

City, University of London Institutional Repository

Citation: Finkelstein, A. ORCID: 0000-0003-2167-9844 (2016). Software engineering and
policy. In: Dillon, LK, Visser, W and Williams, L (Eds.), ICSE '16: Proceedings of the 38th
International Conference on Software Engineering Companion. (pp. 521-522). ACM. ISBN
978-1-4503-4205-6

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26502/

Link to published version: http://dx.doi.org/10.1145/2889160.2889215

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Software Engineering and Policy

Anthony Finkelstein
The Alan Turing Institute

∗

British Library
London, UK

afinkelstein@turing.ac.uk

ABSTRACT
In this short position paper I consider the contributions
that software engineering as a discipline can make to the
development and implementation of government policy. It
is intended to support the growing body of knowledge on
scientific advice in government and to encourage software
engineers to engage with policy and the policy community.

Categories and Subject Descriptors
Social and Professional Topics [Computing/Technology
Policy]; Software and its Engineering [Software Creation
and Management]

1. CONTEXT
In developed societies the key functions of the State are,
broadly construed, promoting economic prosperity, ensur-
ing defence and national and individual security, and health
and social welfare including education. These functions are
undertaken to different extents and in different manners de-
pendent upon the political constitution of the State and the
context in which it operates. This paper draws on UK expe-
rience but seeks insofar as possible to have broader transna-
tional application.

The means by which the State exercises its functions are
complex but, simplifying, political intent formed by a gov-
ernment and legislature (precise arrangements differ) are re-
alised through the development of policy, an abstract oper-
ational formulation of that intent. The executive branches
of government use this policy to determine the actions they
must take and the necessary distribution of resources.

Software technology, as a key constituent element of infor-

∗The Alan Turing Institute is the UK National Institute for
the Data Sciences jointly established by EPSRC and the
Universities of Cambridge, Edinburgh, Oxford, UCL and
Warwick. The author is at UCL and HM Government Office
for Science (GoScience).

mation technology, bears profoundly on the exercise of each
of the key functions of the State. The economy is intimately
linked to the use of software technology in support of com-
munications and the conduct of business. The development
of software systems is also in itself a significant productive
business sector. Defence and security are enabled though
software technology and increasingly the domain of defence
and security extends to the information and communication
systems forming part of the critical national infrastructure.
Healthcare is dependent upon software systems for delivery
and a growing class of devices and complex interventions.
Not only is software technology tightly bound to the direct
exercise of the functions of the State but the monitoring and
control of these functions is achieved though information sys-
tems and hence by way of software technology. Clearly then,
much policy must be informed by an understanding of soft-
ware engineering. I am not however, intending to look at
the software engineering relevant content of policy, not least
because it would require a large thesis rather than this brief
paper. Instead, I am intending to examine how software en-
gineering might deliver insights into, and perhaps valuable
tools for, the policy process.

2. CONTRIBUTIONS
There are three linked aspects of the contribution of software
engineering to policy each separately discussed below. First,
and perhaps most obviously, software engineering provides
powerful conceptual tools for understanding and analysing
complex systems - and many of the subjects of policy are
archetypal complex systems. Second, there are deep and im-
portant similarities between policy processes and software
development processes that may yield, not just intriguing
analogies, but may suggest additionally suggest improved
policy processes and tools. Third, computational models, of
greater or lesser sophistication (ranging from large climate
models to ephemeral spreadsheets), are increasingly used to
inform policy, thereby tying policy to the correctness, com-
pleteness and consistency of the models (this draws on my
blog http://prof.so which contains an extended discussion).

2.1 Representation
As software engineers we are inclined to discount the value
and power of the conceptual toolkit that has been developed
in our discipline. We can, of course, draw on a very large set
of modelling languages. Simple schemes such as data flow
diagrams, entity-relationship models, petri-nets, collabora-
tion diagrams, and the like, whilst we recognise their limi-
tations for software construction, are extremely powerful as

a means for unpicking complexity in policy domains. Yet
more powerful is the software engineering stance in which
complex domains are approached as language design chal-
lenges. Typically a software engineer when faced with a
complex situation will carefully design a language (usually
on the armature of a meta-modelling scheme or language)
structured to express the relevant properties and character-
istic organisational features of the domain. The design of
the language often yields insights and the resultant models
provide immense leverage. The practice of software engi-
neers of systematic language design and use can usefully be
contrasted with the general proclivity in the policy domain
to use representations - even block diagrams and control
flow charts - loosely and without regard to their syntax and
semantics.

2.2 Processes
The relationship between policy processes and software de-
velopment starts with the similarity between policy and spec-
ification. Policy provides an abstract operational formula-
tion of political intent. It is refined through the policy pro-
cess into requirements that are placed upon the executive
organisations through which government acts. This is sup-
ported by legislation that provides a framework of rules that
mandates the executive organisations to respond to policy
and may additionally provide additional policy-derived re-
quirements. In response to the requirements the executive
organisations must provide capabilities and on those capa-
bilities must deliver services or operate processes that satisfy
the requirements. In other words they implement the spec-
ification. The service delivery is effectively the ’run-time’.
There are feedback processes in operation between policy
formulation and implementation, often concerning the fea-
sibility of the policy and the resource implications of dif-
ferent possible implementations, and run-time monitoring
feedback, largely concerning the quality and performance of
the services.

The analogy is fertile, and particularly in suggesting how
policy requirements might be documented and related to
implementation. Thus, it brings to the fore matters such as:
the precision of the expression and the consistency of the
policy requirements; the specification of the test cases by
which successful implementation can be assessed and more
generally the extent to which the implementation securely
realises the policy; the non-functional properties (perfor-
mance, use ability, quality) that the services must meet; the
traceability between the implementation and the policy; the
environmental assumptions underpinning the policy; and so
on. Software engineers have also the ability to make useful
contributions to the structure and organisation of processes.
Thus, spiral, incremental and agile models can potentially
be applied within the policy process yielding benefits similar
to those we are familiar with in software engineering.

2.3 Models
Many of the issues around which policy rotates are too com-
plex to be determined by straightforward ’qualitative’ rea-
soning. They involve multiple interlocking constraints that
relate resources, effects, finance and anticipated behaviours
by a range of independent actors. Often these give rise to
feedbacks yielding dynamic behaviour that is far from obvi-
ous. Further, there are timing factors that mean that certain

actions are only possible at certain times or only if spec-
ified environmental conditions hold. This creates further
networks of temporal dependencies. It is clear in these cir-
cumstances that modelling is required to aid understanding
and analysis.

It is unclear whether those who understand the policy di-
mensions of the problem are equipped to do the necessary
modelling or perhaps really understand what such models
can, and cannot, yield. Even if they are equipped, their first
instinct is to construct a large and elaborate spreadsheet.
Spreadsheets can be an extremely powerful tool and have
the benefit of being relatively simple to use for straightfor-
ward planning tasks. They are however, also very difficult
to debug, to test, to document systematically and to un-
derstand except in a piecemeal fashion. The sophisticated
user, or worse the clever but unsophisticated user, can cre-
ate serious problems. The full functionality of Excel with
workbooks, scripting and pivot tables can approximate to
that of a powerful software development environment. I am
not sure that there has ever been a full accounting for the
societal consequences of faulty spreadsheets. The fact how-
ever, remains that serious and important policy alternatives,
the case for major infrastructure investments for instance,
depend on spreadsheet models.

When policy analysis becomes really thorny it is necessary
to construct a fully fledged computational model. Climate
change mitigation and energy policy being cases in point but
health resourcing and transport planning are also candidate
examples. The models are usually built by experienced mod-
ellers who have access to sophisticated tools and have a good
appreciation of issues such as sensitivity and model valida-
tion. Unfortunately modelling experience is not necessar-
ily associated with a software engineering understanding of
model construction. Some of the basics - specification, docu-
mentation, clear interfaces, modularisation schemes, built in
error checking, systematic testing - are commonly neglected.
Errors can be introduced in the data, in the modelling as-
sumptions, in the model, in the model coding and in the lan-
guage and data storage components on which the structure
rests. They can also arise in the interrogation of the model
and the ways in which results are presented or visualised.
Chasing these errors through the multiple layers represents
a major challenge that lies at, or perhaps even somewhat
beyond, the state of the art in software engineering.

3. CONCLUSION
It is obviously to be hoped that the benefits will cut both
ways and in areas such as stakeholder management the prac-
tice of policy development and implementation might con-
tribute to software engineering. All analogies, however ap-
pealing have risks and it is important to understand where
software engineering and policy depart from each other. We
have often, as a profession, been reluctant to make strong
claims about the broader value of our tools and conceptual
frameworks, perhaps conditioned by a close familiarity with
their limitations. There are clearly important roles for soft-
ware engineers to play in the policy domain. The social and
economic impact that we can make by suitable engagement
is substantial. This position paper has pointed to some di-
rections we could take and concludes with this, a call to
action.

