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Abstract

Exact solutions for free vibration of thick rectangular orthotropic plates when their all edges are
clamped are sought through asymptotic analysis of infinite systems without resorting to the usual
truncation of series solution. The use of modified trigonometric functions made it possible to obtain a
general solution for the problem which has the same form for all four cases of symmetry of the quarter
plate. Thus, an infinite system of linear algebraic equations is derived for the unknown coefficients of the
series representing the solution for each case. This is in sharp contrast to previous publications based on
series-solution which does not allow the satisfaction of the quasi-regularity condition of the
corresponding infinite system, and therefore, the method used earlier, was not amenable to asymptotic
solution of the infinite system. In this investigation, the quasi-regularity of the infinite system is proved,
but importantly, an algorithm for determining the natural frequencies of the plate based on the theorem of
the existence of the solution for the quasi-regular system is presented. The asymptotic behaviour of the
non-trivial solution of the homogeneous quasi-regular infinite system is ascertained by generalising the
asymptotic law of Koialovich which essentially led to the development of the algorithm. Numerical

examples are given with significant conclusions drawn.
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1. Introduction

A large volume of publications on vibration of thick plates can be found in the literature because of
their importance as building blocks in modelling engineering structures. However, it should be recognized
that for a substantial majority of cases for rectangular plates, explicit analytical solutions in the form of
trigonometric series have been presented in the literature only when the two opposite edges of the plates
are simply supported. For other boundary conditions, variational and/or numerical methods have
generally been used. In particular, the free vibration of thick isotropic plates with clamped edges within
the framework of the seventy years old Mindlin plate theory [1] was analysed around four decades ago by
Dawe and Roufaeil [2] who used the Rayleigh-Ritz method. Some years later, Liew et al. [3] developed
the pb-2 Rayleigh-Ritz method to analyse the free vibration behaviour of thick plates with different
boundary conditions. By contrast, Cheung and Zhou [4] used static beam functions as the basis functions
when applying the Rayleigh-Ritz method for free vibration analysis of thick plates. Another related, but
different variational approach, namely, the DSC Element Method, was proposed by Xiang et al. [5] to
investigate such problems. With the growing interest in the dynamic stiffness method (DSM) for free
vibration analysis of structures, in which the Wittrick-Williams algorithm is generally used as solution
technique, the investigation of clamped ended natural frequencies of structural elements which is an
essential part of the algorithm has become very important to ensure that no natural frequency of the
structure is missed. Exact free vibration analysis using DSM allows an infinite number of natural
frequencies to be accounted for when all the nodes of the structure or structural elements are fully
clamped. This has provided the main motivation for the current research which focuses on the free
vibration analysis of thick orthotropic plates with clamped edges. In the context of a bending-torsional
coupled beam, a similar attempt was made by Banerjee and Williams [6] who published the theory and
the computational procedure for the computation of clamped-clamped natural frequencies of such beams.
They emphasised the need for the computation of clamped ended natural frequencies of structural
elements when the DSM in conjunction with the Wittrick-Williams algorithm [7-13] is used in free

vibration analysis of structures.

The vibration of a rectangular plate is often related to parametric optimization problems when
analysing vibration resistant technical systems, and also when solving frequency attenuation problems for
which the finite element method (FEM) is generally used. The FEM with sufficiently fine mesh allows us
to express the dynamic characteristics of structure through the application of the approximating functions
which are essentially shape functions or interpolating functions. With the increasing order of the natural
frequency of vibrations, the number of elements needed as building blocks when representing and
analysing the structure may become excessive. Because of this reason, in some industries, such as
mechanical engineering and aerospace, the application of the FEM is sometimes limited to the low

frequency range. Additionally, the classical FEM gives rather an obscure error in the case when the plate
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is significantly thick (the so-called shear-locking phenomenon [14]). In this respect, considerable efforts
have been expended by many investigators to develop methods for thick rectangular plates within the
framework of FEM to simulate the mechanical properties of the plate more accurately. Bathe and Dvorkin
[15] developed a refined plate element (the so-called MITC element) based on the Ritz method which
significantly enhanced the solution of the problem. Duran et al. [16] presented a detailed mathematical
justification for the convergence of his method in solving the free vibration of thick plates including the
case when all plate edges were clamped. On the other hand, Kolarevic et al [17] developed the dynamic
stiffness method (DSM) to analyse the free vibration behaviour of an assembly of thick isotropic plates.
Gorman’s superposition method [18] to solve such problems is notably a significant contribution to the
literature. Following the work of Kolarevic et al [17], the DSM has recently been proposed by Papkov
and Banerjee [19] to deal with the free vibration behaviour of an assembly of thick orthotropic plates. In
most of these approaches, approximations of some kind or other are evident, despite the analytical forms
of the solution given by the investigators. It should be noted that the DSM solution, in contrast with the
solution from variational approaches, is generally constructed from an infinite series of the solution of the
governing differential equations. Of course, for practical purposes, only a finite number of terms are used
for numerical implementation. Thus, the approximation in DSM solution arises from neglecting the

remainders of the terms in the infinite series which represents solution.

In this current study, an exact solution for the problem of natural vibration of thick orthotropic plates
with clamped edges is presented for the first time, using a novel approach. The boundary value problem is
essentially reduced to an infinite system of linear algebraic equations. This is achieved by taking
advantage of some aspects of the superposition method. A detailed investigation of the infinite system
rooted in the solution is carried out which enabled the determination of the asymptotic behaviour of the
unknown coefficients of the general solution which has not been attempted before. This novel procedure
allowed the use of the untruncated infinite series solution of the problem and subsequent development of
an algorithm to compute the natural frequencies of thick orthotropic plates with clamped edges and
recover the corresponding mode shapes. The investigation carried out is particularly relevant when the
dynamic stiffness method is used in free vibration analysis of structures by applying the Wittrick-
Williams algorithm [7] as solution technique for which the number of clamped ended natural frequencies
of structural elements that exists below an arbitrarily chosen trial frequency is an essential prerequisite.

The algorithm has featured in literally hundreds of papers, see for example [7-13].

2. General solution of the governing differential equations and generation of the infinite
systems

Let us consider a rectangular orthotropic plate {(x,y) € [—a;a]x[-b;b]} with thickness /4 in a right-

handed rectangular Cartesian coordinate system. The theory for free vibration analysis of thick plates was
originally given by Mindlin [1] and subsequently the term Mindlin-plate was coined as it is well-known.
The displacement field for a Mindlin-plate relative to its mid-surface in the usual notation is given by
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u’ (x,3,0) + 24 (x, 9,1)
u= vo(x,y,t)+z¢f(x,y,t) (1)
w’(x, ,1)

Equation (1) leads to the derivation of the governing differential equations of motion for thick plates in
free vibration which can be found in numerous papers and in some specialised texts. Essentially the

derivation constitutes a system of three partial differential equations with respect to three functional
variables, namely, the mid-plane plate deflection #° and the angles of rotation of the mid-plane (I)?C , (I)()),

about the X and Y axes, respectively. For harmonic oscillation, one can assume ¢?C (3,0 =0, (x, y)eimt ,

(I)(; (X, 3,) =, (x, y)e’m and w° (x,y,6) =W(x, y)ei“” in which case the time dependent terms can be

eliminated and the equations of motion in free vibration become

2 2 ~82
00, 4 p 00 7 o, —k{aW

+o. [+Qld. =0
ox? 6 oy’ OxOy ox ¢xj i

2
¢, 0%, ~o ow
ky - 2+ kg axzy +k Gxg; —k{ o +¢yJ+Qg¢y =0
4 3)
2 2 5
k4(%+%J+k5(;—T+%J+Q4W=O
“4)
ho® 2 D Y
where Q* :&a“, Q) = L Q* are the frequency parameters and k, =—=, k, = —*a*,
D, 12a* Dy D,
A Des ~ Dgg+D
ks zﬁa“, ke =ﬁ, k Z%, K is the shear correction factor, Dy, D,, Dy, Dgg, Ass are
1 1 1

elastic constants usually obtained from the classical lamination theory that are related to the material

properties £, E,, G,,, V,, V, as follows:

- W’E, D= IE, D _ hv,E, :
120-v,v,)° ° 12(0=v,v,)  ° 12(-v,v,)
WGy, 4. =xhG,,: Ay =xhG
Dgg = 12 s Ay =KAGU, ;S Ass = 12+ Q)

It should be noted that according to Betty’s principle and Maxwell’s reciprocal theorem

E,v, = E,v,, i.e. the plate material properties can be described by only four elastic constants.

For clamped edges, the boundary conditions can be prescribed as
x=ta: W=¢,=¢,=0 (6)
y=1b: W=¢x=¢y=0 @)
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The approach used here to obtain the general solution is similar, but not the same as the one
proposed in [19] because the selected displacement functions are different. The procedure is briefly
summarised below. Essentially, the general solution of Egs. (2) - (4) can be represented as a sum of even
and odd components of W, ., ¢,, denoted Wy;, dx i, dy,, With k and j being 0 and 1 as follows

w W,g

1

0, =kZ_0 O ®)
¢y ! (I)y,kj

Thus, in Eq. (8), Wy is an even function of both X and Y coordinates, W is an even function of the

coordinate X, but an odd function of the coordinate Y, etc. Furthermore, the indices £ and j denote the
symmetry with respect to the X and Y axes, respectively, so that an index ‘0’ denotes an even function and
‘1’ denotes an odd function.

A formal solution for the differential equations, i.e. Egs. (2) — (4), can be obtained by the method
of separation of variables for each of the four cases of symmetry defined by (%, j), i.e. symmetric-
symmetric (0, 0), symmetric-antisymmetric (0, 1), antisymmetric-symmetric (1, 0) and antisymmetric-
antisymmetric (1, 1) and then summing up the solutions for all of the four individual cases. To achieve

this objective, two trigonometric series H; , T; and H;, T which are defined and explained later, with

undefined coefficients X, and Y, are proposed as follows

n

o 3 o 3
Wk/ = ZZXlnAl,nkHj (pl,nky)Tk (unk'x) +ZZYInE1,nij (ql,njx)Tj (Bn/’y) (9)
n=1 I=1 n=1 [=1
o 3 o 3
¢x,k[ = ZZXlnBl,nkHj (pl,nky)Tk,(ank‘x) +ZZ}]IHHI:’ (ql,njx)T/ (Bn/y) (10)
n=l [=1 n=l [=1
o 3 o 3
¢y,kj = ZZXlnH; (pl,nky)Tk (ankx) + ZzYlnF},nij (ql,njx)Tj,(any) (1 1)

n=l [=1 n=l [=1

e k-1  — .
where o, =—|n+——|, B . _I n+J—1 are separation constants; p,2 . and q,2 ,; are the branches
a 2 Yop 2 ’ "

(I=1, 2, 3) of the roots the following characteristic equations

00p6+c]np4+02np2 +C3n :0 (12)
6 4 2
dy +d\q +d,,q +d;, =0 (13)

It should be noted that although there are similarities in the approach used here with that used in
Ref. [19] leading to the general solution (see Egs. (9) — (11)) there are significant differences between the

two approaches in the representation of displacement functions. In particular Eqs. (9) — (11) here



represent expansions of plate displacements with respect to the trigonometric functions cosz(n—lj
h

and sin% when z €[—h;h], whereas in [19] the expansions used for plate displacements were based

on the trigonometric functions cos% and sinnz(n—lj- The former representation allows the
h 2

construction of quasi-regular infinite systems for unknown coefficients leading to an exact solution for
the boundary value problem. The latter representation used in [19] does not permit such construction.

The roots pi.« and g;,; of the characteristic equations (12) — (13) are related to A;ux, Bink, Einj> Fin
of Egs. (9)-(11), which can be expressed as

_ kk5p12,nk —k, (kzplz,nk - kﬁaik —ks+ Qi)

Ay = : (14)

Cl,nk

k2D U ply — ke, — kg + Q Nkl —kjo, + Q)
B, = 5 Pink 2 D1k — KOy — K W NPy — K40y ’ (15)
’ 0, Cp
_ kk4q12,nj — ks (QIZ,nj _kGBij —k, +92) (16)
L,nj ’

Gl,nj

F = qulz,nj + (qlz,nj _k6Bij _k4 +Q2 Xk4qlz,nj _kSBij +Q4) (17)

1,nj
B nj Gl j

where C,, = py i (Fkopl Kkl + kg +5Q°): G,y = g, (Fhig?, —FhB2 + ks +£QY)  (18)

> ~l,nj

Clearly the coefficients of Eqs. (12) and (13) are dependent on the separation constants o, and an , the

elastic constants, thickness of plate and the frequency parameters. The sixth order polynomial equations
of Egs. (12) and (13) can be transformed into cubic equations whose roots can be found using standard

procedure. The procedure is facilitated by the application of Viet’s theorem [20] , see Appendix A.

In Egs. (9)-(11), the following notations for trigonometric and hyperbolic functions are used

depending on the type of symmetry
H,=cosh(z) H,=sinh(z), T; =cos(z), T, =sin(z). (19)

The choice of the notation given by Eq. (19) and its usefulness can be explained by the fact that
the hyperbolic functions and trigonometric series provide the following relationships for different types of

symmetry [21]

H,(qx) _2 i -D""a,, T (0, x) H,(py) 2 i =D""B,,T,(B,,) 20)

H(qa) a5 0ernk +q° ’ H ,(pb) b m=1 Bi/ +p’



In this way, the notation given in Egs. (20) allows one to have consistent uniformity of relationship for all
four types of symmetry of the quarter plate.

For the chosen trigonometric system of functions, the following identity will be always true
Ti(a,a)=T,,b)=0 1)
Furthermore, the boundary conditions W(£a,y)=W(x,£b)=¢ (£a,y)=0 (x,£b)=0 corresponding

to all clamped edges of the plate can be satisfied exactly by asserting that the unknown coefficients of the
series given by Eqgs. (9) - (11) are related as follow

Ay By — Ay B H ,(p,,.b) A By — Ay B H,(p,.b)
e 4, nkBS o — A nsz,nk H_j(pZ,nkb) " ¥ Az nkBS nk _A3 nsz nk H'(p3,nkb) " (22)
EoFiy = BryFoy Hilay@)  EuyFoy = EayFiy Hi(0,0
e EznjF3nj E3nj 20 H (an/a) e Eznstnj E3I‘Ij 20 H (%nja) "

Substituting the expressions of Eqs. (10)- (11) into the remaining two boundary conditions
¢, (x,£b) = ¢ (xa,y) =0, other than W(ta,y)=W(x,£b)=¢ (ta,y)=0¢,(x,£b)=0,and using the
expansion of hyperbolic functions in terms of the system of trigonometric functions given by Egs. (20),
and after rearranging the order of summation on the left-hand side of the equalities, we obtain an infinite

system of linear algebraic equations from the equality to zero of the coefficients at {7, (o, x)} and

{T;(B,;»)} as shown below

x = 2amk S mkén +nn
" Alm nI(an+plmk)(Bn]+p2mk)(an+p3mk)
, (m=12,.) (23)
ZBm/ = Bm/én + nn
= Z 2 2 2 2 2 2 x’l
A2m n=1 (a‘nk + QI,mj )(U“nk + QZ,mj )(U“nk + q3,mj)
where
D" k,k -)"k,
xm ( ) — Hj (pl,mkb)le > ym - ( ) Hk (ql,mja)Y;m 5 \
A2 ka3 mk _AS,kaZ,mk EZ m]F13 mj E3 ijZ mj

FD l R 2 N 3 1 (q3 N ql nj ) +F 1,nj 3 R 2 N (ql N qZ nj ) +F 2,nj 1 N 3 nj (qZ hj q3 n/)

nn EVIJEZ n/F nJQZ n;(q3 nj ql nj)+ 1,nj 3rlj 2njq3 nj((h nj q2 n1)+ 2,nj lm 3Vqu1 n/(anj q3 n/)
Y _ 2 2 2 2 2 2 .

£, = Bl,njAZ,njBS,nj (ps,nk - pl,nk) + Bl,ly'A3,njB2,nj (pl,nk - pZ,nk) + BZ,njAl,njB3,nj (p2,nk - p3,nk) ; > (24)

2 2 2 2 2 2 2 2 2 .
nn Bl njAZ n]B3 njp2,nk(p3,nk _pl,nk)+Bl njA3 njBZ njp3,nk (pl,nk _pZ,nk)+BZ njAl n]B3 )ijl,nk (pZ,nk _p3,nk) 2

A, a= (Az ka3 mk AS,kaZ,mk )Cthj(pl,mkb) + (As kal mk Al,kaS,mk )Cthj(pz,mkb) +

(Al kaZ mk AZ,kal,mk k:th (p3 mkb)’
A /b (EijF;mj E3m1 2m/pth (QIm/a)+( 3ijim] Elm/ 3mjpth (qu/a)+
(E

1 m/F2 mj 2 ,mj 1 ,mj k:th (q3 m/a) /




with
Hi(2)

LGN (25)
H,(2)

Cth () =

It should be noted that when deriving the infinite system of equations, see Egs. (23), the following
identity arising from Vieta's theorem [20] for the roots of characteristic equations of Eqgs. (12)-(13) was

used
kesky (00 + 1 WO + G5, (0 +45,) =k B+ DL )Boy + D3 B + P3)  (26)

The infinite system of Eqs. (23) can now be used for an approximate, but sufficiently accurate
computation of the eigenfrequencies and mode shapes of thick orthotropic Mindlin-plates by using well-
established and standard reduction methods as follows. (It should be noted that the results can be
computed to any desired accuracy.) The first N equations of the system are solved relatively in terms of
the first N unknowns, while setting the other unknowns to zero. Then the determinant of the reduced finite
system is assumed to be an approximate dispersion equation. However, for a more detailed and accurate
analysis of the infinite system, its regularity, and its asymptotic behavior for the solution, the system

needs to be transformed into a more convenient form as explained below.

First, in order to evaluate the regularity of the system, it is necessary to sum the series of the
coefficients of the infinite system analytically. Quite obviously, this cannot be accomplished easily if the

Y
n

infinite system is in the form of Eqs. (23). This is because the expressions for 3;; , le;, and Tli
include the roots of the bicubic equations Egs. (12) - (13). To overcome this difficulty, the expressions for

E .M., & and M are transformed algebraically with help of Vieta's theorem [20] and then making use

n

of the roots of the characteristic equations (see Appendix A). By substituting Egs. (14) — (15) for Al’nk

and Bl’nk we can write after collecting terms, the expression for &’ as follows

Vv — kS (plz,nk - p22,nk )(plz,nk - p32,nk )(p22,nk - p32,nk ) (

Csy 72 7 Cop 72
=2 kk (k,k, —kk)+| Lk k k. +
g aikcl,nkcz,nkcs,nk ool =450 [c e

Co 0

. kz[kfaik (R, =)+ RO+ 2 (ks = 2R+ <2k o, (6, + ) - 23) - m)j L@

0
ey 02, (g + 5~ 04 )k Q* ko, — 02 o, — Q% + k)
After regrouping the roots p, ~of the characteristic equation in the expression given by equation

(27) for &, it is possible to express them by means of the coefficients ci, of Eq. (12), so that they depend

only on a., thickness / and the elastic parameters of the plate. Next, the expression for E_\z is rewritten in

the following form.



E-,y — kSk (plz,nk - p22,nk )(plz,nk - p32,nk )(pink - p32,nk)
! k6aik CrnCon G

(el +via2 +v5), (28)

where coefficients Y jv are given in Appendix B.

Similar transformation for ni allows us to obtain the following expression.

T]y — (plz,nk - p22,nk )(pIZ,nk - p32,nk )(pink - piink)

Yot vl 4y k];az kk —]:Q4, 29
' k6C1,nkC2,nkC3,nk (yo nk Yl nk ’YZX 4 nk 45 ) ( )

It should be noted that transformed expressions given by equations (28) - (29) for &’ and M}

have common multiplier, which makes it possible to represent the coefficients of the infinite system as

follows.
2ij Biy&i} 'HT: _ 2Bm/ (plz,nk _p22,nk )(plz,nk _p:s‘z,nk)(pZZ,nk _pfsz,nk) x
A,, (aik + qlz,mj )(aik + q22,mj )(aik + q32,mj) A,, keCr i Cai G (30)
kB2 + ko, —k ks —kQ*
R R P e T
(a‘nk + ql,mj )(ank + QZ,mj )(a’nk + q3,mj)
Similarly, for the second part of the equations of the system can be rewritten as
20, , o0l EF _ 20, (90 =42 Gy =40 Doy = 5)
Alm (Bij + p12,mk )(Bij + p22,mk )(Bij + p32,mk) A1m k6G1,an2,an3,nj (3 1)

x (YXB4 + yxBZ + ,Yx\ kS;Bij + k4;ai1k - k4k5 - gQ4
nj nj )
T B+ Pl ) B+ P ) By D5

The form of Egs. (30) - (31) of the coefficients of infinite system originally represented by

Eqgs.(23) suggests the following changes in the unknown variables can be made

2 2 2 2 2 2
g kk;{ (pl,nk pZ,nk )(pl,nk p3,nk )(pz,nk p3,nk) (vaa:k + 'Yf}(lik + 'Y;)Xn — Zzn% (32)
25

b Cl,nkCZ,nkCE»,nk
R e e e G o —qi,,j)( ad o2
’ ’ : ’ : : yOBn' +YIB11' +Y2 )yn = Z2n H (33)
kéGl,an2,r4jG3,nj ! !

Then the infinite system of Eqs. (23) may be rewritten in the following canonical form
Z,=>M,Z, (m=1,2,..) (34)
n=1

where
M2m71,2n71 = M2m,2n =0 (35)
9



and
M _ a k4 2(ka (yga:d{ + 'Y{}afnk + Yév Xplz,mk - p22,mk )(plz,mk - p32,mk )(pj,mk - p32,mk) % \
2m-1,2n — _«‘
b k2k5 k6A1mC1,mk C2,mk C3,mk
§ kk B2, + ko, — ks —kQ*
(Bi/ + plz,mk )(Bij + p22,mk )(Bij + p32,mk)

> (36)

b [k, 2B., (viBL, + VB2, + 72 Ky = @2 W@y = Lo NGy =G .
k,

M2m,2n—1 =
k6A2mGl,ij2,ij3,mj
kk B2, + kol — ks —kQ*
(02, + g2 (@ + o N0 +2) /

It should be also noted that even though the roots of the characteristic equations Egs. (12) - (13)
may be complex, the coefficients M., of the infinite system of Egs. (34) will be always real. Moreover, it

is interesting to note that M,,, will be of the same sign for sufficiently large values of the indices m.
3. Analysis of the infinite system of linear algebraic equations

It is known [22, 23] that a homogeneous infinite system of linear algebraic equations of the
canonical form such as the one in Eqgs. (34) constitutes a regular system if the series of the moduli of the

coefficients in each of the equations is less than one, i.e.
2IM,, |=1=p, <1, m=12,.) (37)
n=1

If this series does not exceed a value, which is less than one

YIM,, |=1-p,<1-0<1, (m=12,..) (38)

n=1

in this case, the infinite system is called fully regular.

The regular (or fully regular) infinite systems can be considered [23] as functional equations in the

space of bounded sequences /” . It can be proved [22, 23] that the fully regular system with bounded
free members always has a unique bounded solution. Obviously, then the homogeneous infinite system
will have only trivial solution, i.e.,Z,, =0, which leads to trivial zero-solution W = ¢x = ¢, = 0 for the
boundary value problem which corresponds to the case of fully clamped plate. Thus, for infinite systems
arising in dynamical problems, the regularity conditions are not satisfied over the full frequency range.
For such type of systems, a generalization of the regularity conditions is needed, and the following

definition is proposed [23].
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An infinite system is called quasi-regular if there exists a number Nz such that
DIM,, 1<l (m=Ne+1,Ne+2, .0 DM, [<0 m=1,2, ..., Nr) (39)
n=1 n=1

Therefore, for quasi-regular systems the condition of regularity is necessarily fulfilled for some

number m > Np and the analysis of quasi-regular infinite system can be reduced to a finite system of

order N with help of the following change of variables

Np
Z, =2 8,7, (m>Nr) (40)
I=1
Because of the change in variable shown in Eq. (40), the homogeneous quasi-regular infinite
system of Egs. (34) reduces to a set of regular infinite systems with the same infinite matrix and different

free members, but with the new unknowns {éfn }:z N+l (I=1,2,..., Np) given by

< !
D ML +M,,, (m=Ng+LNg+2,.) (41)
n=Np+1
For the first Nz equations of the infinite system in Egs. (34), the substitution of Eqgs. (40) gives the

following finite system of equations in terms of the first Ng unknowns Z,,Z,,...,Z, as

z, Z(M + ZMW&,J , (m=1,2,.., Np) (42)
[=Np+l1

The infinite series within the condition of regularity can be calculated analytically using established

techniques, see for example, Prudnikov et al.[21]. In this respect, the notation for hyperbolic functions

used in Egs. (19) is helpful so that the following infinite series can be written as
_ 1 H (2) Kk

Sy ——— (k= 43
(=)= ;n n+k/2—1/2) z? ZZH(Z) 2z° Sl e

Then for m >N~ we have the following analytical representation for series within the condition of

regularity

i‘MZm—],Zn‘ a ,kkk 20, (Yo o, +ylel, +’Y2Xplmk pzmk)(plmk Pgmk)(pzmk p3mk)

n=1 b k A Cl kaZ ka3 mk
Kkp? kol +kk, +kQ* Khp? ko2, + kk, + KQ*
X : 21’ : 2 : - 2 2 2 j(p],mk ) - 22, . 2 : ‘ 2 2 2 Sj(pZ,mkb)+ (44)
(pl,mk ~ Dok )(pl,mk - p3,mk) (pl,mk ~ Dok )(pZ,mk - p3,mk)

+ EkSPimk - l;k4ai1k +kyhes + kQ*
(plz,mk - pimk)(pimk - p32,mk)

2m71,2n}

S (psub )j+2@ S
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i‘M b k k 2ij (YOij + YI ij + ’YZ qu mj q2 N )(ql ,mj q3 ,mj )(qZ ,mj q} mj)
2m,2n-1 k4 k A G G G

1L,mj = 2,mj =" 3,mj

kk kk P2 +k k. +kQ*
Sk (ql,mja)_'_ 4q;,m1 ij 475 -
(@ g = Do Dy = Do)

2m,2n—1)

kk,q?, —kkB2 +k,k, +kQ*
% [ 4QI,mj B Sk (q2,mja)+ (45)

(qlzm/’ -4, mj)(ql,m/' - q3,mj)

+ ];kzxqsz,mj kk B, + ks + kQ? (q ) Z(]
(qlz,mj - q3,mj )(qZ,mJ - qimj) 3 m] 2m 2n-1

where N” is such a number which starts from the coefficients of system M,,, that have constant sign.
To evaluate the upper bound of the series shown in Eqgs. (44) - (45), one can use the following

asymptotic equalities for the roots of the characteristic equations when m — oo
ql,mj = QIij 5 pl,mk = Plamk (l :1’ 2’ 3) (46)

where Q7 and P’ correspond to the three different branches of following cubic (limiting) equations
Kk Q° + 2k, — kK2 — kg — ek, JO* + (ks + hegk oy + sk Kk, JO? — ok, =0, (47)

ko P+ (I 2k — kol k7 = hok kg — kol JP* + (lok, + ke, + kk2 — KK, P2 —kjky =0 (48)

Furthermore, using the asymptotic behavior of the relationships (Note that the coefficients Aj,, and

Ayn appear in Egs. (23) and defined in Egs. (24)), one can write

A ClkaZ,nkCMk:AlaSk and A, G,,.G,, G

_ 8
Im Lmj >~ 2,mj ~ 3,mj — AZij 4 When m— o (49)

The asymptotic behaviour of the series in Egs. (44) —(45) can now be evaluated as follows.

hmZ‘MZlen‘ hmZ‘MZMZn1 p<l (50)

m—©

where

Kk, v (_ (02~ k)02 -02) (k02 -k )P -02) (k02 —k: O~ 03 )J _

k4 k6A2 Ql QZ Q3 (51)
[k [_(kspf—k4)(Pf—Pf)+(k5132—k4)(32—f§2)_(k51’5—h)(lf—@z)}
kk, kA, R P, P,

The validity of Egs. (50) can be confirmed by further calculations using Egs. (51) for any

combinations of the problem parameters. To serve as an illustration, Fig. 1 shows the dependence of
L= (V) on Poisson's ratio v for an isotropic material. It is clear from the existence of limit shown in Egs.
(50) suggest that the condition of regularity is necessarily fulfilled for some number m > N, .Thus, it can

be concluded that the homogeneous infinite system given by Eqs. (34) is a quasi-regular infinite system.
12



Fig. 1. The variation of the function p against v and b/a for A= 0.1a

It should be noted that number Ny of the first set of non-regular equations of the infinite system of
Egs. (34) is essentially dependent upon the frequency parameter €2, wherein for some frequency range,
the infinite system is fully regular (Nz = 0). For instance, on the basis of the data presented in Fig. 2 it can
be argued that, for Q < 1.6, there are no natural frequencies of the plate. Actually, for this frequency
range, the infinite system Egs. (34), being fully regular, has a unique zero solution. As a consequence,
there is no non-trivial solution for the boundary value problem of Egs. (2) - (4), (6) - (7).This idea was
first developed by Papkov and Banerjee [24]. They showed that the quasi-regular infinite system can be
reduced to a regular infinite system if there exists a number N such that the coefficients M., of the system

satisfy the following criterion

N N
.. P9
TN_l_ﬂ?§2‘cji‘(l_pi_Z|Minj+}££§|—>0 (52)
i= n= M .,
n=1 ¢
where {6 ko }2/,,:1 is the inverse of the matrix {6 wm—M,, }Z}Fl , 8,, is Kronecker delta, p, and 0 are

sequence and constant from the regularity conditions Egs. (38) and 0 < 9 <90 .

13



(N

[1%]

-

@)

Fig. 2. The effect of the number Ni of non-regular equations in the infinite system of
Eqs.(34) for h/a=0.1, b/a=1, k = =0, k=0.8601, E =60.7GPa, G,=12GPa,

v, =023, v, =0.094

The fulfilment of the criterion given by Eqs. (52) has essentially meant that after eliminating the
first N unknowns Z,,Z,,..,Z, from the system, the infinite system with respect to the remaining

unknowns has become fully regular. Thus, for the homogeneous infinite system Eqs. (34), the fulfilment
of Egs. (52) at a certain frequency Q guarantees that this frequency is not a natural frequency. From a

practical standpoint, localization of the natural frequency according to criterion of Egs. (52) requires only

V' and the summation of the series with help of Eqgs. (44) -(45).

the inversion of the matrix {5, =M}, .-

Representative behavior for the localization of the first three natural frequencies according to the
proposed approach for a thick square orthotropic plate (epoxy glass) is shown in Table 1. For comparison
purposes, the last column of the table shows the values of the natural frequencies found according to the

method of simple reduction from the approximate equation given by

det(s, —M, (@), =0 (53)

mn=1
using N, , = 32. It may be seen that the results obtained with help of both methods are very close, when
the value of N = 8. For this illustration, the lower and upper bounds of the natural frequency parameter
agree up to three significant figure for N=4, and for N = 8, the two bounds are extremely close and the
results using the average values of the two, are in almost complete agreement with the ones obtained by

using the method of simple reduction.

14



Table 1.The first three non-dimensional natural frequency parameters Q, for 4/a=0.1, b/a=1,

k=0.8601, E, =60.7 GPa, G,, =12GPa, v,, =0.23, v,, =0.09%.

Q, Lower and upper bounds of Q, for Tm(Q2)< 0 Method of simple
N=2 N=4 N=8 reduction

Q 2.6376 -2.6631 2.6511 —2.6548 2.6528 2.6527

Q 3.4698 — 3.4976 3.4851 —3.4892 3.4873 3.4875

Q3 3.9496 — 3.9675 3.9587-3.9614 3.9602 3.9602

After the natural frequency parameter is computed, it is necessary to recover the mode shapes from

the non-trivial solution of the quasi-regular infinite system of Eq. (34).This is can be accomplished in an
approximate, but sufficiently accurate manner, i.e. when the first unknowns Z2,,Z,,...,Zy are found as

the non-trivial solution of reduced finite system according to the approach of simple reduction method

N,

red

Zm = ZanZn (m :1’ 2""’Nred) (54)
n=1

Alternatively, all infinite sequence of unknowns can be found with the help of the asymptotic behaviour
of the non-trivial solution quasi-regular infinite system of Eq. (34). Appropriate result for such
investigation with respect to quasi-regular systems was published earlier by the first author [26] (The

theorem described in [26] extended the approach of Koialovich’s Asymptotic Law [25]).

By using the above decomposition of Egs. (40)—(42) of infinite system in relation to Egs. (34) into
one finite linear system and the set of Nz regular infinite systems, it can be observed that each of the
infinite systems from this set will satisfy the conditions of regular systems if the following changes in

unknowns are made
1 Al I A
§2m71 = 1—‘ijym ’ éZm = amk'xm (55)
where A €[0;1).
Then, the unique solutions x,ln and y,ln for the transformed infinite systems will have the common

non-zero limit as given below

limy! =limx, =K, >0 (56)

m—>o0 m—>0
The constants A and I" in Eq. (55) are to be chosen in such a manner that the transformed infinite systems
in respect to x,ln and y,ln remain regular, but they no longer satisfy the condition of fully regularity of

Eqgs. (38), that is, the series under regularity conditions will have to tend to unity from below, i.e. from the

bottom end.
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Using the following asymptotical relationships when m — 00

L -1 -r —
a o) aQ 1 1 = B, bR 1 1
E k = L -y e +O£BTJ 5 E v = ! oy — +0 az (57)

2, 2 2, 2
Nt Qe F iy 9 oos ™ By wi ) wovet By ¥ Pl 9o ™ %k mk
2

from this condition we obtain the following transcendental equation for finding of parameter A

(ET vavs |((k5P12—k4XP22—Pf) (kP —k, JR = P?) (ksaz—k4)(32—@2)Jx
ks AlAz

A+l - A+l + pus]
B B B (58)

A+l A+l A+l
1 2 3

x ( (k4Q12 — ks Xsz — Q32 ) _ (]‘ZtQZ2 — kS Xle — Q32 ) + (k4Q32 — k5 XQIZ _ sz )] = cos? TC_)\,

It should also be noted that Eq. (58) has unique real solution in the range A €[0;1).

Therefore, it is possible to obtain the asymptotic behaviour of the non-trivial solution of system of
Egs. (34) as follows

a a
Z, .= (le; zZ, = BTZ (m — ) (59)
mk mj

where a, and a, are some limiting constants.

Using the Egs. (59) we can write the solution for CCCC boundary conditions in the form of an

un-truncated infinite series as

H,(piuy)
Hj (pl,nkb)

H (psx») |(-1)"x, = H,(q;,,%)
2k l,nk)Hj : b T, (0, %)+ Z E ., (EZ,njF3,nj -E, 5, , )k#"' (60)
J (p3,nk ) | ks H, (ql,nja)

H X H X) | (=1)"
El njF'3 IU)M-I—E.? nj(El nj= 2,nj _EZ njE n') k(ql’”/ ) ( ) y" T(Bn )
o Hk(qZ,nja) ’ o R Hk(%,nja) k, Y

Hj(pZ,nky) n

+An(Aan_AnB”)—
2,1k \ A3 0k P e ~ A1 B3 H (p2,b)

Wk,- = z Al,nk (AZ,nk B3,nk - A3,nkB2,nk)
n=l1

+ A3,nk (Al,nkBZ,nk -4

n=l

+ E2,nj (E3,njE

o

o0

H,(piwY) H,;(pyuy)
(I)x,kj = nZZI: Bl,nk (AZ,nkBS,nk - A3,nkBZ,nk )I{jTll’nkb) + B2,nk (AS,nkBl,nk - Al,nkBS,nk )ijT:;b)

2,k 1 k)Hf(plnky)J(_l)nx
o Hj(P3,nkb) kyks
Hl,c(qZ,njx)
H,(q,,a)

n ! < H’ (q n'x)
+B; (Al,nsz,nk -4 T (a,x)+ . ((EzﬂnjFlnj ~E,,F,, )# + (61)
n=1

H, (ql,nja)

+(E,,,

K Tj(any)

ni - Pl 3,nj)

H,(q n‘x) (_l)nyn
+ (El,njFZ,nj - E2,nj l,nj) : L
Hk (q],nja) k4
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0

H(p,uY) H (P4 ))
(I)y,k/‘ = ; [(AZ,nkB3,nk - A3,nsz,nk )m + (A3,nkBl,nk - Al,nkB3,nk )m +

)Hk (ql,nj'x) + (62)

2,nj

H(psu)) | (=1)"x, =
+ (Al,nkB2,nk —-4,,B ) T (o, %) + Z Fi,nj (Ez,njF},nj - E3,njF
n=1

k)
b Hj (p3,nkb) kyks H, (ql,nja)
H,(q,,x) \Hk (9,,,%) | (-1)"y
+F I, (E n'Fn' - nj n')k—’nj-i_F n(E n'F no n'F nj ) Y - T'(Bny)
2,0 301 1, Lnj " 3,n Hk (qz,nja) 3. N\ e 2,n) 2.m " 1nj Hk (ql,nja) k4 J Y

where coefficients of series x, and y, are defined with help of Egs. (32), (33) and they can be described

for large indexes as

xoo _ yoo

xn = (12]:1 > yn - szﬂ (l’l - OO) (63)
. b Kk k*BPP (kB — k) (ks P, = k,)(k, P} —k,) o
oo_a k4 (Pz_P;xﬁz_Pfxpzz_Pf)% 1° o
y k k QleQs(k4Q1 —k )(k4Q22 k )(k4Q32 _kj)a
© 2
0 -0 - o -0

It should be noted that the above series of Egs. (61) and (62) representing the solution of the
boundary value problem converge sufficiently rapidly everywhere inside the plate region. Indeed, for y >
0, taking into account that P; > 0, we can obtain the following asymptotic estimates when n — o

H,(p ) _ e’ 4 (=1) e P _ o
Hj (Pz,,,kb) epl,nkb + (_l)j e_pl,nkb

H; (pl,nky) _ el _ (—l)f g P e
H(pub) e +(=1)/e "

b

i.e. for the calculation of values given in the series represented by Egs. (60) — (62) for 0 < y < b, it is
sufficient to know only the first few of the terms, and the reminders of the infinite series have no
significant effect on the result. Similar estimates are valid also for the series that contain hyperbolic
functions of x.

Nevertheless, one of the series represented by Egs. (61) - (62) has a weak convergence on the

plate boundary. In particular, Eq. (61) when x = a can be written as

H,(Pyud) H,(p,u¥)
by (4, ) = Z( 1 "k( Ao i By e = Ay i B )HjjTllnib) + B, (A3,nkBl,nk — A, By ) Hj (pz,nl,i_b) +
(65)
(P3 ) = (- 1) yn
+ B3,nk (Al,nsz,nk - Az nkBl nk / H. ( 2, nkb) k k Z; . (any)

By considering the asymptotic formulas y, =y, B, *and A, /b=AB, (n—> o), it maybe

nj
been seen that the second trigonometric series in the expression of Eq. (65) has a weak convergence.

Obviously, the first few terms of the series do not provide the value of the function ¢4 (@, y) with
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sufficient accuracy. An improvement of the convergence of the series is now sought analytically using
well-established technique [22] to give the following series with improved convergence related to the

asymptotic behavior shown in Eq. (63).

O NCHE NI WE )[ Z"y"——AwwaT,(Bn,-y)+A°°ywi(_ S8D (65

k4 n=1 4 n=1 an k4 n=1 Bn]

for which the value of the second series for j = 0 and j = 1 can be found analytically using special

functions as follows.

1)y b
© (L1} L (=D cos(n(n—j) N i ( e J
Z( D'T;B,») [bj Z 2)p :(2] R sz )

" =
n=1 an T

n=1 1 *
—= 67
(n 2J (67)

» L L 1
= —(—J Ree?®| —e? A, —
T
where CD zZ,A\, a Z is Lerch Phi function [27]
n=0 (l’l + a

o L 1y sm(—) . [‘] D w
3 EVTG (bj S (é) my :(ﬁj L{—e”] (68)

n=l1 an n=l1

0 k
where L, (z) = ZZT is polylogarithm function [27].
n

n=l1

Thus Egs. (67) — (68) allow us to improve the convergence of series for ¢_,.(a,y) and obtain

x,kj
more accurate solution for the boundary value problem, particularly near the plate edges in comparison

with previous methods of simple reduction [19]. The convergence of series for d)y’kj (x,b) is also

improved in a similar manner. To illustrate this fact, Table 2 shows fulfilling of the boundary condition

o, ,V.(a, ) =0 for the first natural mode of a thick square orthotropic plate (epoxy glass) when using the

first eight terms of the series using the previous methods and the current method. Clearly, the

convergence is significantly improved in the current method.
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Table 2. The fulfillment of the boundary condition ¢ . .(a,y)=0 for Q=2.6527,

x,kj

hla=0.1, b/a=1, k=0.8601, E =60.7 GPa, G, =12GPa, v,, =0.23, v,, =0.094.

Comparison between drii (a0)
current method and b
Ref [19] Y
0.0 0.2 0.4 0.6 0.8
Without improving
the convergence -0.000158 0.000156 -0.000109 0.000037 -0.000007
(Simple reduction)
[19]
With improving the || 545 0.000002 0.000002 0.000001 0.000001
convergence (current
method)

4. Numerical results and discussion

The theory and the methodology described above were implemented in a computer program in the
Mathematica package. The natural frequencies were computed with the help of the criteria based on Egs.
(52). The corresponding non-trivial solutions of the infinite system were determined using the
decomposition of Egs. (40) — (42), and also by taking into account the asymptotic behaviour of non-trivial
solution of Egs. (59). The first set of results is obtained for validation purposes. Table 3 shows the first
seven natural frequencies of a fully clamped isotropic plate alongside the results reported in [16] that are
based on the Ritz method. For the convenience of comparison, the frequencies are given in circular or
angular frequency w (rad/sec). Table 3 shows that the agreement between the results computed using the
present method and the ones using the Ritz method of [16] is excellent, the discrepancies in the natural
frequencies, being less than 0.3%. The natural frequencies obtained by the Ritz method turn out to be a

little bit overestimated. This is consistent with similar observations made by previous investigator [28].

Table 3. Validation of the first seven natural frequencies for isotropic thick rectangular clamped

plate with a =2 m; b=1m; E, =143 GPa ;v =0.35,k=5/6, h/a=0.1

wy(rad/s)
Case study

1 2 3 4 5 6 7

Tv()<0 | 3011.78 | 3847.28 | 5301.29 | 7236.97 7292.36 7954.69 9169.55

Ref[16] |3022.32 | 3860.63 | 5319.84 | 7262.14 7317.79 7982.47 9201.45

Following the validation of results given in Table 3, further investigation was carried out. Tables 4-
6 show the first five non-dimensional natural frequencies (Q2,, n = 1, 2,....5) of thick rectangular plates

with all-round clamped boundary condition, computed by applying the proposed method using three
19




different materials and with varying plate geometries. Table 4 presents results when the plate is made of
isotropic material (quartz glass) whereas the results shown in Table 5 are for orthotropic plate material
(epoxy glass). By contrast, Table 6 shows results for an auxetic material. The authors have noted with
great interest that there is a growing interest in unconventional materials that have negative Poisson's
ratios. Paradoxically such materials are not some imaginary abstractions, but they can be found among
natural materials, and they can also be created artificially as auxetic materials. The first five natural
frequencies for a thick all round clamped plate made of an auxetic material which in fact is one of the

forms of a-cristobalite quartz are shown in Table 6.

Table 4. The natural frequencies Q for CCCC isotropic plate with E, =73.6 GPa,
v=0.17,x=0.8601, hi/a =0.1

Q, bla=1 bla=2 bla=3
Q 2.9638 24578 2.3888
Q 4.1949 2.7917 2.5201
Q3 4.1949 3.3024 2.7447
Q4 5.0530 3.9137 3.0511
Qs 5.5479 3.9273 3.4176

Table 5. The natural frequencies Q for CCCC orthotropic plate with FE, =60.7 GPa,

G, =12GPa, v,, =0.23, v, =0.094, = 0.8601, h/a =0.1

Q, bla=1 bla=2 bla=3
Q 2.6528 2.3809 2.3481
Q 3.4873 2.5566 2.4123
Q3 3.9602 2.8680 2.5311
Q4 4.4539 3.2865 2.7102
Qs 4.5223 3.7697 2.9444

Table 6. The natural frequencies Q for CCCC auxetic plate E, =73.6 GPa,
v=-0.16,x =0.8601, h/a =0.1

Q. bla=1 bla=2 bla=3
Q 2.9120 2.4350 2.3781
Q, 4.1320 2.7318 2.4840
Q3 4.1320 3.2262 2.6834
Q4 49199 3.8380 2.9745
Qs 5.4976 3.9087 3.3361
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Fig. 3. The first three natural modes of rectangular plate with clamped edges
forh/a=0.1, b/a=2, k=0.8601; (a), (c), (¢) — quartz glass plate; (b), (d) , (f) — a-cristobalite

plate.

It can be observed that for all of the constitutive three materials of the plate, the natural frequencies
decrease with increasing ratio of the sides of the plate, as expected, but at the same time, there are no
noticeable differences in the behaviour of the spectrum of the auxetic plate from the frequency spectrum

of the plate made of isotropic materials that have a positive Poisson's ratio. It is noted that the natural
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frequencies of a a-cristobalite plate are a little lower than those of a quartz plate. Meanwhile the data of
Table 5 show that for an epoxy glass plate, the natural frequencies are significantly lower. It should be
noted that the first free vibration mode is always symmetric, as expected. Thus, from the presented
numerical results it follows that the spectrum of the natural vibrations of a thick plate is more influenced

by the pronounced orthotropy of the material rather than its auxeticity.

For completeness, the first five mode shapes for the thick rectangular plate made of isotropic material
(quartz glass) and auxetic material (a-cristobalite) and with CCCC boundary conditions are shown in
Fig.3. The corresponding natural frequencies of vibration have already been given in Tables 4 and 6. It
should be noted that the mode shapes differ very little. This has meant that the auxeticity of the material
does not produce significant effects on the mode shapes for free vibration problems of clamped thick

plates.

5. Conclusions

Through the analysis and solution of an infinite system of linear algebraic equations, an elegant
theory together with an associated algorithm is developed in this paper to determine within any desired
accuracy, the natural frequencies and mode shapes of rectangular thick orthotropic plates with clamped
edges, comprising different geometric and/or elastic properties. The theory is validated by published
results showing excellent agreement.

The investigation has shown that the spectrum of natural frequencies of vibrations for thick clamped
plates are more influenced by the orthotropic properties of the plate materials rather than the auxeticity of
the material. The differences in natural frequencies and shapes for isotropic and orthotropic plates are
most clearly manifested when the ratio of the two sides of the plate is increased. It is in the context of the
use of the dynamic stiffness method in conjunction with the application Wittrtick-Williams algorithm
which requires the knowledge of the clamped ended natural frequencies of structural elements, the

proposed investigation is expected to be most effective and important.
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Appendix A

COEFFICIENTS OF BICUBIC CHARACTERISTIC EQUATIONS AND RELATIONSHIPS OF
VIET'S THEOREM

For characteristic equation of Eq. (12) can be written as

Cop6+clnp4+cznp2+c3n =0 (A1)

where

¢, =k kok,
ey, = 0 (B2 = 2 )~ ey (ky + Ky, )+ Q2 (e + e, )+ Q4 k, ~kokik

ey = [k, (e, + 2 =2 o degk o2, (@4 (67 = k2 ) e (14 K )~ Ky (QF + k, Q0 ), (2, [k, + 5 )k, 2)
+ Q2 (ky + k) - koke, )+ kS (QL Q! — &, )-k,Q1)
ey, = =0k + o (= ey + Q4 ke, Q1 1+ K )+ 2, (@, + Kk — Q)+

+ Q1 (ks —k Q- £, Q1)+ Q4 Q) —k, Qb —k,) A2)

We can write the following relationships using Viet’s theorem [20]
2 2 2
Pk T Poe T Py = Ciy /¢
N B N TR D . A3
P Prk T PPk T Pk P3x = Can ! Co (A.3)
2 2 2 _
Pk PruPr =C30 | Gy

Similarly, the characteristic equation of Eq. (13) can be written as

doq6 +dlnq4 +d2nq2 +d;, =0 (A.4)
where

d, =k,kg
d,, =Bk (kz—kz k,)- k5k6)+Q2k4(1+k6)+Q4k6—k4k5

o =B s, + k2 - N)+kkk)+BW@kk@:+k)£f@:+k2 k2 Qb ek, + g+ ek + ek, )
+Q4(Q (14 kg )~ ks — ke kg )+ b, Q1 Q2 — k)

d,, =B lykeskg + B (= ko + k@ + Q2 (K, + &y ))+ B Q4 [k, + Kok, — k.01 )+
+ Qi ks -k, Qf -k, Q1)+ Q4 Q! -k, JQ! - k)

these relationships can be written as

(A.5)
qlz,nj + q22,nj + q32,nj = _dln /dO

qlz,njqzz,nj + qlz,njq32,nj + q;,njqinj = dZn /dO (A6)
2 2 2
ql,/@/qZ,q/‘qS,rg/ = _d3n /dO
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Appendix B

COEFFICIENTS OF Y}, ¥/ ,A, AND A,

Yo = ;k5k6(k4(];+k6)_k5)

v = g R Q2+ k(e — e, + Q2 )+ ek, (kg e, + e, — 2 (2, + K ) — kk 2

v =, ~ ¢ Vi [k, + £ Q- R, (k@ + k022

Vo =kkk, (ko (k +k,)—kyk,)

v = ko (B, Q2 + I,k — ok, + Q02 ) ek, Gk, + Ry — Q2 (2K, + ) - kk Q)

vs = (s — Q2 Nk, e ks + Q- T, (6Q2* + 1,21 )

(kP ~k,)

Al = ]:det (ksE2 _k4)(k232 _ks) (kspz2 —k4)(k21322 _ks) (ks[:)}2 _k4)(k2P32 _kG)

(Eks —kk, )Ez +k ks

Q1 (k4Q12 - ks)

P,(ksP ~k,)

(Eks - k2k4)P22 +k ks

Qz (k4Q22 - ks)

P,(kP? k)

(l:ks —kyk, )P32 +kyke

Q3 (k4Q32 - ks)
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