IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. & Goedicke, M. (1992).
Viewpoints: A Framework for Integrating Multiple Perspectives in System Development.
International Journal of Software Engineering and Knowledge Engineering, 02(01), pp. 31-
57. doi: 10.1142/s0218194092000038

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26496/

Link to published version: https://doi.org/10.1142/s0218194092000038

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development

A. Finkelsetin
J. Kramer
B. Nuseibeh

L. Finkelstein
M. Goedicke

(In) International Journal of Software Engineering and Knowledge Engineering
2(1):31-58, March 1992, World Scientific Publishing Co.

Viewpoints: a framework for integrating multiple perspectives in system development

A. Finkelstein, J. Kramer & B. Nuseibeh
Department of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ
(acwf@doc.ic.ac.uk).

L. Finkelstein
Measurement and Instrumentation Centre and Engineering Design Centre, City
University, London.

M. Goedicke
Fachbereich Informatik, Universitat Essen, Essen.

0 Abstract

This paper outlines a framework which supports the use of multiple perspectives in system
development, and provides a means for developing and applying systems design methods.
The framework uses “viewpoints” to partition the system specification, the development
method and the formal representations used to express the system specifications. This VOSE
(viewpoint-oriented systems engineering) framework can be used to support the design of
heterogeneous and composite systems. We illustrate the use of the framework with a small
example drawn from composite system development and give an account of prototype
automated tools based on the framework.

Key Words: composite and heterogeneous systems; perspectives; view; agents; specification
method; CASE tools; software development environments; process modelling.

1 Introduction

The development of most large and complex systems necessarily involves many people -
each with their own perspective on the system defined by their skills, responsibilities,
knowledge and expertise. This is particularly true where the system is a composite system,
that is one which deploys a variety of different technologies (software, hardware,
mechanical and so on). Inevitably, the different perspectives of those involved in the process
intersect and overlap, giving rise to a requirement for coordination. The intersections are,
however, far from obvious because the knowledge within each perspective is represented in
different ways. Further because development may be carried out concurrently by those
involved, different perspectives may be at different stages of elaboration and may each be
subject to different development strategies.

The problem of how to guide and organise development in this setting - many actors, sundry
representation schemes, diverse domain knowledge, differing development strategies - we
term “the multiple perspectives problem”.

This paper illustrates the multiple perspectives problem and introduces “viewpoints” as a
framework for structuring, organising and managing these perspectives. The paper

-2-

describes viewpoints in some detail, defining the contents and use of their component parts.
The application of viewpoints to method description and system specification is explained
and tool support outlined. Some general conclusions are drawn.

2 Multiple Perspectives: an example

To show how our framework operates we shall use a simple composite system design
problem - a lift system. It consists of a number of components (Figure 1).

not or

lift schedul er

cal l

button panel

panel
doors

Figure 1: a simple lift system

Our design team is shown in Figure 2 with their responsibilities. Some team members are
responsible for particular components of the system, Bob, for example, is responsible for the
scheduler. Ken is not responsible for any particular component but rather for a global aspect
of the system, its performance. Anne and Fred are jointly responsible for the motor. Joe is
responsible for two components - the button panel and the call panel. Jane is responsible for
the lift itself. Joe, in his capacity as button panel developer, and Tom, who is responsible for
the doors, work for Jane.

button
panel
&

call
panel doors lift ~ scheduler motor motor performance

Joe Tom

Figure 2: the design team

Clearly in our example the areas of responsibility overlap requiring team members to talk
to each other: Bob (scheduler) must talk to Anne (motor) and Fred (motor); Bob (scheduler)
must also talk to Jane (lift); Jane must talk to Joe (button panel) and Tom (doors), who must
talk to each other; Ken (performance) must talk to everybody; and so on.

Different team members use different representation styles that are chosen to be
particularly appropriate to their area of work (Figure 3). Joe, Tom and Jane use functional
or part hierarchies to describe the button panel, call panel, doors and lift respectively. Bob
uses action tables; Bob may in fact use many of these tables to model the scheduler. Bob also
uses an object structure diagram. Anne and Fred both do system block diagrams of the
motor. Ken uses a Petri net which is amenable to performance analysis.

Anne

&
Jane Fred Bob Bob

: = n =

functional system block action object
hierarchy diagram tables structure
Joe Joe Tom Ken
but t on cal l doors perf or mance
panel panel
functional functional functional petri net
hierarchy hierarchy hierarchy

-4-

Figure 3: representation styles

Just to make things even more complex we will assume that Anne and Fred arrive at
alternative motor designs as in Figure 4.

Anne

Figure 4: alternative designs

motor

Fred

Joe and Tom, Figure 5, despite using the same representation scheme are using different
development strategies. Joe is working bottom-up while Tom is working top-down.

Y4 Y

button panel call panel doors

]
+4++ |

Joe Tom

Figure 5: different development strategies

Finally, we introduce some “organisational structure” into the problem (Figure 6). Joe
(button panel) and Tom (doors) must wait for Jane to finish before they start - her word is
law. Anne and Fred (motor) can work concurrently with Bob (scheduler) - but still must
liaise on matters of mutual concern.

Anne

Fred

Figure 6: relation between team members
3 What is a Viewpoint?

The scene has been set for us to introduce our framework which will organise and support
the example above. The basic building block of our framework is a viewpoint. A viewpoint
can be thought of as a combination of the idea of a “actor”, “knowledge source”, “role” or
“agent” in the development process and the idea of a “view” or “perspective” which an actor
maintains. In software terms it is a loosely coupled, locally managed object which
encapsulates partial knowledge about the system and domain, specified in a particular,
suitable representation scheme, and partial knowledge of the process of design.

Each viewpoint is composed of the following components, which we call slots:

- a representation style, the scheme and notation by which the viewpoint expresses
what it can see;

- adomain, which defines that part of the “world” delineated in the style;

- a specification, the statements expressed in the viewpoint's style describing
particular domains;

- awork plan, describing the process by which the specification can be built;

- awork record, an account of the history and current state of the development.
-6-

Before we look in any more detail at the content of each slot let us revisit our example.

Let us first consider Ken. A very simplified picture of Ken's viewpoint is given below,
Figure 7. The representation style Ken uses is Petri Nets and his domain of concern is Lift
System Performance (in Ken's case the domain is not tied to a specific physical
component). The specification is Ken's current knowledge about lift system performance
expressed as a Petri Net (a small example of such a specification is given as an
illustration). The work plan explains how to build a Petri Net and how, and in what
circumstances, to check consistency with the other viewpoints. The work record gives the
current state of Ken's specification and an account of its development in terms of the work
plan.

Ken

Representation Style

(Petri Nets)

Domai n

(Lift System Performance)

Speci fication

4 N\
pl t3 p2

t4

-]

\. J/

Work Pl an

how to build Petri Nets & how to check
consistency with other viewpoints (action
tables, system block diagrams...)

L J
Wrk Record
()
E construction completed
consistency checks applied
\ J

\. J/

Figure 7: a simple viewpoint

Though thinking of Ken's responsibilities and knowledge as constituting a single
viewpoint is straightforward it is not always possible to associate a physical agent with a

viewpoint. Joe is a case in point, he is responsible for both the button and the call panel. In
-7-

our framework we treat this as, in effect, two viewpoints “Joe: button panel” and “Joe: call
panel” each with different domains of concern (Figure 8).

Joe:
butt on panel

Representation Style h

(Functional Hierarchy)

Donai n
(Button Panel \
— Joe:
Speci fication
call panel

Representation Style

(Functional Hierarchy)

Donai n

(Call Panel)

Speci fication

Work Pl an

Work Record

- J

Figure 8: different viewpoints for different domains

Bob is using action tables as a representational style. He requires several action tables to
build a description of the scheduler. Action tables are a partitioned representation style - one
action table is used for each information transforming entity in the system. In our
framework each table is given a separate viewpoint, reinforcing the separation of concerns
provided by the representation style. Each viewpoint has a different domain - in the case of
Bob some examples might be the request manager (handling incoming service requests)
and the priority manager (assigning services to those requests), see Figure 9.

Bob:

request

manager

- ™)

Representation Style

(Action Table)

Domai n
C Request Manager BOb: .
— priority
Speci fication n_anager

Representation Style

C Action Table

Donai n

—/

—/

(Priority Manager

Speci fication

Work Pl an

Work Record

- J

Figure 9: different viewpoints in a structured representation style

Bob also has a separate viewpoint for the object structure diagram. The domain of that
viewpoint is the scheduler and its immediate environment.

To capture the distinction between the viewpoint and the person who is responsible for it -
Bob, Anne, Tom, Jane or whoever - we use the term “owner”.

Figure 10 shows the collected viewpoints for the lift system (for simplicity we have not listed
all of Bob's action table viewpoints).

Lift System

Bob: request
er

manag

Bob: priority
manager

Figure 10: lift system viewpoint configuration
4 What is in a Viewpoint?

So far we have only sketched the content of each of the slots of the viewpoint. Now we will
look at them in more detail.

41 Representation Style

The representation style slot (essentially the representation language definition) is
composed of two parts:

- objects, the elements of the representation style;

- relations, relations that hold between objects.
Figure 11 shows the simple case of Jane who uses a functional hierarchy as her
representation style. The primary linguistic element of the style is the functional _element,
graphically shown as an ellipse. Each functional_element has a name. Functional

elements are related by the part-of relation, graphically shown as a vertical line relating a
super-ordinate functional_element to a sub-ordinate functional_element.

-10-

Jane:
i ft

Representation Style)
(bj ects)
()
function_element name
\ J
Relations
()
part_of
\. J
\ J

Figure 11: representation style slot

42 Domain

The content of the domain slot is the name given to that part of the “world” seen by the
viewpoint. Examples have been given above in Figures 7, 8 and 9.

43 Specification

Given the representation style used by Jane a specification built by her might look as shown
in Figure 12.

-11 -

Jane:
[1ft
r)

Representation Style

Functional Hierarchy

)
\—/

Domai n

Lift

)
\—/

Speci fication

()

doors button
panel

< frame > < motor > < sensor > (slides ’

\. J/

Work Pl an

Wor k Record

\. J

Figure 12: specification slot

44 Work Plan

The most complex part of the viewpoint is the work plan. We divide the work plan into four
parts, they are:

- assembly actions, which contains the actions available to the developer to build a
specification;

- check actions, which contains the actions available to the developer to check the
consistency of the specification;

- viewpoint actions, which create new viewpoints as development proceeds;

- guide actions, which provide the developer with guidance on what to do and when.

-12 -

Using our example we shall examine each of these in turn.

Figure 13 shows the assembly actions available to Jane - she can add and relate objects (or
remove objects and relationships). These are all she needs to build a specification, though
not necessarily a consistent specification.

(Wor k Pl an)

(" Assenbly Actions N

\
J

add

remove

link

unlink

(
\.

Check Actions

Vi ewpoi nt Actions

Cui de Actions

f‘

Figure 13: assembly actions
Check actions are the core of the viewpoint framework.
Check actions belong to one of two groups eac with a different scope:

- in-viewpoint checks, check the consistency of the specification within the viewpoint
where the check action has been invoked;

- inter-viewpoint checks, check the consistency of the specification with those
maintained by other viewpoints.

We will illustrate each of these with some examples. Figure 14 shows a specification
prepared by Jane. Jane has placed a functional_element named doors directly below that of
another functional_element identically named. Doing this has created an inconsistency

-13-

within her viewpoint, clearly doors cannot be part_of doors. This inconsistency would be
picked up by an in-viewpoint check. Jane should, at some appropriate moment, be required to
fix the inconsistency, perhaps by changing the name of the lower element and repeating the

check action that pointed to the inconsistency.
button
panel

Figure 14: in-viewpoint check

Figure 15 shows two viewpoints, “Jane: lift” and “Tom: doors” which share a common
template. The viewpoints are partially overlapping. Jane has gone some way towards
specifying the doors. She has broken down the doors into parts, Tom needs to provide more
detail. Checking the consistency of the overlapping part of the specification by means of an
inter-viewpoint check action can take two forms. The first, and most obvious, is where Jane
and Tom proceed to specify the doors independently. In this case they each arrive at a
specification and check their consistency with each other, as in Figure 15. Almost
inevitably some inconsistency will arise, in our example between the use of the
functional_elements ‘slides’ and ‘base’, which Jane and Tom will have to fight out.

-14 -

Jane Tom
lift doors
(" Representation Style) (" Representation Style)
Domai n Donai n
Speci fication Speci fication
() (p——)
lift < doors >
?
doors button @
?
e DT DT D D <)
\3 J . J
VWork Plan Wrk Plan
Wrk Record Wrk Record
J . J

Figure 15: inter-viewpoint check (“resolve”)

The second case, and the one we anticipated in section 2, is where Tom is subordinate to
Jane. In this case, as in Figure 16 Jane completes the relevant part of the specification and
simply transfers it to Tom's blank viewpoint, Tom then elaborates it. The distinction
between these two forms of check can be thought of as similar to that in a Prolog query
which can be used to check the consistency of some facts, returning true or false, or the facts
satisfying some general rule. We call these two forms of check action application “resolve”

and “transfer” respectively.

Jane:
lift

(Representation Style

Domai n

Speci fi cati on

~\
J

@
ST

Vork Plan

frame

r
.

Vork Record

Figure 16: inter-viewpoint check (“transfer”)

motor

Tom
doors

(Representation Style

Domai n

Speci fi cati on

~\

doors

sensor slides

:ﬂvma‘u’e

Ve

.

Verk Plan

Verk Record

Of course, an inter-viewpoint check may also be applied where the two viewpoints overlap

but the representation styles are different. In Figure 17 we show a simple example of this.
-15-

There is an overlap between two viewpoints, one using action tables and one using object
structuring to express aspects of the scheduler (coincidentally they are both Bob’s), “Bob:
request manager” and “Bob: scheduler”. Object structuring diagrams identify the main
information processing elements of the system and their relation to each other. Action tables
show the flow of information through each element, namely, the input information; the
object which is its source; the transformation that is performed on it; the output information
and the object which is its destination. It is important that the sources (and the destinations)
used in the action table correspond to the objects identified in the object structure diagram.
An inconsistency between the two suggests something seriously amiss.

Bob:
schedul er

’
Representation Style

Donai n

Speci fication

Ve

clock button motor
panel

request
manager

call nanel diaanostics priority

manager

\

Bob:
request
4 manager
Representation Style g
Donai n
Speci fi cation
()
\\\\\\\\\\\\\\\\\\\\\\\\\\\
—
di agnost i cs I
button emer gency |— take —q cancel | R priority
panel si gnal lift priorities manager
out of
N service
N1 oor
servi ce \
call >assermle
||] - equest
panel request
cl ock ime /
\.] J/
L
Wrk Plan
Work Record
|

Work Plan
_

Work Record

|

J/

Figure 17: inter-viewpoint check with different representation styles

A less obvious example is given in Figure 18. Bob's action tables and Ken's Petri net model
of performance overlap. We suggest a partial relation between the actions identified by Bob

and the transitions used by Ken.

-16 -

Bob: Ken:
request per f or mance

X manager 4 X
Representation Style Representation Style

Domai n Donai n

Speci fication Speci fication

Vs

J

Vs

1 1 1 1
press take lift put
ener gency out of lift in

button service service

button ener gency take cancel priority J £ I I

panel si gnal lift priorities | manager '®) O
o o 9 T, | [
service E F1

J

. J/ . J/
Work Plan Work Plan
Wrk Record Wrk Record
\ J/ . J/

Figure 18: inter-viewpoint check with different representation styles

At this point it is worth recalling “Anne: motor” and “Fred: motor”. They each maintain an
alternative version of the same domain in the same representation scheme. Pointing to the
inconsistencies between these versions is simply a special case of an inter-viewpoint check.

Viewpoint actions provide the ability to create new viewpoints as development proceeds. To
understand them we need to add a further concept - that of a viewpoint template. A viewpoint
template provides a kind of viewpoint “type” from which new viewpoint instances can be
created. It is simply a viewpoint in which the specification, domain and work record slot
are empty. From our example it is clear that many of the viewpoints share a template:
“Tom: doors” and “Jane: lift” (note that Joe and Tom who share representation styles do not
have a common template because they use different development strategies); “Anne: motor”
and “Fred: motor”; “Bob: request manager”, “Bob: priority manager”; and so on. Figure 19
shows Bob's action table viewpoints alongside an action table template.

-17 -

Bob: request
manager

Bob: priority
nanager

(action table

(priority manager

(specification

(work plan

(work record

"
)
)

QAT ATATAY Y =

action table
tenpl ate

(action table

(work plan

_

Figure 19: a viewpoint template

New viewpoints are dynamically created from the appropriate template by the viewpoint
actions. Again, this is easier to see from an example. Bob needs an action table for each of
the information processing elements of the scheduler - these are identified in the object
structure diagram as unshaded boxes (Figure 20). Having completed the object structure
diagram for the scheduler he can create blank action table viewpoints, new instances of the
action table template, for each of those elements. They would then be elaborated in turn. In a
similar fashion the completion of “Jane: lift” would create a blank viewpoint for “Tom:
doors” followed by the information transfer discussed above.

-18 -

Bob:
schedul er

Representation Style

Donei n

Speci fication

()

scheduler

A

request
manager

call panel button diagnostics priority

panel manager

Bob: request Bob: cl ock

action table

Figure 20: creating new viewpoints

The last class of actions in the work plan are guide actions. Up to this point we have only
discussed what a viewpoint might do - assemble its specification, check consistency, spawn
other viewpoints - not what it ought to do. This section of the work plan contains a formal
description of the development strategy to be adopted. It sets out when certain check actions
and viewpoint actions are permitted and when they are obliged to be performed. It is in
effect a “process program”. Developing the specification from within the viewpoint can be
thought of as “enacting” this model of the development. Thus for example: Bob is permitted
to perform an in-viewpoint check at any time but is obliged to perform all such checks and
achieve an internally consistent specification immediately prior to performing any inter-
viewpoint check; all available inter-viewpoint checks must be performed prior to the
performance of a viewpoint action.

45 Work Record

The work record contains a development history expressed in terms of the work plan. It
provides, in effect, a rationale for the current state of the specification. It details the actions
which have been performed. For example it would show Jane’'s performance of the in-
viewpoint check illustrated in Figure 14, the assembly actions (unlink, remove and so on)
performed to regain internal consistency and the repetition of the relevant checks.

-19-

4.6 Definition

So far in this paper we have not discussed how exactly the representation style (objects and
relations), the work plan (assembly actions, check actions, viewpoint actions and guide
actions) and the work record are defined. We tend to favour heterogeneity in this as in other
things and our framework does not restrict the manner in which this is done. In our current
work we have used a simple Prolog-like scheme which has the advantage of being relatively
easily implementable. Alternative schemes are under investigation.

5 Using Viewpoint Templates to Describe Methods

We have introduced viewpoints by looking at a specific example, the lift system, and seen
how a particular configuration of viewpoints (Figure 10) is developed. In other words, we
have looked at viewpoints from the standpoint of the system developer or “method user”. In
the example the particular set of representation styles and work plans that we selected were
arbitrary, or rather they were chosen to illustrate the viewpoint concept. Of course, many
real developments are done in accordance with a method, like HOOD, CORE, SSADM,
SADT and so on, which prescribe the representation styles and associated work plan. The
viewpoint framework provides us with a means of describing such methods - as
configurations of viewpoint templates. In the discussion below we look at viewpoints from
the standpoint of the “method designer”.

Figure 21 shows how this might work. We show the configuration of viewpoint templates that
might be used to support Jackson System Development (JSD) (Jackson 1983), a prime
example of a system development method. JSD, like most system development methods has
many simple (and predominantly graphical), highly redundant representation styles. It
provides a work plan and many consistency checks, for example of the relation between
entity lists and structure diagrams or structure diagrams and structure text.

JSD

entity list
tenpl ate

enplate
structure
tenpl ate

structure text
enplate

system
specification

; di agram
tenpl ate ;

i npl ement at i on
tenpl ate

operations

s
tenpl ate

operation
di-agram
tenplate

function text
tenplate

Figure 21: a configuration of viewpoint templates for JSD

-20 -

In describing an existing method in this manner some judgements have to be made. For
example in JSD how the actions of each entity are ordered in time is described in structure
text. This same representation is subsequently enriched, during the function step, by the
addition of operations to its structure. Should we treat the enriched representation as a
separate, distinct, viewpoint template or use a more complex structure text viewpoint
template? Though JSD treats each separately in different “steps” an argument could be
made for adopting a single viewpoint template - the division is simply an artefact of the
original textual, and hence sequential, account given of the method. We prefer using
multiple templates both to retain, where possible, a link to the original step-based structure of
the method, but also because the addition of functional information seems to introduce a
genuinely new perspective into system development (by contrast, for example, it would not
be appropriate to introduce a further viewpoint template for the refined entity list produced
after entity structuring).

Another example of the judgements that must be made in describing an existing method is
determining how (and indeed whether) to exploit the structuring provided by the
representation style. In other words how big the specification contained by a viewpoint ought
to be. A good example of this is the action list which contains a list of actions with
accompanying textual descriptions. We could write our template in such a way that each
item on the list (action and description) has its own viewpoint, alternatively we could use a
single viewpoint to capture the whole list. Opinions may well differ on whether the extra
structuring is worth the overhead of using the full power of the framework, this will at least
be partly dependant on the size and complexity of the problems to be tackled.

The same approach which we applied to JSD can be applied to methods which use formal
representation schemes. Complex formal specification languages can often usefully be
broken down into many viewpoints with simple checks to manage consistency between the
language fragments. Applying the framework in a more formal setting does however point
to the fact that though there are many formal specification languages, there are very few
formal methods which give direction on how a specification in that language is to be built.

It should be noted that the ability to use many different representation styles in conjunction
does not necessarily make it either sensible or easy to do so. Good methods should be
composed of viewpoint templates which complement each other and should be organised so
as to allow development by incremental completion. The relation between any two
representation styles may be extremely difficult to determine (for example CSP and Z). The
same applies between two components in complex structured styles. This does not mean that
the viewpoint framework cannot be used, there are usually many simple textual and
knowledge management, “coarse-grain”, checks which are useful and “cheap” to provide. It
is certainly not necessary (or possible) to guarantee full consistency - it is often the case that
a viewpoint is valuable, irrespective of its consistency with others. A good example of this
might be certain non-functional requirements.

Many different methods have techniques in common, think for example of the 1001 methods
using data flow diagrams for some variant of structured analysis. Because viewpoints
provide an organised way of setting down representation style and work plan it should be
possible to reuse templates from method to method. Clearly these templates will have to be

-21 -

tailored for their new context, notably the inter viewpoint (inter template) checks and the
viewpoint actions. However, the scope of the changes should be fairly restricted.

6. Tool Support

Viewpoint Oriented Systems Engineering (VOSE) offers ample scope for tool support. On
one hand, tools are required to facilitate method development, description and integration.
On the other hand, tools are also required to support method use within the VOSE
framework. This includes tool support for individual viewpoint development, as well as
project management support for navigating around viewpoint configurations.

The Viewer (Figure 22) is a prototype environment supporting the VOSE framework.
Implemented in Objectworks/Smalltalk V4.0, it is intended to support method development
and integration, to facilitate the construction of individual viewpoint tool support, and to
allow the smooth transition to, and manipulation and management of, viewpoints during
method the use phase.

BEEE

Method Designer Method User

sMewPoint Oriented Systems Engineering

Figure 22: The viewer

The Method Designer button takes the user through the method development and integration
path, where tools are provided for describing and collecting viewpoint templates. These tools
are accessed through template browsers, which provide the capabilities for textual and
graphical descriptions of objects and relations in the representation style slot, and
development actions and rules in the work plan slot. Figure 23 shows a typical template
browser window.

-22 -

=Sl TEITIl]lﬂtE Browser

1>

Functional Hierarchy
Sgsiem Block Diagram
Action Tables

Object Structure
Petri Met

Graphics Editor:

|

=) style () work plan

et et
———————————— IT "Function represents the function-element in a

Function functional hierarchy.”,
part-of

|E

<Function: = String

<
<]

Figure 23: a viewpoint template browser window.

The top-left window pane lists the viewpoint templates currently being browsed, with the selected template
highlighted. The “style” and “work plan” buttons are mutually exclusive switches which are selected using the
mouse button. The bottom-left window pane lists the components of the style or work plan for the selected viewpoint
template. In this example, the single object “Function” and relation “part-of” are listed. The two right-hand window
panes elaborate the graphical (top) and textual (bottom) descriptions of the selected style or work plan components.
Thus, in this example, the graphical shape of a “Function” is displayed (and may be edited using the drawing tools

provided), and its type definition and explanatory comments are shown below.

The user can also follow the method use and management path. Here tools are provided for
monitoring, inspecting and/or editing individual viewpoints or their configurations. More
specifically, users are initially provided with a viewpoint configuration browser (Figure 24)
in which one or more projects may be created and any number of viewpoints instantiated
for each project. A viewpoint configuration table shows all templates and domains for which
viewpoints have been instantiated.

-23 -

E[I=—————"—"— \liewPoint Configuration Browser E==——"———=0lzH=

: | * Check Project * || HELP ||mafiewer |

>

aircraft Monitoring System J1ETHOD: An Example Method
S1mple LiTt System TEMPLATE: Functional Hierarchy
TETephone EXChange DOMAIN: Lift
____________ 2| ViewPoint: Jame: Lift
Instantiate Inspect Check Comments:
Each project is an implementation of one method,
Lopy Rename Remove and consists of a configuration of ¥iewPoints.
Change YiewPoint Domain Print
liewPoint Configuration Diagram: "Rowe: Same Domain, Colwims: Same Templae"
Functio.. erarchy Swstemn . Disgram Action Tables Chject Stmctire Petrd Het
Lift Jane: lift
Motox Anne: motor
Schedulex Boh: schedu Bob:schedul

Button panel Joe: button

C'all panel Joe: call p
Doors Tom: doors
Performance Ken: perfor

Figure 24: a viewpoint configuration browser window.

The top-left window pane lists the projects that have been created, with currently selected project highlighted. For
any selected project, the corresponding viewpoint configuration table is displayed in the bottom window pane. The
rows represent viewpoints of the same domain, while the columns represent viewpoints instantiated from the same
template. Once a viewpoint has been selected from the viewpoint configuration diagram (and consequently
highlighted), the panel of buttons above the diagram may be used to manipulate the selected viewpoint. Clicking the

‘Inspect’ button on the browser produces a viewpoint inspector for the selected viewpoint

Viewpoint inspectors provide the workspace and tools to perform actual specification
development. Development activities and state are logged on to the work record. From
within this inspector the assembly check and guide actions defined in the viewpoint
template may be performed.

-24 -

S[[=—————— UIEWFPOINT "JanelL lift" INSPECTOR ="—————"[0lz1 =
Froject: Simple Lift System EEEHELP #%% | -2-Fiewer I
Method: An Example Method =
Template: Fonctional Decomposition Jork Record =
Domain: Lafk Bpecification Btamis: wnder developiment!' I

Internal consistency has not yet been checked.
Comments: || === -====-- o
Editing a sperification is recorded in the work record, | [&
andbroadeasttothe ViewPaint Configaration add Function "sensor” =
B add Function "slides”
) link Function "doo to Function "slides
link Function "doors™ to Function “sensor” 1
link Function "doors” to Function “motar” =

Specification:
life #ssemble
L4 Check
doors button panel cage
m Guide
frame motor SENEOY slides Spawn

Figure 25: a viewpoint inspector window.

The bottom pane displays the viewpoint specification created by the ‘Assemble’ commands which pop-up when the
‘Assemble’ button is clicked. The work record, shown in the top-right window panes maintains a record of the
specification development history, with any design rationale and/or annotations entered by the user or

automatically generated by the system.

Checking for consistency requires the selection of the scope (in- or inter -viewpoint) and
mode (resolve or transfer) of application of development rules. Method guidance is provided
via the ‘guide’ button. These are as yet only partially implemented.

Several different viewpoint inspectors may be opened at any one time, and we can thus
envisage distributed systems development with several viewpoints being developed on
different nodes in a distributed environment. Such development may be monitored by a
project manager using a viewpoint configuration browser.

7 Conclusions

In the account above we have shown how the viewpoint framework can be used to describe
the development of composite systems and methods for composite system development. We
have concentrated on using the framework to handle the “multiple perspectives problem”.
Viewpoints provide a modular approach which reflects the structure of the “real world”
systems development process.

In attempting to compare VOSE with other work a problem arises. The framework cuts
across many existing approaches to support for system development. There is a substantial
intersection with process modelling (e.g. Kaiser 1988), with view integration in software
development environments (e.g. Meyers 1991), with generic or meta-CASE tools (e.g.
Alderson 1991), with specification and design methods (e.g. Jackson 1990), with research on

-25-

multiple perspectives (e.g. Robinson 1989) and with multi-paradigm development (e.g. Zave
1989). There are also relevant contributions in method modelling (e.g. Potts 1989), formal
specification of requirements (e.g. Hagelstein 1988) and distributed systems development
(Kramer 1990). Short of reviewing all these areas it is difficult to provide a detailed
comparative analysis of the approach. The key points distinguishing our approach are
summarised below.

The framework is substantially different from many existing approaches to systems
development support. In these, multiple “views” are integrated by the use of a common data
model, usually supported by a common data base or repository. Extensions to this scheme
are then supported by the provision of mappings to/from the common data model. These
approaches are difficult to extend and, in implementation terms, difficult to support
efficiently. By contrast viewpoints give a distributable, loosely coupled and extensible
scheme for view integration.

Experience in building automated support for systems engineering (Finkelstein & Kramer
1991) has shown us th developers use many representations and move rapidly between them.
They tend to tolerate and even exploit inconsistency between different representations as
they build a specification. Consistency is only relevant at certain stages and should not
therefore be enforced as a matter of course. The viewpoint framework, by interweaving
consistency checks and work plan, provides explicit support for this.

Existing approaches to process modelling are, we believe, limited. Their primary limitation
is that they often ignore (design) representation in favour of (design) process. We believe
that at the fine-grain level at which guidance is most appropriate representation and process
are closely intertwined.

Though the viewpoint framework is open and can be used to support any method, including
for example transformation based approaches, it provides particular support for methods
which deploy many simple, highly redundant, structured, visual and formal
representations. We argue that such methods form the best basis for system development. In
this we follow the trend away from “universal” languages and “global” reasoning schemes
towards heterogeneity and local reasoning.

We are currently developing the Viewer and in particular extending support for check and
guide actions. Experience gained in this work is providing us with a better idea of the
requirements for notations in which to define the contents of slots. We hope to continue work
on describing existing methods and testing the applicability of the framework on a variety
of examples.

Acknowledgements

The authors would like to thank their colleagues and students who have contributed
considerably to the ideas expressed in this paper. In particular thanks to Jeff Magee
(Imperial College), Jim Huang (City University) and Peter Graubmann (Siemens Research
Laboratories, Munich). We would like to acknowledge support from the SERC (SEED
project) and the European Community (REX project)

-26 -

References

Alderson, A. (1991); Meta-CASE Technology; Proc. European Symposium on Software
Development Environments and CASE Technology; LNCS 509, pp 81-91, Springer Verlag.

Finkelstein, A. & Kramer, J. (1991); TARA: Tool Assisted Requirements Analysis;
Loucopoulos P. & Zicari R (Eds.); Conceptual Modelling, Databases & CASE: an integrated
view of information systems development; Addison-Wesley.

Hagelstein J. (1988); A Declarative Approach to Information Systems Requirements;
Knowledge Based Systems; 1, 4, pp 211-220.

Jackson, M.A. (1983); System Development; Prentice Hall.

Jackson, M.A. (1990); Some Complexities in Computer-Based Systems and Their
Implications for System Development; Proc. IEEE Int. Conf. on Computer Systems and
Software Engineering (CompEuro 90); pp 344-351, IEEE CS Press.

Kaiser G., Feiler P. & Popovich S. (1988); Intelligent Assistance for Software Development
and Maintenance; IEEE Software; V5 N3, pp 40-49.

Kramer, J. (1990); Configuration Programming - A Framework for the Development of
Distributable Systems; Proc. IEEE Int. Conf. on Computer Systems and Software
Engineering (CompEuro 90); pp 374-384, IEEE CS Press.

Meyers, S. (1991); Difficulties in Integrating Multiview Development Systems; IEEE
Software, 8, 1, pp 49-57.

Potts, C. (1989); A Generic Model for Representing Design Methods; Proc. 11th International
Conference on Software Engineering; pp 217-226, IEEE CS Press.

Robinson, W. (1989); Integrating Multiple Specifications Using Domain Goals; Proc 5th
International Workshop on Software Specification & Design; pp 219-226, IEEE CS Press.

Zave, P. (1989); A Compositional Approach to Multi-Paradigm Programming; IEEE Software, 6, 5, pp 15-25.

-27 -

