

City, University of London Institutional Repository

Citation: Finkelstein, A. ORCID: 0000-0003-2167-9844, Kramer, J. and Goedicke, M.
(1990). ViewPoint Oriented Software Development. Paper presented at the 3rd International
Workshop Software Engineering and its Applications, Dec 1990, Toulouse, France.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26513/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

ViewPoint Oriented Software Development

Anthony Finkelstein, Jeff Kramer, Michael Goedicke

Imperial College of Science, Technology & Medicine
(University of London)

Abstract

In this paper we propose a new approach to software
development which explicitly avoids the use of a single
representation scheme or common schema. Instead, multiple
ViewPoints are utilised to partition the domain information, the
development method and the formal representations used to
express software specifications. System specifications and
methods are then described as configurations of related
ViewPoints. This partitioning of knowledge facilitates distributed
development, the use of multiple representation schemes and
scalability. Furthermore, the approach is general, covering all
phases of the software process from requirements to evolution.
This paper motivates and systematically characterises the
concept of a "ViewPoint", illustrating the concepts using a
simplified example.

Proc. of Third Int. Workshop on Software Engineering and its Applications,
Toulouse, December 1990.

1

1 Motivation

Software development is a complex combination of activities. It requires a
knowledge of the application domain, combined with expertise in the
software development process. This software process demands knowledge
of appropriate software development methods, specification techniques and
languages. The key to managing these activities and the associated forms of
knowledge is to structure and contain them so as to provide a partitioned,
distributable organisation for the software development process, and a
partitioned, distributable structure for the software specification. We believe
that a common partitioning and structuring for these activities and
knowledge forms is both possible and desirable.

In the following introductory sections we justify and elaborate on our belief
that the software process and software structure should be combined in a
single framework which supports multiple representation schemes and
alternative method steps.

1.1 Combining Software Process and Software Structure

Developing software-in-the-large involves many participants, with experts
in various aspects of software development and in various aspects of the
application area. In addition, each participant may have different roles,
responsibilities and concerns which may change and shift as the software
develops and evolves. Participants have knowledge which they want to bring
to bear on the development of the specifications. This knowledge will
generally complement that of the other participants but may also overlap,
interlock and conflict. We believe that any attempt to treat this process
using techniques based on a single representation scheme, common
schema or global reasoning are doomed to failure. It is essential that the
distributed nature of the knowledge and participants be recognised and
explicitly incorporated in the development process.

This presents us with some closely related problems. With all these
participants how can we guide and organise the process of software
development? How do we assign and maintain responsibilities? How can we
allow each participant to see only that aspect or part of the "specification
world" which is relevant to that participant’s interests and responsibilities?

Following from this, how can we ensure that, if each participant uses a
"bespoke" representation for eliciting, presenting and determining
properties of relevant parts of the specification world, potential
inconsistencies and conflicts between different participants are noted and
resolved?

These problems are commonly treated separately - the first in so-called
software process modelling languages, the second in specification language
structuring schemes. We propose the use of ViewPoints as both an
organising and a structuring principle in software development.

In outline, a ViewPoint (we use the distinctive capitals to denote our in -
terpretation) captures a particular role and responsibility performed by a
participant at a particular stage of the development process. The ViewPoint
must encapsulate only that aspect of the application domain relevant to the
particular role, and utilise a single appropriate scheme (or style) to
represent that knowledge. Viewpoints are thus a combination of both a

2

portion of the development process (workplan) and a portion of the
software structure.

1.2 A Structural Framework for Software Development

A well known difficulty, which arises with all approaches to structuring in
software development, is that of "structural transformation". What appears
an appropriate structure for carrying out requirements analysis is not
suitable for design. What appears an appropriate structure for carrying out
design is not suitable for construction and reuse and so on. We argue that
ViewPoints provide a generic and consistent structuring approach which
accommodates all aspects of software development. In particular ViewPoints
allow us to support the activities of requirements elicitation and
formalisation at the up-stream end of software development and system
evolution at the bottom end. These activities are generally ignored in
conventional approaches to software development.

In this respect ViewPoints provide the means to structure and relate
activities and representation schemes which are on the one hand solely
directed towards a particular area (e.g requirements engineering) and on
the other hand are directed towards the exchange of information and
knowledge between these areas. This structure will be reflected in single
ViewPoints and configurations of ViewPoints respectively.

1.3 Using Multiple Representations

Much effort has been devoted to developing ever richer and more
sophisticated formal representation schemes. On the surface this appears to
be a worthwhile enterprise - if a representation scheme is made more
expressive the task of elicitation and specification should, in theory,
become easier. This has however not proved to be the case:

the learning overhead in the use of these schemes is significant;

the development of such schemes is extremely difficult, in particular
developing sound and adequate verification or proof schemes;

such schemes are often very different from the conventional (and
reasonably well understood schemes) used in software engineering
practice and consequently pose difficulties for technology transfer;

the richer the representation scheme the easier it is to write baroque
and unreadable descriptions;

although an expressive representation scheme may theoretically
permit validation of complex properties of a description(for example,
generation of consequences using formal reasoning), in practice
validation by inspection or automated reasoning is usually more
difficult;

In contrast to the 'universal' language approach ViewPoints provide the
framework for representing the information in a collection of different but
related representation styles. This supports two important aspects. One is
that it is necessary to structure the (specification-) information of systems
in a modular way which is also reflected on in the previous section. The

3

other aspect is that representation schemes can be chosen which best suit
the problem or sub-problem at hand.

1.4 Building Methods Systematically

It may be observed that there are close parallells between our aims and
what practitioners have sought to achieve in methods. Methods are, in the
strict sense of the term, the collection and packaging of software
development knowledge. Unfortunately methods have commonly been
overlooked in current computer science in favour of specification
techniques or novel development paradigms.

Methods attempt to combine software process with software structure by
breaking down a "work plan" into steps and stages and associating these
with elements in a (generally functional) decomposition. Methods aim at
providing systematic coverage of the software development activities.
Methods provide organised collections of simple representation schemes
which are closely related and provide guidance, integrated with a work
plan, for moving between these schemes.

This close relation between the representation schemes suggests that
structuring ViewPoints can be used as a means of presenting a method and
managing method-derived information. (in a sense modules 'manage' their
data and a ViewPoint manages its local knowledge)

1.5 Motivation Summary

This section has presented our motivation for ViewPoints in four parts:

unifying models of software process and models of software structure;

developing an overarching structural framework for software
development;

supporting the use of multiple representation schemes;

providing a systematic basis for constructing and presenting methods.

Pragmatically, the principle of a ViewPoint as an encapsulation of role and
knowledge, using an appropriate representation scheme, is motivated by
the need as far as possible to avoid any single governing representation,
schema or reasoning. Viewpoints are a means of supporting scalability by
partitioning domain knowledge, of providing for distributed development by
partitioning the development process, and of avoiding complex
representation schemes by specifying relations between multiple simpler
schemes. Furthermore we believe that the provision of tool support for a
particular ViewPoint is simplified by its constrained role.

The next section provides a clear characterisation for our notion of a
ViewPoint, using examples to illustrate the concepts. The relationships
between ViewPoints are then discussed, leading to the description of both
software structure and the software process as configurations of ViewPoints.
Finally, the implications of this approach are discussed.

4

2 Characterisation of a ViewPoint

This chapter provides a general characterisation of ViewPoints in isolation.
Earlier research work which lead to the conception of ViewPoints is first
provided, followed by a more refined characterisation. Since a ViewPoint is
also a means to express a certain perspective on a problem or system one
likes to have the possibility, for example, to see different parts of a problem
or system from the same perspective. Thus a kind of 'Viewpoint Type' is
required which can be used to create ViewPoints as instances of such a
type. This concept of ViewPoint type is called ViewPoint template . The
concepts of ViewPoint templates and instances are illustrated in an
example.

2.1 Background Research

The concept of a ViewPoint is a synthesis of the concepts of "view" and
"viewpoint" which were successfully exploited in other research projects.
The TARA (Tool Assisted Requirements Analysis) research project [Kramer
et al 87, 88a, 88b] provided us with considerable experience of and
respect for the method CORE [Mullery 85, Stephens & Whitehead 85].
CORE is based round the notion of viewpoints which are its primary
structuring vehicle. A CORE viewpoint is "something that does things" in
the domain under consideration, akin to an agent or role. It also takes into
account the way in which authority for making decisions about the
specification is distributed. Thus the CORE viewpoint can be seen to be the
source for domain decomposition.

The notion of views as partial specifications and as the principal basis for
incremental construction of specifications has been fully developed in the
PEACOCK [Goedicke et al 89a, Goedicke 89b] and PRISMA [Niskier et al
89a, 89b] projects. These projects have convinced us of the importance of
selecting the representation to suit the particular ViewPoint specification
task, and of subsequently combining representations.

In the FOREST project [Cunningham et al 85, Finkelstein & Potts 87] we
saw the need to find a better way of constructing methods for requirements
formalisation. This lead us to think of the representations tied to each
method step as, in database terms, providing a "view" on the specification
information.

The concept of point of view on which the IC~DC work [Finkelstein & Fuks
89] is based has been carried over from the TARA work. The significant
enhancement to the concept of viewpoint brought out by the IC~DC project
is the idea of a point of view as a "software development participant", that is
as an active, autonomous and loosely coupled agent - in the distributed
artificial intelligence style. This has raised the possibility of interpreting
ViewPoints as active agents. Other influences on the approach we have
adopted are those of "selfish views" [Robinson 1989] and "contexts" in
ERAE [Finkelstein & Hagelstein 1989].

The concept of a separate, explicit structural (configuration) description for
the software architecture of a system has been fully investigated in the
Conic environment for developing distributed systems [Kramer et al 89a,
Magee et al 89, Kramer 90a]. It has been shown to be essential for all
phases in the software development process, from system specification as a
configuration of component specifications to evolution as changes to a

5

system configuration. The notion of forming “configurations” of ViewPoints
is suggested by the need to provide an explicit structure for describing
ViewPoint relations, and the interesting correlation between the
configuration of ViewPoints used in the software process and the resulting
software structure [Kramer et al 90b].

2.2 ViewPoint Definition and Characterisation

This background research lead to the formulation of a ViewPoint as

A ViewPoint is a loosely coupled, locally managed object which
encapsulates partial knowledge about the application domain,
specified in a particular, suitable formal representation, and
partial knowledge of the process of software development.

A ViewPoint is a combination of the following parts to which we refer to as
slots:

a style , the representation scheme in which the ViewPoint expresses
what it can see
(examples of styles are data flow analysis, entity-relationship-attribute
modelling, Petri nets, equational logic, and so on);

a domain defines which part of the "world" delineated in the style
(given that the style defines a structured representation) can be seen
by the ViewPoint
(for example, a lift-control system would include domains such as user,
lift and controller);

a specification , the statements expressed in the ViewPoint's style
describing particular domains;

a work plan , how and in what circumstances the contents of the
specification can be changed;

a work record , an account of the current state of the development.

As can be seen, the ViewPoint encapsulates knowledge in the form of
various slots e.g. a style and a specification . The slots style and work plan
represent general knowledge, in the sense that it can be applied to a wide
range of problems. In contrast to this the knowledge encapsulated in the
slots domain , specification and work record of a ViewPoint represent
specific knowledge related to one particular problem. The specification is
given in a single consistent style and describes an identified domain of the
problem area. The work record describes the current state of the
specification with respect to the development activities and concerns of the
ViewPoint. This would include interaction between viewpoints to transfer
information and perform activities such as consistency checks.

ViewPoints are organised in configurations which are collections of related
ViewPoints. A ViewPoint template consists of a ViewPoint in which only the
style and the work plan have been defined. A method in this setting is a set
of ViewPoint templates and their relationships, together with actions
governing their construction and consistency. In the following we explain
shortly the concept of ViewPoint template followed by related examples.

6

2.3 ViewPoint Templates and Instances

A ViewPoint template elaborates only the style and work plan slots. These
aspects are closely related as the work plan describes the basic actions
which need to be performed in order to provide a specification in the given
style. As such, they are general, and can be used to guide the specification
of any specific, selected portion of the application domain. Such a
specification is termed a ViewPoint instance since it refers to a specific
instantiation of the template, and would include identification of the
selected domain and elaboration of the specification and its state of
development, given as the work record. ViewPoint instances are henceforth
referred to simply as ViewPoints wherever such use is unambiguous.

A system specification is thus a set of (consistent) specifications given in
selected ViewPoint instances describing those parts of the domain which
are of interest. Should the information in one ViewPoint be disjoint from
those in others? In general, ViewPoint styles, and hence specifications, will
overlap. As described above in section 1.3, it is certainly advantageous to
describe the same domain using different styles to specify different aspects
of behaviour. Similarly domains will tend to overlap. Although such
redundancy in the specifications enhances the potential for consistency
checking, it is clear that the identification and selection of interacting
rather than overlapping domains (as is done in CORE viewpoints) simplifies
the relationships between ViewPoints. This simplification facilitates the
practical process of checking system consistency and of reasoning about
system behaviour.

Below we give some examples of possible ViewPoint templates and
ViewPoints for a simple library application. In a later section we will discuss
more fully the relationship between ViewPoints and illustrate this by a
further development of the library example.

2.4 Examples of Possible ViewPoint Templates

We first develop two ViewPoint templates ST and DF which allow us to
conduct state transition analysis and data flow analysis respectively.

In defining a ViewPoint template, the selected style and associated work
plan are described. These descriptions should be formal in order to provide
for concise and precise specifications and to facilitate formal reasoning.
Furthermore, the intention is to enable software tools to be provided to
support the work plan in the development of specifications in the selected
style. The formalism used for describing the work plan should avoid
dictating a specific ordering for the actions. It should rather provide a
partial ordering such as can be specified using action pre- and post-
conditions. In addition to specifying the actions necessary for giving a
specification in the selected style, the work plan should include any
required actions for checking specification consistency (both intra- and
inter-ViewPoint) and criteria for checking completion of the specification.

State Transition Analysis

The ViewPoint template for the representation and development of a
system (or part of a system) using state transition diagrams is given in Table
1. It is simplified by excluding such features as hierarchical decomposition.
The style which gives us the language in which to capture states and

7

transitions is outlined first. This is followed by an outline of the work plan
which is described in terms of actions which may be applied to state
transition diagrams and axioms describing the relations between those
actions. The representation scheme for state transition analysis is
presented in terms of annotated directed graphs. In the specifications
which follow we will, for clarity of exposition, use the graphic
representation.

Note that the notation used in the examples to describe the workplan is not
an integral part of the concept; other notations could be used. The selection
of improved notations for this purpose is the subject of further work. In our
simplified “first stab” at a notation axioms are expressions of the form
P Æ [a]Q. This should be read (roughly) as ‘if condition P holds, then after
action a is performed condition Q holds’.

Data Flow Analysis

In a similar way to that described above, we can describe the ViewPoint
template for data flow analysis DF (Table 2). This is based on a simple
version of data flow diagrams (excluding refinement and data dictionaries).
The properties of a system (or part of a system) are described as a
collection of functions, stores and terminals which are connected by data
flows.

The representation scheme for data flow analysis is presented in terms of
annotated directed graphs. In the specifications which follow, the graphic
representation is again used for clarity of exposition.

8

Style

Work Plan

States

Transitions

State
Set of Nodes State of
symbols (represented
by circles) denoting a
state

Trans
Set Trans of labelled
Edges given by E,L,T

Transition
names T

T is a set of symbols
denoting Transition

names with T «State

= ∆

Edges E with E Ã State ¥
State

Labelling L with L : E Æ T

add_state, remove_state, add_transition,
remove_transition

identify_boundary_states,
identify_internal_states, identify_transitions,
check_consistency

empty_diagram Æ [identify_boundary_states]

boundary_states_identified

boundary_states_identified Æ
[identify_internal_states] all_states_found

true Æ [identify_transitions]
all_transitions_found

all_states_found Ÿ all_transitions_found Æ

[check_consistency] got_nice_ST_diagram ⁄
ST_inconsistencies

basic
actions

heuristics more_than_one_transition_per_state_pair
more_than_max_states

axioms

work plan
actions

Table 1: ViewPoint Template ST for State Transition Analysis

9

Style

Work Plan

basic
actions

heuristics

axioms

work plan
actions

Terminals

Functions

Term

Func
Set of nodes Func of symbols
(represented by circles) denoting
function nodes

Set of nodes Term of symbols
(represented by square)
denoting a terminal node

Stores Store

Set of nodes Stores of symbols
(represented by two parallel
horizontal lines) denoting data
stores

Term,Func,Store pairwise
disjoint and let the set N of graph
nodes
N = Term » Func » Stores

add_node(type), remove_node, add_data_flow,
remove_data_flow

identify_terminal_nodes, identify_function_nodes,
identify_data_store_nodes, identify_data_flows,
check_consistency

more_than_max_functions? ...

empty_diagram Æ [identify_terminal_nodes]
terminal_nodes_identified

empty_diagram Æ [identify_function_nodes]
function_nodes_identified

empty_diagram Æ [identify_data_store_nodes]
data_store_nodes_identified

true Æ [identify_data_flows] all_data_flows_found

terminal_nodes_identified Ÿfunction_nodes_identified

Ÿ data_store_nodes_identified Ÿ all_data_flows_found

Æ [check_consistency] got_nice_DF_diagram ⁄
DF_inconsistencies

Data flows Data flow
Set Data flow of labelled Edges
given by E,L,F

Data flow names FF is a set of
symbols denoting Data flow
names with F « N = ∆ Edges E

with E Ã N ¥ N Labelling Lwith L :

E Æ F

Table 2: ViewPoint Template DF for Data Flow Analysis

10

2.5 Examples of Possible ViewPoints for a Library Application

While ignoring (for the present) the relationship between ViewPoints, we
now give examples of the use of our templates in a small Library application
description.

The Library ViewPoints:

In a library there are many people that play a part: users, librarians,
inventory clerks, purchasers, and so on. In our example we will look at two
parts of the library: the library desk (effectively the librarian's perspective)
and the library user (Figure 1). Users take a book from the shelves, present
it at the desk and, depending on the status of the book, it will be either lent
to the user or sent to the part of the desk where reserved books are kept.
If lent, a user then reads the book and returns it to the desk where it will,
depending on the state of the book, be either given to someone else to
process as a returned book or kept in the special place for reserved books.
Books are released from reservation when claimed by the reserving user.

Etc.Library User Library Desk

Library World

Figure 1: Simple library

We now examine this fragmentary ViewPoint configuration for the library
system. Our configuration will consist of three ViewPoints. Below we discuss
the following ViewPoints in isolation first. LDS (library desk, state
transition analysis), LDDF (library desk, data flow analysis) and US (library
user, state transition analysis). Thus we will develop two ViewPoints which
refer to the same domain but are instances of different ViewPoint templates
and one with a different domain.

Note that the ViewPoint configuration for the library system can itself be
considered as a ViewPoint. It encapsulates a portion of the library world,
described in a configuration of ViewPoints style and involves a workplan
describing the decomposition and ViewPoint identification process.

Library desk, state transition analysis ViewPoint: LDS

The style and work plan of LDS is given by the ViewPoint template ST in
table 1. We are interested in filling in the component slots of the ViewPoint
not already covered by the template description. These are domain,

11

specification and work record.

The domain of LDS is the library desk of the simple library. The ViewPoint
cannot see states such as on_order or finished which are relevant only to
the purchase department and library user respectively. The domain defines
the boundaries of the knowledge encapsulated by the ViewPoint. The
specification of LDS is shown below in Figure 2.

presented
check

checked

loan

reserved

on_loan

reserve
release

go_back removed_from_desk

domain : Library_desk

sees States : presented, on_loan, checked, removed_from_desk,
reserved

Figure 2: State transition analysis specification of library desk domain

The actions which can be performed are given in the ViewPoint template
description (add_state, add_transition were performed a number of times
to arrive at this specification). The various occurrences of these actions are
recorded in the work record. One of the main objectives is to provide a
repository for capturing the design decisions taken during the specification
process.

Library desk, data flow analysis ViewPoint: LDDF

The style and work plan are provided by the ViewPoint template DF in table
2. The specification of LDDF is shown in Figure 3.

book
check

checked_book

reserved

user

lend

release

released_
book

loaned_book

removed_books

claim

domain : Library_desk

sees Functions : release, check, lend

sees Stores : reserved, removed_books

12

Figure 36: Data flow analysis specification of the library desk domain

Library user, state transition analysis ViewPoint: US

The style of US is the state transition analysis scheme given by ST in table
1. The domain of US is the library user (from whom the internal workings
of the library desk are hidden). The specification of US is shown below in
Figure 4. The work plan and work record are similar to that described for
LDS ..

presented on_loan

on_shelf

read

finished

return

take_to_desk

domain : Library User

sees states : presented, on_loan, finished, on_shelf

Figure 4: State transition analysis specification of library user domain.

3. The Relationships Between ViewPoints

We will now discuss the nature of the relationships between different
ViewPoints and between ViewPoint templates. At a first glance the number
of different kinds of relationships might look unbounded. Indeed the
theoretically possible combination between a number of ViewPoints is not
small. Instead of exploring the nature of all mutual relations we would like
to restrict ourselves to a small number of sorts of relationships.

In practice we believe that these relationships can be kept to a manageable
number. ViewPoints are not selected arbitrarily: the domains obviously
interact and are closely related, and the representation styles can and
should be selected so as to express different aspects yet permit reasonable
mappings between them. Our experience in TARA (with CORE), Peacock
and Prisma confirm this point. This is further discussed below when
discussing methods .

For example, at the requirements elicitation stage it is useful to use the
ViewPoints to reflect the perspectives of different participants in the
process of elicitation. Thus a ViewPoint is created for each relevant
participant. This could lead to assigning a separate domain to each
participant. Each ViewPoint is an instance of a ViewPoint template. Thus we

13

have to describe the relations between ViewPoints of the same domain, but
different ViewPoint template, and ViewPoints of the same ViewPoint
template but describing different domains.

Using our library example this could be depicted as shown in figure 5. In
this discussion we limit ourselves to the relations marked with solid lines.

Domain Library_Desk
ViewPoint template ST

Domain User
ViewPoint template ST

Domain Library_Desk
ViewPoint template DF

LDDF

LDS US

S
a
m

e
te

m
p
la

te

Same domain Same domain

S
a
m

e
te

m
p
la

te

Figure 5: Library example, relations between ViewPoints

The relationships between ViewPoints describing the same domains but
using different templates should be specified in the method as mappings
and consistency checks between the representations. For example, a
mapping from the state transition formalism to the data flow could map
states in the former to data flows or data stores in the latter. Mappings of
terms (eg. aliases) need to be specified for the domain by the ViewPoint
instance. Such mappings have been shown to be useful and practical in
Peacock and Prisma.

ViewPoints describing different domains but using the same templates
provide a partitioned view of the domain, with relatively easy mappings
specifiable by the ViewPoint instance. Our experience is that these
mappings are easier if the domains are interacting rather than overlapping
(as in CORE). For example, a check could ensure that a flow produced by
one ViewPoint is consumed by another. However, such domain identification
may not always be practical in a system under distributed development.
More experience is needed.

Further, the descriptions using different styles may not correspond to the
domain boundaries selected for the same style. We believe that it may be
easier to manage ViewPoints if such a restriction is imposed. However, no
such restriction is embedded in the general ViewPoint approach, and we
realise that it may not be practical in many circumstances. For instance,
timing analysis ViewPoints may well cut across different functionally

14

specified ViewPoints.

3.1 Methods as Configurations of Viewpoint Templates

A method is a configuration of a selected set of ViewPoint templates which
together describe the styles and work plans used in the method. The
mappings and checks between templates should also be specified.The
dynamics of the method are described by permitting one ViewPoint to
create (or spawn) another as the method unfolds. Information in a "parent"
ViewPoint which is relevant to "child" ViewPoint can be transferred using
the mappings. A method is thus a dynamically evolving configuration of
viewpoint templates.

The partitioning of the application domain provides another dimension to
the method. For each domain the method may need to create a
configuration of ViewPoints as the method unfolds.

3.2 An example: The Method NYCE

We now develop the NYCE (Not Yet Completed Example) method which
consists of the ViewPoint templates ST and DF described above. To do this
we need to consider the relations between ViewPoints of the same domain
but based on a different template and the relations between ViewPoints
based on the same template but different domain (we need, for example, to
define the relations between two state transition analyses each representing
a different part of the system). Figures 5 illustrates the relations which we
will need to define in our example.

It should be noted that the art of developing a method is not to make all
representations equivalent. We are not in the business of simply expressing
the same properties of a system in another style but rather providing a
combination of ViewPoint templates that give "beneficial" complementarity.

We use a ViewPoint template to describe the overall method. This may at
first seem confusing but it allows us to give a uniform and systematic
presentation.

Tables 3 & 4 show the style and work plan slot respectively for the method
NYCE. We refer to the various components (functions, stores, and so on)
within a ViewPoint template (such as that for data flow analysis) by the
notation <ViewPointTemplateName>.<componentname>. Multiple
ViewPoints based on the same ViewPoint template are distinguished by
primes/dashes(DF', DF"). By writing DF".Data flow we refer to the symbols
that denote data flow names of the ViewPoint DF".

15

Style

Trigger Trigger Õ ST.Trans ¥
DF.Func

A transition in a state
transition analysis may
correspond to a function in a
data flow analysis. In this
case the occurrence of such
a transition is seen as a
trigger for the corresponding
function

Data_
Condition

Data_Condition Õ

ST.State ¥ Store »
DF.Data flow.F

A state in a state transition
analysis may correspond to
a Data flow or a Store in a
Data flow analysis.

Same_State Same_State Õ

ST.State ¥ ST'.State

Two state transition
analyses may correspond to
each other in terms of their
respective state. This
defines the states which are
in common between two
different state transition
analyses

Table 3: Style slot for method NYCE

The first two of these relations are shown in Figures 6 and 7. States are
represented as circles and transitions as arrows while in data flow diagrams
functions are represented as circles and data flows as arrows respectively.

A B
a

a'

Data flow
Analysis

Transition Function

State-Transition
Analysis

Figure 6: A possible relation between transitions and functions

A B
a

State Dataflow

A'

State-Transition
Analysis

Data flow
Analysis

Figure 73: A possible relation between states and data flows

16

As we emphasised before it is not necessarily the case that for every data
flow there is a corresponding state or vice versa. If it were so, the two
representation schemes would degenerate to a common representation.

Work Plan

basic
actions

heuristics

informal

work plan
actions

create_DF_ViewPoint(DOMAIN,NAME),
create_ST_ViewPoint(DOMAIN,NAME),

list_relevant_domains Æ Set of Domain,
check_consistency(NAME),
relate_ViewPoints_same_domain(DOMAIN,Set_of_NAME),
relate_ST_ViewPoints(Set_of_NAME),
relate_DF_ViewPoints(Set_of_NAME),

any_ViewPoint_too_complex,
possible_conflicts_made_explicit, resolve_conflict,...

1. list_all_relevant_domains

2. for all domains perform in parallel
create_ST_ViewPoint and create_DF_ViewPoint

3. check_consistency locally for each ViewPoint
created in step 2

4. relate_ViewPoints pairwise by either
relate_ViewPoints_same_domain,
relate_ST_ViewPoints or relate_DF_ViewPoints
respectively

5. if any conflict found then resolve_conflict and
start with step 3 again

6. if any_ViewPoint_too_complex then try to split
the ViewPoint and start with Step 3 again

Table 4: Work plan for method NYCE

3.3 Configurations of ViewPoints: Completion of the Library Example

After having introduced the various notions included in the ViewPoint
concept we are now in the position to complete our example. The method
NYCE which is based on the two templates ST and DF is used to establish
and relate the three ViewPoints developed in the previous text. We describe
how the ViewPoints LDS, LDDF and US are related to each other by the
means the method NYCE provides.

In Tables 3 & 4 which defines the method NYCE we have set out the rules
governing the relation between state transition analysis and data flow
analysis. Thus Trigger and Data_Condition relate ViewPoints of the same
domain. In the case of ViewPoints of different domains based on the same
ViewPoint template we define the relation called Same_State to express the
overlap of two state transition analyses 1 . To capture the relation between

17

1 This is, of course highly simplified as several states in one state
transition analysis may correspond to one state in another

the actual ViewPoints the relationship between the ViewPoints LDS and
LDDF is defined by giving an instance for the relations of type Trigger and
Data_Condition respectively since these ViewPoints are of the same domain
but different templates as for example Table 5. This states that the
transitions check, loan and release correspond to the functions check, lend
and release of the data flow analysis.

LDS-LDDF.Trigger (Õ LDS.Trans ¥ LDDF.Func)

LDS.Trans LDDF.Func

check check

loan lend

release release

Table 5: Trigger relationship for the ViewPoints LDS & LDDF

The other correspondence relation describes the data in more detail. An
instance of the relation Data_Condition is given below in Table 6.

LDS-LDDF.Data_Condition (Õ LDS.State ¥ Store » LDDF.Data flow)

LDS.State LDDF.Store » LDDF.Data flow

presented book

checked checked_book

reserved reserved

removed_from_desk released_book

on_loan loaned_book

Table 6: Data_Condition relationship for the ViewPoints LDS & LDDF

These relations (Table 5 & 6) define the close relationship of the two
library desk ViewPoints and link the state transition perspective with a
functional perspective on this domain.

Clearly we must also describe the relationship between the ViewPoints LDS
and US . That is we need to say how different parts of the system -the library
desk and the library user - overlap. We must define their respective roles
within the library world. We can do this by giving an instance of the relation
Same_State as in Table 7. This relation establishes that the overlapping

18

states are presented and on_loan (the user does not see the internal
workings of the library and vice-versa).

LDS-US.Same_State (Õ LDS.State ¥ US.State)

LDS.State US.State

presented presented

on_loan on_loan

Table 7: Same_State relationship for ViewPoints LDS & US

4 Conclusions

In this paper we have proposed a new approach to software development in
which multiple ViewPoints are utilised to partition the domain information,
the development method and the formal representations used to express
software specifications. System specifications and methods are described
as configurations of related ViewPoints.

We believe that ViewPoints provide a basis for unifying models of the
software process and models of software structure, as exemplified in the
“configuration programming” [Kramer 90a]. The partitioning of knowledge
exemplified in the ViewPoints approach facilitates distributed development,
the use of multiple representation schemes and scalability. Furthermore,
the approach is general, covering all phases of the software process from
requirements to evolution.

An additional benefit which seems to follow from the identification and
encapsulation of style (representation) and workplan (specification method)
in a single ViewPoint Template is the opportunity for tool support.
Individual support could be designed for each template in a particular
method, thereby simplifying the complexity of the tool in much the same
way as one expects to simplify the steps and expression of that particular
ViewPoint specification. We can then envisage method tool support as
comprising a configuration of template support tools, configured to suit the
particular method adopted.

The work on ViewPoints which this paper reports is in its early stages and
requires considerable further work. A major objective is to complement our
intuitive use of ViewPoints with a comprehensive formal description. We are
investigating the use of M[A]L [Khosla & Maibaum 89] as a suitable base for
such a description.

We believe that ViewPoints provide a systematic basis for constructing and
presenting methods. ViewPoints would be particularly useful in the
description of mixed approaches such as those described as
“multiparadigm programming” [Zave 89]. The ViewPoint approach is also

19

strongly related to Jackson’s recent work on views and implementations
[Jackson 90] in which he describes “complexity in terms of separation and
composition of concerns”, and focuses on the problems of coping with the
relationships between concerns (cf. ViewPoint relationships).

Our short term goal includes developing descriptions, in the ViewPoint
style, of a repertoire of standard software development methods such as
SSADM and JSD. This would act as a means of refining the ViewPoint
concept and of illustrating the utility of the approach. In the longer term we
intend to develop a ViewPoint based method for developing reconfigurable
and extensible distributed systems [Kramer et al 90b].

Acknowledgements

The authors would like to thank their colleagues and students; in particular
Celso Niskier, Tom Maibaum, Jeff Magee and Hugo Fuks, for the lively
critical discussion which has contributed significantly to the work this
paper reports. We also thank Michael Jackson for his comments and
suggestions which have helped to clarify the paper. Michael Goedicke was a
Visiting Research Fellow on leave from the University of Dortmund, FRG.

References

Cunningham J., Finkelstein A., Goldsack S., Maibaum T. & Potts C. (1985);
“Formal Requirements Specification - The Forest Project”; Proc. 3rd
International Workshop on Software Specification & Design; pp 186-191,
IEEE CS Press.

Finkelstein A. & Fuks H. (1989); “Multi-Party Specification”; Proc 5th
International Workshop on Software Specification & Design; pp 185-196,
IEEE CS Press [Also ACM Software Engineering Notes May 1989].

Finkelstein, A. & Hagelstein, J. (1989); “Formal Frameworks for
Understanding Information System Requirements Engineering: a research
agenda”; Nijssen, S. & Twine, S.(Eds) IFIP CRIS Review Workshop; North-
Holland.

Finkelstein, A. & Potts, C. (1987); Building Formal Specifications Using
“Structured Common Sense”; Proc. 4th International Workshop on
Software Specification & Design; IEEE CS Press.

Goedicke M., Ditt W., Schippers H. (1989a); “The ’-Language Reference
Manual”, Research Report No 295 1989, Department of Computer Science,
University of Dortmund.

Goedicke,M.(1989b); “Paradigms of Modular Software Development” (to
appear) Mitchell R.J. (Ed); Managing Complexity in Software Engineering;
Peter Peregrinus, Stevenage, England

Jackson M.A., “Some Complexities in Computer-Based Systems and their
implications for System Development”, Proc. of IEEE Int. Conf. on
Computer Systems and Software Engineering (CompEuro 90), Tel-Aviv,
Israel, May 1990, 344-351.

20

Khosla S., Maibaum T. (1989); “Time, Behaviour and Function”; (In)
Barringer H., Proc. Colloquium on Temporal Logic & Specifications
(Handbook of Temporal Logic); LNCS Springer Verlag.

Kramer J., Finkelstein A., Ng K., Potts C. & Whitehead K. (1987);"Tool
Assisted Requirements Analysis: TARA final report”; Imperial College, Dept.
of Computing, Technical Report 87/18.

Kramer, J., Ng, K., Potts, C., and Whitehead, K. (1988a), “Tool support for
Requirements Analysis”, IEE Software Engineering Journal 3(3), (1988),
86-96.

Kramer, J., and Ng, K. (1988b), "Animation of Requirements
Specifications", Software - Practice and Experience, 18(8), (1988), 749-
774.

Kramer, J., Magee J., and Sloman M. (1989a), "Configuration Support for
System Description, Construction and Evolution", Proc. of IEEE 5th Int.
Workshop on Software Specification and Design, Pittsburgh, May 1989.

Kramer, J., Magee, J., and Ng, K. (1989b),"Graphical Configuration
Programming", IEEE Computer, 22(10), (1989), 53-65.

Kramer, J. (1990a), “Configuration Programming - A Framework for the
Development of Distributable Systems”, Proc. of IEEE Int. Conf. on
Computer Systems and Software Engineering (CompEuro 90), Tel-Aviv,
Israel, May 1990, 374-384.

Kramer,J., Magee, J., and Finkelstein, A. (1990b), "A Constructive
Approach to the Design of Distributed Systems", Proc. 10th IEEE Int. Conf
on Distributed Computing Systems, Paris, June 1990.

Magee J., Kramer J. and Sloman M. (89), "Constructing Distributed
Systems in Conic" IEEE Transactions on Software Engineering, SE-15 (6),
June 1989.

Mullery, G. (1985); “Acquisition - Environment”; (In) Paul, M. & Siegert, H.
"Distributed Systems: Methods and Tools for Specification"; Springer Verlag
LNCS 190.

Niskier C. & Maibaum T. (1989a); “Acquisition, Classification and
Formalisation of Software Specification Heuristics”; Proc. 3rd European
Knowledge Acquisition Workshop.

Niskier C., Maibaum T. & Schwabe D. (1989b); “A Look Through PRISMA:
towards knowledge-based environments for software specification”; Proc
5th International Workshop on Software Specification & Design; pp 128-
136, IEEE CS Press [Also ACM Software Engineering Notes May 1989].

Robinson W. (1989); “Integrating Multiple Specifications Using Domain
Goals”; Proc 5th International Workshop on Software Specification &
Design; pp 219-226, IEEE CS Press.

Stephens, M. & Whitehead, K. (1985); "The Analyst — A Workstation for
Analysis and Design"; Proc 8th ICSE; IEEE CS Press.

Zave P. (1989), "A Compositional Approach to Multi-Paradigm
Programming", IEEE Software, September 1989.

21

