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ABSTRACT

Software engineering has made significant contributions to “engineering-in-the-large”.

The nature of the software process has been researched, and computer based tools and

environments have been built to support this process. Other more established engineering

disciplines, such as instrument design, have developed professional practices, mature

mathematical frameworks for system modelling and accepted quality standards lacking in

software engineering. Little effort however, has been devoted to the cross-fertilisation of

software engineering and engineering design, or indeed the exploitation of the frequently

observed commonalities between them. The Software Engineering and Engineering Design

(SEED) project described in this article has attempted to address these issues through the

study of heterogeneous, composite systems. This has resulted in a model of the engineering

design process, an organisational framework for systems development methodology and

integrated computer-based support for this framework.

INTRODUCTION

Many large and complex systems deploy a variety of different technologies, and require a

variety of development strategies and notations to specify their behaviour. Modern

instruments for example, have substantial software components alongside their electronic

and mechanical hardware. Such systems require the coexistence, even the incorporation of,

software engineering methods within the traditional engineering design process.
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There are clear similarities between the disciplines of software engineering and

instrument design, yet enough differences to tempt the transfer of successful development

techniques from either discipline to the other. The SEED project [Fink90] has systematically

studied these similarities and differences in its attempt to transfer technology and expertise

from one discipline to the other. Concurrently, an organisational framework for systems

development methodologies has been constructed to describe, manage and apply the

engineering design process to the development of heterogeneous, composite systems

[Fink92].

SEED is a collaborative project between Imperial College and City University, and builds on

the substantial experience of the partners in supporting software development and

instrument design.

Software Engineering. While computer scientists devise improved techniques for

structuring and programming large, complex systems, software engineering research

focuses on the controlled management of such techniques within the context of the software

development “life cycle”. As software systems have grown in size and complexity, software

engineering as a discipline has focused on the process of software development.

Software development projects encompass a range of activities that precede, include and

follow programming. Foremost among these activities is the elicitation, specification and

analysis of system requirements. Requirements specification is now recognised as the

essential first step in any systems development process, and its documentation is often the

contractual reference against which system designs are validated.

Software engineering research has produced a multitude of specification and design

methods that may be used to describe system requirements and design architectures. These

methods typically utilise a number of different representation styles or notations together

with prescriptions of how to go about producing specifications using these notations. Many

general problems such as incompleteness, inconsistency and ambiguity in specification

have been encountered, and powerful approaches developed to try and resolve them.

Computer aided software engineering (CASE) tools and integrated programming support

environments (IPSEs) have emerged to provide practical, automated support for these

methods. Such computer- based tools provide a means for enacting methods’ underlying

process models using the notations prescribed by these methods. Considerable experience

has now been gained within the software engineering community in both CASE tool

technology and the underlying development methods which CASE tools support.

Instrument Design. Instruments are an interesting class of engineering artifacts. They are

composite systems, consisting of a large number of interacting sub-components and

employing a variety of different technologies (mechanical, electrical, information

processing, even biological and chemical). They are a class of artifacts whose general

properties are well known and in the design of which there is considerable expertise.

Instrument systems are therefore an excellent vehicle for exploring heterogeneous systems

development and inter-disciplinary technology transfer.

Technology Transfer. Technology transfer deals with the problems of fitting technology into

a new setting. While this transfer is commonly perceived as flowing from research into

industry, the SEED project has concentrated on the inter-disciplinary transfer of technology

between software engineering and engineering design. The aim of the project has therefore
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been to apply the techniques, methods and tools deployed by one discipline to solve problems

of another. For example, the successful specification and consequent development of a

digital storage oscilloscope using a software specification method, would be an instance of

successful technology transfer from software engineering to engineering design. 

An immediately noticeable barrier to such transfer is terminology. Software engineering

and engineering design use a myriad of overlapping and inconsistent terms which must be

disentangled before any transfer takes place. For example, the term “design” itself means

different things to software and hardware engineers. A requirements specification created

by an instrument engineer, may be treated by a software engineer as a design specification

because of its “implementation bias”.

Once differences in vocabulary have been overcome, concrete differences in approach must

be tackled. One such difference is evident in the role of explicit models of the development

process. Process modelling is central to software development activities, and to varying

extents always forms part of software development methods and their supporting tools. It

does not play such an explicit role in engineering design. In fact, insofar as tools are

concerned, automated support for engineering design is almost exclusively in the form of

domain specific computer aided design (CAD) packages, and rarely includes aids for the

elicitation, specification and analysis of requirements.

The converse of the above is also true. Engineering design invariably relies on elaborate

value modelling and cost-benefit analysis to evaluate alternative designs. Software

engineers on the other hand, are usually satisfied with a single solution that meets

requirements, and have few metrics for evaluating designs or comparing alternatives.

Transferable Technologies. Process and value modelling are just two potentially

transferable technologies addressed by the SEED project. Some others are shown in Figure-1.

As with the preceding account these observations were made by focusing on commonalities

between requirements engineering as a special branch of software engineering, and

instrument design as a special branch of engineering design.

One particularly fruitful area of transfer has been in the area of structured and formal

methods. For example, case studiesFink91a] were conducted using the structured

requirements specification method CORE [Mullery85] in which a variety of non-trivial

instrument systems such as a cathode-ray oscilloscope were. In a second series of case

studies [Fink91b], the formal method Z [Spivey89] was used to specify a variety of instrument

system components such as a differential pressure sensor and part of a chemical process

reactor. Both CORE and Z deploy a systematic process and use rich representations to

produce descriptions of function and behaviour. This was reflected in the system

specifications produced by the two methods. In both case studies, the use of software

specification methods produced clear and concise specifications of the function and

behaviour of the engineering artifacts. Moreover, in both cases, the successful application of

these methods has also meant the successful utilisation of the CASE tools that support them. 

Other areas of transfer continue to be investigated. In particular, the specification of so-

called “non-functional requirements” that deal with aspects of systems that are difficult to

quantify (such as reliability, colours, robustness, and so on), remains problematic. In

general, engineering design has had more success in expressing these requirements and

imposing strict quality assurance standards lacking in software engineering. The authors’
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approach has been to attempt to quantify and formalise non-functional requirements, so that

they may be expressed and analysed as functional ones. This is in line with current trends

in software engineering where, for example, researchers in Human-Computer Interaction

(HCI) have sought to formalise definitions of user interface properties to provide a

consistent “look” and “feel” to interfaces. WIMPs (Windows, Icons, Mice, Pop-up menus)

environments demonstrate such standardisation of interfaces.

Software
Engineering

Engineering
Design

structured & formal methods

quality assurance techniques

value models

experience

tools

non-functional requirements

process models

Figure-1: Some areas of technology transfer between software engineering and engineering

design. Arrows show the direction of transfer.

THE ENGINEERING DESIGN PROCESS

The formulation of a satisfactory model of the design process is a fundamental concern of

many disciplines. It is treated, in particular, in the literature of engineering design,

systems science, planning, creativity and in recent times in the literature of software and

knowledge engineering. The motivation for the concern with the topic is the provision of a

conceptual framework for the organisation of design activity, the support of the creative

work of designers, the effective teaching of design and, finally, the automation of (or

automated support for) design.

There exists an extensive literature of the topic. The authors have, among others, reviewed

the literature of the classical views of design methodology and presented the generally

accepted model of the design process [Fink83]. More recently Burton [Burton90] has reviewed

the literature comprehensively and analysed critically the evidence in support of the

generally accepted, or consensus, model.

As part of the SEED project, the deficiencies of the classical model have been examined, and

a model more consistent with the developing perspectives of software and knowledge

engineering presented.

Classical Consensus Model. While there are significant differences in the many

presentations of models of the design process, they all fall within a common abstract model.

The model is partly descriptive, an attempt to give an account how design is actually
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carried out, and partly prescriptive, a recipe how design should be carried out. The model is

based partly on theoretical analyses of the design process, based on an introspective

rationalisation of the experience of a designer, and partly on empirical evidence. The latter

is sometimes the result of systematic external observation of design activity and more often

on participant observation, which is often indistinguishable from the theoretical,

introspective rationalisation of the experienced designers. The essence of the consensus

model, as it is seen by the authors, is as follows.

Design is considered as a complex information system, which transforms the statement of

the perception of a want and the commitment to satisfy it, into a specification of a system or

artifact to satisfy that want, such that the system or artifact can be made or implemented.

The design process is built up of a sequence of elementary stages. The model of an

elementary design stage is shown in Figure-2. Each stage is a sequence of processes: task

definition, solution generation, solution analysis, solution evaluation and decision.

What is termed the task definition by the authors, is a process which transforms a model of

the solution from the preceding stage of the design sequence into a requirement

specification, including a value model for the solution of that stage.

The requirement specification is passed on to a solution generation process, which produces

a model of a candidate solution, which may satisfy the requirement specification.

The solution generated is given in terms of its form. The process of analysis of the solution

generates information about the function of the candidate solution.

The evaluation process receives information about the candidate solution form and

function, and generates information about the value of the candidate solution in terms of the

requirement specification value model.

The decision process receives the information about the value of the candidate solution and

either accepts it as a specification of the solution to be used as the basis of the succeeding

stage of design or else it either, returns to the generation of an alternative solution or, if the

alternatives have been exhausted, it returns to modify the requirement specification. It may,

if neither of the latter actions lead to an acceptable solution, return to the beginning of the

preceding stage of the design process.

A total design process proceeds from an abstract and fuzzy model of the solution to a

concrete and definite one. In engineering design the process typically has a planning stage

which converts the statement of the perception of a want, and the commitment to satisfy it, to

an abstract functional specification of the required solution. This followed by a conceptual

design stage which specifies physical principles of the of the solution. The embodiment

design process which succeeds conceptual design determines the geometrical form and

materials of the solution. The final detailed design stages fixes the dimensions of the

solution and any further necessary detail. An essential feature of most design process

realisations, is the decomposition of the total system to be produced into component sub-

systems, sub-sub-systems and so on down to elements. Component functional specifications,

having been defined by a preceding stage, are then designed by parallel processes and

integrated into the total system.
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Task Definition

Solution
Generation

Analysis

Requirements Specification

Solution

Form and Functionality of Solution

Evaluation

Value

Decision

primitive need statement or requirement 
specification from provious design stage

information for creation of artifact or system or 
requirement specification to next design stage

Figure-2: An elementary design stage in the classical consensus model of

the engineering design process.

The model of the design process presented above is in accord with generally accepted

accounts of the process, although the various models in the literature differ in detail in

accordance with the perspective of the author, the domain of design considered, the size of

system and the nature of the technologies involved. The differences involve in particular

the subdivision of the steps of the elementary design process into a finer structure and

different subdivision of the design process into stages.

The model presented above describes what is widely considered to be "good design practice".

It is based on a design process that moves from the establishment of design requirements to

the generation of a solution. It recognises that the sequence of requirement specification,

candidate solution generation, analysis and evaluation is a logical necessity. It further

recognises that design is necessarily a succession of stages, say, planning, conceptual

design, embodiment design and detailed design, which must be carried out in an orderly
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sequence. The decision of a preceding stage is a more or less rigid constraint on the

following process, with a substantial resource penalty on a returning to a preceding stage.

The above merits of the model explain its general use. However it has a number of defects.

Deficiencies in Classical Model. The model only considers top-down design, starting from

a requirement, formulating a solution in terms of high-level components which can satisfy

those requirements and moving downwards. However, bottom-up design, in which design

solutions for components of the design are starting points, may on occasion be appropriate,

since top-down design may lead to difficult component problems. Further, effective reuse of

preexisting designs seems to be difficult to accommodate in a top-down design approach.

Middle-out design may also be appropriate. Neither bottom-up nor middle-out approaches fit

well with the classical model.

The other, and in our opinion the most significant, defect of the model is that it stresses the

sequential aspect of design. This fails to account for concurrent engineering - the speeding-

up of the design process by carrying out a number of design stages in parallel by a single

designer or by a design team.

The model does not explicitly recognise that a number of candidate concepts may be

generated and developed in parallel at any stage. Indeed decision involves in general the

choice among a set of candidates. Nor does the model explicitly show the important place of

partial solutions arrived at during the process, the processing of which may which may be

abandoned at some point, but returned to at a latter point. 

Finally, the model does not explicitly show the place of knowledge in the design process,

thereby rendering it largely unsuitable for assisting the developer; e.g., through automated

design support.

In order to remedy these deficiencies, and to provide an improved basis for work on design

automation, the authors propose an integrated object-based framework which resolves the

deficiencies of the consensus model and supports the design and construction of

heterogeneous, composite systems. The framework is formulated from a knowledge and

software engineering perspective, and is described below.
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AN INTEGRATED FRAMEWORK

So far, many of the differences in the development of software and hardware systems have

been highlighted, and attempts have been made to transfer successful techniques across

disciplines. Meanwhile, the underlying model of any engineering development process has

been described, highlighting the similarities between engineering disciplines.

Nevertheless, while technology transfer and a unified design approach greatly enhance the

process of systems development, the development of heterogeneous, composite systems

invariably requires heterogeneous approaches to their design. The ViewPoint Oriented

Systems Engineering (VOSE) framework [Fink92] is an organisational framework that

acknowledges this requirement. The framework supports multiple notations and

development strategies to describe multiple components of composite systems. ViewPoints

represent “agents” having “roles-in” and “views-of” a problem domain. Each ViewPoint

describes a partial specification of the problem domain, presented in a particular notation

and developed using a particular strategy.

Motivation. Design of engineering systems is a complex activity. To support people engaged

in it, "methods" which guide and organise the activity are required. Such methods consist

of the following components: a set of representation schemes, that is, ways of describing the

system under design; a model of the design process and a means for using that model to

generate guidance on what to do in particular circumstances.

Such methods have a variety of uses: they can be used to guide individual designers; they

can be used for management control; they can be used to set development standards and

prescribe design deliverables; they can be used to give a development rationale; they can be

used as a basis for principled tool support.

Experience in software engineering has shown that design methods are difficult to construct

- for each area and aspect of system development a method must be "hand crafted". There is

a need for a framework which makes this process systematic.

If we examine how knowledge is applied in design we can distinguish three classes of

knowledge: development knowledge, knowledge about the process of design; representation

knowledge, knowledge about how the artifact or system is to be represented; design

knowledge, knowledge about the artifact or system itself and the domain or context in which

it is to be placed that arises out of the design process.

For the most part these three classes of knowledge have been treated separately: development

knowledge through the study of models of the design process; representation knowledge,

through the study of modelling techniques and specification languages; design knowledge

through the study of design databases and CAD tools.

Our framework attempts to tie these classes of knowledge together to construct methods.

ViewPoints. A ViewPoint may be defined as a loosely coupled, locally managed, coarse-

grained object, encapsulating the representation knowledge, development process

knowledge and design (specification) knowledge of a particular problem domain. This

knowledge is described in the five “slots” shown schematically in Figure-3.
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The development participant associated with any particular ViewPoint is known as the

ViewPoint “owner”. The owner is responsible for developing a ViewPoint specification

using the notation defined by in the style slot, following the strategy defined by the work

plan, for a particular problem domain. A development history is maintained in the work

record.

STYLE

= notation

WORK PLAN

= development strategy

DOMAIN

= area of concern

SPECIFICATION

= partial system description

WORK RECORD

= development history

Representation Knowledge

Development Knowledge

Specification Knowledge

Figure-3: A ViewPoint schematic. Style, work plan, domain, specification and

work record are ViewPoint “slots” containing the representation,

development and design (specification) knowledge described in the text.

Methods. Many ViewPoints may employ the same development technique (e.g., top-down

functional decomposition) to produce different specifications for different domains. We

therefore define a reusable ViewPoint Template in which only the style and work plan slots

are elaborated. A single ViewPoint template may then be instantiated more than once to

yield different ViewPoints.

In general, a method is composed of a number of different development techniques. Each

technique has its own notation and rules about when and how to use that notation. Thus, in

the context of the ViewPoints framework, a method is a configuration (structured collection)

of ViewPoint templates, the templates corresponding to the method’s constituent development

techniques.

Developments. A development is a configuration of ViewPoints instantiated from a

method’s ViewPoint templates. These ViewPoints are related via inter-ViewPoint

consistency rules, that may be enacted when full (or partial) consistency is required. Each

ViewPoint is locally managed, responsible for its own in- and inter-ViewPoint consistency,

and potentially distributable both logically and/or physically.
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Consider for example the development of a computer-based instrument system such as a

digital storage oscilloscope (DSO). It is a heterogeneous system composed of electronic and

information processing components. We may choose to develop the specification of this

oscilloscope using system block diagrams, functional decompositions, data flow diagrams

and structured text. Our method in this context is a set of four ViewPoint templates, a

template for each of the above four development techniques. Our DSO development project is

a configuration of ViewPoints, instantiated from the templates provided. We may thus have

a single ViewPoint whose specification contains the overall DSO system block diagram, a

number of ViewPoints whose specifications contain functional decompositions of the

various blocks of the DSO, a number of ViewPoints whose specifications contain data flow

diagrams of the various components of the DSO, and several ViewPoints whose

specifications contain structured text descriptions of various other ViewPoint specifications.

The overall system specification for the DSO is then the configuration of all these

ViewPoints, organised in a rectangular lattice, a hypertext network, a hierarchy, or any

other suitably chosen organisational structure.

Integration. Integration is central to the ViewPoints framework. The framework may be

used by method designers to integrate different development techniques, to build new

methods, or simply to customise standard methods to their individual requirements. This is

done by defining methods’ constituent templates and the consistency relationships between

them. Tool integration is treated as a special case of the more general method integration

problem, and is thus a natural consequence of the method integration mechanisms of the

framework. Individual tools may be constructed by tool developers to support individual

templates, which are then integrated by the same inter-ViewPoint rules defined in the

templates.

A development project in VOSE is a configuration of ViewPoints. These ViewPoints may be

grouped together by common domain, template and/or arbitrary logical or managerial

configurations. Whatever structuring mechanism is chosen, an appropriate management

mechanism is needed to organise and navigate through large ViewPoint structures.

Tool Support. A prototype computer-based environment has been constructed to support the

VOSE framework, and several sample tools supporting individual ViewPoint templates

have been integrated into this environment [Nuseibeh92]. The environment, called

The√iewer, was developed in Objectworks/Smalltalk and operates under X-windows,

Macintosh OS or Windows for the PC. The object-based nature of the framework was

particularly appropriate for an object-oriented implementation, which also facilitated the

rapid prototyping of the environment.

The√iewer provides support for method designers and method users (Figure-4), and

facilitates ViewPoint template description, ViewPoint development and ViewPoint

management (Figure-5, 6, and 7 respectively).
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Figure-4:  The startup window of 

The√iewer. It defines the scope of the 

VOSE environment. The "Method 

Designer" button creates a Template 

Browser (Figure-5), while the "Method 

User" button creates a ViewPoint 

Configuration Browser (Figure-7).

CONCLUSIONS AND FURTHER WORK

This paper has described a variety of issues surrounding inter-disciplinary technology

transfer tackled by the SEED project. At one level, the authors have examined the

differences between the disciplines of software engineering and engineering design., and

attempted to implant techniques from one into the other. At another level, the apparent

similarities between the two engineering disciplines have been recognised and a unified

model of the engineering design process has been constructed. This model fits into the

proposed ViewPoint Oriented Systems Engineering (VOSE) framework, which

acknowledges the similarities and differences between systems development disciplines,

and attempts to provide both a framework and a mechanism for their integration. This has

proved particularly relevant for the specification, design and construction of heterogeneous,

composite systems. Such systems are often viewed from multiple perspectives, specified

using a variety of development notations and strategies, and constructed using a number of

different technologies.

The SEED project represents work still in progress. A computer based environment,

The√iewer, supporting the VOSE framework has been constructed, and sample tools have

been integrated into this environment. The intention is to upgrade The√iewer from prototype

status into a fully operational environment supporting the distributed development of

heterogeneous, composite systems. Further work is still needed however in the area of

consistency checking between different representations, and the mechanisms for their

enactment and implementation. Modelling the ViewPoint oriented development process is

also being investigated, with the objective of providing automated, computer-based guidance

for the ViewPoint developer.
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Functional Decomposition

Function

Figure-5:  A Template 

Browser. This window 

provides tools for the 

creation of ViewPoint 

templates and the 

description of their style 

and work plan slots. 

ViewPoint templates are 

listed in the top left window 

pane. The diagram shows 

the style slot of the selected 

template (Functional 

Decomposition) being 

described (textually & 

graphically).

Figure-6:  A ViewPoint 

Inspector. This window 

provides tools for the 

development of ViewPoint 

specifications. These tools 

include facilities for editing 

(assenbling) specifications 

and checking their 

consistency. The diagram 

shows a "typical" 

functional decomposition 

specification, with the work 

record shown in the two top 

left window panes.

Figure-7:  A ViewPoint 

Configuration Browser. 

This window provides tools 

for creating, monitoring 

and managing ViewPoints. 

The diagram lists projects 

(developments) in the top 

left wondow pane. The 

ViewPoint Configuration 

Diagram for the selected 

project is shown in the 

bottom pane.

Digital Storage Oscilloscope 

Project
Digital Storage Oscilloscope Project
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