

City, University of London Institutional Repository

Citation: Courbis, C. & Finkelstein, A. (2005). Weaving aspects into web service

orchestrations. In: UNSPECIFIED . IEEE Computer Society Press. ISBN 0-7695-2409-5 doi:
10.1109/ICWS.2005.129

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26503/

Link to published version: https://doi.org/10.1109/ICWS.2005.129

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Weaving Aspects into Web Service Orchestrations

Carine Courbis

University College London

Department of Computer Science

Adastral Park

Martlesham Heath

IP5 3RE, UK

c.courbis@cs.ucl.ac.uk

Anthony Finkelstein

University College London

Department of Computer Science

Gower Street

London

WC1W 6BT, UK

a.finkelstein@cs.ucl.ac.uk

Abstract

Web Service orchestration engines need to be more
open to enable the addition of new behaviours into
service-based applications. In this paper, we illus-
trate how, in a BPEL engine with aspect-weaving ca-
pabilities, a process-driven application based on the
Google Web Service can be dynamically adapted with
new behaviours and hot-fixed to meet unforeseen post-
deployment requirements. Business processes (the ap-
plication skeletons) can be enriched with additional fea-
tures such as debugging, execution monitoring, or an
application-specific GUI.

Dynamic aspects are also used on the processes
themselves to tackle the problem of hot-fixes to long
running processes. In this manner, composing a Web
Service ’on-the-fly’ means weaving its choreography in-
terface into the business process.

1. Introduction

With the advent of Web Service technologies [21]:
WSDL (Web Service Description Language) to de-
scribe the business interfaces of the services; SOAP
(Simple Object Access Protocol) to exchange messages
between them, independently of the underlying proto-
col; and, UDDI (Universal Description, Discovery, and
Integration) to publish and discover them; applications
can be quickly composed across the network through
firewalls by integrating loosely coupled services. There
is a fundamental shift within businesses to a Service-
Oriented Architecture (SOA). As the result of stan-
dardization, services from different systems and com-
panies can be connected. Legacy and back-end systems
can also be readily encapsulated into services and then

integrated into applications. With Web Services, there
is a layer of abstraction above the core business logic
of the components.

The way Web Services interact with each other at
the message level, including the execution order and the
data flow, is called orchestration [16]. BPEL (Business
Process Execution Language) [2], WSCI (Web Service
Choreography Interface), and BPML (Business Process
Management Language) are examples of Web Service
orchestration languages or specifications. To offer busi-
ness agility, Web Service orchestration engines need to
be made more open. Two main requirements are to
enable local code execution - code snippet as proposed
in BPELJ [3] - and dynamic modifications of the pro-
cesses to accomodate new customer needs and market
conditions. Within this paper, we only deal with these
types of adaptations. At the moment, features such as
data conversion, execution monitoring, debugging, or
an application-specific GUI can only be integrated into
a process-driven application, if they are implemented
as Web Services, making the process control flow more
complex. Also, adapting a process can only be per-
formed by stopping it, which is unacceptable especially
for long-running processes. Steering a process is impos-
sible.

To open up Web Service orchestration engines, we
propose to embed aspect-weaving capabilities into their
architectures. Aspect-Oriented Programming (AOP)
[9] can be one solution to enhance and adapt business
process execution. To demonstrate this, we have devel-
oped a BPEL engine prototype using this paradigm.
Using this engine prototype, the behaviour and the
structure of an application can be altered at runtime.
Hot-fixes of business processes are possible as well as
Web Service hot-deployment, specially useful for long
running processes. In this way, new Web Services can
be composed into the flow ’on-the-fly’. We have pre-

sented this approach, from a language engineering per-
spective, in [6]. However, in this paper, we focus on the
Web Service perspective and gives a concrete example
used through the paper to illustrate our approach. This
example is a simple application based on the Google
search engine Web Service1 [5].

This paper is organised as follows. Section 2 intro-
duces the business process of our example. Section 3
explains the main concepts of AOP, and presents our
solution based on aspects to obtain adaptable execu-
tions and extensible business processes. The architec-
tural details of our BPEL engine prototype are pro-
vided in Section 4. Then Section 5 presents the related
work and we conclude the paper in Section 6.

2. An application based on the Google

Web Service

This section describes the application used through
the paper. First a quick overview of BPEL is provided.

2.1. BPEL

The de facto standard BPEL, currently submit-
ted to the OASIS consortium, is the most well estab-
lished orchestration technology for Web Services. Tools
from BEA, IBM, Microsoft and Oracle to mention only
the major companies involved in this market support
BPEL. This XML-based workflow language is rather
small [11] but is sufficient to handle typed variables
with scopes, loops, conditional branches, synchronous
and asynchronous communications, concurrent activi-
ties with correlated messages, transactions with com-
pensations, and exceptions.

A BPEL business process is made of three main en-
tities:

• The partners that abstractly represent the services
involved in the composition.

• The variables used to manipulate the data (SOAP
messages) exchanged between partners and to hold
states of the business logic. XPath expressions can
be used to access a part of a variable or to test
conditions.

• The activities that describe the business logic.
They can be basic such as invoking a Web Service
or assigning a value to a variable, or structured
such as executing a set of activities in sequence or
in parallel.

1http://www.google.com/apis/

The process can then be interpreted by any compliant-
BPEL engine. The process is itself a Web Service that
can be used inside another business process (recursive
composition). After Web Service deployment, the pro-
cess is static as only the endpoints can be updated in
the flow. Addressing business process dynamics and
non-functional properties is out of the scope of BPEL.

2.2. The business process

To illustrate the benefits gained from using our open
BPEL engine prototype, we have chosen to specify a
simple process-driven application, based on well-known
Google operations such as querying, spell-checking, and
fetching cached Web pages. Google offers an alterna-
tive mechanism to access its operations via a Web Ser-
vice for non-commercial use which restricts access to
1000 invocations a day per user. A free license key is
assigned to each user.

To keep it simple and easy to understand, the busi-
ness logic of our application only consists of obtain-
ing information about the most relevant Web pages
to a given query and, for each, displaying the cached
Web page. The corresponding BPEL business process
is given in Figure 1. It starts by declaring the partner
and variables used as well as initialising the query (mes-
sage) to send to the Google Web Service (first assign
instruction). After the query, the iteration variable is
initialised, as well as the number of items of the re-
sult and the Google key part of the message to fetch
the cached web page by populating it with the key of
the request message. Then, for each item of the result
of the query, the Google cached web page URL is re-
trieved to fetch its HTML document and the iteration
variable is updated.

To make this process useful, a GUI is needed. Oth-
erwise the query values cannot be changed except by
modifying the process and the cached Web page con-
tents are retrieved for nothing as they are not stored
or displayed. The only solution to plug the GUI into
the process is to encapsulate it as a Web Service (a
partner) and to add the corresponding receive and
reply instructions. The receive instruction replacing
the first assign will provide appropriate values for the
query and the reply appended after the last invoke

will send the cached Web page HTML document to
display it. Any additional feature such as converting
a message into another format, debugging, execution
monitoring that are non-functional or low level orches-
tration matter can only be integrated into the process
via a specific Web Service. Some BPEL engines such as
the late Collaxa engine bought by Oracle offer the pos-
sibility to execute some code but this exec instruction

<?xml version="1.0"?>
<process name="GoogleSearch"
targetNamespace="http://www.cs.ucl.ac.uk/bpel/"
xmlns="http://schemas.xmlsoap.org/.../business-process/"
xmlns:goo="urn:GoogleSearch"
xmlns:bpws="http://schemas.xmlsoap.org"
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance">
<partnerLinks>
<partnerLink name="GooglePartner"
partnerLinkType="GooglePType" partnerRole="provider"/>

</partnerLinks>
<variables>
<variable name="search"
messageType="goo:doGoogleSearch"/>

<variable name="searchResponse"
messageType="goo:doGoogleSearchResponse"/>

<variable name="cache"
messageType="goo:doGetCachedPage"/>

<variable name="cacheResponse"
messageType="goo:doGetCachedPageResponse"/>

<variable name="i" type="xsi:int"/>
<variable name="query" type="xsi:string"/>
<variable name="itemNb" type="xsi:int"/>
</variables>
<sequence>
<assign>
<copy>
<from>
<search>
<key>0123456789</key>
<q>ucl computer science</q>
<start>1</start>
<maxResults>5</maxResults>
<filter>true</filter>
<restrict/>
<safeSearch>true</safeSearch>
<lr/>
<ie>latin1</ie>
<oe>latin1</oe>

</search>
</from>
<to variable="search"/>

</copy>
</assign>
<invoke partnerLink="goo:GoogleSearchService"
portType="goo:GoogleSearchPort"
operation="goo:doGoogleSearch"
inputVariable="search"
outputVariable="searchResponse"/>

<assign>
<copy>
<from expression="1"/>
<to variable="i"/>

</copy>
<copy>
<from variable="searchResponse" part="return"
query="count(/return/resultElements/item)"/>

<to variable="itemNb"/>
</copy>
<copy>
<from variable="search" part="key"/>
<to variable="cache" part="key"/>

</copy>
</assign>
<while condition="bpws:getVariableData(’i’) <=

bpws:getVariableData(’itemNb’)">
<sequence>
<assign>
<copy>
<from expression="concat(
’/return/resultElements/item[’,
bpws:getVariableData(’i’), ’]/URL’)"/>

<to variable="query"/>
</copy>
<copy>

<from variable="searchResponse" part="return"
query="bpws:getVariableData(’query’)"/>

<to variable="cache" part="url"/>
</copy>
<copy>
<from expression="bpws:getVariableData(’i’)+1"/>
<to variable="i"/>

</copy>
</assign>
<invoke partnerLink="goo:GoogleSearchService"
portType="goo:GoogleSearchPort"
operation="goo:doGetCachedPage"
inputVariable="cache"
outputVariable="cacheResponse"/>

</sequence>
</while>

</sequence>
</process>

Figure 1. The BPEL business process based
on the Google Web Service

is not compliant to BPEL.
Also, if its process were more complex, a spell-

checking of the query words might be required, de-
pending on earlier results, to avoid getting a void result.
But hot-fixing (modifying the structure of) the process,
without stopping it, is impossible in the orchestration
engines available.

3. Open orchestration based on Aspect-

Oriented Programming

We propose the use of aspects to leverage these prob-
lems and open the orchestration engines. First, this
section explains the main concepts of AOP and then
presents our approach to adapt process behaviours and
extend their structures.

3.1. Overview of Aspect-Oriented Programming

AOP [9] is a recent programming paradigm that
has emerged to complement object-oriented program-
ming as objects have proven to be inadequate to cap-
ture crosscutting concerns such as logging or debug-
ging. Concerns were usually scattered and application
code was tangled. With aspects, they can be cleanly
modularized, making development, maintenance, and
reuse easier. An aspect is made of three parts: struc-
ture refinements (for example, adding a new attribute
to a class), code fragments, and location descriptions
to identify where to plug the code fragments in (the
what, the when, and the where). In AspectJ [8, 19], the
most mature AOP implementation for the Java pro-
gramming language, these different parts are respec-
tively called intertype declarations, advice, and point-
cuts. The well-defined points in the program flow that

can be selected by the pointcuts are called the join
points. For example, a pointcut can identify the call to
a method of a given class and an advice trigged by this
pointcut can specify extra code to execute after this
call.

The ultimate aim of AOP is to replicate the same ex-
ecution as when the code of the business logic and the
aspects were tangled. This composition is performed
by an aspect weaver (see Figure 2), either by code
transformation or by use of hooks, at compilation, de-
ployment or execution time. Aspects that are woven
at execution time are called dynamic aspects.

Aspect Weaver

Application

Aspect2

Aspect1

or

Figure 2. An aspect weaver

3.2. Adaptable behaviour

To offer business process adaptability, we propose
the use of aspects on the top of a BPEL specification-
compliant engine. As some of the adaptations cannot
be foreseen at deployment time or need to be easily
disabled, at any time, because they are performance-
inefficient, there is a requirement for dynamic aspects.

With this technique, new behaviours (features or
concerns) can be added to business processes at ex-
ecution time. Each feature is a module that can be
reused if non-process specific, and can be plugged in
or unplugged dynamically without ’invasively’ mod-
ifing the business processes. In the opposite, when
the features are implemented as Web Services, busi-
ness processes need to be modified to add the invoca-
tion to these Web Services. With BPELJ, each feature
is scattered throughout the process, mixing Java and
BPEL instructions, and cannot be added or removed
at execution time. Debugging, execution monitoring
and planning, Web Service selections after deployment
time, and local code execution (for integration purposes
between two services invocations) are examples of fea-
tures that can be plugged into a business process with-
out modifying the engine implementation as well as the
structure of process itself.

We have chosen to develop our own aspect language
dedicated to BPEL (a domain-specific aspect language)
as with AspectJ, the pointcuts would be too low level,

dependant on the engine implementation. With this
abstraction from the engine, the aspects are resilient
to the engine updates. It is also easier, for non-experts
(business process designers), to develop aspects with
this domain-specific aspect language. Also our imple-
mentation enables to have aspects that can be plugged
in/out at runtime.

Such an aspect is made of two parts: the specifi-
cations of the pointcuts and a Java class. This class
contains the methods (advice) used to adapt the pro-
cess. It enables access to the current instruction being
interpreted and to the BPEL interpreter environment
as well as to any other aspect plugged in. The point-
cuts to identify where the advice should be woven are
written in XPath, a language specialized for address-
ing parts of XML documents. With this language, it
is possible to weave advice before or after any BPEL
instruction of a business process such as a fault han-
dler, a onMessage event, or a scope. The identification
of where to weave can be very precise if the aspect is
process-dependant, or quite loose if the aspect can be
applied on any business process.

With this solution, it was easy to embed seamlessly
an application-specific GUI to the business logic of our
example (see Figure 1). Figure 3 and Figure 4 are re-
spectively the pointcut part and the advice part of the
GUI aspect. This GUI (see Figure 5), according to
the pointcuts, is initialized with the query values af-
ter the first assign of the process. The values of the
query can be modified before the launch of the query
by the user. Then, after each invocation of the doGet-

CachedPage operation, the GUI is updated with the
retrieved Google cached Web page (on the screenshot,
the cached UCL computer science home page which is
the most relevant page to the UCL Computer Science

query).

<?xml version="1.0"?>
<aspect name="uk.ac.ucl.cs.test.SearchGUI">
<after where="//:assign[@name=’initialisation’]"

methodName="updateRequest"/>
<after
where="//:invoke[@operation=’goo:doGetCachedPage’]"

methodName="displayPage"/>
</aspect>

Figure 3. Pointcuts of the GUI, developed as
an aspect

3.3. Extensible structure

To offer process hot-fixing capabilities, we also used
dynamic aspects. In this case, the advice is written in

package uk.ac.ucl.cs.test;
...
public class SearchGUI extends AbstractEngineAspect {
...
public void updateRequest() {

// Display the Google search query contained in
// the BPEL business process and enable its
// modification before the WS invocation.

}
public void displayPage() {
BPELEnv env = context.getBPELEnvironment();
Variable cache = env.getVariable(new

QName("http://www.cs.ucl.ac.uk/bpel/",
"cacheResponse"));

// Display the retrieved HTML document of the
// cached web page and wait until the user asks
// for the next one.

}
}

Figure 4. Advice part of the GUI aspect

Figure 5. The GUI of our process-driven ap-
plication

BPEL (the use of AspectJ was not possible). An im-
portant example of such hot-fixes is the composition,
on demand of a new Web Service and thus the addition
of its choreography interface into the process. The ad-
dition of this new partner with its activities, variables,
endpoints, and wsdl file location into the business pro-
cess corresponds to a concern.

In this manner, the structure of a process can be
modified at runtime. A process can be steered, in other
words, the end of the process can be changed depending
upon results identified in earlier stages. This function-
ality is useful for long-running processes, for example a
large Grid-based computational chemistry application
[12].

With this mechanism, BPEL instructions can be in-
serted, deleted, or replaced as well as the partners, vari-
ables, exceptions, compensation or fault handlers. For
example, we can insert into the the business process
of our Google application the invocation of the spell-
checker operation if the query has no result (see Figure
6).

Workflow aspect correctSpellingRequest
Members {
add <variable name="spellingCheck"

messageType="goo:doSpellingSuggestion"/>
add <variable name="spellingResponse"

messageType="goo:doSpellingSuggestionResponse"/>
}
Pointcuts {

before //:while insert correctSpelling
}
Advices {
correctSpelling
<switch>
<case condition="bpws:getVariableData(’itemNb’)==0">
<assign>
<copy>
<from variable="search" part="key"/>
<to variable="spellingCheck" part="key"/>

</copy>
<copy>
<from variable="search" part="q"/>
<to variable="spellingCheck" part="phrase"/>

</assign>
<invoke partnerLink="goo:GoogleSearchService"
portType="goo:GoogleSearchService"
operation="goo:doSpellingSuggestion"
inputVariable="spellingCheck"
outputVariable="spellingResponse"/>

<assign>
<copy>
<from variable="spellingResponse" part="return"/>
<to variable="search" part="q"/>

</copy>
<assign>
<invoke partnerLink="goo:GoogleSearchService"
portType="goo:GoogleSearchPort"
operation="goo:doGoogleSearch"
inputVariable="search"
outputVariable="searchResponse"/>

<assign>
<copy>
<from variable="searchResponse" part="return"
query="count(/return/resultElements/item)"/>

<to variable="itemNb"/>
</copy>

</assign>
</case>

</switch>
}

Figure 6. An example of a business process
aspect: the insertion of the spell-cheking op-
eration

4. Architecture

Our BPEL engine prototype is an interpreter, imple-
mented using the visitor design pattern [7, 13]. It con-
tains one visit method for each BPEL instruction and
traverses, from top to bottom, the ASTs (Abstract Syn-
tax Trees) that represent the BPEL documents. These
trees are not only strictly typed to meet the pattern
requirements but are also based on the DOM API to
enable XPath selections of nodes, which is useful for the
implementation of our two BPEL aspect languages.

The two BPEL aspect weavers are themselves as-
pects that can be plugged in or unplugged from the
BPEL engine. The BPEL engine code is totally inde-

pendent from them and is compliant with the BPEL
specifications. More details about the visitor design
pattern implementation we are using and its aspects
can be found in [14].

When an aspect to adapt the behaviour of a business
process is plugged in, it is registered and the different
nodes of the process identified by the XPath expres-
sions (pointcuts) are annotated with the aspect name
and the name of the method to execute. Before and
after interpreting an instruction, our system checks if
there is any annotation and calls the method to execute
(advice) if this aspect is still registered. Unplugging an
aspect only means removing the aspect from the reg-
istry.

When an aspect to modify the structure of a busi-
ness process is plugged in, all activities in the engine
are suspended to perfom the transformations on the
process. Also, members such as partners or variables
may be added or removed to/from the environment of
the interpretation. Additionally, the annotations of the
other aspects already plugged in should be propagated
onto any new BPEL instruction added by insertion or
replacement.

5. Related work

The idea of applying dynamic aspects into compo-
nent architectures to have more flexible and adaptable
applications interests many research projects [1, 15, 18].
For example, the JAsCo infrastructure [18] enables the
execution of component-based applications, which can
be dynamically adapted by aspects. The components
(Java Beans) when loaded into the infrastructure are
modified to insert traps at every public method which
invoke the aspect weaver when they are called.

Based on the JAsCo aspects, a Web Service Manage-
ment Layer (WSML) [22] was developed to monitor and
adapt Web Service applications. Dynamic selection of
Web Service is available as well as hot-swapping if any
service is down or if the selection policy has changed.
We believe we will be able to develop a similar layer
transparently on the top of our engine with aspects. If
we manipulate workflows with transactions, however,
hot-swapping of Web Services may not be possible at
all time. Recent work [4], AO4BPEL, also proposes
to use dynamic aspects in the BPEL business process
context but only for Web Service composition purposes.
Hot-fixes in the general sense of the term (composition
being only a particular case) and execution adaptations
such as monitoring are not taken into consideration.

Using aspects on SOA will make it possible, for ex-
ample, to check constraints (design by contracts), such
as the ones proposed in the Web Service Offerings Lan-

guage (WSOL) [20]. This language might be used in
our BPEL engine to assign contraints and then be im-
plemented as aspects.

To address the problem of automatic selection and
composition of Web Services to fulfill a task, OWL-S
(formerly DAML-S) [10] proposes the use of semantic
descriptions. These descriptions will then be manipu-
lated by different agents or software.

The main problem with transforming the workflow
at runtime is to ensure its stability. Despite the
changes, code consistency and structural correctness
should be maintained. Formal models to perform dy-
namic structural changes may be used such as ADEPT
[17].

6. Conclusion

Enabling additions of new features and modications
of business process at runtime are two requirements to
make Web Service orchestrations capable of evolving
to changes.

We illustrate how, in a BPEL engine with aspect-
weaving capabilities, a process-driven application
based on the Google Web Service can be dynamically
adapted with new behaviours and hot-fixed to meet
unforeseen post-deployment requirements. With this
solution, composing a new Web Service in the work-
flow is also possible. The benefits of these adaptation
mechanisms outweigh, we believe, the potential per-
formance impact. Furthermore, this potential perfor-
mance impact associated with the weaving mechanisms
is not comparable with that due to remote service in-
vocations over the Internet.

We plan to continue the implementation of our en-
gine prototype to handle most of the BPEL instructions
only for our research experimentations. But we do not
plan to deal to the complexities and subtleties of cer-
tain measures of BPEL such as dead path elimination.
We also wish to investigate how the stability of the sys-
tem can be ensured when the process is transformed.

7. Acknowledgements

The work is supported by the Generative Software
Development project funded by BT Group. Anthony
Finkelstein is grateful for support from an IBM faculty
partnership award. The authors want to thank Patrik

Mihailescu from BT for his comments on this article.

References

[1] ObAsCo (Objects, Aspects, and Components) Re-
search Group. http://www.emn.fr/x-info/obasco/.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, and I. Trickovic. Business Process Execu-
tion Language for Web Services version 1.1. Tech-
nical report, BEA, IBM, Microsoft, SAP, Siebel Sys-
tems, May 2003. http://www-106.ibm.com/developerworks/

webservices/library/ws-bpel/.
[3] M. Blow, Y. Goland, M. Kloppmann, F. Leymann,

G. Pfau, D. Roller, and M. Rowley. BPELJ: BPEL for
Java. BEA and IBM, March 2004. white paper, http:

//www-106.ibm.com/developerworks/java/library/j-diag0925/.
[4] A. Charfi and M. Mezini. Aspect-Oriented Web

Service Composition with AO4BPEL. In L. J.
Zhang, editor, In Proceeding of the European
Conference on Web Services (ECOWS’2004), vol-
ume 3250 of LNCS, Erfurt, Germany, September
2004. http://www.st.informatik.tu-darmstadt.de/database/

publications/data/cha%rfi-mezini-ecows-04.pdf?id=94.
[5] N. Chase. Building Web service applications with

the Google API. IBM developerWorks, tutorial,
May 2002. http://www-106.ibm.com/developerworks/edu/

ws-dw-wsgoog-i.html?S_TACT=10%4AHW04&S_CMP=EDU.
[6] C. Courbis and A. Finkelstein. Towards Aspect Weav-

ing Application. In The 27th International Con-
ference on Software Engineering (ICSE’2005), Saint-
Louis, Missouri, USA, May 2005. ACM press. http:

//www.cs.ucl.ac.uk/staff/C.Courbis/papers/icse2005.pdf.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns. Addison-Wesley Pub Co, January
1995. ISBN 0201633612.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knuden, editor, Proceedings of
European Conference on Object-Oriented Program-
ming, volume 2072 of LNCS, pages 327–355, Bu-
dapest, Hungary, June 2001. http://www.cs.ubc.ca/

~gregor/kiczales-ECOOP2001-AspectJ.pdf.
[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Videira, and J.-M. Loingtier. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, ed-
itors, Proceedings of the 11th European Conference
on Object-Oriented Programming, volume 1241 of
LNCS, pages 220–242, Jyväskylä, Finland, June
1997. Springer-Verlag. http://www.cs.ubc.ca/~gregor/

kiczales-ECOOP1997-AOP.pdf.
[10] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mc-

Dermott, S. McIlraith, S. Narayanan, M. Paolucci,
B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S 1.1: Semantic Markup for
Web Services. Technical report, OWL-S Coalition,
November 2004. http://www.daml.org/services/owl-s/1.1/

overview/.
[11] N. Mukhi. Reference guide for creating BPEL4WS

documents. Technical report, IBM, November
2002. http://www-106.ibm.com/developerworks/webservices/

library/ws-bpws4jed/.
[12] H. Nowell, B. Butchart, D. S. Coombes, S. L. Price,

W. Emmerich, and C. R. A. Catlow. Increasing the
Scope for Polymorph Prediction using e-Science. In

the 2004 UK E-Science All Hands Meeting (AHM),
pages 967–971, Nottingham, UK, September 2004.
UK Engineering and Physical Science Research Coun-
cil. http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/

AHM04/final_nowel%l.pdf.

[13] J. Palsberg and C. B. Jay. The Essence of the Vis-
itor Pattern. In Proceedings of COMPSAC’98, 22nd
Annual International Computer Software and Applica-
tions Conference, pages 9–15, Vienna, Austria, August
1998. http://www.cs.ucla.edu/~palsberg/paper/compsac98.

pdf.

[14] D. Parigot, C. Courbis, P. Degenne, A. Fau,
C. Pasquier, J. Fillon, C. Held, and I. Attali. As-
pect and XML-oriented Semantic Framework Genera-
tor: SmartTools. In M. van den Brand and R. Lämmel,
editors, ETAPS’2002, LDTA workshop, volume 65
of Electronic Notes in Theoretical Computer Science
(ENTCS), Grenoble, France, April 2002. Elsevier Sci-
ence. http://www.elsevier.nl/gej-ng/31/29/23/117/52/33/65.

3.009.pdf.

[15] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A Flexible Solution for Aspect-Oriented Pro-
gramming in Java. In A. Yonezawa and S. Mat-
suoka, editors, Metalevel Architectures and Separation
of Crosscutting Concerns: Third International Con-
ference, Reflection’01, volume 2192 of LNCS, pages 1–
24, Kyoto, Japan, September 2001. http://jac.aopsys.

com/papers/reflection.ps.

[16] C. Peltz. Web Services Orchestration - a review of
emerging technologies, tools, and standards. Techni-
cal report, HP, January 2003. Technical white pa-
per, http://devresource.hp.com/drc/technical_white_papers/

WSOrch/WSOrchestra%tion.pdf.

[17] M. Reichert and P. Dadam. ADEPTflex - Support-
ing Dynamic Changes of Workflow without Loosing
Control. Intelligent Information Systems special is-
sue one Workflow Management Systems, 10(2):93–
129, March/April 1998. http://www.informatik.uni-ulm.

de/dbis/01/staff/reichert/papers/journals%/reda98c.pdf.

[18] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an Aspect-Oriented approach tailored for Component
Based Software Development. In Proceedings of the
2nd international conference on Aspect-oriented soft-
ware development, pages 21–29, Boston, USA, March
2003. http://ssel.vub.ac.be/jasco/papers/aosd2003.pdf.

[19] The AspectJ Team. The AspectJ Program-
ming Guide, AspectJ 1.2 edition. http:

//dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/

aspectj-home/do%c/progguide/index.html.

[20] V. Tosic, B. Pagurek, and K. Patel. WSOL -
A Language for the Formal Specification of Vari-
ous Constraints and Classes of Service for Web Ser-
vice. In The International Conference On Web Ser-
vices, ICWS’03, pages 375–381, Las Vegas, USA,
June 2003. CSREA Press. http://www.sce.carleton.ca/

netmanage/papers/TosicEtAlResRepNov2002.pdf.

[21] A. Tsalgatidou and T. Pilioura. An Overview of Stan-
dards and Related Technology in Web Services. Dis-

tributed and Parallel Databases, special issue on e-
services, 12:135–162, 2002. Kluwer Academic Publish-
ers, http://www.di.uoa.gr/~afrodite/PADP2002.pdf.

[22] B. Verheecke and M. A. Cibràn. AOP for Dynamic
Configuration and Management of Web Services. In
In Proceeding of the International Conference on Web
Service Europe (ICWS-Europe’03), volume 2853 of
LNCS, Erfurt, Germany, September 2003. http://ssel.
vub.ac.be/wsml/papers/Verheecke_Cibran_ICWS03.pdf.

