

City, University of London Institutional Repository

Citation: Finkelstein, A. ORCID: 0000-0003-2167-9844 (1992). An advanced course on
software development environments. Paper presented at the 2nd National Conference on
Software Engineering in Higher Education, Swansea, UK.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26455/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

AN ADVANCED COURSE ON SOFTWARE DEVELOPMENT ENVIRONMENTS

ANTHONY FINKELSTEIN

Imperial College, Department of Computing, 180 Queens Gate, London SW7 2BZ
acwf@doc.ic.ac.uk

This paper will describe an advanced course on Software Development Environments. The

paper will detail the content of the course and will discuss issues in the presentation of advanced

and specialist courses in software engineering.

1. Introduction

There is an increasing literature on software engineering education. This literature has however
concentrated on overall curriculum issues, introductory courses and basic project work. Relatively
little attention, with the notable exception of the work of the SEI Software Engineering Curriculum
Project (Ford 1991), has been paid to advanced and specialist courses in software engineering
suitable for graduate students.

This paper describes, in detail, the course on Software Development Environments at Imperial
College. It considers the particular issues that arise in the presentation of advanced and specialist
software engineering courses.

The Software Development Environments course is a 30 hour course consisting of 20 lectures and
10 accompanying problem classes. It is available to MEng degree students at Imperial College as
part of the Integrated Engineering Study Scheme described in Finkelstein (1991). The course is
required of all students completing the MEng Computing (Software Engineering) and its predecessor
MEng Software Engineering. The course is offered during Year 4 of their studies. The course is in
addition available as an option to students following other MEng programmes of study and to
appropriately qualified graduate students as part of the Imperial College Advanced MSc programme
(Foundations of Advanced Information Technology).

The course has also been available to all students in the University of London through the LiveNet
interactive video conferencing system. The course forms the basis of an industrial short course.

Below we describe the background of students following the course. We outline the objectives of the
course and the means by which student performance with respect to those objectives is evaluated.
We consider in some detail the content of the course and explain its structure. We discuss the
material required to support the course. We review the use of interactive video-conferencing, its
benefits and difficulties. We discuss how advanced and specialist courses can be adapted for use as
industrial short courses.

2. Background

The bulk of students taking the Software Development Environments course are those following
MEng courses with a specialisation in Software Engineering. The course is also popular with
Doctoral students working in the area of software engineering and programming languages who
are seeking to extend their knowledge of automated support for software development. The Advanced
MSc programme concentrates largely on computing theory and relatively few students have the
necessary background knowledge of software engineering to follow the course, these students are
admitted to the course based on a short interview.

All students on MEng programmes will already have a solid background in the science and engineering
of computation. They will also have completed 4 required software engineering courses, 2 in Year 1
and 1 in each of Years 2 & 3. These courses contain essential prerequisite material.

Year 1

Software Engineering - Programming [I]

This course introduces “programming-in-the-small”, in particular the implementation of
programs in both functional and imperative languages. The objectives of the course are: to
develop the ability to plan and carry out small program development projects; to use program
design techniques; to implement programs using both functional and imperative programming
languages; to test and evolve those programs. The course develops an understanding of the
programming process. It introduces topics such as higher-order programming and assessing
quality of program design. The course is the primary carrier of: informal specification; program
design; implementation in functional and imperative languages; testing and debugging.

Software Engineering - Programming [II]

This course includes an exploration in depth of the abstract data type and its extension to
file structures held on storage devices. It seeks to develop the ability to abstract the principal
requirements of data structures as appropriate for the required program, from their
implementation and aims to give an understanding of standard algorithms for handling
them and of their performance. This course is the primary carrier of: file handling; design of
data types and algorithms.

Other Year 1 courses introduce predicate logic and discrete mathematics and their use in specifying
and reasoning about programs.

Year 2

Software Engineering - Design

This course introduces software development “in-the-large” in particular software specification
and design and develops a familiarity with basic aspects of software development practice,
techniques and tools. It aims to develop: the ability to plan and coordinate a small team
software development project from statement of need through to implementation and
maintenance; the ability to use formatted systems analysis and design techniques; the ability
to identify, select and evaluate software development tools. The course builds on students
knowledge of “programming-in-the-small” and develops an understanding of specification
and design techniques and how they can be deployed as part of a disciplined software
development process. The course is the primary carrier of the following: software process;
software evolution; system modelling.

Year 3

Software Engineering - Methods

This course presents a collection of methods, techniques and tools from which students may
select when trying to solve problems that are less well defined and larger than they have
previously encountered. The aims of the course are: to give insight into the size and complexity
of some current software systems; to present methodologies for planning and managing
software projects. This course builds on the concepts of programming-in-the-small (Software
Engineering - Programming [I]) and software design (Software Engineering - Design). It
provides practical knowledge and experience for planning, managing and performing software
projects. The course integrates and develops previous concepts notably those of system
modelling and illustrates their role in the software engineering process.

Students will have completed a significant group software engineering project in each of Years 2 &
3. The Year 2 group project will include a substantial analysis and design task with appropriate
documentation. The Year 3 project, which includes a large implementation, generally requires the
use of standard software engineering tools in the Unix environment.

All students in Year 4 will have completed a period of industrial placement between Easter of Year
3 and the start of Year 4. The placement provides training in accordance with the requirements of
the Institution of Electrical Engineers (IEE Membership Brief M5). It includes experience of:
product and/or service specification; design and development; documentation; procurement,
implementation, testing and quality assurance; application (system) engineering; installation,
commissioning, operation and maintenance. Students obtain practical knowledge and experience
by participating in useful work, in particular through involvement in team-based projects. The
placement element of their programme of study and their exposure to “real-world” software
engineering practices and problems provides students with a significant motivation to pursue the

study of automated support for software development.

3. Objectives

The primary objective of the course is to develop an awareness of the state-of-the-art in software
development environments and automated support for software development. The course presents
the issues, challenges and practical concerns that underlie the construction and use of such
environments. Students completing the course should have the ability to evaluate and deploy
appropriate automated support for software development in an industrial setting.

A supporting, but nevertheless important, objective is that students gain an appreciation of the
intellectual challenges which the study of software engineering presents. It is essential that students
are exposed to the “research edge” of software engineering and are shown problems of equivalent
substance to those they encounter in, for example, the theory of computation or parallel computing.

4. Assessment Methods

Assessment is one of the most difficult issues in software engineering education. The assessment of
student performance on the course is by examination and coursework. Students sit a 2 hour
examination paper and complete coursework equivalent to 3 nominal hours. The weighting of
examination to coursework is approximately 80:20.

During the examination students must answer 3 questions which require both a knowledge of the
content of the course and a good understanding of the issues which underlie it.
A typical question which students might be asked is:

Give a short description of the architecture and principles of operation of Popart/Paddle &
Marvel respectively. They have some common principles and structural features what are
they?

Such questions generally require an “essay-style” answer though “note-form” answers are acceptable.
Computing students find this very difficult. They lack the experience of producing written accounts,
under examination conditions, which students reading humanities or social sciences have. This
significantly limits the effectiveness of examinations as an assessment method for this type of
course.

The coursework component particularly tests the skill component of the course objectives. The
assignment varies each year but basically involves the preparation of a “strategy” for providing
automated support for a small software development organisation which is described in the
coursework brief. Students are expected to demonstrate an appreciation of the key factors that
determine what type of automated support is appropriate in what circumstances. Particular attention

is paid, when assessing the submissions, to whether the students have asked the “right questions”
rather than produced the “right answers”.

5. Course Organisation and Structure

The course has an unusual and innovative organisation. It is entirely based round examples and
case studies drawn from research and industrial practice. It is divided into units addressing a
selected example or narrowly focused set of issues. Units vary in length but are generally about 50
minutes of lecture time. General principles and models are provided through a set of supporting
readings.

This “artefact-centred” approach (Carroll 1990) is motivated by some specific concerns about advanced
and specialist education in software engineering. Students find abstract models and generalised
architectures difficult to understand without solid examples. In any case the state-of-the-art in
software development environments does not provide any generally accepted analytical or taxonomic
framework. The approach is supported by some more general observations on student difficulties
in the study of software engineering which we shall not rehearse here but are considered in some
detail in Finkelstein (1991).

The units are interspersed with problem classes which involve a short discussion of the supporting
reading and an exercise. There is a large extended exercise which spans a significant part of the
course.

6. Course Content

6.1 Units

The course is composed of 15 units. They are preceded by a short introduction to the course and a
statement of what is required from students following it. The units are as follows:

Unit 1: Software Engineering Revision

This unit reviews basic software engineering concepts and aims to establish a shared software
engineering vocabulary. The unit links the course to the background courses discussed above.

Unit 2: Overview of Software Development Automation

This unit gives an overview of software development automation it distinguishes between
tools, work benches and environments. The unit gives a very simple reference architecture
which students can use during the early part of the course.

Unit 3: The Analyst and IEF

This unit gives a detailed discussion of two example “CASE tools” - The Analyst and IEF.
The unit shows how they are used to support software development and considers their
architecture, strengths and shortcomings.

Unit 4: Unix

This unit examines the most widely used general-purpose, industrial-strength development
environment - Unix. The unit shifts the focus from looking at Unix as an operating system
towards looking at it as a software development environment. The unit reviews the advantages
and disadvantages of Unix and considers its role in providing operating system support and
supplementary tools for other software development environments.

Unit 5: Smalltalk-80

This unit examines the paradigm case of an exploratory programming environment - Smalltalk-
80 - and examines its role in the evolution of programming tools, methods and environments.
Smalltalk-80 is compared and contrasted with conventional software development
environments discussed in the preceding units.

Unit 6: PCTE

This unit looks at PCTE (Portable Common Tool Environment). In particular it examines in
depth the PCTE object storage and considers the role of object storage in environment
software frameworks.

Unit 7: Pecan, Garden & Field

This unit examines the development of programming environments since Smalltalk-80 through
a discussion of the Brown University family of programming environments. The unit to looks
in some detail at Pecan, Garden and Field and the approach which underlies them.

Unit 8: Programmers Apprentice

This unit looks at AI applied to support for software engineering in a principled manner in
particular the storage and use of “programming knowledge”. The unit examines the assistant
approach and its relation to software development environments.

Unit 9: Arcadia & Marvel

This unit examines Arcadia & Marvel which employ the “process programming” approach to
software development support. The simple reference architecture introduced in Unit 1 is
extended to take account of this approach

Unit 10: Aspect & IPSE 2.5

This unit reinforces and builds on the examination of the process modelling centred
architectures of Arcadia & Marvel (Unit 9) by looking in detail at two UK software development
environments Aspect & IPSE 2.5.

Unit 11: Popart /Paddle

This unit, through an examination of Popart/Paddle, considers formal models of the
development process and their use in software development environments. It discusses support
for formal (transformational) software development.

Unit 12: ISTAR

This unit examines ISTAR, a “federated environment” based on an abstract model of software
development and of task sharing.

Unit 13: ESF

This unit considers the ESF (Eureka Software Factory) technical architecture for software
factories. The unit looks at the software factory concept and how it is being realised within
ESF.

Unit 14: User Interface Issues

This unit analyses the user interface issues which are important for software development
environments and examines approaches to handling these issues. UIMs (User Interface
Management Systems) are considered and some examples reviewed.

Unit 15: Commercial Issues

This unit examines the commercial issues which influence the architecture and use of software
development environments.

The course concludes with a revision session which revisits the Units and considers their key
points.

Students receive printed notes summarising the material covered in the units. They are expected
to supplement these with their own notes.

The units are carefully organised in sequence. They start with “environments” which the students
have are already been introduced to: CASE tools, Unix, integrated programming environments and
look at their architecture and the principles which underlie their construction. The evolution of
these types of environments are considered by looking at PCTE, which gives scope for discussing
object management, and the Brown University family of programming environments, which gives
scope for discussing environment generation and extension. The idea of basing automated support
on a systematic understanding of the development process is introduced through Programmers
Apprentice and fully detailed in the analysis of process modelling in Arcadia, Marvel, Aspect and
IPSE 2.5. The idea of development knowledge is used to relate transformational environments,
such as Popart/Paddle, to software development environments in general. The issues of scale and
distribution of an environment are considered through an examination of ISTAR and ESF. Lastly
two key sets of issues which determine the shape and success of software development environments
are considered.

6.2 Problem Classes

There are 10 problem classes associated with the course. These problem classes are used for:
discussion and questions arising from the units; exercises completed individually and in small
groups; directed discussion of the readings; small demonstrations and hands-on sessions.

Exercises

There are 3 main exercises, two of which are extended over several problem classes:

Exercise 1: Revision Debate

Students are asked to debate the merits of different software engineering paradigms (for
example, “This House Believes that the ‘Waterfall Approach’ is the Best Way to Build Large
Software Systems”). A formal debate structure is established with speeches on each side and
questions from the floor. A vote is taken. Particular emphasis is placed on the implications of
the different paradigms for automated support.

Exercise 2: Evaluation

Students are asked to work in small groups (3 students) and to prepare a form which can be
used to help inexperienced software engineers to select a CASE tool for their work. The
groups exchange forms and, using packs of publicity material describing commercial CASE
tools, prepare evaluations based on the form they are given. The students review progress
and discuss the strengths and weaknesses of their own forms and those of others. They also
discuss the respective merits of the various tools.

Exercise 3: Process Modelling

Students are asked to work in small groups (3 students) and are given a description of a
small, but realistic software process. It focuses on the designing, coding, unit testing, and
management of a rather localized change to a software system. The problem is taken from
the literature (Kellner et al. 1991). Students are asked to identify the tools that might be
involved in carrying out this process. Students are then asked to produce a data flow diagram
of the process. Once this is completed students are required to produce a data model of this
software process. Lastly students are asked produce a formal specification of the process
using a simple pre-condition [action] post-condition scheme (similar to that used in Marvel).

Readings

There are 9 readings that accompany the course and which form the required preparation for the
problem classes. In addition particular papers may be recommended to amplify specific units (for
example, Wile (1983) to support Unit 11).

The readings are:

[1] The Byte Staff (1989); Making a Case for CASE; Byte; December 1989, pp 155-171.

[2] Sheil, B. (1983); Power Tools for Programmers; Datamation; February 1983, pp 131-144.

[3] Rich, C. & Waters, R. (1988); Automatic Programming: myths & prospects; IEEE
Computer; August 1988, pp 40-51

[4] Osterweil, L. (1987); Software Processes are Software Too; Proc. 9th International
Conference on Software Engineering; pp 2-13, IEEE CS Press.

[5] Finkelstein, A. (1989); Not Waving but Drowning: representation schemes for modelling
software development; Proc. 11th International Conference on Software Engineering;
pp 402-404, IEEE CS Press.

[6] Green, C.; Luckham, D.; Balzer, R.; Cheatham, T. & Rich, C. (1983); Report on a
Knowledge-Based Software Assistant; Kestrel Institute Report.

[7] Scacci, W. (1987); The USC System Factory Project; USC Technical Report CRI-87-67.

[8] Myers, B (1989); User-Interface Tools: introduction & survey; IEEE Software; January
1989, pp 15-23.

[9] Perry, D & Kaiser, G. (1989); Models of Software Development Environments; Proc.

10th International Conference on Software Engineering; pp 60-68, IEEE CS Press.

A guided discussion of each reading is held which attempts to bring out the key issues and tests
students understanding of the material.

Demonstrations

Where practically possible we have sought to provide demonstrations of, and hands on sessions
with, some of the environments discussed in the course. These have included The Analyst, PCTE,
Smalltalk-80, Marvel, and ISTAR. This is an area in which we hope to extend and improve the
course.

Video-tapes

An early version of this course was based round seminars given by key developers of software
development environments. These seminars were video taped and form an additional resource
which students on the course are encouraged to take advantage of. The tapes include: Frank
McCabe on MacProlog; Bob Snowden and Clive Roberts on IPSE2.5; John Darlington on
Transformational Environments; Peter Hitchcock on Aspect; Vic Stenning on ISTAR.

7. Interactive Video Conferencing

Providing a range of specialist and advanced courses is always difficult. It is sometimes difficult to
justify courses with relatively low take-up and software engineering staff are in demand to teach
the important introductory courses and supervise projects. We have been experimenting with the
use of interactive video-conferencing to make the provision of such specialist material more economic
and to share scarce expertise.

The Software Development Environments course was made available on LiveNet, the University of
London video conferencing facility which links the major schools of the University. This facility
employs wide-band fibre optic links to give interactive real-time video with all participants at each
of the six available sites able to see and hear each other. Some lectures on the course were
attended by students from University College London and Royal Holloway & Bedford New College.
The full course was attended by students from Queen Mary & Westfield College. Notes for the
course were distributed in advance to designated coordinators at each school. Electronic mail was
used for questions and discussions. So far we have not used LiveNet to support problem classes
though we see no problem in doing so.

Students adjusted quickly to the new medium and we regard the experiment as successful. The
only limits are in the use of complex graphics and diagrams - careful use of notes can circumvent
this problem.

8. Industrial Short Course

This course has been adapted for use as a short course in the Imperial College Computing Forum,
a “club” of industrial and commercial organisations who support research and education in computing
at Imperial College. This “dual-use” is an important benefit of advanced and specialist courses in
software engineering. Exposing experienced software engineering practitioners to course material
results in improvements to the course and its presentation which benefits students. In particular
students taking the short course variant of the Software Development Environments course showed
particular interest in the issues of standardisation and management control of software development.
This has been more heavily emphasised in revised versions of the Software Development course.

In adapting and giving the course we have learned: particular care must be paid to ensuring that
attendees have a shared software engineering vocabulary; presenting in a concentrated period
allows a much quicker coverage of material; there is limited scope in an industrial short course for
exercises and discussions, more emphasis needs to be placed on the units; it is of considerable
benefit to use the experience of attendees by being open to questions and allowing attendees to
determine the emphasis to be placed on different parts of the course.

9. Advanced and Specialist Courses in Software Engineering

The Software Development Environments course described above demonstrates that advanced and
specialist courses in software engineering can provide an intellectually demanding and useful
addition to both specialist software engineering students and as a component of a general computing
education. There are obvious benefits to industry of advanced education in software engineering of
this type. Other examples of courses which could be organised include: software testing; requirements
engineering; software economics; software quality.

Experience has taught us that prerequisite to advanced and specialist courses in software engineering
is a solid introductory programme and that some industrial experience on the part of the students
is vital.

An effective way of introducing the material is through an example-based approach. This must be
complemented by an appropriate scheme of readings and discussions. Students gain from being
given readings from the literature - it enhances their knowledge gathering and critical skills.
Particular attention should be paid to the development of exercises and problems which is the
hardest part of the design of advanced and specialist courses. A problem in the assessment of
advanced and specialist courses in software engineering is students poor writing skills. This issue
needs general attention in the development of computing curricula.

The economics of specialist course provision can be made more favourable by adapting advanced
and specialist courses to build industrial short courses and by multi-institutional course sharing.

Video conferencing shows promise in this area.

The health of software engineering as a field of research depends on students selecting it as a topic
for study at a doctoral level. Students will only do this if they have seen that there are open
problems and difficult issues worthy of their attention. They will not get this from introductory
courses alone.

Acknowledgements

I would like to thank the students who have taken the Software Development Environments
course for their ideas, participation and stimulating questions. I wish to thank my colleagues Jeff
Kramer, Manny Lehman & Jeff Magee for their suggestions and comments.

References

Carroll, J. (1990); Towards an Emulation-based Design Theory; Interact ‘90; North Holland.

Finkelstein, A. (1991); Student Problems in Software Engineering Education; IEE Colloquium on
The Teaching of Software Engineering; Digest No: 1991/034.

Finkelstein, A. & Kramer, J. (1991); An MEng Programme of Study in Software Engineering; Proc.
1st National Conference on Software Engineering in Higher Education, pp128-151, SIHE.

Ford, G. (1991); 1991 SEI Report on Graduate Software Engineering Education; Software Engineering
Institute, Carnegie Mellon University; Technical Report CMU/SEI-91-TR-2.

Kellner, M.; Feiler, P.; Finkelstein, A.; Katayama, T.; Osterweil, T.; Penedo, M. & Rombach, H.
(1991); Sofware Process Example; Proceedings of the 1st International Conference on the Software
Process; pp176-1187, IEEE CS Press. (Also 6th International Software Process Workshop)

Wile, D. (1983); Program Developments: formal explanations of implementations; CACM, 26(11),
pp 902-911.

