

City, University of London Institutional Repository

Citation: Finkelstein, L., Huang, J., Finkelstein, A. & Nuseibeh, B. (1992). Using software

specification methods for measurement instruments: Part II - formal methods.
Measurement, 10(2), pp. 87-92. doi: 10.1016/0263-2241(92)90017-x

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26457/

Link to published version: https://doi.org/10.1016/0263-2241(92)90017-x

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

(In) Measurement Journal, Vol 10, No 2, Apr-Jun 1992, pp.87-92.

Using Software Specification Methods
for Measurement Instrument Systems

Part 2: Formal Methods

L.Finkelstein(*), J.Huang(*), A.C.W.Finkelstein(+) and B.Nuseibeh(+)

(*) School of Engineering, City University, London EC1V 0HB, UK
(+) Department of Computing, Imperial College, 180 Queen's Gate,

London SW7 2BZ, UK

In the second part of the paper, we investigate the applicability of formal methods to the
specification of measuring instrument systems. We then conduct a case study in the
widely used Z method. Using formal methods for specification purposes, one can obtain
a clear understanding of user's problems, especially the aspects of functional behaviour,
and therefore produce a correct specification document based on this understanding.

Keywords: Requirements analysis, Formal specification, Z, Measuring instrument
systems

1. Introduction

Formal specification methods have aroused great interest among the software
community [Hall, 1990]. However, little is known about the applicability of formal
methods to the specification of measuring instrument systems. In this part of the paper,
we investigate this area, which has been almost totally ignored by the instrument
community.

A client usually gives a requirement definition document, and a system analyst must
then analyse these user requirements and translate them into a specification, which, once
approved by both the client and the supplier, actually forms a legal document binding
both sides. Therefore, the specification process consists of two important stages:
requirements analysis and specification documentation. The analysis of user
requirements leads to a final set of statements in a specification document. Some have
used the term "formal specification" to refer to a strictly mathematical interpretation of
user requirements in a specification document [Delisle and Garlan, 1990]. To avoid
confusion, we use the term "specification document", instead of "specification". We
discuss the prospect of applying formal methods to instrument specification from the
viewpoints of both requirements analysis and specification documentation.

1

2. Major catagories of formal specification techniques

In model-based methods such as Z and VDM, a specification document is an explicit
system model constructed out of abstract or concrete primitives. All the primitives are
well defined. The existence of a model ensures consistency of the specification and gives
useful hints to designers.

Algebraic specification of a certain data type uses axioms to describe the relationship
(usually equality) between various operations that can be performed on this type of data.

Logic programming in, say, Prolog can be used to write specification documents by
using a restricted form of first-order logic (Horn clauses) which can be reasoned about
by adopting a resolution theorem proving approach. Even second-order predicates can be
interpreted in Prolog.

These different styles of specification methods may be used for different types of
specification problems. Pure mathematicians may want to use axiomatic algebraic
methods to specify operations in terms of their syntax and semantics [Gehani, 1986].
However, these methods do not accommodate behaviour specification, e.g. input-output
functional characteristics. A model-based approach such as Z or VDM is more applicable
in this respect. Therefore, programmers and specifiers of instrument systems may prefer
such an approach to an algebraic method. Due to good software support and reasoning
capabilities available in a Prolog environment, some may choose to use Prolog to
generate a specification document [Cook, 1990].

In the rest of this paper, we will investigate the applicability of model-based
approaches to the specification of instrument systems.

3. The behaviour of software and instrument systems and implications
for formal specification methods

All software behaviour can be modeled as a logical relation between inputs and
outputs [Blackburn, 1989]. A strikingly similar approach to the modelling of instrument
system behaviour was established by Finkelstein [1987]. In this approach, an instrument
system is essentially a device which acquires and/or processes input and produces some
form of output. Therefore, the functional behaviour of both software systems and
instrument systems can be modeled as input-output transformations. The inputs and
outputs can be considered to be sets of typed entities and the transformations as equality
predicates. In the meantime, constraints on inputs, outputs and transformations can also
be expressed using predicates. Therefore, model-based techniques may be applied to
analyse the functional behaviour of software systems as well as instrument systems.

2

4. Benefits and Problems of Using Formal Methods

For software systems, model-based specification documents incorporate explicit
system models, and they provide the basis for system designers to formally analyse the
abstract models. Through such an analysis the designers can gain insight into the
understanding of system requirements and obtain inspirations about design solutions.
Although transformation details must not be included in a specification document of
instrument systems, a formal analysis of customer requirements can lead to a clear and
thorough understanding of user requirements, and therefore provide the basis for a
correct interpretation of these requirements in a specification document.

A formal specification document of a software system also makes it possible to
formally verify that the program meets its specification [Berg, 1982]. As a matter of fact,
research into formal specification methods was initiated because of the need in formal
program verification. Computer programs may be verified against their specification with
some effort. Recently, formal methods have also been used to specify electronic circuits
and verify their implementation against the specification [Hoare and Gordon, 1992].
However, it may be difficult to formally prove that a largely analog instrument actually
conforms to its specification.

Formal specifications provide the basis for automatic program generation. More and
more research has been devoted into tools for automatic transformations from formal
specification into programs [Partsch, 1983; Balzer, 1985]. Transformation of chip
specifications into chip products can also be automated [Hoare, 1992]. This automation
may, however, be difficult to realise for analog instruments.

The economic implications of formal specifications are not yet that clear. However, it
is claimed [Hall, 1990] that formal specification may reduce the overall cost of software
development. Although more time and labour are involved in the specification phase than
usually, the implementation and testing phases can be shorter. Therefore, the use of
formal specification can reduce the overall life-cycle cost. However, formal methods
may be expensive to adopt for instrument system specification, as design,
implementation and testing can not be formally conducted in instrument development, let
alone the fact that engineers usually try to avoid using mathematics.

Despite the tremendous effort on formal specification techniques, there are serious
obstacles which prevent system analysts from using these techniques. Perhaps most
importantly for industrialists, analysts are usually not familiar with discrete mathematics
and logic which are essential for formal requirements analysis and specification. A
considerable amount of training must, therefore, be provided.

Several case studies of formal specification for real-world software systems have
been performed [Hayes, 1987]. Some of the practical applications in software
engineering which have proved successful include the specification of a UNIX filing

3

system [Morgan et al, 1984]. In the following section, we formally analyse a differential
pressure sensor using the model-based Z method, and then produce a corresponding
specification document.

5. Specification Case Studies Using Z

5.1. The Z notation

Before we undertake any formal analysis, the basic Z notation, as used in the case
studies, is briefly explained below.

x: X Declaration that x is a member of typed set X
P S Power set of set S

X | Y The set of partial functions from X to Y
∀ x: X | P1, ∃ y: Y • P2 The logical statement that

for all x of type X satisfying predicate P1,
there exists a y of type Y
such that predicate P2 holds

^ Conjunction
× Cartesian product
λx: X • f(x) The function that, given an argument x of type X, gives

f(x)
S ∆ R Domain restriction: { (x,y) | (x,y) ∈ R ^ x ∈ S }
== Equivalence

Schema definition:
Schema-Name
Declarations

Predicates

The ∆ schema convention:
∆ S == S ^ S'

where S is the before state (schema) and S' is the after state (schema)

Axiomatic-box definition:
Declarations

Predicates

4

5.2 Specifying a Differential Pressure Sensor

Suppose the customer has given the following description of a differential pressure
sensor: The device shall generate an analog signal output proportional to a pressure
difference between atmospheric and input pressure and ratiometric to reference voltage,
subject to performance and other constraints. Based on the above general description, we
will analyse the functional transformation of the pressure sensor and non-functional
constraints the sensor must conform to, giving a Z specification for the sensor. The
following data types will be used in the analysis of input-output transformation and non-
functional constraints:

mS, V, kPa, mA, k Ω , kHz: P R
(Time in mS, voltage in V, pressure in kPa, current in mA,
impedance in k Ω and frequency in kHz, are real numbers)

5.2-1 Functional transformation

The relationship between input pressure (p), supply voltage (eR) and output voltage
(eo) must be clearly defined, say, as

eo, eR: V
p: kPa
eo = eR * (0.01 * p + 0.1)

The allowed range of supply voltage, eR, shall be from 4.7 to 5.3, for example. There

must also be an upper limit to the measurand, say, p ≤ 80.

We can now use the following schema box to express the transformations of the
pressure sensor. The variables followed by ? represent input variables, and those
followed by a ! represent output variables.

PressureSensor

p?: kPa
eR?, eo! : V

(4.7 ≤ eR? ≤ 5.3)
(p? ≤ 80)
(eo! = eR? * (0.01 * p? + 0.1))

Alternatively, the function type in Z can be used to represent the input-output
transformation of the sensor. The following axiomatic-box defines the transformation
from (Differential_pressure × Reference_voltage) to Output_voltage.

5

PressureSensor: kPa × V | V

∀ eR: V | 4.7 ≤ eR
≤ 5.3; p: kPa | p ≤ 80 •

PressureSensor(p,eR) = eR * (0.01 * p + 0.1)

5.2-2 Non-functional constraints

All the constraints which are not directly related to input-output transformations are
regarded as non-functional constraints. We do not attempt to give an exhaustive list of
such constraints. Typically, restrictions on current drain (cd), dynamic time response
(tres), impedance (Imp) and sensor output error (er) will have to be specified.

cd: mA
cd

≤ 20

tres: mS (step response time as 90% of steady state value)
tres

≤ 15

Imp: kHz | k Ω (impedance as a function of frequency)

Imp(1) ≥ 10

Sensor output error, er, shall be expressed as an equivalent change in the pressure
measurand, p. We first specify the error over a critical operating temperature range, say,
t ∈ (0oC, 80oC). The error shall lie between the upper limit of (-0.05*p + 1.5) and the
lower limit of (0.05*p - 1.5) if the differential pressure p is less than 10kPa; between
1.0 and -1.0 if 10kPa ≤ p ≤ 50kPa; or between (0.05*p - 1.5) and (-0.05*p + 1.5) if
50kPa ≤ p ≤ 80kPa. A factor of (-0.05*t + 1) can be multiplied to these bounds if
temperature t ∈ (-40oC, 0oC), or (0.05*t-3) if t ∈ (80oC, 120oC). To specify such a
complex constraint in Z, we first define a set of multiply factors, M, as a function of
temperature, over the temperature range (-40oC, 120oC), as

T: P R

M: T | R

{t: T | -40 ≤ t ≤ 120} ∆ M == λt: T | -40 ≤ t ≤ 0 • (-0.05*t + 1) ∪

λt: T | 0 ≤ t ≤ 80 • 1 ∪

λt: T | 80 ≤ t ≤ 120 • (0.05*t - 3)

The following predicate then defines the constraint on sensor output error er
∀ p: kPa | p ≤ 80; t: T | -40 ≤ t ≤ 120, ∃ er: kPa •

((p ≤ 10) ∧ ((0.05*p - 1.5) ≤ er/M(t) ≤ (-0.05*p + 1.5)))
∨ ((10 ≤ p ≤ 50) ∧ (-1.0 ≤ er/M(t) ≤ 1.0))
∨ ((50 ≤ p ≤ 80) ∧ ((-0.05*p + 1.5) ≤ er/M(t) ≤ (0.05*p - 1.5)))

6

5.3 Functional Specification of a generalised chemical process model

A generalised chemical process control loop [Williams, 1960] is given in Figure 1.
The plant considered here is to produce a certain amount of chemical product, P, whose
exact nature need not be specified here. We will not consider the detailed chemical
kinetics of the reactions involved in producing P. Dynamics of the process is ignored and
steady state is assumed for all flows and reactions. This case study is mainly to
demonstrate how Z can be applied to the specification of functional behaviour of
complex instrument systems, instead of simple instruments such as pressure sensors.

Since flow rates (e.g. in lb/hr) and temperatures (e.g. in oC) will be used intensively
in the following analysis, we first define them as real numbers

FR, T: P R

5.3-1 Reactor

The main chemical reaction of the process occurs in the reactor, which takes initial
reactants A and B, and produces a mixture of various chemicals, including A, B and P.
We denote the output of chemical mixture as fri. Note that a recycling flow of fl also
feeds into the reactor. A flow of water, fw1, is used for cooling purpose, with inward
flow temperature tw1i and outward flow temperature tw1o.

The state of the reactor can be specified as

Reactor

fw1: FR
tw1i, tw1o: T

and the operation "React" is specified by

React
∆ Reactor
fa?, fb?, fl?, fri! : FR

fw1' = fw1

tw1i' = tw1i

fri! = fa?+ fb? + fl?

which simply implies that a constant flow rate of coolant water and constant temperature
of inward water flow, must be maintained before and after the reaction. The flow rate of

7

output, fri, is to be the sum of all input flow rates, i.e. fa, fb and fl.

5.3-2 Reaction-Cooler Heat Exchanger

The reaction-cooler heat exchanger is by name to reduce the temperature of chemicals
produced by the reactor. A heavy oil waste material, G, was produced after the initial
reaction and it must be made insoluble through a cooling operation. Another purpose of
the cooling procedure is to effectively stop the reaction, thus avoiding an overproduction
of G. The state space of the heat exchanger can again be considered as including the flow
rate of cooling water, fw2, inward flow temperature tw2i and outward flow temperature
tw2o.

ReactionCoolerHeatExchanger
fw2: FR
tw2i, tw2o: T

The operation "Cool Reaction" is described by

CoolReaction
∆ ReactionCoolerHeat Exchanger
fri?, fr! : FR

fw2' = fw2

tw2i' = tw2i

fr! = fri?

5.3-3 Decanter

Since G has a considerably higher gravity than the carrier stream, it may be removed
by settling in a decanter. No specific state variables are associated with the decanter, and
we only specify the decanting operation by the following schema

Decant
fr?, fe! , fg! : FR

fg! + fe! = fr?

5.3-4 Distillation Column

The final product, P, is separated from the carrier stream from the decanter, by
distillation. We do not attempt to indulge ourselves deeply in the design of a distillation

8

column here. However, since the coolant water temperature is closely related to plant
capacity to produce P, we will have to restrict the allowed range of the coolant
temperature, say, below 10 oC. Let us assume that a stream rate of 5000 lb/hr of P shall
be produced from the plant. The design of the distillation column will depend on the
maximum allowed coolant temperature and the required production rate of P. The state
space of the distillation column is given as

DistillationColumn
fw3: FR
tw3i, tw3o: T

tw3i ≤ 10

The distillation operation can be specified as

Distill
∆ DistillationColumn
fe?, fp! , fs! : FR

fw3' = fw3

tw3i' = tw3i

tw3i ≤ 10
fp! + fs! = fe?
fp! = 5000

5.3-5 Recycle Control

After the distillation operation, the column bottom stream, fs, still contains some
amount of P. A certain proportion of this stream is discarded, while the rest is to be
returned to the reactor for recycling. The proportion, fd/fs, may vary from one designer
to another. The overall proportioning control may be described as

FlowProportioningControl
fs?, fl! , fd! : FR

fl! + fd! = fs?

5.3-6 Functional specification of the overall process

The functional behaviour of the whole process may now be analysed, using the
above descriptions of individual components:

9

Process == React ∧ CoolReaction ∧ Decant ∧ Distill ∧ FlowProportioningControl

Expansion of the schema Process gives the following:

Process
fw1, fw1' , fw2, fw2' , fw3, fw3' : FR
tw1i, tw1i' , tw1o, tw1o' , tw2i, tw2i' , tw2o, tw2o' , tw3i, tw3i' , tw3o, tw3o' : T
fa?, fb?, fri, fr, fe, fs, fl, fg! , fp! , fd! : FR

fw1' = fw1 ∧ fw2' = fw2 ∧ fw3' = fw3

tw1i' = tw1i ∧ tw2i' = tw2i ∧ tw3i' = tw3i

tw3i ≤ 10
fa? + fb? + fl = fri

fri = fr

fr = fg! + fe

fe = fp! + fs

fs = fl + fd!
fp! = 5000

In the above expansion, some variables, e.g. fr, appear both as an input variable
(decorated with ?) and an output variable (decorated with !). Therefore, decorations
have been removed to yield an undecorated variable. After further substitutional
simplification, we have the following schematic specification of Process:

Process
fw1, fw1' , fw2, fw2' , fw3, fw3' : FR
tw1i, tw1i' , tw1o, tw1o' , tw2i, tw2i' , tw2o, tw2o' , tw3i, tw3i' , tw3o, tw3o' : T
fa?, fb?, fg! , fp! , fd! : FR

fw1' = fw1 ∧ fw2' = fw2 ∧ fw3' = fw3

tw1i' = tw1i ∧ tw2i' = tw2i ∧ tw3i' = tw3i

tw3i ≤ 10
fa? + fb? = fg! + fp! + fd!
fp! = 5000

which can be interpreted into the following statements:

1. The plant is to use chemicals A and B to manufacture chemical product P
at a rate of 5000 lb/hr.

2. During the manufacture of chemical P, a heavy oil material G will be

1 0

produced and it must be disposed of as a waste material.

3. Apart from product stream P and waste material stream G, there must be a
channel for stream D to be discarded.

4. All coolant flowing into the plant must has a constant flow rate and they
must be maintained at a constant temperature. In addition, the temperature
of the coolant water used in distillation must not exceed 10 oC.

6. Conclusions

Using formal methods for specification purposes, one can obtain a clear
understanding of user's problems, especially the aspects of functional behaviour, and
therefore produce a correct specification document based on this understanding. The case
studies presented in this paper have demonstrated this point very well. In the meantime,
formal verification of specification consistency may be checked using formal proof
methods. The task of such verification will not be pursued in this paper.

Formal specifications also provide the basis for formal validation checking and
automatic specification-to-product transformation. This advantage is most obvious in
software development and digital chip manufacture, though much remains to be explored
of formal validation and automatic transformation in measurement instrument
development.

7. Acknowledgements

The authors wish to thank the SERC for the SEED research grant. They would also
like to express their gratitude to Dr. J. Moffett of Imperial College, for his criticism with
respect to Z specifications.

8. References

Balzer R. 1985, A 15 Year Perspective on Automatic Programming, IEEE
Transactions on Software Engineering, Vol.11 No.11

Berg H.K., Boebert W.E., Franta W.R. & Moher T. G . 1982, Formal
Methods of Program Verification and Specification, Prentice-Hall International

Blackburn M.R. 1989, Using Expert Systems to Construct Formal Specifications,
IEEE Expert, Vol. 4 No.1

Cohen B., Harwood W. T. & Jackson M.I. 1986, The Specification of Complex

1 1

Systems, Addison-Wesley

Cook S.C. 1990, A Knowledge-Based System for Computer-Aided Generation of
Measuring Instrument Specifications, PhD thesis, Measurement and Instrumentation
Centre, City University, London

Delisle N. &Garlan D. 1990, A Formal Specification of an Oscilloscope, IEEE
Software, Vol.7 No.5

Finkelstein L. 1987, Instrument and Instrument Systems: Concepts and Principles,
Systems and Control Encyclopedia (editor: M.G. Singh), Pergamon Press

Gehani N.H. & McGettrick A.D. (ed.) 1986, Software Specification Techniques,
Addison-Wesley, pp.173-185

Hall A. 1990, Seven Myths of Formal Methods, IEEE Software, Vol.7 No.5

Hayes I. (ed.) 1987, Specification Case Studies, Prentice-Hall International

Hoare C.A.R. & Gordon M.J.C. (eds.) 1992, The Royal Society Discussion
Meeting on Mechanized Reasoning and Hardware Design, to be published by Prentice-
Hall International in June 1992

Morgan C. & Sufrin B. 1984, Specification of the UNIX Filing System, IEEE
Transactions on Software Engineering, Vol.10 No.2

Partsch H. 1983, Program Transformation Systems, ACM Computing Surveys,
Vol.15 No.3

Sommerville I. 1989, Software Engineering, Addison-Wesley

Williams T.J. & Otto R.E. 1960, A Generalized Chemical Processing Model for the
Investigation of Computer Control, IEEE Trans. on Communications and Electronics ,

Vol.79

1 2

F
ig

u
re 1. A

 G
en

eralised
 C

h
em

ical P
ro

cess M
o

d
el fo

r C
o

n
tro

l

Reactor
Reaction Cooler
&
Heat Exchanger

Decanter Distillation
Column

Flow
Proportioning
Control

fb

fa fri fr fe fp

fd

fw3 (tw3i)

fw3 (tw3o)

fw2 (tw2i)

fw2 (tw2o)

fw1 (tw1i)

fw1 (tw1o)
fs

fl

fg

1
3

