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Populations of mobile and communicating agents describe a vast array of technological and natural
systems, ranging from sensor networks to animal groups. Here, we investigate how a group-level
agreement may emerge in the continuously evolving network dened by the local interactions of
the moving individuals. We adopt a general scheme of motion in two dimensions and we let the
individuals interact through the minimal naming game, a prototypical scheme to investigate social
consensus. We distinguish different regimes of convergence determined by the emission range of the
agents and by their mobility, and we identify the corresponding scaling behaviors of the consensus
time. In the same way, we rationalize also the behavior of the maximum memory used during
the convergence process, which determines the minimum cognitive/storage capacity needed by the
individuals. Overall, we believe that the simple and general model presented in this paper can
represent a helpful reference for a better understanding of the behavior of populations of mobile
agents.

PACS numbers: 89.75.-k, 05.65.+b, 89.65.-s, 89.75.Hc

I. INTRODUCTION

Autonomous mobile and communicating agents pro-
vide extremely efficient solutions to a wide range of tech-
nological problems by guaranteeing robustness, flexibil-
ity, and dynamic adaptability @] A typical case is that
of a population of robots that have to explore an un-
known environment, and cope with situations that by
definition can not be foreseen in advance ﬂﬂ, E] For ex-
ample, robots could have to negotiate a common lexicon
to name different places of the environment they are sur-
veying, and then use this shared linguistic knowledge to
carry out goal-directed behavior M, é] In the same way,
also the performances of sensor networks [6] can be en-
hanced by the introduction of mobile agents [7, [§]. In
natural systems, on the other hand, mobile populations
that coordinate through chemical or audible signals are
obviously widespread, ranging from cell populations E]
to animal groups [10].

In all of these cases, mobile agents locally broadcast
their signal to nearby nodes ﬂﬂ—lﬁ] Thus, communi-
cation takes place on a continuously evolving network
whose properties are determined by such parameters as
the emission range of the individuals, their mobility, or
their density. Network theory ﬂﬂ—@] is therefore the nat-
ural framework to investigate the emerging population-
scale properties of the system. However, previous re-
search has so far focused mainly on static random ge-
ometric networks ﬂﬁ], ], or on the opposite case of
rapidly changing structures ﬂE, Iﬁ] Only very recently
the more general case of time-dependent networks has
been fully addressed, for the specific case of the synchro-
nization of mobile oscillators &]]

In this paper we address the fundamental problem of
social consensus. To this purpose, we model individuals

that move in a 2-dimensional plane and have to agree
on a given convention by performing standard language
games m, @] For example, they might be in need of
creating or selecting autonomously a key for encrypted
communication ﬂﬁ], or to independently elect a leader
[24]. We then study how different parameters of the mo-
bile agents, in particular their velocity and their commu-
nication range, affect the overall agreement process. We
are able to identify different regimes ruling the consensus
dynamics, and we rationalize our findings by considering
the properties of the communication networks.

II. THE MODEL

We model the mobility of the agents according to the
general scheme put forth in [21]. A population of N
individuals move in a 2-dimensional L x L box with pe-
riodic boundary conditions. The velocity of each agent
is v. The angle of the ith agent’s motion is &;(t;) €
[0, 27], and it changes randomly at discrete time steps tj
(tk+1 — ty = 7ar). Thus, the evolution in time of the ith
agent’s position is:

zi(ty + At) = z;(tg) +veos&(ty)At mod L (1)
yi(te + At) = y;(ty) +vsing(tg)At mod L, (2)

where At < 75;. The motion of the individuals is there-
fore diffusive, the diffusion coefficient being D ~ v27yy.
The agents play the minimal naming game (NG)
m, @] implemented with local broadcasting without
feedback [13]. Each agent is characterized by an inven-
tory of words (or “conventions”, “opinions”, “forms” or
“states”). At the beginning all inventories are empty. At
discrete time steps of duration 75 an agent is randomly
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selected as speaker. She selects randomly a word from
her inventory, and transmits it to all the agents within
a distance d from her position (if the inventory is empty
she invents a brand new word and stores it into her own
inventory, before broadcasting it). Each receiving agent
updates her state depending on whether her inventory
contains or does not contain the transmitted word. In
the first case, the agent deletes all the competing syn-
onyms and keep only that word into her inventory. In
the latter case, on the other hand, she adds the new re-
ceived word to her inventory. The speaker receives no
feedback about her emission, and consequently does not
modify her inventory Figure [[l summarizes the rules of
the model.

For simplicity, in this paper we choose At = 1)y =
Ts = 1. This means that in a time step (i) all agents move
in straight line, (ii) all agents are reassigned a random
angle, and (iii) one agent broadcasts to her neighbors.

III. PATHS TO CONSENSUS

The NG is an ordering process. An initially disordered
configuration ends up in a consensus, ordered, state in
which everybody has the same unique word m, @] The
consensus (or “convergence”) time, t.ony, is therefore a
crucial quantity. Also important is the maximum num-
ber of words agents have to store, M, which describes
the global amount of memory needed by the system to
reach a consensus. Previous studies on quenched graphs
have shown that both quantities depend dramatically on
the topology of the social network describing the possible
interactions between the individuals Hﬁ] Consequently,
to investigate the properties of a mobile population it is
convenient to focus on the properties of the static net-
work describing the instantaneous communications of the
agents. This is the graph that is obtained, at any time,
by drawing an undirected link between any two agents
that are closer than the emission range d. Recalling that
the average degree (i.e., the average number of neighbors
of a randomly selected node) of the network is simply
(k) = mNd?/L?, these values of d identify different sce-
narios

e di = d)—1 is the range above which the average
degree is larger than 1, so that every emission is
received on average by some agent.

® de = d(p)~4.51 is the critical value for a percolation
transition, yielding a giant component of size N

4.

e dy/2 = dry—ny2 is the point where every communi-
cation involves on average the majority of the pop-
ulation.

® dinar = d(py—n is the value that yields a fully con-

nected network. It holds dyar = /L?/2.
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4
Q0O 000
AiXiX A AL XiX
B: 'Y EE— PALY

‘A

FIG. 1: The model. N agents (circles) move with velocity
v and randomly assigned angles & in a box of size L, with
periodic boundary conditions. At each time step one of the
agents is chosen as a speaker (black circle) and emits a word
randomly extracted from her inventory (A, in figure). All the
agents within a distance d (gray circles) receive the word, and
update their inventories as shown in the schematic represen-
tation below the box. If an agent already knows that word,
she deletes all the competing synonyms in her inventory, oth-
erwise she simply adds the new word to it. No feedback is
provided to the speaker, whose inventory is not altered.

Of course, it holds di < d. < dn/2 < dmas- In this paper
we fix L = 200 and N = 100, unless where explicitly
stated, so that d; ~ 11.3, d. ~ 24.1, dy/o ~ 79.8 and
dmaz = 141.4. Figure [2 shows the dependence of the
average degree and the size of the giant component on
the parameter d for this choice of L and N.

For a qualitative partitioning of the observed phe-
nomenology in terms of distinct regimes, it is convenient
to consider two timescales. One describes the stability of
a cluster of agents, and the other accounts for the time
over which a consensus is reached within the same cluster
ﬂﬁ] Their ratio n assesses therefore the impact of local,
intra-cluster, activity on global, inter-cluster, dynamics.
For the robustness of a cluster, we consider the average
number of timesteps needed by an individual to leave a
group of size n(d) (an increasing function of d for d < d.),
that scales as t; ~ n(d)/v? ] For the within-cluster
average consensus time, on the other hand, we note that
it can be treated as independent from the cluster size
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FIG. 2: (Color online) Properties of the static network. At
d > dy every emission is heard on average by at least an in-
dividual of the population, while at d = dy/> a majority of
agents listens to each communication act. At d = d. the giant
connected component (“gec”) is formed by N nodes (in real-
ity, due to finite size effects, this happens for a slightly larger
emission range). At dmae the network is fully connected.

n(d), teony ~ const., both when the considered groups
are densely connected and when they are very small. The
reason is that in the first case the broadcasting rule brings
about a very fast consensus time, which becomes instan-
taneous in fully connected graphs ﬂﬁ], while in the latter
case consensus is quick simply because just a few agents
have to agree ﬂﬁ, Iﬁ] This approximation is appropri-
ate for our purposes since we aim at defining a qualita-
tive index able to discriminate between extreme regimes.
Moreover, as we shall see, it is further validated by the re-
sults discussed in the following of the paper (Sec. [ITC).
Therefore, for the ratio n between the two timescales it
holds:

tl - n(d)

)
tconv v2

(3)

77:

which is obviously an increasing function of d as d < d_.

A. Consensus time

FigureBlshows the behavior of the consensus time t¢ony
as a function of the emission range d, and for different
values of the agents’ velocity v. The consensus is fast for
large values of d (and becomes instantaneous as soon as
d = dyae, Wwhen everybody receives the word transmitted
by the first speaker), but it increases for shorter ranges,
in a way that crucially depends upon the v parameter.
We can identify three regimes.

(1) n < 1 holds for small d and large v, and implies
a rapidly evolving network. Agents continuously change
their neighbors, and hence the partners of their commu-
nication acts, pretty much as in the case of an annealed
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? “conv

/

w

—~—_

\\\ti* e

nv

S

N
AL
/

10
d
10" s

10° 10"

FIG. 3: (Color online) Top: Consensus time as a function of d
and v (all axes report the log,, of the respective quantities).
Bottom: tcons as a function of d for different for different
values of the agents velocity v. Dotted vertical lines represent
dl, dc and dN/2

network. Thus, consensus emerges through global agree-
ment at the system size level, after the agents have cor-
related their inventories so as to allow for successful com-
munication to take place [30]. As d < d; the behavior
teonw ~ 1/(k) = 1/d? is observed (Figure d a), describ-
ing the existence of empty communication acts (unheard
emissions) when on average each node has less than one
neighbor.

(2) > 1 and d < d., on the other hand, implies
smaller velocities. In this case, small and isolated clus-
ters of agents locally reach an agreement on different
conventions. Global consensus emerges at a later time
through the competition between these words, in a sit-
uation reminiscent of what happens in low-dimensional
lattices ﬂﬂ] The intra-cluster movements determine
the leading timescale, implying a scaling of the form
teonw ~ 1/v? (Figure d b and c).

(3) » > 1 and d > d., finally, identify a scenario in
which the whole population forms a single connected clus-
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FIG. 4: (Color online) Rescaling of the consensus time, d <
de. When n < 1, the dPteony ~ const. and curves for large
velocities collapse (a). For n > 1, on the other hand, curves
for different, and small values, of v collapse as the consensus
time is rescaled as v*teony ~ const (b). This behavior is
observed also for values of d close to d. provided that small
enough velocities are considered (c). In all panels horizontal
dashed lines represent a constant behavior, and serve as a
guide for the eye.

ter, describing a random geometric graph. In [12] Lu
and coworkers showed numerically that t.on, ~ 1/(k)?°
“when (k) < N”) for static random geometric graphs
ﬁ] Accordingly, in Figure Bl we observe the behavior
teonw ~ 1/ d®2, which as expected degrades before d,,qz,
where (k) = N — 1. It may be further noted that, as
d > dy/3, the curves for different v behave identically
(Figure [ inset). This is due to the fact that here the
first speaker transmits her word to an absolute majority
of the agents, which on their turn drive the system to
consensus very rapidly thanks to the fact that the NG is
a drift-driven process [26].

B. Memory usage

The agents get to know different words at the same
time during the process that eventually leads them to a
consensus, and the NG rules do not fix a limit to the
size to their inventory. Therefore, it is important to look
at the maximum memory consumption that the popula-
tion experiences during the whole process, correspond-
ing to the maximum number of words, M, present in the
system, i.e., to the sum of the inventory sizes of the N
agents. Gaining quantitative insights into the behavior
of this quantity is more difficult than for t.y,, but some
hints can be gained from numerical investigations. Fig-
ure [6] shows the average maximum memory per agent as
a function of d, and for different values of v.

Again, to understand what goes on in the case of mo-
bile agents it is helpful to recall the results obtained in
static networks. It turns out that a finite connectivity im-
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FIG. 5: (Color online) Rescaling of the consensus time,
d > d.. For large n > 1 and large d curves for different values
of v behave as tcony ~ 1/d°? as far as d (and hence (k)) is not
too large. The behavior is better observed for smaller veloci-
ties, since large values of v reduce the value of . Asd > dy/2
the different curves collapse, and v becomes an irrelevant pa-
rameter, as shown also in the inset with non-rescaled abscis-
sas. Horizontal dashed lines represent a constant behavior,
and serve as a guide for the eye.

plies finite memory requirements m], while a fully con-
nected graph would require infinite inventories (in the
thermodynamic limit) [25]. In general, a larger average
degree requires a bigger memory effort for the agents ﬂﬁ
Of course, however, the broadcasting rule implies an im-
mediate consensus on fully connected graphs, entailing
a minimal amount of memory. Moreover, ordered low-
dimensional lattices determine an extremely reduced use
of memory, since convergence is reached through the com-
petition of different clusters of agents who have reached a
local consensus and therefore store one word only [30, 31].

In the light of these results, it is possible to rationalize
the findings presented in Figure As expected, when
the dominant process is global agreement (n < 1, small d
and large v), more memory is needed [region (1), above].
Every agent is exposed to a large number of words due
to the high mobility of the population. As the velocity
is decreased, and the system enters the phase of isolated
clusters, on the other hand, consensus is reached with a
smaller memory demand, due to the early onset of regions
of local agreement [region (2)]. As the emission range is
increased, and one single connected cluster emerges, fi-
nally, curves for different values of v become more and
more similar, and collapse as d > dy /o (Figure[d] inset),
as observed for teony [region (3)]. Curves for small v ex-
hibit a peak somewhere in the region is d. < d < dy/2
(more precisely for 50 < d < 60 in Figure [f]), separating
the memory-favorable cases of a fully connected graph
and a collection of isolated clusters. However, as d is
further decreased, the memory requirements grow again.
Qualitatively, this behavior can be understood consid-
ering that when d < di, local clusters are in general
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FIG. 6: (Color online) Memory usage. The average maximum
memory used by each agent is plotted for different values of
the velocity v. While for large mobility the individual storage
capacity monotonously increases as d is reduced, small veloc-
ity induces a more complex behavior. In this case, the curves
exhibit a minimum for d ~ d; and a maximum for d ~ 60, for
the usual choice of the parameters. For d > dy/o curves for
different velocities collapse (see Inset).
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FIG. 7: (Color online) Role of the population size (at fixed L).
Top: The consensus time reaches a plateau at large N in the
case of small velocities (left panel), while it grows very weakly
for larger mobilities (right panel). Bottom: The maximum
memory per agent required during the process is constant at
large N for both high and low mobility rates.

tree-like, so that more words can coexist in each of them
before a local agreement emerges.

C. Role of the population density

In finite static networks the global consensus is reached
only if d > d., when all the nodes belong to the same

unique giant connected component. Previous studies
ﬂﬂ], conducted adopting a slightly modified NG pro-
tocol, showed a N®, with @ ~ 2.1, dependence of the
consensus time on the population size N in random geo-
metric graphs with fixed average connectivity (and con-
sequently varying L), and, as mentioned above, an im-
portant role also for the average degree, tcony ~ (k:)_2'6
(as far as k < N) for fixed L. The scaling of t.on, with
the population size agrees well with a theoretical argu-
ment put forth in ﬂﬁ], which is in its turn very similar to
the analysis of the NG in low-dimensional lattices [31].
The crucial point is that different clusters of local con-
sensus emerge rapidly, and the global agreement is the
result of a cluster-cluster competition. The presence of
mobility makes this whole argument break down, and
the increased population mixing yields a faster scaling of
the consensus (data not shown), in agreement to what is
observed in small-world networks [12, 32].

Crucially, on the other hand, mobility guarantees that
the consensus is always reached, at least asymptotically,
independently from the emission range of the individuals.
However, it is important noting that population size and
average degree are intimately connected in the framework
we are addressing, where the box side L is kept constant.
Indeed, as discussed above, it holds (k) o« N, and there-
fore

1 N—o00

di ~de ~ —= — 0, 4
1 \/N ( )

and dp/z being the only characteristic length surviving
in the thermodynamic limit. The “small” range regimes
we have described would therefore vanish for very large
population size.

Concretely, the case of very large population densities
is quite unrealistic from the point of view of any applica-
tion involving mobile individuals. However, for the sake
of completeness, we report in Figure [1 the results of nu-
merical investigations for different values of d and v. For
small velocities (left column), very small population sizes
are not efficient since the individuals waste time in find-
ing each other. As d grows, however, .., saturates.
After a certain threshold, the broadcasting rule makes
the actual number of agents present in the population
irrelevant. A similar behavior is observed for the case of
a larger mobility of the individuals (right column). Here,
however, smaller population sizes converge slightly faster
since agents get more easily in contact, and the dynamic
of the NG favors a smaller number of competing conven-
tions. In addition, the augmented population mixing is
responsible for the fact that, (i) the consensus time does
not reach a plateau but keeps increasing very slowly with
the system size, as teony ~ N%, with o < 0.05 and (ii)
the memory consumption is larger, in agreement with
what is observed in the case of static networks for the
NG with pairwise interactions m] Finally, it is worth
noting that the very weak dependence of the consensus
time on N validates, a posteriori, the assumption on the



constant behavior of t..,, that yielded to Eq.

IV. CONCLUSION

In this paper we have analyzed the consensus problem
in a population of autonomous mobile agents. We have
focused on the crucial case of a self-organized agreement
process, to be established without any central control nor
coordination. Agents move with the same velocity and
different, randomly changing, angles in a two dimensional
space, and communicate through the NG protocol, lo-
cally broadcasting in an circle of radius d. We have shown
that different characteristic emission ranges exist, defin-
ing, together with the mobility rates of the agents, the
boundaries between different consensus regimes. In par-
ticular, we have highlighted three main mechanisms rul-
ing the onset of consensus. If the emission range is small,
a rapidly mixing population will undergo a global agree-
ment process, while a slower mobility will bring about the
appearance of isolated clusters in which a local consensus
on different conventions forms rapidly, the final consensus
resulting from the competitions of these clusters. Finally,
large emission ranges establish a single connected cluster
where the static limit of random geometric networks is
recovered. Accordingly, we have pointed out the scaling
relations of the consensus time in each region and ratio-
nalized the memory needs of the agents. Finally we have
considered the role of the population density, showing
that, due to the broadcasting rule, even unrealistically
high densities have tiny impact on both the consensus
time and the memory consumption of the agents.

Examples of populations of mobile and communicat-
ing agents pop out in many natural contexts, chiefly in
cases of group of animals or micro-organisms. Yet, it

is perhaps the technological advancement in the fields
of robotics and telecommunications that makes the in-
vestigation of this issue increasingly urgent. From this
point of view, the results presented in this paper may be
far-reaching. Both the mobility and the communication
models we have adopted, indeed, are straightforward and
might serve as a reference to gain insights into more com-
plex and realistic models. At the same time, the scheme
we have introduced can be extended in the future so as
to address such issues as the coupling between motion
and communication. For example, our results show that
the larger the agents’ mobility the shorter the consensus
time, so that changing neighbors frequently turns out to
be an efficient strategy. Thus, agents with a tendency to
move apart from each other after a success could expedite
convergence, preventing the formation of local clusters.
On the contrary, individuals with a tendency to reinforce
existing links by aligning their direction of motion after
a successful interaction would probably lead to the emer-
gence of different swarms or flocks, internally agreeing on
different conventions, that would move apart from each
other and hinder the onset of a global agreement. Along
the same lines, finally, another possibility for future work
could imply the adoption and study of higher level com-
munication protocols, such as spatially oriented language
games [4, [5].
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