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Abstract. We propose a generalized framework for the study of voter models in complex networks at the
heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes
and (ii) allows for the introduction of further heterogeneity through degree-selectivity rules. In the con-
text of the HMF approximation, our model is capable of providing straightforward estimates for central
quantities such as the exit probability and the consensus/fixation time, based on the statistical properties
of the complex network alone. The HMF approach has the advantage of being readily applicable also in
those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to
understand previously proposed voter-like processes as simple limits of the generalized model.

Key words. Complex networks – Ordering dynamics – Voter models – Mean-field theory
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1 Introduction

A topical problem in the statistical physics approach to
social and evolutionary dynamics [1,2] is the study of the
mechanisms ruling the formation of consensus in an ini-
tially disordered population, in situations implying the
opinion about a certain issue, the intention of voting in
an election, or the evolutionary competition of different
species striving for the same ecological resources. Several
stochastic copying/invasion processes have been proposed
to represent this kind of problems, the simplest being the
voter model [3] and the Moran process [4]. In these models,
each individual in a population (agent) is endowed with
a binary variable (opinion or state) with value σ = ±1.
At each time step, an agent i, together with one nearest
neighbor j, are selected at random. In the voter model
the system is updated as σi := σj , the first agent copying
the opinion of its neighbor. The Moran process, on the
other hand, can be considered as a reversed voter model,
in which it is the neighboring agent the one who copies
the opinion of the first agent, σj := σi. Starting from
a disordered initial state, this kind of dynamics leads in
finite systems to a uniform state with all individuals shar-
ing the same state (the so-called consensus). The way in
which this final state is reached is usually characterized

in terms of the exit probability E(x) and the consensus
time TN(x), defined as the probability that the final state
corresponds to all agents in the state +1 and the aver-
age time needed to reach consensus in a system of size
N , respectively, when starting from a homogeneous initial
condition with a fraction x of agents in state +1 [1].

While simple voter-like models are well understood
on regular lattices, even in terms of theorems and exact
solutions [5,6], they become more relevant in social and
evolutionary contexts when considered on top of complex
networks, which act as more realistic representations of
social or ecological contact patterns [7,8,9]. The analy-
sis of the voter model in these substrates reveals nontriv-
ial differences with respect to ordered lattices. For exam-
ple, now the order in which interacting individuals are
selected becomes relevant [10], in such a way that voter
model and Moran process behave in different ways. More-
over, relevant quantities such as the consensus time turn
out to depend on the heterogeneity of the contact pat-
tern, as measured by the degree distribution [11,12,13].
Not only the properties of the interaction substrate are
relevant in this case, but also the intrinsic heterogene-
ity of the actors. Their individual propensity to interact
with peers, and change state accordingly, plays a signifi-
cant role [14,15,16,17]. Other sources of heterogeneity that

http://arxiv.org/abs/1106.4215v2


2 Paolo Moretti et al.: Heterogenous mean-field analysis of a generalized voter-like model on networks

have been considered include explicitly the directed nature
of the connections [18].

The theoretical understanding of voter-like models (and
dynamical processes in general) on complex networks has
been traditionally accomplished by application of hetero-
geneous mean-field (HMF) approaches [19,20], which are
based on a twofold assumption: (i) The network descrip-
tion is coarse-grained into degree classes, all vertices in the
same class having the same degree and sharing the same
dynamical properties; (ii) The real (quenched) network
structure is replaced by an annealed one [20], which disre-
gards the actual connection pattern and simply assumes
that the degree class k is connected to the degree class
k′ with conditional probability P (k′|k) [21]. Very signifi-
cant progress has been achieved in the analysis of voter-
like models within the HMF approach, which allows one
to work out simple analytic expressions for the quantities
of interest, showing reasonable agreement with numerical
simulations in real quenched networks [11,12,13,14,17,22].

Recently, a generalized formalism for the class of het-
erogeneous stochastic-copying voter-like models on net-
works has been proposed [23], in which the process is
identified by the copying rate Cij , encoding the full struc-
ture of the contact network and the stochastic update
rules, and defined as the rate at which vertex i in the
network copies the state of vertex j. Thus, for exam-
ple, the standard voter model corresponds to the choice
Cij = aij/[Nki] with ki =

∑

r air, where aij is the adja-
cency matrix of the network and N the network size. The
Moran process, analogously, is given by Cij = aij/[Nkj ].
Within this formalism, it has been shown that both the
exit probability and the consensus time can be calcu-
lated exactly from the knowledge of the spectral prop-
erties of the matrix Cij , provided that certain general
conditions are met [23,24], a result that lays the foun-
dation for a mathematical understanding of general copy-
ing processes and their mapping to particle-reaction sys-
tems. Despite the fact that the formalism in Refs. [23,25]
is exact, and provides in some cases more accurate re-
sults than HMF theory, it is still useful to consider general
stochastic-copying models from the perspective of HMF
theory. In this framework, indeed, approximate analyti-
cal results can be obtained when the exact solution would
be hard to work out in practice. For example, in realis-
tic heterogeneous environments involving large numbers
of agents, explicit expressions for Cij might not be readily
accessible. Moreover, the spectral properties of the copy-
ing rates are in general non-trivial to obtain, unless the
matrix Cij has a relatively simple form.

In this paper we pursue this path, proposing a gen-
eralized coarse-grained voter-like model on networks and
showing how the HMF approach allows us to obtain very
simple estimates for central properties such as the exit
probability and the consensus time. We check the valid-
ity of our approach by considering a simple example of
opinion dynamics in a homophilic society, in which ver-
tices with similar degree are more prone to interact than
vertices with differing degree.

2 Generalized voter model on networks

Inspired by Ref. [23], we consider a stochastic model on
networks defined in terms of a heterogeneous voter model
as follows:

– Each vertex i is endowed with a given fitness fi [12].
– A source vertex i is selected at random, with a proba-

bility fi/
∑

j fj , i.e., proportional to its fitness fi.
– A nearest neighbor j of i is then selected at random.
– With probability Qij , i copies the state of vertex j.

Otherwise, nothing happens.

With these settings, the microscopic copying rate Cij , as
considered in Ref. [23] will be given by

Cij =
fi

∑

j fj

aij
ki

Qij . (1)

In the spirit of the HMF approximation, we can replace
the microscopic copying rate by its degree class average.
The quantities fi and Qij are simply coarse-grained by
averaging them over the set of vertices with a given fixed
degree, i.e.

fi →
1

NP (k)

∑

i∈k

fi ≡ fk, (2)

Qij →
1

NP (k)

1

NP (k′)

∑

i∈k

∑

i∈k′

Qij ≡ Q(k, k′), (3)

where i ∈ k denotes a sum over the degree class k and
P (k) is the network’s degree distribution. For the term
concerning the random choice of a nearest neighbor, we
follow Ref. [26] to substitute

aij
ki

→
[NP (k)]−1

∑

i∈k

∑

j∈k′ aij

[NP (k)]−1
∑

i∈k

∑

r air
≡ P (k′|k). (4)

At the coarse-grained degree level, our generalized voter
model is thus defined in terms of the mesoscopic copying
rate

C(k, k′) ≡
f(k)

〈f(k)〉
P (k′|k)Q(k, k′), (5)

where the function f(k) comes with its proper normaliza-
tion factor.

3 Heterogeneous mean-field solution

In the HMF approach, ordering processes are quantified by
studying the evolution of the density of vertices of degree k
in the state +1, xk. In order to determine the rate equation
satisfied by these quantities [11,13,17], we consider the
probability Π(k;σ) that a spin in state σ at a vertex of
degree k flips its value to −σ in a microscopic time step.
From the definition of the generalized voter model, this
probabilities can be simply written as

Π(k;σ) =

[

1− σ

2
+ σxk

]

∑

k′

[

1 + σ

2
− σxk′

]

P (k)C(k, k′).
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From the previous expression, the rate equation for xk can
be written as [17]

ẋk =
Π(k;−1)−Π(k; +1)

P (k)
≡

∑

k′

C(k, k′)(xk′ − xk).(6)

The model just posed is still too hard to solve even in
the HMF approximation. In the following, we will there-
fore make two major simplifying assumptions leading to
analytically solvable HMF equations: (i) Dynamics pro-
ceed on uncorrelated networks, i.e. [8]

P (k′|k) =
k′P (k′)

〈k〉
; (7)

and (ii) the interaction probability can be factorized as

Q(k, k′) = a(k)b(k′)s(k, k′), (8)

where s(k, k′) is any symmetric function of k and k′. As
we will see, this simplified form, which permits an analytic
HMF solution, still allows for a vastly rich phenomenology,
encompassing all voter-like models on complex networks
previously proposed. Under this conditions, defining

u(k) =
a(k)f(k)

〈f(k)〉
, v(k′) =

b(k′)k′

〈k〉
, (9)

the HMF rate equation can be written as

ẋk =
∑

k′

P (k′)Γ (k, k′)(xk′ − xk) (10)

where Γ (k, k′) = u(k)v(k′)s(k, k′),
The HMF analysis proceeds by first determining the

corresponding conservation laws [11,12,13]. Conserved quan-
tities for the generalized process in Eq. (10) can be cal-
culated as follows: We define a generic integral of motion
ω[xk(t)] such that dω/dt = 0. By definition of time deriva-
tive, we have

dω

dt
= ∇xω · ẋ =

∑

k

∂ω

∂xk

ẋk = 0. (11)

In analogy with previous results [11,12,13], we look for
conserved quantities that are linear in xk imposing ∂ω/∂xk =
zk independent of xk, so that conserved quantities will be
given by

ω = z · x =
∑

k

zkxk, (12)

where zk is any solution of
∑

k zkẋk = 0 and ẋk is given
by Eq. (10). Considering the explicit form of Eq. (10),
the choice zk ∝ P (k)v(k)/u(k) always satisfies the above
condition, so that a conserved quantity is found up to
multiplicative factors and additive constants. We choose
the normalization

∑

k zk = 1, such that the conserved
quantity is defined as

ω = z · x =
〈v(k)/u(k)xk〉

〈v(k)/u(k)〉
. (13)

As for the usual voter model [11] the conservation law
allows the immediate determination of the exit probability
E, i.e. the probability that the final state corresponds to
all spins in the state +1. In the final state with all +1
spins we have ω = 1, while ω = 0 is the other possible
final state (all −1 spins). Conservation of ω implies then
ω = E · 1 + [1− E] · 0, hence

E = ω =
〈v(k)/u(k)xk〉

〈v(k)/u(k)〉
. (14)

Starting from a homogeneous initial condition, with a given
density x of randomly chosen vertices in the state +1, we
obtain, since ω = x,

Eh(x) = x, (15)

completely independent of the defining functions a, b, and
s, and taking the same form as the standard voter model
[1]. On the other hand, with initial conditions consisting
of a single +1 spin in a vertex of degree k, we have

E1(k) =
v(k)/u(k)

N〈v(k)/u(k)〉
, (16)

which does not depend on the functional form of the sym-
metric interaction term s(k, k′).

By looking at Eq. (10), every choice of xk constant in k
is a solution to the steady state condition ẋk = 0. We can
prove that this solution is unique and does not depend
on initial conditions if the square matrix P (k′)Γ (k, k′)
is irreducible and primitive (it certainly is when work-
ing with positive rates, which we will do in the follow-
ing) [27]. We shall call the solution for the steady state
xk(t → ∞) = x∞. Then it is easy to prove that

ω =
∑

k′

zk′xk′ = x∞. (17)

that is, even in this general case, the steady state value
for xk equals the conserved quantity.

After a rapid exponential convergence to the steady
state distribution, the systems starts fluctuating diffusively
around this value, until consensus is reached. Such fluctu-
ations characterize finite systems and occur at long time
scales, making such two-step relaxation process possible
in most cases. The average consensus time TN(x) for a
system in a generic state x can be derived extending the
well known recursive method to our general case [13]. At
a given time t, TN(x) must equal the average consensus
time at time t+∆t plus the elapsed time ∆t = 1/N that
is, in our notation,

TN (x) = Π̄ TN(x)+
∑

k,s

Π(k; s)TN (x+∆x(k))+∆t, (18)

where Π̄ = 1 −
∑

k,s Π(k; s) is the probability that no
state change occurs, while the sum is the weighted average

over possible state-updates x → x+∆x(k). The variation

∆x(k) is a vector whose all components are zero except for
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Model f(k) a(k) b(k) s(k, k′)
Voter model [3] 1 1 1 1

Moran process [4] 1 k k−1 1
Link update [10] k 1 1 1

Voter weighted [17] 1 1 gs(k)〈k〉
〈kgs(k)〉

1

Moran weighted [17] 1 kgs(k)
〈kgs(k)〉

〈k〉
k

1

Generalized Voter [14] 1 1 kα−1 k+k′

kα+k′α

Table 1. Summary of the mapping of voter-like models to the
present formalism.

the k-th, which equals the update-unit ∆k = [NP (k)]−1.
Expanding to second order in ∆k, taking xk = ω as the
initial state and changing variables such that ∂/∂xk =
zk∂/∂ω we obtain the backward Kolmogorov equation

− 1 =
zTΓz

N
ω(1− ω)

∂2TN

∂ω2
(19)

leading to

TN (ω) = −Neff [ω lnω + (1 − ω) ln(1− ω)] (20)

where we have defined the effective system size Neff =
N/

∑

k,k′ zkΓ (k, k′)zk′ , which, in the case of generalized

voter dynamics, Eq. (9), becomes

Neff = N
〈f(k)〉〈k〉

〈

kb(k)
f(k)a(k)

〉2

〈〈

s(k, k′)kb(k) [k′b(k′)]2

f(k′)a(k′)

〉〉 , (21)

with 〈〈·〉〉 =
∑

kk′ P (k)P (k′)(·).
Equations (20) and (21), together with the expres-

sion for the exit probability, Eq. (14), represent the fi-
nal HMF solution of the generalized voter model. From
these formulas it is easy to recover most of the varia-
tions of the voter model considered in the past. For exam-
ple, the standard voter model is obviously recovered for
a(k) = b(k) = f(k) = s(k, k′) = 1. The invasion process
[28,12], also known as the Moran process in the evolution-
ary literature [4,29], corresponds to a(k) = k, b(k) = k−1

and f(k) = s(k, k′) = 1. Link update dynamics [10] is re-
covered for a(k) = b(k) = s(k, k′) = 1 and f(k) = k. The
voter and Moran processes on weighted networks charac-
terized by a symmetric weight between vertices of degree k
and k′ proportional to gs(k)gs(k

′) [17] are reproduced by
imposing s(k, k′) = 1 and setting a(k) = f(k) = 1, b(k) =
gs(k)〈k〉/〈kgs(k)〉 and f(k) = 1, a(k) = kgs(k)/〈kgs(k)〉,
b(k) = 〈k〉/k, respectively. Finally, an HMF implementa-
tion of the generalized voter dynamics proposed in [14] is
recovered imposing f(k) = a(k) = 1, b(k) = kα−1 and
s(k, k′) = (k + k′)/(kα + k′α). A summary of the above
mappings is presented in Table 1.

4 Numerical analysis

In order to show an application of our formalism, we ex-
amine a toy model to study the effects that homophily

in social networks might have in opinion formation dy-
namics. Homophily is broadly defined by the tendency of
people to interact with similar people [30]. In the absence
of information beyond the topological structure of the con-
tact network, the simplest assumption we can make is that
homophily is driven by an increased tendency of individ-
uals to copy other individuals with a degree that is not
too different from their own. As a simple representation
of homophilic behavior we consider the case s(k, k′) =
exp[−R(k − k′)/ξ2] and f(k) = a(k) = b(k) = 1. Here
R(x) is any continuous even function with R(0) = 0 and
a minimum in x = 0, i.e. R′(0) = 0 and R′′(0) > 0. The
parameter ξ measures the amplitude of stochastic fluctua-
tions around ideal homophily: For ξ ≈ 1 the probability of
copying neighbors with different degrees is strongly sup-
pressed; for ξ ≫ 1 fluctuations take over and simple voter
behavior is rapidly recovered.

In spite of its apparent simplicity, this problem would
be impossible to solve in a realistic network by standard
techniques [23]. By applying the HMF result in Eq. (21)
instead, we readily find

N ξ
eff = N

[
∑

k kP (k)]3

∑

k

∑

k′ kP (k)k′2P (k′) exp
[

−R(k−k′)
ξ2

] , (22)

where we consider complex networks with a scale-free de-
gree distribution P (k) ∼ k−γ , with γ ∈]2, 3], minimum
degree m and maximum degree kc. In the limit of small
ξ the denominator of Eq. (22) can be evaluated in the
continuous-degree approximation. By applying the Laplace
method for the first term in the asymptotic expansion, af-
ter an adequate change of variables, it is thus straightfor-
ward to find that for small ξ

N ξ
eff ≃

N

ξ

[

R′′(0)

2π

]
1

2

×

×
2(1− γ)

(2 − γ)2
(k2−γ

c −m2−γ)2

(k1−γ
c −m1−γ)(k2−γ

c +m2−γ)
, (23)

whereas in the opposite limit ξ → ∞ one recovers the
simple voter model result, which in our notations reads
N∞

eff ∼ Nkγ−3
c . As a consequence, the consensus time

TN ∝ N ξ
eff diverges for small ξ as ξ−1 as the selectivity

amplitude ξ approaches zero. For increasing ξ, instead,
TN decreases and asymptotically crosses over to a plateau,
where simple voter behavior is recovered.

In order to check explicitly the predictions of our for-
malism, we consider a Gaussian homophily model, given
by the simplest choice R(x) = x2. In Fig. 2 we plot the
consensus times for homogeneous initial conditions as a
function of ξ, computed from the numerical evaluation of
Eq. (22). We observe that, starting from large values of
ξ, TN is constant, as expected for simple voter behavior.
Upon decreasing the selectivity amplitude ξ, the consensus
time starts increasing, asymptotically behaving as ξ−1. As
soon as ξ decreases below one, the discrete nature of the
degree distribution takes over and TN reaches a plateau.
Interestingly, we find that TN is an increasing function of
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Fig. 2. Consensus time with a Gaussian homophily factor in
scale-free networks with γ = 2.5, m = 4 and kc ∼ N1/2. Main
plot: Consensus time as a function of N , for different values of
ξ. Inset: Consensus time at constant N = 5000 as a function
of ξ. The full line is a guide to the eye with slope −1.

γ for large ξ, while it decreases with γ in the small ξ limit
(Fig. 1, inset).

These observations have also been checked against di-
rect numerical simulations of the Gaussian homophily mo-
del on uncorrelated scale-free networks, generated with the
uncorrelated configuration model [31]. In Fig. 2 we show
(main plot) the consensus time as a function of the net-
work size N for different values of ξ. We can see that the
overall plot increases at fixed N for decreasing values of ξ,
while for large ξ it tends to the limit given by the simple
voter model. When considering TN as a function of ξ in
a network of fixed size, inset of Fig. 2, we observe, as ex-
pected, an increase for decreasing ξ, followed by a plateau

for large ξ. At intermediate values of ξ, a reasonable fit
to the form ξ−1 can be obtained. For smaller values of
ξ, the selectivity range is so narrow that quenched effects
of the network topology take over, tending to slow down
the dynamics beyond the HMF prediction [17]. Values of
TN fluctuate wildly and deviate from the predictions for
annealed-network topologies.

5 Conclusion

In this paper we have studied a generalized voter-like
model in the framework of the HMF theory. Remarkably,
the HMF formalism we have adopted allows for a straight-
forwardmapping of most of the voter-like models proposed
in the past. Not only the the properly said voter model,
the Moran process, and their weighted generalization can
be reproduced in our formalism, but also the link-update
dynamics and recently introduced generalizations of the
voter model can be straightforwardly recovered. The HMF
approach allows for predictions that are in fair agreement
with the exact results whenever they are available, and
most importantly provides approximate solutions in the
event that exact methods are not viable.

As an instance of the versatility of the HMF approach,
we have considered a simple example of a heterogeneous
voter model in which vertices with similar degree tend to
interact more often among themselves rather than with
the rest of the network. This degree selectivity is a natu-
ral HMF implementation of the concept of homophily, i.e.
the tendency of individuals to associate and bond with
similar others. While an exact solution to such problem
would be unworkable, we have shown that in this frame-
work homophily ends to slow down consensus dynamics,
in reasonable agreement with the predictions of HMF the-
ory.

In the future, it would be interesting to extend the
approach to voter-like methods that exhibit a surface ten-
sion, as for example the Naming Game [32], or the noise-
reduced voter model [33], as well as to improve the qual-
ity of our present results by applying more sophisticated
HMF approaches, such as the dynamical pair approxima-
tion [34], or the master equation approach [35].
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19. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Pro-

cesses on Complex Networks (Cambridge University Press,
Cambridge, 2008)

20. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev.
Mod. Phys. 80, 1275 (2008)
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