
              

City, University of London Institutional Repository

Citation: Pizza, M. & Strigini, L. (1998). Comparing the effectiveness of testing methods in 

improving programs: the effect of variations in program quality. Paper presented at the The 
Ninth International Symposium on Software Reliability Engineering, 4 - 7 Nov 1998, 
Paderborn, Germany. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/265/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


9th International Symp. on Software Reliability Engineering, ISSRE '98, Paderborn, Germany
© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Comparing the Effectiveness of Testing Methods in Improving
Programs: the Effect of Variations in Program Quality

Michele Pizza  Lorenzo Strigini
Centre For Software Reliability
City University, London, England

Abstract

We compare the efficacy of different testing methods for
improving the reliability of software. Specifically, we use
modelling to compare "operational" testing, in which test
cases are chosen according to their probability of occurring
in actual use of the software, against "debug" testing
methods, in which the testers look for test cases which
they consider likely to cause failure, or that satisfy some
coverage criterion.

We base our comparisons on the reliability reached by
the program at the end of testing. Differently from
previous studies, we consider the probability distribution
of the achieved reliability, and thus the probability of
satisfying specific requirements, rather than just the
average reliability achieved. We take account of two
sources of variation: the variation between the actual test
histories that are possible for a given program and a given
test method; and the fact that different programs start
testing with different faults and initial reliability levels.
By necessity, we use very simplified models of reality.
Yet, we can show some interesting conclusions with
important practical consequences. In general, there are
stronger arguments in favor of operational testing than
previous studies have shown.

1. Introduction

We are interested in testing as a means for improving
the reliability of delivered software. Testing is commonly
considered essential for achieving adequate reliability, by
removing bugs before delivering a product, but is an
expensive activity.

There is demand for systematic testing methods (i.e.,
criteria for choosing test cases and possibly stopping
rules), giving some guarantee of thoroughness and cost-
effectiveness. Popular methods include those that
systematically select test cases that are considered likely to
produce failure (e.g., boundary case testing), and those that
aim at a high "coverage", e.g. of parts of the code or of the
specification. We will call these methods, collectively,
"debug" testing methods, and compare them with what we
call "operational" testing: choosing test cases to be
statistically representative of intended use of the software.

Advocates of operational testing can point to these
main advantages:
• it tends to discover defects which would cause frequent

failures before those that would cause less frequent
failures. So, it focuses correction efforts in the most
cost-effective way and may deliver better software for a
given debugging effort;

• it facilitates the automation of the test process, thus
allowing more testing at acceptable cost than manual
testing would allow;

• it directly supports estimates of reliability, and thus
decisions on whether the software is ready for delivery
or for use in a specific system. This feature is unique to
statistical testing.
Advocates of "debug" testing methods can point out

that an experienced human tester must be better than mere
chance at finding bugs. A tester using a debug testing
method (called the "debugger" in the rest of this paper)
will tend to choose test cases that are very likely to cause
failures, if bugs are present in the program.

Clearly, which method is actually better in a specific
case must depend on whether the debuggers' intuition, if
indeed better in finding bugs than mere random choice of
test cases, guides them to discover those bugs that
contribute heavily to unreliability, so that the correction
effort is cost-effective.

Several authors have published comparisons between
classes of testing methods [1-9]. Experimental
comparisons have been inconclusive so far. Among
comparisons based on modelling, we think the most
advanced so far is in [8, 9], to which we refer the reader for
more extensive background material and whose analysis
we seek to extend.

Most previous studies of the effectiveness of testing
methods used the probability of causing a failure, and thus
finding a defect, as a measure of the effectiveness of a test
series. This seems inappropriate when considering testing
as a means for improving the software: what really matters
is the reliability of the delivered software, hence the
improvement that is obtained by applying the given
testing method. Frankl and co-authors [8, 9] (and,
previously, [10]) instead adopted as a measure of test
effectiveness the increment in reliability that would be
obtained with a given number of tests. Papers [8, 9] show
that the choice between testing methods depends on rather
subtle details of the assumed scenarios; and that debug



2

testing methods that appear promising because of their
ability to detect many faults may well be vastly  inferior
to operational testing, unless they preferentially discover
the more important faults.

Most of the results published so far concerned
comparisons of the expected values of the reliability
achieved by testing.  In this paper, we study the
distribution  of the achieved reliability, i.e., the
probabilities of achieving specified reliability levels.

Method A (solid line):  E(Θ)=0.01; P(Θ>0.025)=0.04

Method B (dashed line): E(Θ)=0.015;  P(Θ>0.025)=0.00082

Density function

0 0.025 0.05

Cumulative distribution function

0

0.2
0.4
0.6
0.8

1

Required upper bound on Θ

Fig. 1: Trade-off between average results
and consistency of results in two
hypothetical statistical distributions of the
failure rates (Θ)  obtained after testing.

Comparing expected values is potentially misleading.
In reality, the history of testing in a specific project will
differ from all others. The reliability achieved on average
may well matter less than the predictability of the results.
For instance, of the two hypothetical methods shown in
Fig. 1, method A delivers better average reliability, but
method B is more dependable, as it has a smaller "tail" of
programs that are worse than a required bound.

There are actually two main sources of variation among
the results obtained by applying a given method:
- first, in the application of a given method to a given

program, we can consider the factors that might differ
between two applications of the method, e.g.: different
choices of tests by different testers, different random
effects in the testing environment (e.g. load), and the
fact that the tester[s] may react differently to observing
a failure, in terms of how they will proceed to look for
the fault and attempt to repair it. Most previous
investigations have considered this scenario;

- another source of uncertainty, though, is that a testing
method chooses test cases on the basis of some
characteristics of a program, but cannot be specialized
to the individual program actually being tested. For
instance, if one tests for coverage of features in a
specification document, the same choice of tests applies
to all programs that nominally satisfy the same

specification; a debugger, having to choose a test
within the constraints specified by a testing method,
will choose a test for its presumed efficacy at detecting
possible faults in that specific program, based on
general experience with similar programs. But
programs which share these general outwards
characteristics will normally differ in the faults they
contain, and the testing method will thus achieve
different levels of reliability in different programs. We
might thus have that testing method A tends to be
much better than method B if the program happens to
contain certain bugs, but worse than B if the program
has bugs of a different kind. The program characteristics
that drive the choice of test cases identify a whole
population of programs that might have been produced,
with individual differences including different faults.
The program actually tested is one  of these programs,
but the testers do not know which one. Decisions about
testing must make allowance for this uncertainty.
Statistically, these differences among the testing

histories that are possible with a given test method are
described as a probability distribution for the reliability
achieved at the end of testing.  Many scenarios are
possible, with bafflingly subtle variations. Just to give an
example, we may consider that the reliability of programs
before testing has a given statistical distribution. Suppose
that the dominant categories of bugs in programs were
correlated with the program's reliability. We might then
find that a testing method is very good (statistically) at
improving bad programs, but ineffective on programs that
are already reasonably reliable; or that another testing
method usually improves those programs that are already
rather good, but rarely improves the worse programs. The
latter method would deliver programs that after testing
vary more widely in reliability  than they did before
testing; the former method would instead reduce this
spread, thus making the software development process
more predictable and controllable.

Our second source of variation was not usually
modelled in previous studies of testing methods. Yet, it is
important for at least two practical reasons:
- if we model the testing process to gain general insight,

so that we may understand which factors determine
which method is more successful, we will normally
model the ability of a tester as a probability of finding
faults in a program. But if we consider the variation
among programs, we will recognize that a good tester
is one who achieves a good average score over all
programs that appear similar. The tester's ability cannot
be calibrated on the faults of the specific program now
under test, which are as yet unknown. The difference
between effectiveness on the average program and on
the individual programs will be demonstrated by an
example in Section 5;

- if we wish instead to use our models to predict the
results of different testing methods in a specific
environment, we will first try to estimate model
parameters, describing the effectiveness of specific
methods, by experimental measures. If we measure the



3

test process on a small sample of programs, we will be
tempted to judge those test inputs that do not reveal
defects as "wasting" tests and thus lowering the value
of the testing method or of the tester. But our
considerations have shown that this would be wrong. A
test case which does not reveal any defect in a specific
program A may well be a test case which would reveal
a fault frequently present in other programs similar to
A. Any inference obtained from a  small sample of
programs needs to allow for the natural variation
among programs. The programs in the sample may be
very different from the "typical" program in the
population of similar programs. A "typical" program
may well not exist at all.
This description of the variation in the testing process

may give an impression of hopeless complexity, such that
no general law and no directive for empirical investigation
can be found.  We describe here preliminary attempts at
exploring the problem and deriving useful conjectures, via
a few thought experiment. First, we propose models of
how software faults are distributed in programs, and how
tests find them, that account for specific, interesting
aspects of reality. So, we can study the consequences of
these aspects. For some models, we have been unable so
far to produce analytical solutions, so we describe single
examples, solved numerically. We can thus discuss general
conjectures about the behavior of testing methods in
practice. Of course, our models ignore many aspects of
reality. It is important to decide whether our conclusions
are indeed due to those model assumptions that are
realistic, or are an artefact without a basis in reality. Even
with these limitations, we think these models contribute
to a better understanding of the phenomena to be studied.
We hope that practitioners can use our conclusions in
deciding how to proceed in their particular situations, and
researchers to guide experimental efforts.

2. Terminology and assumptions

2.1. Testing, faults, failures

In the scenario we consider, a program is tested by
giving it a stimulus, and checking whether its reaction is
correct. We call the stimulus test input, test case or just
test  and the response output.  This intuitively describes a
state-less program which implements a function (in the
mathematical sense of the word), but can also represent
more complex situations. For instance, for a control
system with a defined mission time, a whole mission can
be one test case; for a transaction-processing system, the
state of its data base must be considered as part of each
input; etc. The set of all variables that affect one
invocation of the program defines a multidimensional,
discrete, Cartesian input space.

If the program reacts correctly to a test, we call this
event a success; if not, we call it a failure. Failures are due
to the presence of faults in the program. In discussions of
testing, faults (or "defects", or "bugs") are usually thought
of as those parts of the code that are wrong. This

definition does not allow a unique identification of the
faults in a program (in general, there are many different
code changes which would all correct the same set of
incorrect behaviors), so we prefer to characterize a
program's faults via its failure set, defined as follows. A
failure point is a point in the input space of the program,
such that the program behaves incorrectly on that input. A
failure region is any set of failure point that we think
convenient to consider together, e.g., all the failure points
that would be eliminated by a given fix. The failure set of
the program is the set of all its failure points, i.e., the
union of all its failure regions.

We describe the [un]reliability of a program in terms of
its failure rate (or failure probability), i.e., in this context,
the probability that the program fails on an input if this is
chosen at random from the input space, according to the
probability distribution that would be observed in actual
operation.

2.2. Simplified model of program development

We need to model the evolution of a program during its
history of testing and repair. We start with describing how
faults are inserted, and how failure behaviors vary over a
population of similar programs.

We know from experience that a mistake by a developer
will not usually affect a single input point, but a whole
set. If the mistake is made, the whole set of points
becomes a failure region; if not, the failure region will not
be there. So, a simple model assumes a fixed (potentially
huge) set of possible failure regions, corresponding to the
mistakes that developers may  make. The accidental errors
in the design process select some of these failure regions,
at random. We characterize each "potential failure region"
by its probability  (shorthand for the probability of that
failure region actually being in the program), and its size
or failure rate (shorthand for the decrease in the program's
failure rate achieved by a fix that turns all and only the
points in that failure regions into success points). So, for
instance, we may talk about a "large, improbable" failure
region to mean a failure region that is unlikely to be
present, but if present causes frequent failures in operation.

In our examples, we will make a series of assumptions
to keep our models tractable, especially when numerical
solutions are needed:
- there is a finite number N of classes of possible failure

regions: class i  has ni elements, each of size qi  and
with probability pi. This is not overly restrictive, but
in practice we will use small values for N and each ni
to keep our examples tractable. Such assumptions seem
acceptable approximations for scenarios like those
found in simple, safety critical software, with good
development quality, in which one may expect most
programs to have very few defects: although many
other failure regions might be present in theory, only a
few have a high enough probability to affect the
statistics of the developed programs;

- the possible failure regions are disjoint, so that the
failure rate of the program is the sum of the sizes of its



4

failure regions. This is not true in practice, but again,
it should be a realistic approximation for cases in
which few, small failure regions are usually present.
We also assume that the presence of a failure region (or,

equivalently, the mistake that causes it to be present) is
statistically independent of the presence of any other. This
is as though the design team tossed dice, for each failure
region to decide whether to insert it or not.

2.3. Model of the testing and fixing process

During testing, any detected failure is followed by an
attempt to identify its cause and remove it by fixing the
software. We use the following simplifying assumptions,
common to most existing models of testing:
- each successive test selection is independent of all the

ones preceding it and chosen according to the same
probability distribution;

- failures (resp. successes) are always recognized as
failures (resp. successes). In the jargon of testing
research this is called the perfect oracle assumption;

- when a failure happens, the testers deterministically
change the code so as to remove that failure region,
among the collection we specified before, to which the
test input that caused the failure belongs. So, we ignore
the fact that in reality different testers may apply
different fixes, even when responding to identical test
failures (perfect and identical fixes).
Our models are heavily stylized descriptions of reality

(see e.g. [9, 8] for a discussion of why they may not be
verified in practice). Yet, we are not using them for
detailed predictions, but for pointing at the existence of
phenomena that are usually ignored. So, they will suffice
as long as the phenomena we demonstrate are not a
consequence of those specific assumptions that are
unrealistic.

di detection rate in debug testing for each failure
region of class i

d value of di when it is assumed to be the same for
all failure regions

E(X) expected value (mean) of a random variable X
ni number of possible failure regions in the i-th

class (i=1,...,N)
N number of classes of possible failure regions
pi probability that one failure region of class i is

actually present in a randomly chosen program

P(Α) probability of an event A

qi failure rate in actual operation for each failure
region of class i

t number of tests performed

Θ "Failure rate" of a program: probability of it
failing on an input chosen at random according
to the probability with which it will occur in
operation in the environment of interest

Θo(t) or

Θo, Θd(t)

or Θd

'failure rate' of a program after t tests have been
run and all defects found have been corrected,
with  operational and debug testing respectively

Abbreviations used in this article

3. Testing without subdomains

Here, we consider the case in which the debugger does
not divide the input space into subdomains but uses some
kind of heuristic to seek those input points that are more
likely to be failure points. We focus on a case in which
the debugger’s detection rate is the same for each of the
program’s failure regions: di=d for every i. We do not
believe this to be a "typical" situation: we think there is
no empirical basis for believing that a "typical" situation
exists, common to all practical industrial contexts.
However, this scenario produces examples which are worth
studying.  In reality, we would expect di to be highly
variable, and it might be either positively or negatively
correlated with the failure rates of the failure regions,
depending on the testers and the program types. Assuming
it constant (as other authors have done before us) is the
simplest case for a first mathematical analysis.

3.1. One class of failure regions

Let us assume that there is only one class of potential
failure regions. All regions have the same probability of
being actually present and the same failure rate in
operation: N=1, q1=q, p1=p, n1=n, and Θ can thus only
take values in the set: {0, q, 2q,...nq}.

3.1 .1 .  Deriv ing the  probability distribution of
the failure rate Θ after testing

We briefly show how to obtain the distribution of the
failure probability Θ after t tests. Since Θ equals the
number r of failure regions left in the program times their
individual failure rate, q, it is sufficient to compute the
probability of each possible value of r.  So, for debug
testing, after t tests:

P(Θd=r q) = P(r failure regions in the program)=

k=r

n

∑ P(r failure regions | k failure regions before
testing) P(k failure regions before testing)

The rightmost term represents a binomial distribution:

P(k failure regions before testing)=
n

k

 

 
  

 

 
  

k⋅p ⋅
n−k

1−p( ) ,

and the other term in each product is:

P(r failure regions | k failure regions before testing)=

∑
α=0

t

  P(r failure regions | α test hits, k failure regions
before testing) P(α test hits | k failure regions
before testing)

(where a "test hit" is defined as a test hitting a point in
one of the failure regions initially present). In their turn,
the two terms in this sum can be written as:

P(α test hits | k failure regions before testing)=
t

α
 

 
  

 

 
  

α⋅ k⋅d( ) ⋅
t −α

1−k ⋅d( )



5

(another binomial distribution) and ([11], vol. 3, p. 60):
P(r failure regions | α test hits, k failure regions before

testing)=
k

r

 

 
  

 

 
  ⋅

x(−1) ⋅
x= 0

k −r

∑
k − r

x

 

 
  

 

 
  ⋅ 1−

r + x

k

 
 
 

 
 
 

α

For operational testing, the only change is that the
probability of finding a failure region is q instead of d:

P(Θo=r q)=

x(−1) ⋅
x =0

k −r

∑
k− r

x

 

 
  

 

 
  ⋅ 1−

r + x

k

 
 
 

 
 
 

α 

 
 
 

 

 
 
 α=0

t

∑
k =r

n

∑ ⋅

    
t

α
 

 
  

 

 
  

α
k ⋅q( ) ⋅ t−α

1−k ⋅q( ) ⋅
n

k

 

 
  

 

 
  ⋅

k

p ⋅ n−k
1−p( )

The means of these two distributions are easily derived:
Θ is the sum of n random variables, each representing the
contribution of one of the potential failure regions. With
debug testing, after t tests the program contains on average
np (1-d)

t
 failure regions, thus the expected failure rate is:

E(Θd)=q ⋅n ⋅ p ⋅ (1− d)t

With operational testing, this becomes:
E(Θo)=q ⋅n ⋅ p ⋅ (1− q)t

With many classes of failure regions, the expressions of
these probability distributions become more complex. In
practice, we evaluated the probabilities of all possible sets
of remaining failure regions incrementally through
successive steps in testing, finding this more efficient than
evaluating these analytical expressions.

3.1.2. Implications with one class of failure
regions

With just one class of failure regions, all with the same
p, q, and d, we obtain the trivial result that debug testing
is better than operational testing iff d>q. By "better" we
mean that for each θ, P(Θo≥θ)≥P(Θd≥θ), which, in this
case, is equivalent to saying that E(Θo)≥E(Θd). So, the
method with the better value of E(Θ) is also the
"stochastically better" method. Notice that this superiority
holds for each possible program in the population. Later,
under different assumptions, we will see that E(Θo)≥E(Θd)
does not necessarily imply P(Θo≥θ)≥P(Θd≥θ) for every θ:
therefore we will not be able to assess a method as being
better than the other on every program in the population.
We will show examples in which E(Θo)>>E(Θd) but the
debugger performs particularly badly on a subset of
programs, so that P(Θd≥θ)>>P(Θo≥θ) (where θ>>E(Θd) ).

3.2. Allowing for failure regions of different sizes

In general, potential failure regions may differ both in
their "sizes" (failure rates in actual operation) and their
"probabilities" (of being actually present in a randomly
selected program).

Without loss of generality, we order the failure region
classes by "size", so that q1>q2...>qN. Obviously the
detection rates of a failure region of class i during testing
are qi and d, respectively, for operational and debug testing.

If d>qi  for all i, a debugging approach performs better than
the operational approach on each failure region, therefore it
delivers, stochastically, better reliability for any program
from the population: for any given θ, P(Θo≥θ)>P(Θd≥θ).
The opposite holds if d<qi  for all i. The non-trivial and
interesting case is that in which there are both "large"
failure regions for which operational testing is more
suitable (qi>d), and "small" ones for which debug testing
is more suitable (qi<d). Then, it is possible to have some
programs in our population for which debug testing is
more appropriate, and others for which operational testing
is more appropriate. In what follows we consider this non-
trivial case, in which q1>d>qN.

3.2.1. Comparing the expected values of the
failure rate after testing

For a potential failure region to be present as an actual
failure region after a program has been tested, it must have
been present before testing, and no test must have hit its
points. The joint probability of these two independent
events is pi (1-d)

t
 for debug testing and pi (1-qi)

t
 for

operational testing. On average, the debugged program
contains ni p i (1-d)

t
 and ni p i (1-qi)

t
 failure regions of class

i respectively for debug testing and for operational testing.
Thus, the expected failure rates after t tests are:

E(Θo)= in ⋅ ip ⋅ iq ⋅ t(1− iq )∑
E(Θd)= in ⋅ ip ⋅ iq ⋅ t(1−d)∑

Asymptotically, as t tends to infinity, both means
approach 0, but debug testing guarantees a better expected
failure rate after testing. That is, after t exceeds a certain
threshold value, we have E(Θd)<E(Θo). In fact, as t

increases, E(Θo) decreases as C1 ⋅ t(1− Nq )  and E(Θd)

decreases as C2 ⋅ t(1−d)  with d>qN (where C1= Nn ⋅ Np ⋅ Nq

and C2= in ⋅ ip ⋅ iq∑ , both constant values)1. Intuitively,
knowing that debug testing has the same detection efficacy
for all failure regions, we expect E(Θd) to "regularly"
decrease towards zero as t increases. On the other hand,
operational testing is likely to find first, and much sooner
than  debug testing, the large failure regions, so that E(Θo)
decreases faster than Ed(Θ) in the earlier stages of the
testing. The problem, for operational testing, is finding
the small failure regions when the large ones are likely to
have all been removed.

The effectiveness of a testing method at the beginning
of testing can be measured by the expected reliability
improvement achieved by the first test. This is

d ⋅ in ⋅ ip ⋅ iq∑  for debug testing and in ⋅ ip ⋅ i
2q∑   for

operational testing. As a more intuitive measure of
"relative effectiveness", we will use the ratio between this
expected reliability improvements and the mean failure rate

1 This is obvious for  E(Θd), and proven for E(Θo) by the fact

that lim
t→∞

in ip iq ⋅(1− iq ) t∑
Nn Np Nq ⋅(1− Nq )t = 1



6

before testing: 
d ⋅ in ⋅ ip ⋅ iq∑

in ⋅ ip ⋅ iq∑
= d  for debug testing and

in ⋅ ip ⋅ i
2q∑

in ⋅ ip ⋅ iq∑
 for operational testing.

If d < in ⋅ ip ⋅ i
2q∑

in ⋅ ip ⋅ iq∑
 there is a first stage of the testing in

which operational testing gives a better mean value for the
achieved Θ, and a later phase in which E(Θd)<E(Θo);
otherwise E(Θd)<E(Θo) for every t.
Example 1: We choose  N=2, n1=10, n2=20,  p1=0.1,

p2=0.9, q1=2 10
-3

, q2=2 10
-5

. The detection rate is

d=1.35 10
-4

. With this value for d, the two approaches
produce the same mean for Θ after 16384 tests:
E(Θo(t=16384))=E(Θd(t=16384)).

The probability of hitting a failure region at the first
test is 0.00236 for operational testing, vs.  0.00256 for
debug testing; but the expected relative decreases in failure

rate from the first test are d = 1.35⋅ 10−4 , and

in ⋅ ip ⋅ i
2q∑

in ⋅ ip ⋅ iq∑
=1.7·10-3, respectively. This example illustrates

how the probability of finding at least one failure region,
or similar measures proposed in the literature, are bad
indices of how well a testing method improves reliability.

After about 1000-2000 tests, operational testing is
likely to have found all the large failure regions of the
"average" program. At this point, the average failure rate
is about ten times better than in the non-tested programs
or the debug-tested programs. Operational testing will find
one of the remaining small regions with probability
2 10

-5 
per test, so the reliability improvement becomes

much slower than for debug testing, for which this
probability is about ten times higher.

t0 5000 1 104 2 104

E(Θd)

E(Θo)

dashed line:  operational testing
solid line :  debug testing

5 10
4

0.001

0.0015

0.002

0

Figure 2. Evolution of E(Θd) and E(Θo) .

3.2.2. The probability distribution of the
failure rate after testing

The comparison between test methods becomes more
complex if we consider the distributions of Θo and Θd, in
order to answer questions like "what is the probability

that, at the end of testing, a program has achieved or
exceeded a reliability target, expressed as a target failure
rate θt?", that is, "what are P(Θo≤θt) and P(Θd≤θt)?". We
again refer to Example 1, and show other properties of the
distribution of Θ.

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004 θ

t=0

t=4096

t=8192

t=16384

from left to right: t=4096, t=8192, t=16384

dashed line:  operational testing
solid line :  debug testing

0

0.2

0.4

0.6

0.8

1

t=32768

0 0.001 0.002 0.003 0.004 θ

dashed line:  operational testing
solid line :  debug testing

Figure 3. Cumulative distribution functions
of the failure rate Θ. The curves show the
situation before testing (t=0: the dashed
and solid lines are identical), and to three
stages in the testing: before, at, and (lower
figure) after the crossover point of the
mean values of Θ (cf. Fig 2). The large
"steps" are an artefact of our assuming a
small number of potential failure regions.

Figure 3 shows the cumulative probability distributions
P(Θo≤θ) and P(Θd≤θ),  for t=0 (before testing), t=8192
(when operational testing delivers a better expected failure
rate), t=16384 (when the two approaches deliver the same
expected failure rate) and t=32768 (when debug testing
delivers a better expected failure rate).

As shown in Fig. 3, P(Θo≤4 10
-4

) is close to 1 for all
the t considered, that is, the "operationally tested" program
is likely to contain none of the larger failure regions
(Θ=4 10

-4
, near the origin of the x axis, is the worst



7

number of
tests

E(Θo) E(Θd) P(Θo|≥3 10-4):
worse than
E(Θd(t=16384) )

P(Θd ≥3 10-4):
worse than
E(Θd(t=16384) )

P(Θo≥2 10-3)
(at least 1 large
failure region in
the program)

P(Θd ≥2 10-3)
(at least 1 large
failure region in
the program)

t=0 2.36 10-3 2.36 10-3 0.985 0.985 0.651 0.651

t=8192 3.06 10-4 7.82 10-4 0.473 0.286 7.556 10-8 0.286

t=16384 2.59 10-4 2.59 10-4 0.116 0.105 <<10-15 0.105

t=32768 1.86 10-4 2.85 10-5 0.0025 0.012 ~0 0.012

Table 1. Example 1 (testing without subdomains): some probabilities from the
distributions  of Θo and Θd.

failure rate possible if no large failure region is present,
given by n2=20 "small" failure regions, each contributing

a failure rate q2=2 10
-5

). On the other hand, "debug-tested"
programs have a non-negligible probability of containing
some "large" failure region, even after their average failure
rate has dropped below that achieved by operational
testing.

Some interesting facts are summarized in Table 1:
• "on average", operational testing is better than debug

testing (E(Θo)<E(Θd)) for t<16384; for t>16384, debug
testing is better (E(Θo)>E(Θd));

• for t=16384, both methods deliver a mean failure rate
which is about ten times better than the mean before
testing. However, debug testing leaves a large amount
of  variation among programs in the population, while
operational testing almost eliminates this variation.
About 10% of the "debug-tested" programs still have
one or more "large" failure regions (i.e., a  failure rate
comparable to the mean before  testing) while this
percentage is negligible for operational testing;

• for t=32768, E(Θd) is 84 times smaller than the mean
before testing and 7 times smaller than E(Θo). Still,
about 1.2% of "debug-tested" programs have a failure
rate that is worse than the mean before testing; this
percentage is negligible for operational testing.
We also observed that operational testing achieves a

consistently narrower distribution of the failure rate than
debug testing. For instance, the probability of a failure
rate worse than twice the mean failure rate is always
higher with debug testing than with operational testing.

4. Testing with subdomains

We now consider the case in which the debugger
subdivides the input domain into sets (subdomains),
according to some similarity criterion. With the ideal
choice of subdomains, each subdomain is such that either
the program fails on all its points or on none of them
(homogeneous  subdomains [2]). If the debugger has the
ability to produce homogeneous subdomains, it is enough
to test one representative input from each subdomain.

Here, we assume this "ideal" debugger, and show that,
even under this assumption, there may be cases in which
operational testing is preferable to debug testing.

The "ideal" debugger guesses exactly where all the
potential failure regions are. He/she defines homogeneous

subdomains so that each coincides with a potential failure
region, plus a subdomain for those input points, if any,
that cannot belong to any failure region (due to our
assumption of non-overlapping failure regions, these
subdomains form a partition over the input space). He/she
then chooses each successive test from a new (randomly

and uniformly chosen) subdomain in this set of ni
i =1

N

∑

"interesting" subdomains.
This models a debugger with perfect information about

where the failure regions may be, but no information
about their sizes (qi) and about their probabilities (pi) of
being actually present in a given program.

Obviously, if any program from our population is

subjected to a number of tests t≥ ni
i =1

N

∑ , all its failure

regions will be removed. Besides, if  
1

n j
j =1

N

∑
> qi  for all i,

debug testing has a higher probability  than operational
testing of finding any given failure region: it thus delivers
stochastically better reliability, for every program from the
population. We are more interested in the other cases, in
which the number of potential failure regions, and thus the
number of subdomains, is very high, so that:

a) it is not possible to test every subdomain ( t < ni
i=1

N

∑ ),

b) there are some large failure regions for which, at least
at an early stage, operational testing is more
appropriate than debug testing ( i.e. for some j,

q j >
1

ni∑
).

Conditions a) and b) seem realistic in most practical
situations.

We again use an example to compare the two testing
approaches and show some statistical properties of the
distribution of Θ. Generating examples with many
potential failure regions has prohibitive computational
costs, so we choose t and the qi so as to verify conditions
a) and b) even with few potential failure regions. This
example is not realistic in practice but it can be seen as a
"scaled down" version of realistic situations, and offers
some insight into the conditions under which operational
testing could be more effective than even an "ideal
debugger" with homogeneous subdomains.



8

4.1. Comparing the expected values of the failure
rate after testing

The probability that a potential failure region of class i
is actually present, and remains in a debug-tested program

after t tests, is the product, pi ⋅ 1−
t

ni∑
 

 
  

 

 
  . After t tests:

E(Θd)= 1−
t

in∑
 

 
  

 

 
  in ⋅ ip ⋅ iq∑ , for debug testing, vs. :

E(Θo)= in ⋅ ip ⋅ iq ⋅ t(1− iq )∑   for operational testing.

0 20 40
0

0.02

0.04

0.06

0.08

0.1

t

E(Θd)

E(Θo)

dashed line:  operational testing
solid line :  debug testing

Figure 4. Subdomain testing: evolution of
E(Θo) and E(Θd) as t  increases.

E(Θd) decreases linearly to zero as t increases to ni∑ ;
instead, E(Θo)>0 for every t. Thus, debug testing
guarantees a better expected value, if enough tests are run.
On the other hand, operational testing may give a better
expected Θ in the early stages of testing, thanks to its
ability to find the large failure regions first.
Example 2: We choose N=2, n1=10, n2=42,  p1=0.1,

p2=0.5,  q1=8 10
-2

, q2=10
-3

. After 52 tests, the debugger
has removed all the failure regions from any program from
the population, thus it is interesting to compare the two
methods for t<52. Debug testing and operational testing
produce the same average failure rate for t=40.

The probability of hitting a failure region at the first
test is 0.1 for operational testing vs. 0.423 for debug
testing. However, operational testing is more than three
times more effective (at the first test) than debug testing

from the reliability point of view, i.e. 
1

in∑
=1.9 10-2 and

in ⋅ ip ⋅ i
2q∑

in ⋅ ip ⋅ iq∑
=6.4 10-2. Figure 4 compares E(Θo) and E(Θd)

as functions of t. One can see that operational testing
delivers a better expected failure rate for t<40.

4.2. The probability distribution of the failure
rate after testing

We now study the distributions of Θo and Θd in this
example. Figure 5 shows the cumulative probability
distributions P(Θo≤θ) and P(Θd≤θ), as functions of θ, for
t=0 (before testing), t=32 (when operational testing

delivers a better expected failure rate), t=40 (when the two
approaches deliver the same expected failure rate) and t=48
(when debug testing delivers a better expected failure rate).
The interpretation of these graphs is exactly the same as
for Figure 3. P(Θ≤8 10

-2
) represents the probability that a

randomly selected program contains at most 1 large failure
region, P(Θ≤1.6 10

-1
) is the probability that it contains at

most two large failure regions, and so on. The
considerations we can make about figure 5 are very similar
to those made in Section 3 about operational testing vs.
debug testing without subdomains.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 θ

t=40

t=0

t=32

t=32

t=40

dashed line:  operational testing
solid line :  debug testing

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 θ

t=48

dashed line:  operational testing
solid line :  debug testing

Figure 5. Cumulative distribution functions
of the failure rate Θ, before testing and
then at three stages in the testing: before,
at, and (lower figure) after the crossover
point of the mean values (cf. Fig 4).

Some interesting facts are summarized in Table 2:
• for t<40, E(Θo)<E(Θd); for t>40,  E(Θo)>E(Θd).
• for t=40, both approaches deliver a mean failure rate

that is 4.3 times better than the mean before testing.
With debug testing there is much more variation
among  programs in the population. About 21% of the
"debug-tested" programs still contain at least one



9

"large" failure region (so their failure rate is comparable
to the mean before testing), and 2% at least two "large"
failure regions, while these percentages are respectively
3.5% and 0.042% for operational testing.

• for t=48, the expected failure rate obtained with debug
testing is much smaller than with operational testing.
Nevertheless, about 6 % of the "debug-tested" programs
contain at least one large failure region (vs. only 1.9%
for operational testing).
As for Example 1, the probability of a failure rate

worse than twice the mean failure rate is constantly higher
with debug testing than with operational testing.

5.  Considerations on the distribution
of the failure rate before testing

As we said in section 1, one source of variation among
test results is the variation among programs before
testing.

A testing method may be very good in improving the
reliability of some programs and almost ineffective for
others. In our examples, we assumed the presence of each
failure region to be independent of the presence of any
other failure region. The number of failure regions of any
given class thus has a binomial distribution.

In this section we address two possible doubts:
1. do we need explicitly to model the variation among

programs?  For instance, could we simply assume that
the program under test is the "average" program in the
population of interest?

2. how would our observations change if the variation of
failure rates before testing were greater (or smaller) than
in our model?  For instance, we could have positive
correlation among the presence of certain failure regions

(i.e. a programmer who makes a certain mistake is also
likely to make some other mistakes of the same type).
We refer to Example 1 (Section 3), and consider three

different scenarios, with identical expected failure rates
after any number t of tests, but characterized by
increasingly varied populations of programs:
a) all programs tested are identical to the "average"

program from the distribution in Example 1, with
exactly ni• pi  failure regions from each class i: there is
no variation (before testing) among programs in the
population;

b) our assumptions in  Section 3 are true: the number of
failure regions in each class has binomial distribution;

c) each program either contains 10 "large" failure regions
(with probability 0.1) or none (with probability 0.9);
this is an extreme case in which there is the greatest
variation possible over the population of programs.
Table 3 shows some meaningful steps in the evolution

of the reliability of randomly chosen programs under the
three different assumptions. The testing regimes compared
are operational testing and debug testing without
subdomains (as modelled in Section 3). Clearly, the
distribution of Θ before testing greatly affects the
distribution after testing. The average results are the same
for all distributions of programs; the interesting data in the
table are the probabilities of a high failure rate after t tests.
Two phenomena are of interest: how the chosen
distributions of programs affects these probabilities, for a
given testing method, and how it affects the relative
advantage of one method over the other. For instance, we
observe that operational testing achieves very similar
results for the three distributions, and its advantage over
debug testing increases from case a) to case c). For debug
testing, the inadequacy in improving the worse programs
in the population gets worse from case a) to case c).

number of
tests

E(Θo) E(Θd) P(Θo ≥8 10-2):
at least 1 large
failure region left

P(Θd ≥8 10-2) :
at least 1 large
failure region left

P(Θo≥1.6 10-1):
at least 2 large
failure regions

P(Θd≥1.6 10-1):
at least 2 large
failure regions

t=0 0.1 0.1 0.65 0.65 0.26 0.26
t=32 2.6 10-2 3.9 10-2 6.8 10-2 3.3 10-1 1.62 10-3 5.3 10-2

t=40 2.3 10-2 2.3 10-2 3.5 10-2 2.1 10-1 4.2 10-4 2 10-2

t=48 2.1 10-2 7.8 10-3 1.9 10-2 6.1 10-2 1 10-4 2 10-3

Table 2. Example 2 (testing with "ideal" subdomains): some probabilities from the
distributions of Θo and Θd.

a) "average" program b) "independent" failure regions c) "extreme" distribution
number
of tests

P(Θo≥
E(Θ(t=0)))

P(Θd≥
Ε(Θ( t=0)))

P(Θo≥
E(Θ(t=0)))

P(Θd≥
Ε(Θ( t=0)))

P(Θo≥
4 10-3)

P(Θd≥
4 10-3)

P(Θo≥
4 10-3)

P(Θd≥
4 10-3)

t=0 1 1 0.526 0.526 0.264 0.264 0.1 0.1
t=4096 6.2 10-5 2.7 10-5 8.5 10-5 0.11 3.38 10-8 0.11 3.3 10-7 0.0997

t=8192 3.9 10-9 7.5 10-10 8.7 10-9 0.041 3 10-14 0.041 3 10-14 0.089

t=16384 < 10-16 1.9 10-13 < 10-16 5 10-3 < 10-16 5.1 10-3 < 10-16 0.03

t=32768 < 10-16 3.8 10-15 < 10-16 6 10-5 < 10-16 6.5 10-5 < 10-16 6.1  10-4

Table 3. Performance of two testing methods on different populations of programs.



10

6. Conclusions

We have studied, under various assumptions, the
effectiveness of testing in improving program reliability.
While previous studies assumed a known program with
known faults, we studied the reliability that can be
achieved given that the program under test is only known
in a  probabilistic sense, as being the product of a known
process.

We only showed the behaviors of a few examples, so
any generalisation from these examples must be taken as a
simple conjecture. However, these conjectures seem
correct on the basis of physical intuition, and thus deserve
further investigation:
- the variation in the results of a production process

implies variation in the results of testing as well, and
project decisions must take this into account;

- operational testing may offer great advantages if the
main concern is predictability of the quality of delivered
programs, by being more efficient at pruning the "tail"
of extremely unreliable programs;

- operational testing offers these advantages even in
many situations in which other testing methods provide
better reliability on average.
Which method is actually most effective in a given

practical situation cannot be decided by mathematical
analysis only: empirical measurements are needed to decide
which model assumptions are verified in that situation,
and to estimate the values of the parameters. However, for
operational testing not to have the above advantages it
seems necessary that the chosen "debug testing" method be
consistently superior to operational testing for every
possible failure region.

We have ignored the cost of tests and the cost of fixes:
we only compared the reliability achieved by different
methods after a given number of tests (and the fixes that
these tests may have prompted). Considering such costs,
in situations where budget is the main limiting factor,
would improve the position of those methods that can be
more completely automated, and those that require fixing
fewer faults to achieve a given reliability. Both factors
seem to further favor operational testing.

We have also shown that under this model, as under
previous ones, the best choice of testing methods should
be expected to vary not only between different projects,
but also during the evolution of a single program.

A necessary next step is to transform our conjectures
into theorems that are true under usefully wide classes of
hypotheses, or to disprove them. An immediate use of our
examples is in avoiding wrong "common sense"
judgements by providing counterexamples. Practical
applications of these more general theorems (which we
hope to produce) to project management must depend on
verifying which hypotheses (on the distributions of failure
rates from individual failure regions, and on the strengths
and weaknesses of human testers) apply in different
industrial environments and project phases. Our models

point at the kind of data to be collected and hypotheses to
be tested, and may support statistical inference to correctly
estimate the model parameters from the data.

Acknowledgements

This research was funded in part by the European
Commission via the "OLOS" research network and the
ESPRIT Long Term Research Project 20072 "DeVa", and
by the U.K. Engineering and Physical Sciences Research
Council within project DISCS (grant GR/L07673). The
authors are indebted to David Wright for his advice and
comments.

References

[1] J. Duran and S. Ntafos, "An evaluation of random testing",
IEEE TSE, 10, pp. 438-444,  1984.

[2] D. Hamlet and R. Taylor, "Partition testing does not
inspire confidence", IEEE TSE, 16, pp. 1402-1411,
1990.

[3] B. Jeng and E. J. Weyuker, "Analyzing partition testing
strategies", IEEE TSE, 17, pp. 703-711,  1991.

[4] T. Y. Chen and Y. T. Yu, "On the expected number of
failures detected by subdomain testing and random
testing", 22, pp. 109-119,  1996.

[5] W. E. Wong, J. R. Horgan, S. London and A. P. Mathur,
"Effect of test set size and block coverage on the fault
detection effectiveness", SERC Technical Report SERC-
TR-153-P,  1994.

[6] P. G. Frankl and S. N. Weiss, "An experimental
comparison of the effectiveness of branch testing and
data flow testing", IEEE TSE, 19, pp. 774-787,  1993.

[7] P. Frankl and E. J. Weyuker, "A formal analysis of the
fault-detecting ability of testing methods", IEEE TSE,
19, pp. 962-975,  1993.

[8] P. Frankl, D. Hamlet, B. Littlewood and L. Strigini,
"Choosing a Testing Method to Deliver Reliability", in
Proc. 19th International Conference on Software
Engineering (ICSE'97), 1997, pp. 68-78.

[9] P. Frankl, D. Hamlet, B. Littlewood and L. Strigini,
"Evaluating testing methods by delivered reliability",
IEEE TSE, to appear,  1998.

[10] N. Li and Y. K. Malaiya, "On Input Profile Selection for
Software Testing", in Proc. 5th Intl  Symposium on
Software Reliability Engineering, ISSRE'94, 1994, pp.
196-205.

[11] W. Feller, "An Introduction to Probability Theory and its
Application", Wiley, 1968.


