𝐿 being the length of 

the plate.  

Substituting 𝑤0(𝑥, 𝑦, 𝑡) from Eq. (17) into Eq. (15), the following ordinary differential equation 

is obtained: 

𝑑4𝑊𝑚

𝑑𝑥4
− 2𝛼𝑚

𝑑2𝑊𝑚

𝑑𝑥2
+ (𝛼𝑚

4 −
𝐼0𝜔

2

𝐷∗
)𝑊𝑚 = 0         𝑚 = 1,2,3……………∞                                                                       

 

The four roots of the auxiliary or characteristic equation of Eq. (18)  are determined  on the 

basis of the nature of the roots and clearly, there are two conditions feasible. These are 

Case 1.   𝛼𝑚 
2 ≥ 𝜔√

𝜌ℎ

𝐷∗
             All four roots are real      (𝑟1𝑚,   −𝑟1𝑚, 𝑟2𝑚, −  𝑟2𝑚  )  

 

          𝑟1𝑚 = √𝛼𝑚 2 + 𝜔√
𝜌ℎ

𝐷∗
   ,                     𝑟2𝑚 = √𝛼𝑚 

2 −𝜔√
𝜌ℎ

𝐷∗
                                               

 The solution is given by:               

𝑊𝑚(𝑥) = 𝐴𝑚 cosh(𝑟1𝑚𝑥) + 𝐵𝑚 sinh(𝑟1𝑚𝑥) + 𝐶𝑚 cosh(𝑟2𝑚𝑥) + 𝐷𝑚sinh (𝑟2𝑚𝑥)                     
                          

Case 2.   𝛼𝑚 
2 < 𝜔√

𝜌ℎ

𝐷∗
 ,      Two roots are real and two roots are imaginary  

                                          (𝑟1𝑚,   −𝑟1𝑚, 𝑖𝑟2𝑚, − 𝑖 𝑟2𝑚  ) 

 

   𝑟1𝑚 = √𝛼𝑚 2 + 𝜔√
𝜌ℎ

𝐷∗
     ,                   𝑟2𝑚 = √−𝛼𝑚 2 +𝜔√

𝜌ℎ

𝐷∗
                                                                    

The solution  is given by:  

   𝑊𝑚(𝑥) = 𝐴𝑚 cosh(𝑟1𝑚𝑥) + 𝐵𝑚 sinh(𝑟1𝑚𝑥) + 𝐶𝑚 cos(𝑟2𝑚𝑥) + 𝐷𝑚sin (𝑟2𝑚𝑥)                                   

The formulation procedure of  DSM for case 2 is shown below, but for case 1 it  is not presented 

for the sake of brevity as it is followed in a similar manner. 

The bending rotation (𝜙𝑦), shear force (𝑉𝑥)  and bending moment (𝑀𝑥𝑥) can be  obtained from 

the known displacement 𝑤0 (Eqs.(17) and (22)) resulting in the following expressions. 

(18) 

(19) 

(20) 

(21) 

(22) 
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𝜙𝑦𝑚(𝑥, 𝑦) = 𝜑𝑦𝑚(𝑥) sin(𝛼𝑚𝑦) = −{𝑟1𝑚𝐴𝑚 sinh(𝑟1𝑚𝑥) + 𝑟1𝑚𝐵𝑚 cosh(𝑟1𝑚𝑥) −

                        𝑟2𝑚𝐶𝑚 sin(𝑟2𝑚𝑥) + 𝑟2𝑚𝐷𝑚 cos(𝑟2𝑚𝑥) sin(𝛼𝑚𝑦)}                                                    (23) 

                                  

𝑉𝑥𝑚(𝑥, 𝑦) = 𝑣𝑥𝑚(𝑥) sin(𝛼𝑚𝑦) = −𝐷∗{𝐴𝑚(𝑟1𝑚
3 − (2 − μ)𝛼𝑚

2𝑟1𝑚)sinh(𝑟1𝑚𝑥) +

          𝐵𝑚 (𝑟1𝑚
3 − (2 − μ)𝛼𝑚

2𝑟1𝑚)cosh(𝑟1𝑚𝑥) + 𝐶𝑚(𝑟2𝑚
3 + (2 − μ)𝛼𝑚

2𝑟2𝑚) sin(𝑟2𝑚𝑥) −

𝐷𝑚(𝑟2𝑚
3 + (2 − μ)𝛼𝑚

2𝑟2𝑚) cos(𝑟2𝑚𝑥)) sin(𝛼𝑚𝑦)}                                                     

 

𝑀𝑥𝑥𝑚
(𝑥, 𝑦) = 𝑚𝑥𝑥𝑚

(𝑥) sin(𝛼𝑚𝑦) = −𝐷
∗{𝐴𝑚(𝑟1𝑚

2 − μ 𝛼𝑚
2)cosh(𝑟1𝑚𝑥) +

                      𝐵𝑚(𝑟1𝑚
2 − μ 𝛼𝑚

2)sinh(𝑟1𝑚𝑥) − 𝐶𝑚(𝑟2𝑚
2 + μ 𝛼𝑚

2) cos(𝑟2𝑚𝑥) −

                      𝐷𝑚(𝑟1𝑚
2 + μ 𝛼𝑚

2)) sin(𝑟2𝑚𝑥) sin(𝛼𝑚𝑦)}                                                             

                                                                                                                                                                                            

The generalized boundary conditions for displacements at both ends of the FGM plate as 

shown in Fig. 5  are:   

At              

𝑥 = 0            𝑊𝑚 = 𝑊𝑎;                 𝜑𝑦𝑚 = 𝜑𝑦𝑎

𝑥 = 𝑏            𝑊𝑚 = 𝑊𝑏;                  𝜑𝑦𝑚 = 𝜑𝑦𝑏

                                                                                 (26) 

Similarly, generalized boundary conditions for forces at both ends of the FGM plate as shown 

in Fig. 5  are: 

At                  

𝑥 = 0            𝑉 𝑥𝑚 = −𝑉𝑎;                 𝑀𝑥𝑥𝑚 = −𝑀𝑎

𝑥 = 𝑏             𝑉𝑥𝑚 = 𝑉𝑏;                      𝑀𝑥𝑥𝑚 = 𝑀𝑏

                                                                      (27) 

By applying boundary conditions of Eq. (26) for displacement given by Eqs. (22) and (23), the 

following matrix relationship is obtained as. 

                    

[
 
 
 
𝑊𝑎
𝜑𝑦𝑎
𝑊𝑏

𝜑𝑦𝑏]
 
 
 
=

[
 
 
 
1 0 1 0
0 −𝑟1𝑚 0 −𝑟2𝑚
𝐶ℎ1    𝑆ℎ1 𝐶2      𝑆2
−𝑟1𝑚𝑆ℎ1 −𝑟1𝑚𝐶ℎ1 𝑟2𝑚𝑆2 −𝑟2𝑚𝐶2]

 
 
 
[

𝐴𝑚
𝐵𝑚
𝐶𝑚
𝐷𝑚

]                                       (28) 

                      or,      

                                                               𝐗 = 𝐁𝐂                                                                               (29) 

where 
         𝐶ℎ1 = cosh(𝑟1𝑚𝑏),          𝑆ℎ1 = sinh(𝑟1𝑚𝑏)       𝐶1 = cos(𝑟1𝑚𝑏),          𝑆1 = sin(𝑟1𝑚𝑏)   

         𝐶ℎ2 = cosh(𝑟2𝑚𝑏),          𝑆ℎ2 = sinh(𝑟2𝑚𝑏)       𝐶2 = cos(𝑟2𝑚𝑏),          𝑆2 = sin(𝑟2𝑚𝑏)               
        (30) 

Similarly, by applying the boundary conditions of Eq. (27) for forces given by Eqs. (24) and 

(25), the following relationship matrix is obtained. 

(24) 

(25) 
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                            [

𝑉𝑎
𝑀𝑎

𝑉𝑏
𝑀𝑏

] = [

0 𝑅1 0      𝑅2
𝐿1 0 𝐿2      0
−𝑅1𝑆ℎ1 −𝑅1𝐶ℎ1 𝑅2𝑆 2 −𝑅2𝐶 2
−𝐿1𝐶ℎ1 −𝐿1𝑆ℎ1 −𝐿2𝐶 2 −𝐿2𝑆 2

] [

𝐴𝑚
𝐵𝑚
𝐶𝑚
𝐷𝑚

]               (31) 

or                    

                                                     𝐅 = 𝐋𝐂                                                                                                 (32) 

where 

                    𝑅𝑖 = 𝐷∗(−1)𝑖+1{𝑟𝑖𝑚
3 − (2 − 𝜇)𝛼2𝑟𝑖𝑚};              𝐿𝑖 = 𝐷∗ (−1)𝑖+1(𝑟𝑖𝑚

2 − 𝜇𝛼2)                         (33) 

with  𝑖 = 1, 2 

The relationship between the forces and displacements can now be expressed as  

                                                             F= 𝐊𝐗                                                                              (34) 

where  𝐊  is the dynamic stiffness matrix given by 

                                                              𝐊 = 𝐋𝐁−𝟏                                                                 (35) 

The six independent terms 𝑠𝑣𝑣, 𝑠𝑣𝑚, 𝑓𝑣𝑣, 𝑓
𝑣𝑚
, 𝑠𝑚𝑚, 𝑓𝑚𝑚  of the 4×4 symmetric dynamic 

stiffness form the fundamental basis of the analysis as expressed below. 

𝐊 =

[
 
 
 
𝑠𝑣𝑣    𝑠𝑣𝑚     𝑓𝑣𝑣     𝑓𝑣𝑚

   𝑠𝑚𝑚 −𝑓𝑣𝑚     𝑓𝑚𝑚
𝑆𝑦𝑚    𝑠𝑣𝑣 −𝑠𝑣𝑚

  𝑠𝑚𝑚 ]
 
 
 

 

The explicit expressions for each of the terms of the dynamic stiffness matrix K are obtained by 

using symbolic algebra through the application of Matlab and they are given in Appendix B. 

4. Assembly procedure for DSM 

Plate structures may be subdivided into many elements or substructures for which each can be  

represented by the above DSM formulation. The elemental dynamic stiffness matrix (K) as 

expressed in Eq. (36) is the basic requirement to compute the exact eigenvalues of the S-FGM 

Levy-type plate. Therefore, global DSM for the S-FGM plate structure can be assembled 

directly from the assembly of several elements. A solution for natural frequencies to any 

desired accuracy can be achieved even by using a single DS element which of course, is not 

possible in FEM. Unlike the FEM, DS elements here do not have nodal points but have nodal 

lines at the interface. The assembly procedure for DSM of  S-FGM plate is carried out in the 

same manner as it is performed in the FEM. The assembly procedure of the DSM is shown in 

Fig. 6. The overall global  master matrix will always be a banded matrix as in the case of FEM 

[44]. 

 

 

(36) 
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4.1 Boundary conditions for S-FGM plate   

The applications of boundary conditions to restrain any degrees of freedom in DSM are similar 

to that of  FEM and usually the penalty method is employed. This method generally suppresses 

the degree of freedom (DOF) by attaching a very large stiffness to the appropriate term on the 

leading diagonal of the assembled dynamic stiffness matrix.   

The following procedure is used to apply the boundary conditions. 

 Free (F): no penalty is applied.  

 Simply supported (S): transverse displacement (W) is penalized. 

 Clamped (C):  transverse displacement (W) and bending rotation (𝜑𝑦) are penalized. 

 

4.2  Application of the Wittrick –Williams algorithm 

The Wittrick–Williams algorithm [43] is generally applied as solution technique for free 

vibration analysis of structures or structural elements using DSM. The global dynamic stiffness 

matrix of the plate structure contains the transcendental  function of frequency for which the 

Wittrick–Williams algorithm is considered to be the best way to determine the natural 

frequencies without missing any. The algorithm takes into consideration the Sturm sequence 

property of the dynamic stiffness matrix which guarantees that all naural frequencies are 

computed. The computational steps involved are shown in Fig. 7 using a flow chart.  

 

5. Results and discussion 

In order to compute the eigenvalues (natural frequencies) and eigenvectors (mode shapes) of 

S-FGM plates, a MATLAB program was developed using the above theory. In this section, 

results are presented and the significances of aspect ratio (L/b), material gradient index (k), 

boundary conditions and material properties on the eigenvalues of the S-FGM plate are  

discussed. Table 2 shows properties of the material constituents of the functionally graded 

plates reported by different researchers in the literature to investigate their free vibration 

characteristics. By and large, these properties [61] are used in obtaining the results of this paper. 

The effect of different materials on the eigenvalue of the S-FGM plate is first demonstrated. 

The variations of fundamental natural frequency parameter defined in Eq. (37) below, with the 

material gradient index (k) are presented in Fig. 8 for different material constituents of the S-

FGM plate. For lower value of k, for example, k<2, the natural frequency decreases for all the 

different materials used in the analysis. However, when k increases beyond the value of 2, the 

decrease in the natural frequency becomes less noticeable. It is also observed from the figure 

that there is significant reduction in the frequency parameter for Al /Al2O3 plate with increasing 

values of k, particularly in the range 0< k <5. This is due to the large differences in the material 

properties of the constituent of the S-FGM plate, especially for the density. The figure also 

reveals the extent of the variation of the natural frequency of the plate depending  upon the type 

of material used. The plates having lower values of Young’s modulus (e.g. ZrO2/Ti-6Al-4V) 

being more flexible give lower values of natural frequencies, as expected.  
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5.1 Analysis of isotropic and S-FGM plates - a comparative study 

The  natural frequency parameters  for  the  isotropic and S-FGM  plates used in the study are 

respectively defined  in non-dimensional forms by 𝜔∗ and �̅� as follows. 

     𝜔∗ = 𝜔𝐿2√
𝜌ℎ

𝐷∗
   ;                                      �̅� =  𝜔

𝐿2

ℎ
√
𝜌𝑐

𝐸𝑐
                                                   (37) 

where 𝐸𝑐 and 𝐸𝑚 are the modulus of elasticity and 𝜌𝑐 and  𝜌𝑚 are the material density of 

ceramic and metal of the S- FGM plate respectively. 

First of all, attention is focused on the validation of results computed from the present theory. 

This is achieved by comparing the natural frequency parameters with the ones that are available 

in the literature for isotropic and S-FGM plates. A carefully selected samples of results to 

demonstrate the validation of results from different perspectives are given in Tables (3)-(5) for 

which the following material properties are used. 

𝐸𝑐=380 GPa;     𝐸𝑚 = 69 GPa;      𝜌𝑐 =3980 kg/m3;      𝜌𝑚 = 2710 kg/m3. 

Using standard notation, the number of half sine wave in the x-direction is represented by ‘𝑚’ 

while the nth eigenvalue, for a certain value of 𝑚, is denoted by ‘𝑛’ when presenting the results. 

In the first example, see Tables 3 and 4, the natural frequency parameter (𝜔∗) for the  first six 

natural frequencies of a rectangular isotropic plates for SSSS and SCSC boundary conditions 

computed by the  present theory are compared with the published results of Boscolo and 

Banerjee [44] and Leissa [62]. The results are indeed in very good agreement as can be seen. 

In the second example, see Table 5, the fundamental natural frequency parameter (�̅�1) of a 

square S-FGM plate for SSSS boundary condition computed by the present theory is compared 

with published results [24, 64, 65, 66] for different values of k and length to thickness (L/h) 

ratio. The  comparative results are those of Jung et al. [24], Hosseini-Hashemi et al. [64], Thai 

and Vo [65] and with Hosseini-Hashemi et al. [66] which are based on NTSDT, HSDT, SSDT,  

and, FSDT, respectively. The fundamental natural frequency computed by the present method 

agrees very well with published results, as can be seen in Table 5.  

 

5.2 Analysis of S-FGM plates  

Table 6 shows the first six natural frequency parameters (�̅�) of a rectangular Levy-type S-

FGM plate based on the current theory with six common boundary conditions (SSSS, SFSS, 

SFSF, SFSC, SSSC and SCSC) for different values of k. Representative values of the aspect 
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ratio L/b =2 and and thickness to length ratio h/L=0.01 are used in the data when obtaining the 

results. 

It is clear from the results in Table 6 that with increasing values of k, the  natural frequency 

parameter (�̅�) decreases for all of the boundary conditions. This is to be expected because the 

S- FGM plate has smaller ceramic constituents for higher values of k and hence its stiffness 

decreases. It is also observed that  the  natural frequency parameters (�̅�) of the S-FGM plat are 

highest for SCSC boundary condition and lowest for SFSF boundary condition for a given 

value of k. This is because, as the constraints on the edges of the plate increases, the stiffness 

of the plate increases which leads to an increase in the  natural frequency parameter (�̅�). 

Four representive mode shapes of an S-FGM square plate subjected to SSSS and SSSF 

boundary conditions for h/L=0.01, k=0.5 are presented in Figs. 9 and 10, respectively. They 

follow more or less similar trends as observed in isotropic plates, but of course, the natural 

frequency can be markedly different.  

 

5.3 A parametric investigation 

 

In the next stage of the investigation, a parametric study was carried out to examine the effects 

of different parameters such as the aspect ratio (L/b), material gradient index (k), Young’s 

modulus ratio (𝐸𝑐 𝐸𝑚⁄ ) and the density ratio (𝜌𝑐 𝜌𝑚⁄ )) on the frequency parameter of the S-

FGM plate.  

Figures 11(a) and 11(b) illustrate the variations of the fundamental natural frequency parameter 

(�̅�1) with respect to the change in the aspect ratio (L/b) for different values of k for SCSC and 

SFSF boundary conditions, respectively. Fig. 11(a) shows that with the increase in the aspect 

ratio (L/b), the fundamental natural frequency parameter (�̅�1) increases for all values of k. For 

isotropic and homogeneous plates (i.e. when k = 0 in the current theory), similar observation 

was made by Leissa, see his result in Table A2 of [62]. A similar trend for the variation of (�̅�1) 

is observed for all other boundary conditions (which are not presented here for  brevity) except 

for the SFSF case which is shown  in Fig. 11 (b) . The fundamental  natural frequency parameter 

(�̅�1) of the plate under SFSF boundary conditions decreases with the increase in the aspect 

ratio. This trend is same as that was found in isotropic homogeneous plates, see Table A6 of 

[62]. 
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In order to ascertain the effect of different boundary conditions on the fundamental natural 

frequency parameter (�̅�1) of the rectangular S- FGM plate, the variations of the fundamental 

natural frequency parameter (�̅�1) with  aspect ratio (L/b) under different boundary conditions 

are  shown in Fig. 12. The figure shows that fundamental  natural frequency parameter (�̅�1) 

increases as the aspect ratio (L/b) increases for all five boundary conditions, except for the 

SFSF boundary condition. This is in accord with the analysis carried out by Leissa [62] for 

isotropic homogeneous plates. Furthermore, it is revealed in Fig. 12 that the change of the 

fundamental natural frequency parameter (�̅�1) for the SCSC boundary condition is the highest 

and under SFSF it is the  lowest for a given (L/b) value. The fundamental  natural frequency 

parameter (�̅�1) of SCSC boundary condition has the highest value, and SFSF has the lowest 

value compared to the other boundary conditions considered in the analysis, as expected [62].  

Figures 13 (a) and (b) illustrate the variations that occur in the fundamental natural frequency 

parameter (�̅�1) of an S-FGM plate for the SSSS and SFSF boundary conditions, respectively 

due to the change in the material gradient index (k) for different values of the aspect ratio L/b. 

The figures show the trend in which the fundamental natural frequency parameter (�̅�1) 

decreases with the increase in the values of k for any specific value of the aspect ratio L/b. It is 

also observed from the figures that there is a substantial decrease in the fundamental natural 

frequency parameter (�̅�1) as the values of k approaches 5, but the decrease in the fundamental 

natural frequency parameter (�̅�1) is not so pronounced when the values of k increases further. 

The same trends were observed for the boundary conditions vis-à-vis SFSS, SFSC, SSSC, and 

SCSC which are not shown here for brevity.  

5.4 Effect of material properties  

The influence of the material properties, namely the material density () and the Young’s 

modulus (E) on the natural frequency parameter (�̅�) for the S-FGM plate is presented and 

discussed in this section. Using the variations in the Young’s modulus ratio (𝐸𝑐 𝐸𝑚⁄ ), while 

keeping material density ratio constant (i.e. 𝜌𝑐 𝜌𝑚 = 1⁄ ) brings about subsequent variations in 

the natural frequency parameter (�̅�) of the square S- FGM plate which is illustrated in Fig. 14 

for the first six modes of vibration for SCSS boundary condition. Additionally, it is noticed 

that with an increase in the Young’s modulus ratio (𝐸𝑐 𝐸𝑚⁄ ), the frequency parameter (�̅�), in 

general, decreases. However, this decrease in natural frequency is significant for lower values 

of the Young’s modulus ratio, particularly when (𝐸𝑐 𝐸𝑚⁄ ) < 5.  The validity of this statement 
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can be established by using Eq. (37), which factors in the condition that (�̅�) is inversely 

proportional to the Young’s modulus of the ceramic materials of the S-FGM plate.  

Figure 15 highligths the variations in the  natural frequency parameter (�̅�) due to the change 

in the material density ratio (𝜌𝑐 𝜌𝑚⁄ ) while keeping the Young’s modulus ratio constant 

(𝐸𝑐 𝐸𝑚⁄  =1) for the first six modes of vibration for SCSS boundary condition. An interpretation  

of the figure reveals that an increase in the frequency parameter (�̅�) is affected by an increase 

in the material density ratio (𝜌𝑐 𝜌𝑚⁄ ). The validity of this statement can be established by using 

Eq. (37), which is due to the condition that (�̅�)  is directly proportional to the material density 

of the ceramic materials of the S-FGM plate. 

Figures 16 and 17, illustrate two different cases for the variations of material properties ratio, 

namely material density and Young’s modulus ratio of the S-FGM plate on the fundamental  

natural frequency parameter (�̅�1) for different values of k for the SCSS boundary condition. 

In the first case (Fig. 16), 𝜌𝑐 𝜌𝑚⁄ is kept constant (i.e.  𝜌𝑐 𝜌𝑚 = 1⁄ ), but 𝐸𝑐 𝐸𝑚⁄  is varied 

between 1 and 40 and the corresponding effects on the fundamental natural frequency 

parameter (�̅�1) are presented. Simultaneously, it is also noted that with an increase in 𝐸𝑐 𝐸𝑚⁄ , 

there is a decrease in the fundamental natural frequency parameter (�̅�1). Moreover, from the 

figure, it is noted that the fundamental natural frequency parameter (�̅�1) decreases quite 

drastically when the value of 𝐸𝑐 𝐸𝑚⁄  lies between 1 and 10. However, when 𝐸𝑐 𝐸𝑚⁄   increases 

beyond 10, there is much less decrease in the fundamental natural frequency parameter (�̅�1). 

In the second case (Fig. 17), both the Young’s modulus ratio and the density ratio are assumed 

to be the same, i.e.  𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄   which varies from 1 to 40 and the corresponding effects 

on the fundamental natural frequency parameter (�̅�1) for the SCSS boundary condition are 

highlighted. The figure depicts the trend in which the fundamental natural frequency parameter 

(�̅�1) decreases as the 𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄   ratio increases. At this juncture, it must be noted that 

a substantial decrease in the fundamental natural frequency parameter (�̅�1) is apparent for 

𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄ <10 whereas less decrease is noted in the fundamental natural frequency 

parameter (�̅�1) beyond this value, particularly for lower value of material gradient index (k). 

The variations of the fundamental natural frequency parameter (�̅�1) of the square S- FGM 

plate with k = 0.5 and h/L = 0.01 against  𝜌𝑐 𝜌𝑚⁄  for different Young’s modulus ratio (i.e. 𝐸𝑟𝑎𝑡= 

1, 2, 5, 10, 20, 40) for SCSS boundary condition are shown in Fig. 18. 
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An inspection of the Fig. 18, highlights the fact that an increase in the values of 𝜌𝑐 𝜌𝑚  ⁄ results 

in the increase of the fundamental natural frequency parameter (�̅�1). It is also noted that the 

fundamental natural frequency parameter (�̅�1) increases significantly in the range of  1 ≤

𝜌𝑐 𝜌𝑚⁄ ≤ 10. However, the increase in the fundamental natural frequency parameter (�̅�1) is 

not so significant when 𝜌𝑐 𝜌𝑚⁄  increases beyond 10.  

 

6. Conclusions 

The dynamic stiffness method (DSM) is developed for the investigation of natural vibration 

characteristics of sigmoid FGM Levy type plate considering physical neutral surface. The DSM 

is proved to be efficient and accurate when computing the eigenvalue of both isotropic and S-

FGM plate structures. The eigenvalues obtained by the DSM with the application of the Wittrick-

Williams algorithm match very well with published results. A comprehensive set of results is 

presented. The results obtained by the present method for isotropic and S-FGM plates when 

compared with published results in the literature revealed excellent agreement. The influences 

of various plate parameters such as material gradient index, aspect ratio, boundary conditions 

and material properties on the eigenvalues of S-FGM plate are analyzed and discussed in detail. 

For all modes and aspect ratios, the eigenvalues decrease as the values of the material gradient 

index of the S- FGM plate increase. The influence of the material gradient index on the 

fundamental frequency is substantial for the lower value of the material gradient index. The 

eigenvalues increase with an increase in the aspect ratio of the plate. The eigenvalue decreases 

when constraints change from the clamped edge condition to free edge condition because of the 

decrease in stiffness. It is interesting to note that with the increase in the  𝐸𝑐 𝐸𝑚⁄  ratio, the 

fundamental frequency parameter decreases but the trends are reversed with an increment in 

𝜌𝑐 𝜌𝑚⁄ . The variations of 𝐸𝑐 𝐸𝑚⁄  and 𝜌𝑐 𝜌𝑚⁄  substantially affect the natural frequency and 

cannot be disregarded. The main contribution made in this paper is of course, the development 

of the DSM for S-FGM plates in order to provide highly accurate results for their eigenvalues 

and mode shapes. The results obtained can be used as benchmark solution to validate FEM and 

other approximate methods. 
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Appendix A 

             Explicit expressions for 𝐷∗ and  𝐼0 in equations (15) and (16) 

             

             𝐼0 = ∫ 𝜌(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠
ℎ 2−𝑎⁄

−ℎ 2−𝑎⁄
   

                = ∫ 𝜌1(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠
0

−ℎ 2−𝑎⁄
+ ∫ 𝜌2(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

0
   

= ∫ 𝜌1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

0

−ℎ 2⁄

+∫ 𝜌2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

ℎ 2⁄

0

   

= 0.5ℎ𝜌𝑐  (1 +
1

𝜌𝑟𝑎𝑡
 ) 

where 

 𝜌𝑟𝑎𝑡 =
𝜌𝑐
𝜌𝑚

 

 

𝐷∗ = ∫ 𝑧𝑛𝑠
2  𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

−ℎ 2−𝑎⁄

  = ∫ 𝑧𝑛𝑠
2  𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

0

−ℎ 2−𝑎⁄

+∫ 𝑧𝑛𝑠
2 𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

0

 

  

      = ∫ (𝑧𝑚𝑠 − 𝑎)
2𝑄11(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

0

−ℎ 2⁄

+∫ (𝑧𝑚𝑠 − 𝑎)
2𝑄11(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

ℎ 2⁄

0

   

      = 12(𝐷𝑐 𝐸𝑟𝑎𝑡⁄ )(0.5 
𝑎

ℎ
(1 − 𝐸𝑟𝑎𝑡) (

1

𝑘 + 2
−

1

𝑘 + 1
) + 

1

24
(1 + 𝐸𝑟𝑎𝑡) + 0.5 (

𝑎

ℎ
)
2

(1 + 𝐸𝑟𝑎𝑡)

+ 0.25 
𝑎

ℎ
 (1 − 𝐸𝑟𝑎𝑡)) 

where 

𝐷𝑐 = 
𝐸𝑐ℎ

3

12(1−𝜇2)
  is the flexural rigidity of the ceramic material and 𝐸𝑟𝑎𝑡 =

𝐸𝑐

𝐸𝑚
 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

Appendix B 

               Explicit expressions for the dynamic stiffness elements of equation (36) 

𝑠𝑚𝑚 = (𝐿1 − 𝐿2)(𝑟1𝑚𝐶ℎ1𝑆2 − 𝑟2𝑚𝐶2𝑆ℎ1)/∇,

𝑠𝑣𝑣 = (𝑟2𝑚𝑅1 + 𝑟1𝑚𝑅2)(𝑟2𝑚𝐶ℎ1𝑆2 + 𝑟1𝑚𝐶2𝑆ℎ1)/∇,

𝑠𝑣𝑚 = −(𝑟2𝑚(𝑅1(𝐶2
2 − 𝐶2𝐶ℎ1 + 𝑆2

2) − 𝑅2𝑆2𝑆ℎ1) − 𝑟1𝑚(𝑅1𝑆2𝑆ℎ1 − 𝑅2((𝐶2 − 𝐶ℎ1)𝐶ℎ1 + 𝑆ℎ1
2))/∇,

𝑓𝑚𝑚 = (𝐿2 − 𝐿1)(𝑟1𝑚𝑆2 − 𝑟2𝑚𝑆ℎ1)/∇,

𝑓𝑣𝑣 = (𝑟1𝑚𝑅2 − 𝑟2𝑚𝑅1)(𝑟2𝑚𝑆2 + 𝑟1𝑚𝑆ℎ1)/∇,

𝑓𝑣𝑚 = (𝐶2 − 𝐶ℎ1)(𝑟2𝑚𝑅1 − 𝑟1𝑚𝑅2)/∇,

 

 

where 

𝑅𝑖 = 𝐷
∗(−1)𝑖+1(𝑟𝑖𝑚

3 − (2 − 𝜇)𝛼2𝑟𝑖𝑚);             𝐿𝑖 = 𝐷
∗ (−1)𝑖+1(𝑟𝑖𝑚

2 − 𝜇𝛼2)        𝑖 = 1,2 

 

𝐶ℎ1 = cosh(𝑟1𝑚𝑏),          𝑆ℎ1 = sinh(𝑟1𝑚𝑏)       𝐶1 = cos(𝑟1𝑚𝑏),             𝑆1 = sin(𝑟1𝑚𝑏)  
 
𝐶ℎ2 = cosh(𝑟2𝑚𝑏),          𝑆ℎ2 = sinh(𝑟2𝑚𝑏)       𝐶2 = cos(𝑟2𝑚𝑏),          𝑆2 = sin(𝑟2𝑚𝑏)

 

and 

∇= 𝑟21𝑚𝑆2𝑆ℎ1 − 𝑟
2
2𝑚𝑆2𝑆ℎ1 + 𝑟1𝑚𝑟2𝑚((𝐶2 − 𝐶ℎ1)

2 + 𝑆2
2 − 𝑆ℎ1

2) 
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Abstract 

In this paper, the free vibration characteristics of Sigmoid Functionally Graded Material (S-

FGM) Levy-type plates are investigated by developing the Dynamic Stiffness Method (DSM) 

through the application of the Wittrick-Williams algorithm, as solution technique. Kirchoff-

Love plate theory (KLPT) and Hamilton principle are utilised to derive  the governing equation 

of motion and associated natural boundary conditions. On the basis of two power-law 

distribution functions, the material properties are gradually varied along the thickness direction. 

Using the proposed theory, a substantial number of numerical examples showing the natural 

vibration characteristics of plates made of sigmoid functionally graded material are illustrated 

to demonstrate the accuracy of the method. Some numerical results are compared with 

published results and found to be in excellent agreement. An extensive investigation is carried 

out and the results are examined and discussed in detail. The variations of material properties 

such as the Young’s modulus ratio and density ratio are seen to affect the natural frequencies 

of S-FGM plates significantly. The proposed method is not only accurate but also, quite simple 

and straightforward to compute the natural frequencies and mode shapes of S-FGM plates. The 

results presented can be used as benchmark solution for further investigation of FGM plates. 

Keywords 

Dynamic Stiffness Method; Two Power-law Functions; Wittrick-Williams Algorithm; Sigmoid 

Functionally Graded Material. 
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1. Introduction 

 

Functionally graded materials (FGM) are in general microscopically non-homogeneous 

composites in which the material properties vary continuously and smoothly along some 

specified directions to achieve desired characteristics or functionality [1, 2]. Material scientists 

in Japan appear to be the first who conceived the concept of FGM in the early 1980s [3]. FGM 

is generally constructed to operate in a high thermal environment and consists of a combination 

of ceramic and metal in which ceramic provides high thermal resistance, and the metal resists 

large stresses [4,5]. Continuous and smooth variation of the volume fractions of the two or 

more constituent materials in FGM eliminates the debonding between the interfaces under 

extreme loading conditions unlike conventional laminated composite materials. Thus, FGM is 

being used in aerospace industry along with a number of other applications in engineering fields, 

such as, in nuclear reactors, optics, automobile, electronics, energy sources, biomedical, 

chemical, shipbuilding industry, amongst others. Computer circuit industry also makes wide use 

of FGM. Of late, it is being used in smart structures, such as, Functionally Graded Piezoelectric 

Materials (FGPM) [6,7]. An FGM plate is generally modelled by Power law, Exponential law 

and Sigmoid law distributions. Power-law distribution has been used by Jin and Paulino [8]; 

Yang and Munz [9];Talha and Singh [10]; Uymaz et al. [11]; Atmane et al. [12] ; Zhao et al. 

[13]; Neves et al. [14] whereas exponential law distribution features in the works of Jin and 

Batra [15]; Delale and Erdogan [16]; Gu and Asaro [17]; Erdogan and Wu [18]; Jin and Noda 

[19]; Erdogan and Chen [20]. These investigators discussed the effects of the variation of 

material properties on the stress distribution and vibration characteristics of FGMs. However, 

it should be recognised that the stress concentrations somehow exist in one of the interfaces in 

both power-law and exponential law distributions. This is because even though the material is 

continuous, it rapidly changes its properties. To circumvent this problem, Chung and Chi [21] 

proposed a sigmoid functionally graded plate (S-FGM) where two power-law functions are used 

to achieve a new volume fraction. The merit of the sigmoid functionally graded plate lies in the 

fact that it can reduce stress concentration more effectively. Stress concentrations do not occur 

to any appreciable extent at the interface of the materials when the FGM plate is modelled by 

sigmoid law distributions. Chi and Chung [22] highlighted that the stress intensity factors of a 

cracked body of the FGM plate can decrease substantially by using sigmoid law distribution. 

In addition, they also focused their attention on the mechanical behavior of rectangular FGM 

plates under transverse load and illustrated the variations of the volume fraction of the 

constituents of the  material along the transverse direction  when using a power law, exponential 

law and sigmoid law distribution [23].  

Many researchers have studied the dynamic behavior and vibration characteristics of Sigmoid 

Functionally Graded Material (S-FGM) plates using different plate theories as explained below. 

Jung et al. [24] studied the free and forced vibration of S-FGM plates embedded on Pasternak’s 

elastic foundation based on the four-variable refined Higher Order Shear Deformation Plate 

Theory. Fazzolari [25] focused attention on the modal characteristics of both P-FGM and S-

FGM plates subjected to ultra-high temperature environment by using Hierarchical Higher 

order Equivalent Single layer Plate Theory. Jung et al. [26] computed the deflection and 

eigenvalue of S-FGM microplates resting on an elastic foundation by the modified couple stress 

theory. Wang and Zu [27] presented large amplitude frequency response of S-FGM plate 

containing porosity, based on Von Karman nonlinear plate theory. In their work, the volume 

fraction of the constituents containing porosity varied along thickness direction according to 
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the sigmoid law distribution. Wang and Zu [28] reported a nonlinear vibration analysis of 

longitudinally moving S-FGM plate based on the Von Karman nonlinear plate theory. Apart 

from the literature available on the study of S- FGM plates, there are several other publications 

on the study of the sigmoid functionally graded beam as well. For instance, the analysis 

undertaken by Ben-Oumrane et al. [29] on the static and bending analysis of S-FGM 

rectangular beam under uniformly distributed transverse load subjected to simply supported 

boundary conditions based on Aydogdu model is an appropriate example. Ebrahimi and Barati 

[30] reported the wave propagation in nanoscales S-FGM beams embedded in elastic 

foundation subjected to longitudinal magnetic field by nonlocal strain gradient theory and the 

Euler–Bernoulli beam model. 

At this juncture, it should be pointed out that the mid-surface and neutral surface in a 

homogeneous isotropic plate generally coincide whereas in the case of the FGM plate, they do 

not. The reason for the non- coincidence in the latter is that the elastic properties vary along the 

transverse direction. In the context of the  FGM , many researchers (Yin et al. [31] ; Kim and 

Lee [32]; Lee et al. [33]; Zhang [34]; Zhang and Zhou [35]) employed the approach of the neutral 

surface variation in the constitutive equation of the FGM plate. As a consequence, they found 

that by selecting a proper reference plane, the coupling between the membrane and curvature 

modes can be eliminated. Furthermore, Abrate [36] took up the issue for the mechanics of 

functionally graded plates and elaborated on their tendency to act as a homogeneous and  

isotropic plate if  the new reference plane is properly selected. In addition, Han et al. [37] carried 

out the dynamic instability analysis of sigmoid FGM plates considering physical  neutral surface 

resting on Pasternak elastic foundations based on four-variable refined plate theory. On the other 

hand, Eltaher et al. [38] determined the physical neutral axis and obtained the eigenvalues of 

modified FG nanobeams on the basis of Euler–Bernoulli beam theory. They discussed the effects 

of the nonlocal parameter, elasticity ratio and density ratio on the eigenvalues of nanobeams. 

Zhang [39] presented the modelling of functionally graded beams based on higher order shear 

deformation theory (HSDT) and by properly accounting for the neutral surface. Ding et al. [40] 

discussed the geometrical nonlinear vibration analysis of FG Euler Bernoulli beam in tandem 

with neutral surface lying on the elastic foundation by using Von Kármán’s plate theory. 

In the current work, the computation of eigenvalues and eigenmodes for the natural vibration 

of the sigmoid functionally graded plates by an exact method known as the Dynamic Stiffness 

method (DSM) is proposed. The DSM is a powerful analytical method for free vibration 

analysis of structures and is well-known as a better alternate to the Finite Element Method 

[FEM]. The DSM has found wide applications and acceptance in recent years. It is based on 

exact shape functions, obtained from the exact solution of the governing differential equations. 

Hence, it is also called an  exact method [41]. Since, the results from this method does not depend 

on the number of elements, it ensures much better accuracy and computational efficiency when 

compared with the finite element method (FEM) [42]. When dealing with high frequency 

vibration and when better accuracy is required, the use of the DSM is most effective. The basic 

building block in DSM is the frequency dependent dynamic stiffness matrix that comprises both 

mass and stiffness properties of individual elements. Unlike the FEM, there are no separate mass 

and stiffness matrices for each element in the DSM. FEM deals with linear eigenvalue problems 

whereas DSM deals with nonlinear eigenvalue problems. The elements of DSM are generally 

transcendental functions of the frequency and the application of Wittrick-Williams (W-W) 

algorithm as solution technique is extremely advantageous [43]. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

4 
 

During our research, we carried out a detailed literature review and found that the papers 

published by Banerjee and his co-workers [44–48] and Ghorbel et al [49, 50] are probably the 

most notable contributions in recent years dealing with the free vibration characteristics of 

isotropic and orthotropic plates using DSM. Others researchers namely Boscolo and Banerjee 

[51–53]; Liu and Banerjee [54, 55]; Fazzolari et al. [56]; Thinh et al. [57] successfully employed 

the DSM with the application of the Wittrick-Williams algorithm to compute the eigenvalue and 

eigenvectors of the composite plates. Subsequent developments followed. For instance, Pagani 

et al.[58] formulated the DSM with the application of the Wittrick–Williams algorithm in 

computing the eigenvalue of composite beams subjected to different boundary conditions 

whereas Marjanović et al. [59] formulated the DSM for computing the eigenvalue of transversely 

isotropic multilayered rectangular plates subjected to different boundary conditions. The authors 

of [59] included the effects of various parameters such as face to core module ratio, face to core 

thickness ratio and shear deformation on the free vibration behaviour of sandwich plates. 

Employing a different approach in contrast to the previous ones, Kolarevic et al. [60] utilized the 

superposition technique and projection method to develop the DSM of rectangular plate 

assemblies. They used boundary layer function to change the three coupled Euler-Lagrange 

equations of motion into two uncoupled equations of motion. By contrast, Gupta and Talha [61] 

examined the influence of porosity on the flexural response of gradient plate using non-

polynomial higher-order shear and normal deformation theory. 

It is noted, after carefully going through the pertinent literature that various researchers have used 

various methods for computing the eigenvalue and eigenmodes of FGM plates, but to the best of 

the authors’ knowledge, research leading to the analysis of free vibration characteristics of 

sigmoid functionally graded plate using the DSM has apparently not taken place, prior to the 

current one. Consequently, the novelty of the present work is the use of the DSM with the 

application of the Wittrick-Williams algorithm to determine the eigenvalues and eigenmodes of 

the sigmoid functionally graded plates. The results obtained from the DSM are compared with 

published results for some cases. The effects of different parameters of the S-FGM plate on its 

free vibration characteristics are discussed in detail. It is observed that the results obtained from 

DSM are highly accurate and can be used as a benchmark solution for further research on S-

FGM plates. 

The layout of the rest part of the paper are as follows: Following this section on introduction, 

section 2 describes the mathematical modelling for the sigmoid functionally graded plate 

considering the neutral surface. The formulation of DSM for a Levy type S- FGM plate based on 

Kirchhoff-Love plate theory is outlined in section 3. The assembly procedure for the DSM and 

application of the Wittrick–Williams algorithm are presented in section 4. Section 5 describes 

comparative study, parametric investigation and the effects of material properties on the 

frequency parameters of S-FGM plates. The conclusions of the investigation are presented in 

section 6. 

2. Theory 

2.1 Mathematical modelling for sigmoid functionally graded plate 

In Fig. 1, an S-FGM plate which is an amalgamation of metal and ceramic is shown. The plate 

has a length L, width b and thickness h. The S-FGM plate comprises pure ceramic and pure metal 

on the upper and the lower surfaces, respectively. The material density 𝜌(𝑧𝑚𝑠) and Young’s 

modulus E(𝑧𝑚𝑠) vary continuously and smoothly in the thickness direction by two power-law 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 
 

functions (sigmoid law). Note that the suffices ms and ns in this paper indicate middle surface 

and neutral surface of the plate, respectively. Poisson’s ratio is assumed to be constant because 

the influence of the Poisson’s ratio (which has a value of around 0.3 and does not vary markedly 

in metal and ceramic) on the behaviour of the FGM plate seems to be  much less signifant than 

that of the Young’s modulus and density. Several researchers  have employed the  power law, 

exponential law and sigmoid law to define the volume fractions, but in the present study as 

already mentioned sigmoid law is used to define the volume fraction of  the material.  

The sigmoid law requirement is very important because due to this assumption the stress 

concentration more or less disappears at the interface of the materials of an S-FGM plate. The 

variation of volume fractions 𝑉𝑓(𝑧𝑚𝑠) of the constituents of the S-FGM plate  through the 

thickness  direction is given by two power law functions [21]. 

𝑉𝑓
(1)(𝑧𝑚𝑠) =

1

2
(
ℎ/2+𝑧𝑚𝑠
ℎ/2

)
𝑘
            𝑓𝑜𝑟        − ℎ/2 ≤ 𝑧𝑚𝑠 ≤ 0

𝑉𝑓
(2)(𝑧𝑚𝑠) = 1 −

1

2
(
ℎ/2−𝑧𝑚𝑠
ℎ/2

)
𝑘
      𝑓𝑜𝑟        0 ≤ 𝑧𝑚𝑠 ≤ ℎ/2

               (1) 

where 𝑘 denotes the non-negative material gradient index that controls the volume fraction of 

the material in the thickness direction. 

By using the rule of mixture, the material properties (P) are graded through the thickness 

direction according to the Voigt model as follows.  

𝑃1(𝑧𝑚𝑠) = 𝑉𝑓
(1)(𝑧𝑚𝑠)𝑃𝑐 + [1 − 𝑉𝑓

(1)(𝑧𝑚𝑠)]𝑃𝑚                 𝑓𝑜𝑟     − ℎ/2 ≤ 𝑧𝑚𝑠 ≤ 0  

𝑃2(𝑧𝑚𝑠) = 𝑉𝑓
(2)(𝑧𝑚𝑠)𝑃𝑐 + [1 − 𝑉𝑓

(2)(𝑧𝑚𝑠)]𝑃𝑚                 𝑓𝑜𝑟        0 ≤ 𝑧𝑚𝑠 ≤ ℎ/2      

          (2) 

where 𝑃1(𝑧𝑚𝑠) and 𝑃2(𝑧𝑚𝑠) represents the typical material properties such as Young’s modulus 

(𝐸), material density (𝜌) and Poisson’s ratio (𝜇). 𝑃c and 𝑃m are the material properties of the 

ceramic and metal, respectively. 

The Young’s modulus and material density for the S-FGM plate vary along the transverse 

direction by the two power-law distribution function as shown in Fig. 2 (a) and (b), respectively.   

2.2 Kirchoff- Love plate theory  

 According to Kirchoff- Love plate theory, the deformation field of an arbitrary point (x, y, zms) 

at any arbitrary time ‘t’ can be expressed as [62] 

𝑢(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝑚𝑠𝜑𝑦(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝑚𝑠𝜑𝑥(𝑥, 𝑦, 𝑡)                        (3) 

𝑤(𝑥, 𝑦, 𝑧𝑚𝑠, 𝑡)  =  𝑤0(𝑥, 𝑦, 𝑡) 

where, 𝑢, 𝑣, 𝑤 are the displacement field of a point on the middle plane of the plate in the 

respective 𝑥, 𝑦, 𝑧 direction, 𝑢0 and 𝑣0 are the membrane displacements and 𝑤0 is the  transverse 

displacement of a point on the middle plane, 𝜑𝑥 and 𝜑𝑦 are the bending rotations about the 𝑥 

and 𝑦 axes, respectively.  
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The strain related to the above displacement field can be expressed  as  

                                         {𝜀} = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = {𝜀0𝑥𝑥} − 𝑧𝑚𝑠{𝑘

0
𝑥𝑥}                                                      (4) 

in which 𝜀0𝑥𝑥 and 𝑘0𝑥𝑥 are the in-plane strains, and bending and twisting curvatures, 

respectively. 

2.3  Neutral Surface  

 

Unlike, homogeneous isotropic plates, the neutral surface of an S-FGM plate does not coincide 

with the mid surface of the plate. This is due to the variation of material properties along the 

thickness direction of the plate. Thus, neutral surface of an S-FGM plate will no longer be at 

the mid-surface. Figure 3 shows the position of neutral surface and middle surface for an S-

FGM plate which are separated by a distance ‘𝑎’. 

As the neutral surface  takes a new coordinate system, its position can be defined  as follows. 

                                                                 𝑧𝑚𝑠 = 𝑧𝑛𝑠 + 𝑎                             (5) 

If the governing differential equation is based on the neutral surface, the S-FGM plate can be 

handled relatively easily because the coupling between the membrane and bending deformation 

in Kirchoff-Love plate theory will not be present.  

The displacement fields which account for the position of the neutral surface are given below. 

                                    𝑢 = −𝑧𝑛𝑠
𝜕𝑤

𝜕𝑥
= −(𝑧𝑚𝑠 − 𝑎)

𝜕𝑤

𝜕𝑥
 

                                    𝑣 = −𝑧𝑛𝑠
𝜕𝑤

𝜕𝑦
= −(𝑧𝑚𝑠 − 𝑎)

𝜕𝑤

𝜕𝑦
      (6) 

                                    𝑤 = 𝑤0(𝑥, 𝑦, 𝑡)  

The expressions for strain related to the above displacement field can be written  as  

                                                                  {𝜀} = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = −𝑧𝑛𝑠

{
 
 

 
 
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝑦}
 
 

 
 

           (7) 

In Eq. (7), 𝜀𝑥𝑥 and 𝜀𝑦𝑦  are normal strains and  𝛾
𝑥𝑦

 is the shearing strain, respectively. 

From the generalized Hooke's law, the stress is related to strain  as 

𝜎 = [𝑄]{𝜀} 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} = [

𝑄
11

𝑄
12

0

𝑄
21

𝑄
22

0

0 0 𝑄
66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾
𝑥𝑦

}        (8) 

where 𝜎𝑥𝑥, 𝜎𝑦𝑦  and 𝜏𝑥𝑦 are the normal and shear stresses, respectively. 
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The elastic constants (𝑄 = 𝑄𝑖𝑗) can be expressed as  

𝑄𝑖𝑗 =
𝐸(𝑧𝑛𝑠)

1−𝜇2
[

1 𝜇 0
𝜇 1 0

0 0
1−𝜇

2

  ]                        (9) 

where (𝑖, 𝑗 =1, 2, 6) and  is the Poisson’s ratio already defined before. 

The neutral surface is the surface in the cross-section of the plate where the material of the 

plate is not under any stress. The position of the neutral surface can be calculated by putting 

the total axial forces at the cross-section of the plate to zero, i.e 

         ∑𝐹𝑥 = ∫ 𝜎𝑥𝑥
ℎ/2−𝑎

−ℎ/2−𝑎
𝑑𝐴 = 0                                           (10) 

where 𝑑𝐴 = 𝑏𝑑𝑧𝑛𝑠 

Substituting Eq. (7) into Eq. (10) leads to 

                                                        b  ∫ 𝐸(𝑧𝑛𝑠)𝑧𝑛𝑠
𝜕2𝑤

𝜕𝑥2
𝑑

ℎ/2−𝑎

−ℎ/2−𝑎
𝑧𝑛𝑠 = 0               (11) 

where 𝑏 is the width of the plate.  

As the material properties vary along  the transverse  direction by two power-law functions, 

the above expression can be written  as: 

                         𝑏 [∫ 𝐸1(𝑧𝑛𝑠)𝑧𝑛𝑠
𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑛𝑠

0

−ℎ/2−𝑎
+ ∫ 𝐸2(𝑧𝑛𝑠)𝑧𝑛𝑠

𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑛𝑠

ℎ/2−𝑎

0
] = 0                    (12) 

By varying the integration from 𝑧𝑛𝑠 to 𝑧𝑚𝑠, Eq. (12) is written as 

        𝑏 [∫ 𝐸1(𝑧𝑚𝑠)(𝑧𝑚𝑠 − 𝑎)
𝜕2𝑤

𝜕𝑥2
0

−ℎ/2
𝑑𝑧𝑚𝑠 + ∫ 𝐸2(𝑧𝑚𝑠)(𝑧𝑚𝑠 − 𝑎)

ℎ/2

0

𝜕2𝑤

𝜕𝑥2
𝑑𝑧𝑚𝑠] = 0                  (13) 

This implies,  

𝑏 [∫ 𝐸1(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠 − 𝑎∫ 𝐸1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
0

−
ℎ

2

0

−
ℎ

2

+ ∫ 𝐸2(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠 − 𝑎
ℎ

2
0

∫ 𝐸2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
ℎ

2
0

] = 0  
 

Therefore, the location of neutral surface can be determined from the following equation 

𝑎 =
∫ 𝐸1(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠+
0
−ℎ/2 ∫ 𝐸2(𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠

ℎ/2
0

∫ 𝐸1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠+∫ 𝐸2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
ℎ/2
0

0
−ℎ/2

     

                         or,                       

𝑎 =

ℎ

4
(𝐸𝑐−𝐸𝑚)+

ℎ(𝐸𝑚−𝐸𝑐)

2(𝑘+2)(𝑘+1)

(𝐸𝑐+𝐸𝑚)
   =

ℎ (
1

4
(𝐸𝑟𝑎𝑡−1)+

(1−𝐸𝑟𝑎𝑡)

2(𝑘+2)(𝑘+1)
) 

(𝐸𝑟𝑎𝑡+1)
                                               (14) 

where 

              𝐸𝑟𝑎𝑡 = 𝐸𝑐/𝐸𝑚                                                                                                                                    (14a) 

One can notice from the Eq. (14) that the nondimensional shift (a/h) of the S-FGM plate 

depends upon the value of Young’s modulus ratio (𝐸𝑐/𝐸𝑚) and the material gradient index (k). 

The influence of the material gradient index (k) on the non-dimensional shift (a/h) for different  
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𝐸𝑐/𝐸𝑚 is shown in Fig. 4. It is observed from Fig. 4 that when 𝐸𝑐/𝐸𝑚 = 1, the non-dimensional 

shift (a/h) is zero for the values of material gradient indices (k =0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20). 

This is due to the fact that, the neutral surface and mid surface of the plate coincide and 

subsequently, the plate behaves like a homogeneous isotropic plate. In addition, it is apparent  

from Fig. 4 that when 𝐸𝑐/𝐸𝑚 ≠ 1, the non-dimensional shift increases significantly for  values 

of k< 2 and becomes almost constant when k increases beyond the value of 2 (i.e. the value of  

non-dimensional shift (a/h) becomes an asymptotic curve as the value of k increases for a 

specific value of 𝐸𝑐/𝐸𝑚 ). It is found that as the ratio 𝐸𝑐/𝐸𝑚  increases, the neutral surface of the 

S-FGM plate shifts from the mid-surface and approaches towards the upper surface which is rich 

in ceramic.  This happens mainly because the ceramic constituent of the S-FGM plate has higher 

stiffness than the metallic constituent.  

The material property functions and volume fractions 𝑉𝑓(𝑧𝑛𝑠) of the different types of FGM 

plates based on the neutral surface are shown in Table 1 [24].  

Considering the shift in the neutral surface, the governing equation of motion and associated 

natural boundary conditions of the S-FGM plate are obtained using Hamilton’s principle, as 

shown below.  

Governing differential equation: 

   𝐷∗ (
𝜕4𝑤0

𝜕𝑥4
+ 2

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤0

𝜕𝑦4
) + 𝐼0

𝜕2𝑤0

𝜕𝑡2
= 0   

(15) 

 

Natural boundary conditions: 

                                      𝑉𝑥 = −𝐷
∗ (
𝜕3𝑤0

𝜕𝑥3
+ (2 − 𝜇)

𝜕3𝑤0

𝜕𝑥𝜕𝑦2
) 𝛿𝑤0                                          

  𝑀𝑥𝑥 = −𝐷
∗ (
𝜕2𝑤0

𝜕𝑥2
+ 𝜇

𝜕2𝑤0

𝜕𝑦2
) 𝛿𝜑𝑦                                                                                                                                  

where 𝑉𝑥  is the shear force (tranverse force), 𝑀𝑥𝑥 is the bending moment and 𝐷∗ is the effective 

flexural rigidity, 𝐼0 is inertial coefficients and 𝜇 is the Poisson’s ratio for the S-FGM plate.  The 

explicit expressions of 𝐷∗and  𝐼0 used in Eq. (15) are given in Appendix A. 

 

3. Formulation of the dynamic stiffness matrix for the S- FGM plate  

 

The steps adopted in the formulation of the DSM for the S-FGM plate are as follows:  

(i) The partial differential equation of motion (Eq. (15)) for the S- FGM plate is first solved by 

assuming harmonic oscillation, (ii)  Next, generic boundary conditions are applied to the edges 

of the Levy-type S-FGM plate for both  forces and displacements which are essentially the 

expressions of displacement, rotation, shear force and bending moment, (iii) Finally, the 

constants of integration are eliminated from the solution by establishing the relationship 

between the harmonically varying forces with those of the corresponding displacements to 

formulate the DSM. 

The solution of Eq. (15) is sought in the traditional Levy form, i.e. the opposite edges of the 

plate are simply supported, which satisfies the boundary conditions in the following form: 

(16) 
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𝑤0(𝑥, 𝑦, 𝑡) = ∑ 𝑊𝑚

∞

𝑚=1

(𝑥)𝑒𝑖𝜔𝑡 sin(𝛼𝑚𝑦) 
 

(17) 

                                                                      

where 𝜔 is the angular frequency, 𝑊𝑚 is the amplitude of 𝑤0(𝑥, 𝑦, 𝑡) and  𝛼𝑚= 
𝑚𝜋

𝐿
 

Obviously, 𝑚 is the number of half sine waves in the 𝑥 -direction with 𝐿 being the length of 

the plate.  

Substituting 𝑤0(𝑥, 𝑦, 𝑡) from Eq. (17) into Eq. (15), the following ordinary differential equation 

is obtained: 

𝑑4𝑊𝑚

𝑑𝑥4
− 2𝛼𝑚

𝑑2𝑊𝑚

𝑑𝑥2
+ (𝛼𝑚

4 −
𝐼0𝜔

2

𝐷∗
)𝑊𝑚 = 0         𝑚 = 1,2,3……………∞                                                                       

 

The four roots of the auxiliary or characteristic equation of Eq. (18)  are determined  on the 

basis of the nature of the roots and clearly  two conditions are feasible: 

Case 1.   𝛼𝑚 
2 ≥ 𝜔√

𝜌ℎ

𝐷∗
             All four roots are real      (𝑟1𝑚,   −𝑟1𝑚, 𝑟2𝑚, −  𝑟2𝑚  )  

 

          𝑟1𝑚 = √𝛼𝑚 2 + 𝜔√
𝜌ℎ

𝐷∗
   ,                     𝑟2𝑚 = √𝛼𝑚 

2 −𝜔√
𝜌ℎ

𝐷∗
                                               

 The solution is given by:               

𝑊𝑚(𝑥) = 𝐴𝑚 cosh(𝑟1𝑚𝑥) + 𝐵𝑚 sinh(𝑟1𝑚𝑥) + 𝐶𝑚 cosh(𝑟2𝑚𝑥) + 𝐷𝑚sinh (𝑟2𝑚𝑥)                     
                          

Case 2.   𝛼𝑚 
2 < 𝜔√

𝜌ℎ

𝐷∗
 ,      Two roots are real and two roots are imaginary  

                                          (𝑟1𝑚,   −𝑟1𝑚, 𝑖𝑟2𝑚, − 𝑖 𝑟2𝑚  ) 

 

   𝑟1𝑚 = √𝛼𝑚 2 + 𝜔√
𝜌ℎ

𝐷∗
     ,                   𝑟2𝑚 = √−𝛼𝑚 2 +𝜔√

𝜌ℎ

𝐷∗
                                                                    

The solution  is given by:  

   𝑊𝑚(𝑥) = 𝐴𝑚 cosh(𝑟1𝑚𝑥) + 𝐵𝑚 sinh(𝑟1𝑚𝑥) + 𝐶𝑚 cos(𝑟2𝑚𝑥) + 𝐷𝑚sin (𝑟2𝑚𝑥)                                   

The formulation procedure of  DSM for case 2 is shown below, but for case 1 it  is not presented 

for the sake of brevity as it is followed in a similar manner. 

The bending rotation (𝜙𝑦), shear force (𝑉𝑥)  and bending moment (𝑀𝑥𝑥) can be  obtained from 

the known displacement 𝑤0 (Eqs.(17) and (22)) with the help of the following expressions. 

(18) 

(19) 

(20) 

(21) 

(22) 
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𝜙𝑦𝑚(𝑥, 𝑦) = 𝜑𝑦𝑚(𝑥) sin(𝛼𝑚𝑦) = −{𝑟1𝑚𝐴𝑚 sinh(𝑟1𝑚𝑥) + 𝑟1𝑚𝐵𝑚 cosh(𝑟1𝑚𝑥) −

                        𝑟2𝑚𝐶𝑚 sin(𝑟2𝑚𝑥) + 𝑟2𝑚𝐷𝑚 cos(𝑟2𝑚𝑥) sin(𝛼𝑚𝑦)}                                                    (23) 

                                  

𝑉𝑥𝑚(𝑥, 𝑦) = 𝑣𝑥𝑚(𝑥) sin(𝛼𝑚𝑦) = −𝐷
∗{𝐴𝑚(𝑟1𝑚

3 − (2 − μ)𝛼𝑚
2𝑟1𝑚)sinh(𝑟1𝑚𝑥) +

          𝐵𝑚 (𝑟1𝑚
3 − (2 − μ)𝛼𝑚

2𝑟1𝑚)cosh(𝑟1𝑚𝑥) + 𝐶𝑚(𝑟2𝑚
3 + (2 − μ)𝛼𝑚

2𝑟2𝑚) sin(𝑟2𝑚𝑥) −

𝐷𝑚(𝑟2𝑚
3 + (2 − μ)𝛼𝑚

2𝑟2𝑚) cos(𝑟2𝑚𝑥)) sin(𝛼𝑚𝑦)}                                                     

 

𝑀𝑥𝑥𝑚(𝑥, 𝑦) = 𝑚𝑥𝑥𝑚(𝑥) sin(𝛼𝑚𝑦) = −𝐷
∗{𝐴𝑚(𝑟1𝑚

2 − μ 𝛼𝑚
2)cosh(𝑟1𝑚𝑥) +

                      𝐵𝑚(𝑟1𝑚
2 − μ 𝛼𝑚

2)sinh(𝑟1𝑚𝑥) − 𝐶𝑚(𝑟2𝑚
2 + μ 𝛼𝑚

2) cos(𝑟2𝑚𝑥) −

                      𝐷𝑚(𝑟1𝑚
2 + μ 𝛼𝑚

2)) sin(𝑟2𝑚𝑥) sin(𝛼𝑚𝑦)}                                                             

                                                                                                                                                                                            

The generalized boundary conditions for displacements at both ends of the FGM plate as 

shown in Fig. 5  are:   

At              

𝑥 = 0            𝑊𝑚 = 𝑊𝑎;                 𝜑𝑦𝑚 = 𝜑𝑦𝑎

𝑥 = 𝑏            𝑊𝑚 = 𝑊𝑏;                  𝜑𝑦𝑚 = 𝜑𝑦𝑏

                                                                                 (26) 

Similarly, generalized boundary conditions for forces at both ends of the FGM plate as shown 

in Fig. 5  are: 

At                  

𝑥 = 0             𝜐 𝑥𝑚 = −𝜐𝑎;                 𝑚𝑥𝑥𝑚 = −𝑚𝑎

𝑥 = 𝑏             𝜐𝑥𝑚 = 𝜐𝑏;                     𝑚𝑥𝑥𝑚 = 𝑚𝑏

                                                                      (27) 

By applying boundary conditions of Eq. (26) for displacement given by Eqs. (22) and (23), the 

following matrix relationship is obtained as. 

                    

[
 
 
 
𝑊𝑎
𝜑𝑦𝑎
𝑊𝑏
𝜑𝑦𝑏]
 
 
 
=

[
 
 
 
1 0 1 0
0 −𝑟1𝑚 0 −𝑟2𝑚
𝐶ℎ1    𝑆ℎ1 𝐶2      𝑆2
−𝑟1𝑚𝑆ℎ1 −𝑟1𝑚𝐶ℎ1 𝑟2𝑚𝑆2 −𝑟2𝑚𝐶2]

 
 
 
[

𝐴𝑚
𝐵𝑚
𝐶𝑚
𝐷𝑚

]                                       (28) 

                      or,      

                                                               𝐗 = 𝐁𝐂                                                                               (29) 

where 
         𝐶ℎ1 = cosh(𝑟1𝑚𝑏),          𝑆ℎ1 = sinh(𝑟1𝑚𝑏)       𝐶1 = cos(𝑟1𝑚𝑏),          𝑆1 = sin(𝑟1𝑚𝑏)   

         𝐶ℎ2 = cosh(𝑟2𝑚𝑏),          𝑆ℎ2 = sinh(𝑟2𝑚𝑏)       𝐶2 = cos(𝑟2𝑚𝑏),          𝑆2 = sin(𝑟2𝑚𝑏)               
        (30) 

Similarly, by applying the boundary conditions of Eq. (27) for forces given by Eqs. (24) and 

(25), the following relationship matrix is obtained. 

(24) 

(25) 
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                            [

𝜐𝑎
𝑚𝑎
𝜐𝑏
𝑚𝑏

] = [

0 𝑅1 0      𝑅2
𝐿1 0 𝐿2      0
−𝑅1𝑆ℎ1 −𝑅1𝐶ℎ1 𝑅2𝑆 2 −𝑅2𝐶 2
−𝐿1𝐶ℎ1 −𝐿1𝑆ℎ1 −𝐿2𝐶 2 −𝐿2𝑆 2

] [

𝐴𝑚
𝐵𝑚
𝐶𝑚
𝐷𝑚

]  

or                    

                                                     𝐅 = 𝐋𝐂                                                                                                 (31) 

where 

                    𝑅𝑖 = 𝐷
∗(−1)𝑖+1{𝑟𝑖𝑚

3 − (2 − 𝜇)𝛼2𝑟𝑖𝑚};              𝐿𝑖 = 𝐷
∗ (−1)𝑖+1(𝑟𝑖𝑚

2 − 𝜇𝛼2)        

with  𝑖 = 1, 2 

The relationship between the forces and displacements can now be expressed as  

                                                             F= 𝐊𝐗                                                                              (32) 

where  𝐊  is the dynamic stiffness matrix given by 

                                                              𝐊 = 𝐋𝐁−𝟏                                                                (33) 

The six independent terms 𝑠𝑣𝑣, 𝑠𝑣𝑚, 𝑓𝑣𝑣, 𝑓𝑣𝑚, 𝑠𝑚𝑚, 𝑓𝑚𝑚  of the 4×4 symmetric dynamic 

stiffness form the fundamental basis of the analysis as expressed below. 

𝐊 =

[
 
 
 
𝑠𝑣𝑣    𝑠𝑣𝑚     𝑓𝑣𝑣     𝑓𝑣𝑚

   𝑠𝑚𝑚 −𝑓𝑣𝑚     𝑓𝑚𝑚
𝑆𝑦𝑚    𝑠𝑣𝑣 −𝑠𝑣𝑚

  𝑠𝑚𝑚 ]
 
 
 

 

The explicit expressions for each of the terms of the dynamic stiffness matrix K are obtained by 

using symbolic algebra through the application of Matlab and they are given in Appendix B. 

4. Assembly procedure for DSM 

Plate structures may be subdivided into many elements or substructures for which each can be  

represented by the above DSM formulation. The elemental dynamic stiffness matrix (K) as 

expressed in Eq. (34) is the basic requirement to compute the exact eigenvalues of the S-FGM 

Levy-type plate. Therefore, global DSM for the S-FGM plate structure can be assembled 

directly from the assembly of several elements. A solution for natural frequencies to any 

desired accuracy can be achieved even by using a single DS element which of course, is not 

possible in FEM. Unlike the FEM, DS elements here do not have nodal points but have nodal 

lines at the interface. The assembly procedure for DSM of  S-FGM plate is carried out in the 

same manner as it is performed in the FEM. The assembly procedure of the DSM is shown in 

Fig. 6. The overall global  master matrix will always be a banded matrix as in the case of FEM 

[44]. 

 

 

(34) 
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4.1 Boundary conditions for S-FGM plate   

The applications of boundary conditions to restrain any degrees of freedom in DSM are similar 

to that of  FEM and usually the penalty method is employed. This method generally suppresses 

the degree of freedom (DOF) by attaching a very large stiffness to the appropriate term on the 

leading diagonal of the assembled dynamic stiffness matrix.   

The following procedure is used to apply the boundary conditions. 

 Free (F-F); no penalty is applied.  

 Simply supported (S-S); transverse displacement (W) is penalized 

 Clamped (C-C);  transverse displacement (W) and bending rotation (𝜑𝑦) are penalized. 

 

4.2  Application of the Wittrick –Williams algorithm 

The Wittrick–Williams algorithm [43] is generally applied as solution technique for free 

vibration analysis of structures or structural elements using DSM. The global dynamic stiffness 

matrix of the plate structure contains the transcendental  function of frequency for which the 

Wittrick–Williams algorithm is considered to be the best way to determine the natural 

frequencies without missing any. The algorithm takes into consideration the Sturm sequence 

property which guarantees that all naural frequencies are computed. The computational steps 

involved are shown in Fig. 7 using a flow chart.  

 

5. Results and discussion 

In order to compute the eigenvalues (natural frequencies) and eigenvectors (mode shapes) of 

S-FGM plates, a MATLAB program was developed using the above theory. In this section, 

results are presented and the significances of aspect ratio (L/b), material gradient index (k), 

boundary conditions and material properties on the eigenvalues of the S-FGM plate are  

discussed. Table 2 shows properties of the material constituents of the functionally graded 

plates reported by different researchers in the literature to investigate their free vibration 

characteristics. By and large, these properties [61] are used in obtaining the results of this paper. 

The effect of different materials on the eigenvalue of the S-FGM plate is first demonstrated. 

The variations of fundamental natural frequency parameter defined in Eq. (35) below, with the 

material gradient index (k) are presented in Fig. 8 for different material constituents of the S-

FGM plate. For lower value of k, for example, k<2, the natural frequency decreases for all the 

different materials used in the analysis. However, when k increases beyond the value of 2, the 

decrease in the natural frequency becomes less noticeable. It is also observed from the figure 

that there is significant reduction in the frequency parameter for Al /Al2O3 plate with increasing 

values of k, particularly in the range 0< k <5. This is due to the large differences in the material 

properties of the constituent of the S-FGM plate, especially for the density. The figure also 

reveals the extent of the variation of the natural frequency of the plate depending  upon the type 

of material used. The plates having lower values of Young’s modulus (e.g. ZrO2/Ti-6Al-4V) 

being more flexible give lower values of natural frequencies, as expected.  
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5.1 Analysis of isotropic, FGM and S-FGM plates - a comparative study 

In order to give a broad perspective and also for the purposes of comparison of results, various 

plate theories from the literature together with the proposed theory for the S-FGM plate are 

briefly outlined in Table 3 in order to set the scene and lead the readers smoothly to the 

subsequent text. 

The  natural frequency parameters  for  the  isotropic, FGM and S-FGM  plates used in the 

study are respectively defined  in non-dimensional forms by 𝜔∗,𝜔,  and 𝜔  as follows. 

     𝜔∗ = 𝜔𝐿2√
𝜌ℎ

𝐷∗
   ;                     𝜔 =  𝜔𝜋2 𝐿

2

ℎ
√
𝜌𝑚

𝐸𝑚
     ;                   𝜔 =  𝜔

𝐿2

ℎ
√
𝜌𝑐

𝐸𝑐
                       (35) 

where 𝐸𝑐  and 𝐸𝑚  are the modulus of elasticity and 𝜌𝑐  and  𝜌𝑚  are the material density of 

ceramic and metal of the S- FGM plate respectively. 
 

First of all, attention is focused on the validation of results computed from the present theory. 

This is achieved by comparing the natural frequency parameters with the ones that are available 

in the literature for isotropic, FGM and S-FGM plates. A carefully selected samples of results 

to demonstrate the validation of results from different perspectives are given in Tables (4)-(8) 

for which the following material properties are used. 

𝐸𝑐=380 GPa;     𝐸𝑚 = 69 GPa;      𝜌𝑐 =3980 kg/m3;      𝜌𝑚 = 2710 kg/m3. 

Using standard notation, the number of half sine wave in the x-direction is represented by ‘𝑚’ 

while the nth eigenvalue, for a certain value of 𝑚, is denoted by ‘𝑛’ when presenting the results. 

In the first example, see Tables 4 and 5, the natural frequency parameter (𝜔∗) for the  first six 

natural frequencies of a rectangular isotropic plates for SSSS and SCSC boundary conditions 

computed by the  present theory are compared with the published results of Boscolo and 

Banerjee [44] and Leissa [62]. The results are indeed in very good agreement as can be seen. 

In the second example, seeTable 6, the frequency parameter (𝜔 ) for the  first five modes of a 

square FGM plate for SFSF boundary conditions computed by the present theory are compared 

with published results for different values of k. Clearly the eigenvalues from the present theory 

compare very well with those based on isogeometric analysis (IGA) using CPT with neutral 

surface reported by Yin et al [31] and the exact solution published by Beferani et al [63]. 

In the third example, see Table 7, the fundamental natural frequency parameter (𝜔 1) of a 

rectangular FGM plate for simply supported (SSSS) boundary conditions computed by the  

present theory is compared with published results [31, 63] for different values of k. The results 

are in excellent agreement, as can be seen. 
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In the fourth example, see Table 8, the fundamental natural frequency parameter (𝜔 1) of a 

square S-FGM plate for SSSS boundary condition computed by the present theory is compared 

with published results [24, 64, 65, 66] for different values of k and length to thickness (L/h) 

ratio. The  comparative results are those of Jung et al. [24], Hosseini-Hashemi et al. [64], Thai 

and Vo [65] and with Hosseini-Hashemi et al. [66] which are based on NTSDT, HSDT, SSDT,  

and, FSDT, respectively. The fundamental natural frequency computed by the present method 

agrees very well with published results, as can be seen in Table 8.  

 

5.2 Analysis of S-FGM plates  

Table 9 shows the first six natural frequency parameters (𝜔 ) of a rectangular Levy-type S-

FGM plate based on the current theory with six common boundary conditions (SSSS, SFSS, 

SFSF, SFSC, SSSC and SCSC) for different values of k. Representative values of the aspect 

ratio L/b =2 and and thickness to length ratio h/L=0.01 are used in the data when obtaining the 

results. 

It is clear from the results in Table 9 that with increasing values of k, the  natural frequency 

parameter (𝜔 ) decreases for all of the boundary conditions. This is to be expected because the 

S- FGM plate has smaller ceramic constituents for higher values of k and hence its stiffness 

decreases. It is also observed that  the  natural frequency parameters (𝜔 ) of the S-FGM plat are 

highest for SCSC boundary condition and lowest for SFSF boundary condition for a given 

value of k. This is because, as the constraints on the edges of the plate increases, the stiffness 

of the plate increases which leads to an increase in the  natural frequency parameter (𝜔 ). 

Four representive mode shapes of an S-FGM square plate subjected to SSSS and SSSF 

boundary conditions for h/L=0.01, k=0.5 are presented in Figs. 9 and 10, respectively. They 

follow more or less similar trends as observed in isotropic plates, but of course, the natural 

frequency can be markedly different.  

 
5.3 A parametric investigation 

In the next stage of the investigation, a parametric study was carried out to examine the effects 

of different parameters such as the aspect ratio (L/b), material gradient index (k), Young’s 

modulus ratio (𝐸𝑐 𝐸𝑚⁄ ) and the density ratio (𝜌𝑐 𝜌𝑚⁄ )) on the frequency parameter of the S-

FGM plate.  
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Figures 11(a) and 11(b) illustrate the variations of the fundamental natural frequency parameter 

(𝜔 1) with respect to the change in the aspect ratio (L/b) for different values of k for SCSC and 

SFSF boundary conditions, respectively. Fig. 11(a) shows that with the increase in the aspect 

ratio (L/b), the fundamental natural frequency parameter (𝜔 1) increases for all values of k. For 

isotropic and homogeneous plates (i.e. when k = 0 in the current theory), similar observation 

was made by Leissa, see his result in Table A2 of [62]. A similar trend for the variation of (𝜔 1) 

is observed for all other boundary conditions (which are not presented here for  brevity) except 

for the SFSF case which is shown  in Fig. 11 (b) . The fundamental  natural frequency parameter 

(𝜔 1) of the plate under SFSF boundary conditions decreases with the increase in the aspect 

ratio. This trend is same as that was found in isotropic homogeneous plates, see Table A6 of 

[62]. 

In order to ascertain the effect of different boundary conditions on the fundamental natural 

frequency parameter (𝜔 1) of the rectangular S- FGM plate, the variations of the fundamental 

natural frequency parameter (𝜔 1) with  aspect ratio (L/b) under different boundary conditions 

are  shown in Fig. 12. The figure shows that fundamental  natural frequency parameter (𝜔 1) 

increases as the aspect ratio (L/b) increases for all five boundary conditions, except for the 

SFSF boundary condition. This is in accord with the analysis carried out by Leissa [62] for 

isotropic homogeneous plates. Furthermore, it is revealed in Fig. 12 that the change of the 

fundamental natural frequency parameter (𝜔 1) for the SCSC boundary condition is the highest 

and under SFSF it is the  lowest for a given (L/b) value. The fundamental  natural frequency 

parameter (𝜔 1) of SCSC boundary condition has the highest value, and SFSF has the lowest 

value compared to the other boundary conditions considered in the analysis, as expected [62].  

Figures 13 (a) and (b) illustrate the variations that occur in the fundamental natural frequency 

parameter (𝜔 1) of an S-FGM plate for the SSSS and SFSF boundary conditions, respectively 

due to the change in the material gradient index (k) for different values of the aspect ratio L/b. 

The figures show the trend in which the fundamental natural frequency parameter (𝜔 1) 

decreases with the increase in the values of k for any specific value of the aspect ratio L/b. It is 

also observed from the figures that there is a substantial decrease in the fundamental natural 

frequency parameter (𝜔 1) as the values of k approaches to 0.5, but the decrease in the 

fundamental natural frequency parameter (𝜔 1) is not so pronounced when the values of k 

increases further. The same trends were observed for the boundary conditions vis-à-vis SFSS, 

SFSC, SSSC, and SCSC which are not shown here for brevity.  
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5.4 Effect of material properties  

The influence of the material properties, namely the material density () and the Young’s 

modulus (E) on the natural frequency parameter (𝜔 ) for the S-FGM plate is presented and 

discussed in this section. Using the variations in the Young’s modulus ratio (𝐸𝑐 𝐸𝑚⁄ ), while 

keeping material density ratio constant (i.e. 𝜌𝑐 𝜌𝑚 = 1⁄ ) brings about subsequent variations in 

the natural frequency parameter (𝜔 ) of the square S- FGM plate which is illustrated in Fig. 14 

for the first six modes of vibration for SCSS boundary condition. Additionally, it is noticed 

that with an increase in the Young’s modulus ratio (𝐸𝑐 𝐸𝑚⁄ ), the frequency parameter (𝜔 ), in 

general, decreases. However, this decrease in natural frequency is significant for lower values 

of the Young’s modulus ratio, particularly when (𝐸𝑐 𝐸𝑚⁄ ) < 5.  The validity of this statement 

can be established by using Eq. (35), which factors in the condition that (𝜔 ) is inversely 

proportional to the Young’s modulus of the ceramic materials of the S-FGM plate.  

Figure 15 highligths the variations in the  natural frequency parameter (𝜔 ) due to the change 

in the material density ratio (𝜌𝑐 𝜌𝑚⁄ ) while keeping the Young’s modulus ratio constant 

(𝐸𝑐 𝐸𝑚⁄  =1) for the first six modes of vibration for SCSS boundary condition. An interpretation  

of the figure reveals that an increase in the frequency parameter (𝜔 ) is affected by an increase 

in the material density ratio (𝜌𝑐 𝜌𝑚⁄ ). The validity of this statement can be established by using 

Eq.  (35), which is due to the condition that (𝜔 )  is directly proportional to the material density 

of the ceramic materials of the S-FGM plate. 

Figures 16 and 17, illustrate two different cases for the variations of material properties ratio, 

namely material density and Young’s modulus ratio of the S-FGM plate on the fundamental  

natural frequency parameter (𝜔 1) for different values of k for the SCSS boundary condition. 

In the first case (Fig. 16), 𝜌𝑐 𝜌𝑚⁄ is kept constant (i.e.  𝜌𝑐 𝜌𝑚 = 1⁄ ), but 𝐸𝑐 𝐸𝑚⁄  is varied 

between 1 and 40 and the corresponding effects on the fundamental natural frequency 

parameter (𝜔 1) are presented. Simultaneously, it is also noted that with an increase in 𝐸𝑐 𝐸𝑚⁄ , 

there is a decrease in the fundamental natural frequency parameter (𝜔 1). Moreover, from the 

figure, it is noted that the fundamental natural frequency parameter (𝜔 1) decreases quite 

drastically when the value of 𝐸𝑐 𝐸𝑚⁄  lies between 1 and 10. However, when 𝐸𝑐 𝐸𝑚⁄   increases 

beyond 10, there is much less decrease in the fundamental natural frequency parameter (𝜔 1). 

In the second case (Fig. 17), both the Young’s modulus ratio and the density ratio are assumed 

to be the same, i.e.  𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄   which varies from 1 to 40 and the corresponding effects 

on the fundamental natural frequency parameter (𝜔 1) for the SCSS boundary condition are 
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highlighted. The figure depicts the trend in which the fundamental natural frequency parameter 

(𝜔 1) decreases as the 𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄   ratio increases. At this juncture, it must be noted that 

a substantial decrease in the fundamental natural frequency parameter (𝜔 1) is apparent for 

𝐸𝑐 𝐸𝑚⁄ = 𝜌𝑐 𝜌𝑚⁄ <10 whereas less decrease is noted in the fundamental natural frequency 

parameter (𝜔 1) beyond this value, particularly for lower value of material gradient index (k). 

The variations of the fundamental natural frequency parameter (𝜔 1) of  the square S- FGM 

plate with  𝜌𝑐 𝜌𝑚⁄  for different Young’s modulus ratio (i.e. 𝐸𝑟𝑎𝑡= 1, 2, 5, 10, 20, 40) for SCSS 

and SFSF boundary conditions are shown in Figs. 18 and 19, respectively.  

An inspection of the Figs. 18 and 19, highlights the fact that an increase in the values of 

𝜌𝑐 𝜌𝑚  ⁄ results in the increase of the fundamental natural frequency parameter (𝜔 1). It is also 

noted that the fundamental natural frequency parameter (𝜔 1) increases significantly in the 

range of  1 ≤ 𝜌𝑐 𝜌𝑚⁄ ≤ 10. However, the increase in the fundamental natural frequency 

parameter (𝜔 1) is not so significant when 𝜌𝑐 𝜌𝑚⁄  increases beyond 10.  

 

6. Conclusions 

The dynamic stiffness method (DSM) is developed for the investigation of natural vibration 

characteristics of sigmoid FGM Levy type plate considering physical neutral surface. The DSM 

is proved to be efficient and accurate when computing the eigenvalue of both isotropic and S-

FGM plate structures. The eigenvalues obtained by the DSM with the application of the Wittrick-

Williams algorithm match very well with published results. A comprehensive set of results is 

presented. The results obtained by the present method for isotropic and FGM plates when 

compared with published results in the literature revealed excellent agreement. The accuracy of 

the present method is verified through the study of natural vibration of S-FGM plates. The 

influences of various plate parameters such as material gradient index, aspect ratio, boundary 

conditions and material properties on the eigenvalues of S-FGM plate are analyzed and 

discussed in detail. For all modes and aspect ratios, the eigenvalues decrease as the values of 

the material gradient index of the S- FGM plate increase. The influence of the material gradient 

index on the fundamental frequency is substantial for the lower value of the material gradient 

index. The eigenvalues increase with an increase in the aspect ratio of the plate. The eigenvalue 

decreases when constraints change from the clamped edge condition to free edge condition 

because of the decrease in stiffness. It is interesting to note that with the increase in the  𝐸𝑐 𝐸𝑚⁄  

ratio, the fundamental frequency parameter decreases but the trends are reversed with an 
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increment in 𝜌𝑐 𝜌𝑚⁄ . The variations of 𝐸𝑐 𝐸𝑚⁄  and 𝜌𝑐 𝜌𝑚⁄  substantially affect the natural 

frequency and cannot be disregarded. The main contribution made in this paper is of course, the 

development of the DSM for S-FGM plates in order to provide highly accurate results for their 

eigenvalues and mode shapes. The results obtained can be used as benchmark solution to validate 

FEM and other approximate methods. 
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Appendix A 

             Explicit expressions for 𝐷∗ and  𝐼0 in equations (15) and (16) 

             

             𝐼0 = ∫ 𝜌(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠
ℎ 2−𝑎⁄

−ℎ 2−𝑎⁄
   

                = ∫ 𝜌1(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠
0

−ℎ 2−𝑎⁄
+ ∫ 𝜌2(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

0
   

= ∫ 𝜌1(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

0

−ℎ 2⁄

+∫ 𝜌2(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

ℎ 2⁄

0

   

= 0.5ℎ𝜌𝑐  (1 +
1

𝜌𝑟𝑎𝑡
 ) 

where 

 𝜌𝑟𝑎𝑡 =
𝜌𝑐
𝜌𝑚

 

 

𝐷∗ = ∫ 𝑧𝑛𝑠
2  𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

−ℎ 2−𝑎⁄

  = ∫ 𝑧𝑛𝑠
2  𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

0

−ℎ 2−𝑎⁄

+∫ 𝑧𝑛𝑠
2 𝑄11(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ 2−𝑎⁄

0

 

  

      = ∫ (𝑧𝑚𝑠 − 𝑎)
2𝑄11(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

0

−ℎ 2⁄

+∫ (𝑧𝑚𝑠 − 𝑎)
2𝑄11(𝑧𝑚𝑠)𝑑𝑧𝑚𝑠

ℎ 2⁄

0

   

      = 12(𝐷𝑐 𝐸𝑟𝑎𝑡⁄ )(0.5 
𝑎

ℎ
(1 − 𝐸𝑟𝑎𝑡) (

1

𝑘 + 2
−
1

𝑘 + 1
) + 

1

24
(1 + 𝐸𝑟𝑎𝑡) + 0.5 (

𝑎

ℎ
)
2

(1 + 𝐸𝑟𝑎𝑡)

+ 0.25 
𝑎

ℎ
 (1 − 𝐸𝑟𝑎𝑡)) 

where 

𝐷𝑐 = 
𝐸𝑐ℎ

3

12(1−𝜇2)
  is the flexural rigidity of the ceramic material and 𝐸𝑟𝑎𝑡 =

𝐸𝑐

𝐸𝑚
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Appendix B 

               Explicit expressions for the dynamic stiffness elements of equation (34) 

𝑠𝑚𝑚 = (𝐿1 − 𝐿2)(𝑟1𝑚𝐶ℎ1𝑆2 − 𝑟2𝑚𝐶2𝑆ℎ1)/∇,

𝑠𝑣𝑣 = (𝑟2𝑚𝑅1 + 𝑟1𝑚𝑅2)(𝑟2𝑚𝐶ℎ1𝑆2 + 𝑟1𝑚𝐶2𝑆ℎ1)/∇,

𝑠𝑣𝑚 = −(𝑟2𝑚(𝑅1(𝐶2
2 − 𝐶2𝐶ℎ1 + 𝑆2

2) − 𝑅2𝑆2𝑆ℎ1) − 𝑟1𝑚(𝑅1𝑆2𝑆ℎ1 − 𝑅2((𝐶2 − 𝐶ℎ1)𝐶ℎ1 + 𝑆ℎ1
2))/∇,

𝑓𝑚𝑚 = (𝐿2 − 𝐿1)(𝑟1𝑚𝑆2 − 𝑟2𝑚𝑆ℎ1)/∇,

𝑓𝑣𝑣 = (𝑟1𝑚𝑅2 − 𝑟2𝑚𝑅1)(𝑟2𝑚𝑆2 + 𝑟1𝑚𝑆ℎ1)/∇,

𝑓𝑣𝑚 = (𝐶2 − 𝐶ℎ1)(𝑟2𝑚𝑅1 − 𝑟1𝑚𝑅2)/∇,

 

 

where 

𝑅𝑖 = 𝐷
∗(−1)𝑖+1(𝑟𝑖𝑚

3 − (2 − 𝜇)𝛼2𝑟𝑖𝑚);             𝐿𝑖 = 𝐷
∗ (−1)𝑖+1(𝑟𝑖𝑚

2 − 𝜇𝛼2)        𝑖 = 1,2 

 

𝐶ℎ1 = cosh(𝑟1𝑚𝑏),          𝑆ℎ1 = sinh(𝑟1𝑚𝑏)       𝐶1 = cos(𝑟1𝑚𝑏),             𝑆1 = sin(𝑟1𝑚𝑏)  
 
𝐶ℎ2 = cosh(𝑟2𝑚𝑏),          𝑆ℎ2 = sinh(𝑟2𝑚𝑏)       𝐶2 = cos(𝑟2𝑚𝑏),          𝑆2 = sin(𝑟2𝑚𝑏)

 

and 

 ∇= 𝑟21𝑚𝑆2𝑆ℎ1 − 𝑟
2
2𝑚𝑆2𝑆ℎ1 + 𝑟1𝑚𝑟2𝑚((𝐶2 − 𝐶ℎ1)

2 + 𝑆2
2 − 𝑆ℎ1

2) 
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Fig. 1.  Co-ordinate system and notation for the deformation field of an S- FGM plate. 

 

Figure



 

(a) Young’s modulus. 

 

 

 

(b) Density 

 

Fig. 2. The variation of Young’s modulus (𝐸) and density (𝜌) of an S-FGM plate through thickness. 
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Fig. 3. The position of physical neutral surface and mid- surface for an S-FGM plate. 
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Fig. 4. The influence of the material gradient index on the non-dimensional shift (a/h) 
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Fig. 5. Sign conventions for forces and moments of the  S-FGM plate element 
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Fig. 6.  Assembly procedure for DSM. 
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Fig. 7. Computational steps in implementing the Wittrick-Williams algorithm. 

Start 

Choose a trial frequency  ω∗   to compute the dynamic stiffness matrix 𝐊 of the S-FGM 

plate. 

 

Perform Gauss elimination so that the DS-matrix is converted into an upper triangular 

form  𝐊∆) 

Count the number of negative terms on the leading diagonal of the matrix which is 

available in upper triangular  𝐊∆) form after Gauss elimination and call it the sign count 

𝑠 K ω∗   as defined by Wittrick–Williams [43] 

The number of eigenvalues (natural frequencies) 𝑗 ω∗  which lie below the arbitrarily 

chosen trial frequency  ω∗  is then 

𝑗 ω∗ = 𝑗0  ω
∗  + 𝑠 K ω∗   

where 𝑗0  ω
∗  is the number of eigenvalues of the individual elements with clamped–

clamped bounday conditions on their opposite edges which are still  below the chosen 

trial frequency  ω∗ . 

Avoid the calculation of  𝑗0  ω
∗  whenever possible by using sufficiently finer mesh so 

that the clamped–clamped natural frequencies are not exceeded. 

The bisection  method is used to bracket any natural frequency (eigenvalue) between its  

upper and lower bounds to any required accuracy. 

 

Stop 
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Fig. 8. Variation of fundamental natural frequency parameter versus material gradient index (k) of S -FGM 

plate made of different pairs of materials. 
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            Natural mode (𝑚 =1, 𝑛 =1)                                            Natural mode (𝑚 =1, 𝑛 =2) 

              �̅� = 0.000477                                                                    �̅� = 0.001193                       

 

                     

                      Natural mode (𝑚 =2, 𝑛 =2)                                       Natural mode (𝑚 =2, 𝑛 =3)   

                            �̅� =0.001909                                                                 �̅� = 0.003102         

                       

Fig. 9.  Mode shapes of S-FGM square plate under the SSSS edge condition for k=0.5 and 

h/L=0.01. 
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                Natural mode (𝑚 =1, 𝑛 =1)                                          Natural mode (𝑚 =1, 𝑛 =2) 

                  �̅� = 0.000299                                                                            �̅� = 0.000711        

 

     

                Natural mode (𝑚 =2, 𝑛 =2)                                              Natural mode (𝑚 =2, 𝑛 =1) 

                            �̅� = 0.001513                                                              �̅� = 0.002421              

 

Fig 10.  Mode shapes of S-FGM square plate under SFSS edge condition for k=0.5 and h/L=0.01 
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Fig.11 (a). Fundamental natural frequency parameter (�̅�1) versus L/b ratio of S-FGM plate for different 

material gradient index (k) at a given h/L ratio of 0.01 under SCSC boundary condition 
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Fig. 11(b).  Fundamental natural frequency parameter (�̅�1) versus L/b ratio of S-FGM plate for different 

material gradient index (k) at a given h/L ratio of 0.01 under SFSF boundary condition. 
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Fig. 12.  Fundamental natural frequency parameter (�̅�1) versus L/b ratio of S-FGM plate at a given h/L 

ratio of 0.01 and k=2 under different combinations of boundary conditions. 
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Fig. 13 (a). Fundamental natural frequency parameter (�̅�1) versus material gradient index (k) of  a 

rectangular  S-FGM plate with  h/L=0.01 for  SFSF boundary condition. 
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Fig. 13 (b). Fundamental natural frequency parameter (�̅�1) versus material gradient index (k) of 

rectangular S-FGM plate with h/L=0.01 for SSSS boundary condition. 
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Fig. 14. Effect of 𝐸𝑟𝑎𝑡  on the natural frequency parameter (�̅�) of squre S- FGM plate for a given k=0.5 

under SCSS boundary condition.  
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Fig. 15.  Effect of 𝜌𝑟𝑎𝑡 on the  natural  frequency parameter (�̅�) of squre S- FGM plate for a given k=0.5 

under SCSS boundary condition.  
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Fig. 16. Effect of different 𝐸𝑟𝑎𝑡  and constant 𝜌𝑟𝑎𝑡  on the fundamental natural frequency parameter 
 𝜔 1  of a square S- FGM plate with SCSS boundary condition for different material gradient index (k) 

and h/L =0.01. 
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Fig. 17. Effect of 𝐸𝑟𝑎𝑡  = 𝜌𝑟𝑎𝑡  on the fundamental  natural frequency parameter (𝜔 1) of a square 

S-FGM plate with SCSS boundary condition for different material gradient index (k) and h/L =0.01. 
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Fig. 18. Effect of density ratio 𝜌𝑟𝑎𝑡 on the fundamental natural frequency parameter (�̅�1) of a square 

S- FGM plate  with SCSS boundary condition for different 𝐸𝑟𝑎𝑡 and k  = 0.5 and h/L = 0.01 
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