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Abstract: 

The application of the dynamic stiffness method (DSM) for free vibration analysis of 

beams is surveyed in this paper. The historical development of the DSM that has taken 

place in several stages is discussed in detail with reference to the free vibration 

problems of beams. In particular the suitability of the DSM in solving the free vibration 

problems of beams through the application of the well-known Wittrick-Williams 

algorithm as solution technique is highlighted. The literature concerning homogeneous 

isotropic metallic beams for which the DSM is well established, is reviewed first and 

then with the rapid and on-going emergence of advanced composite materials, the 

development of the DSM in solving the free vibration problems of anisotropic beams 

is discussed.  The free vibration analysis of functionally graded beams using the DSM 

is also highlighted. The survey covers the DSM application for free vibration analysis 

of a wide range of beams, including sandwich beams, rotating beams, twisted beams, 

moving beams, bending-torsion coupled beams, amongst others. Some aspects of the 

contributions made by the author and his research team are also highlighted. Finally, 

the future potential of the DSM in solving complex engineering problems is projected. 
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1.0 Introduction 

    The foundation of the dynamic stiffness method (DSM) was laid down by Kolousek [1-2] 

who introduced for the first time in the early 1940s the frequency dependent dynamic stiffness 

coefficients for a Bernoulli-Euler beam derived from its free vibrational response. Later, the 

coefficients became known as Kolousek functions in the literature. Kolousek’s earlier research 

was subsequently included in a text book [3]. The DSM has undergone ground-breaking 

changes since its inception and now there are alternative forms and derivatives of the method 

known as continuous element method (CEM) and spectral element method (SEM). The original 

concept given by Kolousek enabled researchers to develop a relationship between the 

amplitudes of forces and displacements at the nodes of a freely vibrating structural element by 

means of its dynamic stiffness (DS) matrix.  Essentially, the basic building block of the DSM 

is the DS matrix of an individual structural element which can be transformed from its local 

coordinate axes and assembled to form the overall dynamic stiffness matrix of the final 

structure in a datum or global coordinate system. At this point it should be noted that there are 

many similarities between the DSM with the traditional finite element method (FEM) when 

solving the free vibration problems of structures. Nevertheless, there are some major 

differences too between the two methods.  The FEM is an approximate method based on chosen 

or assumed shape functions of the displacement field. The mass and stiffness matrices of a 

structural element in the FEM are derived from these shape functions which are quite obviously 

not exact. The displacements within the element are related to the nodal displacements with 

the help of the shape functions. The displacement field within an element is normally chosen 

or assumed as polynomial functions in terms of some arbitrary constants which are eventually 

eliminated through the substitution of nodal displacements to generate the shape functions 

relating the displacements within the element to nodal displacements. When applying the 

energy formulation, the potential (or strain) energy and the kinetic energy of the element are 

worked out which leads to the stiffness and mass matrices of the element, respectively. The 

element mass and stiffness matrices of all individual members in a structure are assembled in 

the FEM using standard procedure to form the overall stiffness ([K]) and mass ([M]) matrices 

of the final structure. In solving the free vibration problem, the linear eigenvalue problem of 

the type [[K] - [M]]{} = 0 where {} is the vector of nodal displacements is usually 

formulated and the square roots of  values (which are eigenvalues) give the natural frequencies 

of the structure. The DSM works somehow in a slightly different manner. First of all, the shape 

functions in DSM are not chosen or assumed, but they are obtained from the solution of the 

governing differential equations of motion of the element in its free vibratory motion. 

Therefore, unlike the FEM the shape functions in DSM are frequency dependent and as they 

come from the exact solution of the governing differential equations of the element if free 

vibration, they can be justifiably regarded as exact because there are no assumptions made en 

route to describe the displacement field. If there are any perceived assumptions, they are within 

the limits of the governing differential equations of motion. By using these so-called exact 

shape functions which are essentially solutions of the free vibratory motion of the element, the 

dynamic stiffness matrix is developed by applying the boundary conditions of the amplitudes 



of the harmonically varying forces and displacements at the nodes of the elements in algebraic 

form. This process yields a single frequency dependent element matrix called the dynamic 

stiffness matrix which relates the amplitudes of nodal forces and displacements. The dynamic 

stiffness matrix derived in this way contains both the mass and stiffness properties of the 

element as functions of the structural parameters as well as the frequency. The assembly 

procedure in the DSM is very similar to that of the FEM, but a single dynamic stiffness element 

matrix is assembled for each structural element instead of separate mass and stiffness matrices 

to form the overall frequency-dependent dynamic stiffness matrix [KD] of the final structure. 

The eigenvalue problem is then formulated as [KD]{}=0 where {} is the vector of the 

amplitudes of the nodal displacements. The extract of the eigenvalues follows next. Here, a 

significant difference with the FEM arises. The formulation [KD]{}=0 leads to a 

transcendental (nonlinear) eigenvalue problem in sharp contrast to the linear eigenvalue 

problem encountered in the FEM. The most suitable technique to extract the eigenvalues in the 

DSM is to apply the algorithm of Wittrick and Williams, known as Wittrick-Williams 

algorithm in the literature which has been highlighted in literally hundreds of papers. The 

algorithm is robust because it monitors the Sturm sequence property of the dynamic stiffness 

matrix in such a way that no natural frequency of the structure is missed. The Wittrick-Williams 

algorithm has become a crucial tool for free vibration analysis of structures using the DSM. 

The algorithm which will be discussed later can also be applied to solve (elastic) buckling 

problems, but the emphasis in this paper is on the solution of free vibration problems. 

Following the pioneering contributions of Kolousek [1-3], Williams and Wittrick [4] made 

noteworthy contribution for free vibration analysis of skeletal structures and, of course, very 

importantly, they developed what later known as the Wittrick-Williams algorithm [5-6]. Since 

then the DSM has continued to enjoy a sustained period of developments [7-85] and certainly, 

it has now reached a high degree of maturity. This paper is planned to give a general account 

of these continuing developments of the DSM when solving the free vibration problems of 

beams made of both isotropic and anisotropic materials, including the contributions made by 

the author and his co-authors. The paper is structured as follows. Following the introduction of 

this section (Section-1), Section-2 gives an account of the historical developments of the DSM 

for beams made of both isotropic and anisotropic (composite) materials. The contributions 

made by the author and his co-authors towards the DSM development to address the beam 

vibration problems are given in Section-3 and Section-4 deals with a brief description of the 

Wittrick-Williams algorithm. The scope for future work in developing the DSM further is 

highlighted in Section-5. Finally, Section-6 concludes the paper with some remarks. 

 

2.0 Dynamic Stiffness Formulations for Beams 

    The derivation of the dynamic stiffness matrix of a structural element follows a methodical 

and systematic procedure. There are essentially four main steps needed to derive the dynamic 

stiffness matrix of a structural element. First, the governing differential equation of motion of 

the structural element in free vibration must be derived by using either Newton’s law or 

Lagrange’s equation or Hamilton’s principle. Hamilton’s principle is preferred because it gives 

natural boundary conditions which are essential in dynamic stiffness formulation. In the second 



step, the differential equation needs to be solved in an exact sense in terms of some arbitrary 

constants. In this step, it is necessary to obtain all expressions for displacements and forces in 

explicit algebraic form in terms of the integration constants. In the third step, boundary 

conditions for displacements and forces at the nodes of the element are applied algebraically. 

Thus, if {} is the displacement vector comprising the amplitudes of nodal displacements and 

{f} is the force vector comprising the amplitudes of the nodal forces of the element, then the 

applications of the boundary conditions for displacements and forces will give the matrix 

relationships {}=[A]{C} and {f}=[B]{C}, respectively where {C} is the unknown constant 

vector and matrices [A] and [B] are frequency-dependent square matrices already known from 

the element mass and stiffness properties and other structural parameters of the element. In the 

fourth and final step, the constant vector {C} is eliminated from the two matrix relationships 

shown above to give {f}=[kD]{} where [kD] = [B][A]-1 is the required frequency dependent 

dynamic stiffness matrix. The complete dynamic stiffness formulation process can be 

automated by taking advantage of symbolic computation wherever possible. In essence upon 

elimination of the constants from the solution of the governing differential equation of motion 

of the element undergoing free vibration, the dynamic stiffness matrix [kD] of the element is 

obtained, relating the amplitudes of forces to those of the displacements at the nodes of the 

element. 

 

2.1 Metallic Beams 

    Inspired by Kolousek’s pioneering work [1-3], Williams and Wittrick developed their 

algorithm [5, 6] and applied it to investigate the free vibration behaviour of skeletal structures 

using dynamic stiffness matrix of a Bernoulli-Euler beam [4, 7]. Successive further 

developments followed in that the dynamic stiffness matrices of an axially loaded Timoshenko 

beam [8, 9] were published. Fortran based computer programs using the DSM developed by 

Akesson [10] and Williams and Howson [11] to carry out the free vibration analysis of plane 

frames became available. These earlier works in DSM led to the development of the computer 

program BUNVIS-RG [21] which can handle space frame structures very efficiently when 

investigating their free vibration and buckling behaviour. BUNVIS-RG has many useful 

features such as sub-structuring, options for the inclusion of spring/lumped mass, eccentric 

connections, tapered members and several others. It is significant to note that exact dynamic 

stiffness matrices for linearly tapered beams developed by Banerjee and Williams using Bessel 

functions [19, 20] were coded in BUNVIS-RG [21]. 

    The next breakthrough in the DSM development came in the 1980s when the dynamic 

stiffness matrix of a bending-torsion coupled beam [13, 17, 18, 25, 28] was published. This 

development is of considerable importance because of its applications in aeronautical 

engineering, particularly in aeroelastic research. A high aspect ratio aircraft wing such as that 

of a transport aircraft wing can be modelled as an assembly of bending-torsion coupled beams 

when carrying out modal and flutter analyses. The development of the DSM for bending-

torsion coupled beam was significantly enhanced in later years by including the effects of shear 

deformation and rotatory inertia [30], axial load [31], as well as the inclusion of the warping 

and axial constraint effects [46]. In a parallel investigation the dynamic stiffness matrix of an 

axially loaded coupled Timoshenko beam was developed [38]. Subsequently, the dynamic 

stiffness matrices of tapered beams [19, 20, 26], rotating beams [51, 55, 66, 78, 83], twisted 



beams [54, 60], sandwich beams [59, 64, 70], spinning beams [61], moving beams [69], 

cracked beams [75, 84] and functional graded beams [79, 85] were published. Following the 

development of the unified formulation conceived by Carrera, generally known as CUF 

(Carrera Unified Formulation) which captures the cross-sectional deformation of a beam in a 

three-dimensional sense, the DSM in conjunction with CUF was applied [80] to give natural 

frequencies and mode shapes of a beam which was no longer considered as one-dimensional, 

but it deformed in its cross-sectional plane. 

2.2 Composite Beams 

    The progressive growth of advanced composite materials during the past decades, 

particularly the fibre reinforced plastic materials has been phenomenal which fuelled the DSM 

development to enter into a new and exciting phase, particularly from an aeroelastic standpoint. 

The dynamic stiffness matrix of a simple flat laminated composite beam which exhibits 

material coupling between bending and torsional motions due to the fibre orientation was 

developed [42] which was further enhanced to include the effects of shear deformation and 

rotatory inertia [43, 45] as well as the additional effect of an axial load [49]. In these 

developments, only the material coupling arising from the anisotropic nature of fibrous 

composites was considered. Further enhancement of the dynamic stiffness formulation to 

include the effect of geometric coupling which occurs due to the geometrical configuration of 

the cross-section took place [73] soon after. This development is important for aeronautical 

applications, for example, the centroid and shear centre in an aircraft wing are generally non-

coincident giving rise to geometric coupling. This research was exploited to advantage when 

investigating the aeroelastic optimisation of composite wings [47].  

    The fundamental basis for the development of the dynamic stiffness matrix of a structural 

element stems from its governing differential equation of motion in free vibration. The quality 

of the dynamic stiffness matrix depends primarily on the differential equation itself which can 

be derived using standard techniques such as Newton’s second law, Lagrange’s equation or 

Hamilton’s principle, as discussed earlier. A few illustrative examples of the differential 

equations derived for different types of composite beam elements of uniform cross-section are 

discussed next. The degree of complexity of the composite beam models is identified by their 

respective governing differential equations in free vibration. The procedure followed to 

describe the equations given in the sections below is justifiably designed to lead the reader 

from easy to hard, i.e. from simpler to complex composite beam elements. The dynamic 

stiffness formulation which proceeds from the solution of the governing differential equations 

is similar for all cases and therefore, not elaborated, but attention is focused on the governing 

differential equations from which the DSM basically originates. 

 

2.2.1 Materially Coupled Composite Beams 

    Figure 1 shows a composite beam made from a laminate with a given lay-up or stacking 

sequence. This is the simplest example of a composite beam which maybe thought of as a strip 

cut from a laminated composite plate. This flat composite beam will exhibit material coupling 

between the bending and torsional motions because of the effects of ply orientation. Such a 

composite beam is referred to as Materially Coupled Composite Beam (MCCB) in this paper, 

which is characterised by its bending stiffness EI, torsional stiffness GJ and importantly, the 



bending-torsional material coupling rigidity K which is of great significance but is non-existent 

in metallic beams. Note that K which depends on ply orientation can be exploited to advantage 

to produce desirable dynamic or aeroelastic effects. There have been several attempts by 

investigators to obtain theoretical and experimental values of EI, GJ and K for composite beams 

of different cross-sections. The governing differential equation of the MCCB in free vibration 

is given by [42] 

0
..

=++ hmKhEI        (1) 

0
..

=−+  IhKGJ                    (2) 

    where m is the mass per unit length, I is the polar mass moment of inertia per unit length 

about the Y axis of the beam, h is the bending displacement in the Z direction,  is torsional 

rotation about the Y axis, with primes and dots denote differentiation with respect to position 

and time, respectively. Equations (1) and (2) have been used in the literature for free vibration 

and flutter analysis of composite wings and they form the fundamental basis for the 

development of the dynamic stiffness matrix of an MCCB. 

 

 

Figure 1 The co-ordinate system and notation for a materially coupled composite beam 

(MCCB) 

 

 

 

2.2.2 Materially Coupled Composite Timoshenko Beam 

    The MCCB model given by Equations (1) and (2) can be substantially enhanced by taking 

into account the effects of shear deformation and rotatory inertia so that a Materially Coupled 

Composite Timoshenko Beam (MCCTB) model can be realised for which the governing 

differential equations of motion in free vibration are given by [45] 



0)(
..

=−+−+  IKhkAGEI                (3) 

0)(
..

=−− hmhkAG                   (4) 

0
..

=−+  IKGJ                 (5) 

    where  is the density of the composite material, I is the second moment of area of the beam 

cross-section about the X axis (see Figure 1), kAG is the shear rigidity of the composite beam, 

h is the bending displacement,  is torsional rotation, and  is the angle of rotation, in radians, 

of the cross-section about the X axis due to bending alone. All other beam parameters have 

already been defined before. Equations (3)-(5) are the prerequisites to develop the dynamic 

stiffness matrix of an MCCTB. 

 

2.2.3  Axially Loaded Materially Coupled Composite Timoshenko Beam 

    The MCCTB model given above can now be further improved by taking into account an 

axial load (P) applied through the centroid of the cross-section to give a model which can be 

described as an Axially Loaded Materially Coupled Composite Timoshenko Beam 

(ALMCCTB). The governing differential equations in free vibration for this model which has 

a constant compressive axial load P (Note that P can be positive or negative so that tension is 

included.) are given by [49] 

0)(
..

=−+−+  IKhkAGEI               (6) 

0)(
..

=−−− hmhPhkAG                 (7) 

0)/(
..

=−−+   ImIPKGJ               (8) 

    The three composite beam models MCCB, MCCTB and ALMCCTB described above are 

useful and maybe satisfactory on many occasions when the coupling between the bending and 

torsional deformations arises solely from the anisotropic nature of fibrous composites i.e. from 

the ply orientation. It should be noted that in all of the above three composite beam models, 

the bending-torsion coupling will be generally prevalent under the application of both static 

and dynamic loads. 

    However, there is another type of bending-torsion coupling that can occur which is generally 

termed as geometric coupling. This coupling is different and independent of the material 

coupling and it arises from the geometry of the cross-section. This type of coupling can occur 

both in metallic and composite beams. The free vibration characteristics of metallic beams 

exhibiting geometric coupling has been investigated by many authors [13, 17, 18] including 

the present author [25]. The origin of this coupling is based on geometric consideration when 

the centroid (or mass centre) and the shear centre of a beam cross-section (which are unique 

points on the cross-section) are non-coincident, i.e. they have different positions on the cross-

section. The locus of centroids along the length of the beam is known as the mass axis of the 



beam whereas the locus of shear centres is known as the elastic or flexural axis of the beam. 

These two axes (approximated by straight lines) are determined solely by consideration of the 

cross-sectional geometry of the beam. For many practical structures such as aircraft wings and 

helicopter blades, they do not generally coincide. The distance between the centroid and the 

shear centre (or the distance between the elastic and mass axes), usually denoted by xα 

introduces inertial coupling during the dynamic deformation. A composite wing with 

asymmetric cross-section can exhibit both material and geometric coupling between bending 

and torsional deformations. The basic model for this beam can be termed as Materially and 

Geometrically Coupled Composite Beam (MGCCB) which is discussed in the next section. 

2.2.4 Materially and Geometrically Coupled Composite Beam 

    In a right handed Cartesian coordinate system Figure 2 shows a Materially and 

Geometrically Coupled Composite Beam (MGCCB) which is that of a uniform composite 

wing. The governing differential equations of motion are given by [73] 

0
....

=−++  mxhmKhEI                 (9) 

0
....

=+−+ hmxIhKGJ                             (10) 

where x is the distance between the mass and elastic axes as shown in Figure 2 and the rest of 

the parameters have already been defined earlier. 

    The above equations can be solved in an exact manner and the boundary conditions can be 

imposed to derive the dynamic stiffness matrix of an MGCCB model in order to investigate its 

free vibration characteristics. 

 

 

 

 

 

 

Figure 2 The co-ordinate system and notation for a geometrically and materially coupled 

composite beam (GMCCB) 

 

 

2.2.5 Materially and Geometrically Coupled Composite Timoshenko Beam 

    The effects of shear deformation and rotatory inertia can be included in the above MGCCB 

model to realise a Materially and Geometrically Coupled Composite Timoshenko Beam 

(MGCCTB). This topic does not appear to have received a wide coverage in the literature. The 

governing differential equations of motion for its free vibratory motion have been derived by 

the author and they are given by  
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=−−−  xhmhkAG              (12) 

0
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=+−+ hmxIKGJ                            (13) 

    The parameters used in Equations (11)-(13) have all been defined earlier and now the 

formulation of the dynamic stiffness matrix of the MGCCTB can proceed in the usual way. 

 

2.2.6 Axially Loaded Materially and Geometrically Coupled Composite Timoshenko 

Beam 

    An axial load (P) can be additionally applied to the MGCCTB model to provide a model for 

an Axially Loaded Materially and Geometrically Coupled Composite Beam (ALMGCCB). 

The governing differential equations of motion in free vibration (P positive when compressive) 

obtained by the author are given by  

0)(
..

=−++−+−   hkAGPxhPmxhm                          (14) 
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=++−+−   GJKmIPhPxIhmx                    (15) 
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=−+++−  hkAGKEII                          (16) 

The dynamic stiffness matrix can now be established using the procedure described above. 

2.2.7 Dynamic Stiffness Development for Composite Beams Using Carrera Unified 

Formulation 

    In a recent publication, the dynamic stiffness matrix of a composite beam has been developed 

by Pegani et al [82] by using Carrera unified formulation (known as CUF in the literature), 

which captures the cross-sectional deformations of the beam when it is undergoing free 

vibration. Within the framework of CUF, a three dimensional displacement field is chosen in 

the form of Taylor series expansion of the generalised coordinates when developing the 

dynamic stiffness matrix. For a detailed understanding of the application of CUF in dynamic 

stiffness formulation, see Refs [80-82]. 

3.0 Contributions from the Author and his Co-authors 

    The author and his co-authors have been developing the dynamic stiffness matrices for 

beams made of both isotropic and anisotropic materials for more than 30 years, which included 

tapered beams [19, 20], twisted beams [54, 60], bending-torsion [25, 28, 30, 31, 38, 46] and 

extension-torsion coupled beams [37], sandwich beams [59, 64, 70], rotating beams [51, 55, 

66, 78, 83], moving beams [69], spinning beams [61, 65], cracked beams [75], functionally 

graded beams [79, 85] and beams carrying single and multi-degree of freedom systems [58, 

77].  

 



3.1 Isotropic Beams 

    The dynamic stiffness research carried out by the author and his co-authors is briefly 

summarized as follows.  Reference [19] gives explicit expressions for dynamic stiffness 

elements of tapered beams for which the governing differential equations in free vibration were 

solved using Bessel functions. The corresponding (static) stiffness coefficients for buckling 

analysis were reported in [20]. One of the most significant progresses made was the 

development of the dynamic stiffness matrix of a bending-torsion coupled beam [25] based on 

which the code [28] was developed to analyse an aircraft wing. Further work on the dynamic 

stiffness development of bending-torsion coupled beams involved the inclusion of the 

important effects of shear deformation and rotatory inertia [30] and an axial load [31]. These 

efforts culminated in the development of a unified dynamic stiffness theory for a coupled beam, 

which combined the effects of shear deformation, rotatory inertia and an axial load in a unitary 

manner [38]. Reference [48] illustrates the general dynamic stiffness development procedure 

in its entirety. This comprehensive approach was later used to develop the dynamic stiffness 

matrix of twisted beams using Bernoulli-Euler [54] and Timoshenko [60] theories. The 

applications of this research include compressor and helicopter blades, amongst others. In order 

to improve the accuracy and computational efficiency of the structural analysis of sandwich 

beams, the dynamic stiffness properties of a range of sandwich beams using different theories 

were developed [59, 64] and importantly the theories were validated by experimental results 

[70]. These investigations were significant and some of the most interesting modal 

deformations were captured by using a combination of light and heavy materials such as rubber, 

aluminium, steel and lead in the core and face materials, respectively. References [58, 77] 

report the dynamic stiffness development of beams coupled with spring-mass systems which 

has several practical applications. For instance, the prediction of human-structure interactions 

and also for the solution of frequency attenuation problems, this research is relevant.  

 

    A programme of research was initiated by the author and his research team to formulate the 

dynamic stiffness matrices of rotating structural elements. Their research was published for 

centrifugally stiffened beams [51, 55] using Bernoulli-Euler and Timoshenko beam theories, 

respectively, accounting for an outboard force at the free end, making the applications 

sufficiently general. The results reported in these papers demonstrated the effects of rotational 

speed, hub radius and other beam parameters including slenderness ratios on the dynamic 

behaviour of rotating beams. Subsequent research led to further developments of the dynamic 

stiffness method for free vibration analysis of rotating tapered beams [66, 78]. The types of 

taper considered covered a majority of practical cross-sections. The variations of natural 

frequencies and mode shapes in tapered beams reported in these papers would enable designers 

to make some engineering judgment as to the suitability of distributing strength and stiffness 

and hence saving mass and accommodating aesthetic considerations. The centrifugal force in 

a rotating beam induces tension which increases the stiffness properties and hence has a 

stabilizing effect, whereas for a spinning beam the effect can be counter-productive as the 

advancing and retreating modes can be very different. The latter causes instability and there is 

a critical spinning speed at which the natural frequency tends to zero and the beam becomes 

unstable.  This stimulated an in-depth research towards the development of the dynamic 

stiffness matrices for spinning beams [61]. In a similar but different context, the instability of 

beams in dynamic motion was captured again when the dynamic stiffness matrix of a moving 

beam was formulated [69]. Practical applications of the dynamic stiffness theories for moving 

beams include chain drives, belt drives and robotics amongst others. These investigations are 

significant because there will be always a critical moving speed at which a moving beam can 

become unstable.  



 

3.1 Anisotropic Beams 

    Advanced composite materials which are anisotropic by their very nature have continued to 

make headways in structural analysis and design. In this respect, the dynamic stiffness 

development has kept pace with these development. 

 

    Reference [37] reports the extensional-torsional vibration behaviour of a composite beam 

using the dynamic stiffness method. As a result of ply orientation composite structures exhibit 

directional properties and the paper demonstrates these effects on the natural frequencies of 

extension-torsion coupled composite beams. As in all cases with dynamic stiffness 

formulation, higher natural frequencies and mode shapes can be computed from the theory 

without the need for further discretisation of the structure and, importantly, without any loss of 

accuracy in the analysis. This, in sharp contrast to finite element and other approximate 

methods, is significant, particularly from a computational standpoint because research in areas 

such as aeroelastic tailoring is generally computer intensive. 

 

    It has long been recognised that the effects of shear deformation and rotatory inertia, which 

are relatively less important for metallic structures, may have significant effects on the free 

vibration characteristics of composite structures which generally have very low shear moduli. 

A number of investigations on composite beams using the dynamic stiffness method were 

carried out to examine the effects of shear deformation, rotatory inertia and axial load [45, 49]. 

Further research was instigated on the dynamic stiffness development of composite beams 

including spinning beams [65] and aircraft wings [73]. Although the application of advanced 

composite materials is overwhelmingly promising, there are however some potential problems, 

particularly associated with the delamination of composite laminates. Recently developed 

functionally graded materials for which the properties vary continuously using a predetermined 

formula have no such problems and thus the dynamic stiffness matrices of functionally graded 

beams using Bernoulli-Euler [79] and Timoshenko [85] theories were formulated. 

 

4. The Wittrick-Williams Algorithm 

 

    An accurate and reliable method of calculating the natural frequencies and mode shapes of 

a structure using the dynamic stiffness method is to apply the well-known algorithm of Wittrick 

and Williams [5, 6] which has featured in numerous papers [15, 35]. Before applying the 

algorithm the dynamic stiffness matrices of all individual elements in a structure are to be 

assembled to form the overall dynamic stiffness matrix Kf of the final (complete) structure, 

which may, of course, consist of a single element. The algorithm monitors the Sturm sequence 

condition of Kf in such a way that there is no possibility of missing a frequency (or mode) of 

the structure. This is, of course, not possible in the conventional finite element method. The 

algorithm (unlike its proof) is very simple to use. However, the procedure is briefly summarised 

as follows. 

 

    Suppose that  denotes the circular (or angular) frequency of a vibrating structure. Then 

according to the Wittrick-Williams algorithm [5], j, the number of natural frequencies passed, 

as  is increased from zero to , is given by 

 

                              j = j0 + s{Kf}                                 (17) 

 



    where Kf, the overall dynamic stiffness matrix of the final structure whose elements all 

depend on  is evaluated at  =   s{Kf} is the number of negative elements on the leading 

diagonal of Kf
  Kf

 is the upper triangular matrix obtained by applying the usual form of Gauss 

elimination to Kf , and j0 is the number of natural frequencies of the structure still lying between 

 = 0 and  =  when the displacement components to which Kf corresponds are all zeros. 

(Note that the structure can still have natural frequencies when all its nodes are clamped, 

because exact member equations allow each individual member to displace between nodes with 

an infinite number of degrees of freedom, and hence infinite number of natural frequencies 

between nodes.) Thus 

    
mjj =0

                            (18) 

    where jm is the number of natural frequencies between  = 0 and  =  for a component 

member with its ends fully clamped, while the summation extends over all members of the 

structure. With the knowledge of Equations (17) and (18), it is now possible to ascertain how 

many natural frequencies of a structure lie below an arbitrarily chosen trial frequency. This 

simple feature of the algorithm (coupled with the fact that successive trial frequencies can be 

chosen by the user to bracket a natural frequency) can be used to converge on any required 

natural frequency to any desired (or specified) accuracy.  

 

5. Scope for Future Work 

 

    The literature clearly reveals that the DSM is now sufficiently matured and it is possible to 

develop general purpose computer programs combining bar, beam, plate and shell elements. 

(It should be noted that significant strides have already been made in developing the DSM for 

plates and shell which have not been elucidated in this paper.) Such programs will be much 

more accurate and computationally efficient than any commercially based FEM software. 

Computer programs based on the DSM to analyse two and three dimensional skeletal structures 

that can be modelled by beam dynamic stiffness elements are readily available [21]. It is also 

possible to combine DSM code with FEM code and the application areas of such joint DSM 

and FEM code will include aerospace, civil, automotive, ship-building and other areas of 

engineering. This will satisfy the specific needs of the industry and each application area can 

be considered on its intrinsic merit. The development of refined dynamic stiffness elements 

using piezo-electric and functionally graded materials offers considerable future scopes for the 

DSM, but importantly, the inclusion of damping will play a major role in future DSM 

developments. So far, the DSM has been predominantly applied to solve the free vibration 

problem in the absence of damping and in this respect, the response analysis using the DSM 

with the inclusion of damping will be a challenge, constituting an important area of future 

activity. The DSM can also be explored for nano structures such as single and multi-walled 

carbon nano-tubes. 

 

6. Conclusions 

 

    The literature concerning the solution of the free vibration problems of beams using the DSM 

has been reviewed in some detail. Many of the major advances made in developing the dynamic 

stiffness matrices of isotropic and anisotropic (composite) structural elements are highlighted. 

The author’s own perspective on the current status of the DSM and the scope for its future 

development are projected in the light of the advancements made to date. The potential 

possibility of combing the DSM and FEM software is recognised and the prospect for 

developing the DSM further using piezoelectric and nano materials is also accentuated. 
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