

City, University of London Institutional Repository

Citation: Gacek, C., Lawrie, T. & Arief, B. (2002). Interdisciplinary insights on Open

Source. Paper presented at the Open Source Software Development Workshop, 25 - 26
Feb 2002, Newcastle upon Tyne, UK.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/266/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Interdisciplinary Insights on Open Source

Cristina Gacek, Tony Lawrie, and Budi Arief
Centre for Software Reliability

Department of Computing Science
University of Newcastle

Newcastle upon Tyne NE1 7RU
United Kingdom

{Cristina.Gacek, A.T.Lawrie, L.B.Arief}@ncl.ac.uk

Abstract
The term “open source” is widely applied to describe some software development
methodologies. This paper does not provide a judgment on the open source approach,
but exposes the fact that simply stating that a project is open source does not provide a
precise description of the approach used to support the project. By taking a multi-
disciplinary point of view, we propose a collection of characteristics that are common,
as well as some that vary among open source projects. The set of open source
characteristics we found can be used as a tick-list both for analysing and for setting up
open source projects. Our tick-list also provides a starting point for understanding the
many meanings of the term open source.

1 Introduction
We started looking into Open Source to try to determine how using this approach
actually impacts the dependability of the software systems being developed. Our
intention was to spend some minor effort to understand what is meant by the term
“open source”, and from there perform various studies and experiments to support or
to oppose dependability claims in the area. Much to our surprise, understanding what
open source is turned out to be a much more complex task. The term “open source”
has been widely used to describe a software development process that relies on the
contribution of its geographically dispersed developers by the means of the Internet.
Amongst other criteria, one basic requirement of open source projects is the
availability of its source code [1], without which the development or evolution of the
software is very difficult if not impossible. But apart from these characteristics, there
seems to be some confusion on what actually makes a project an open source project.

The aim of this paper is therefore to provide a clearer description on what is
meant by “open source”. To achieve this aim, we investigated several well-known
open source projects such as Linux [2], Apache [3] and Mozilla [4]. We also did
literature studies on published materials about open source, notably The Cathedral
and the Bazaar [5], Rebel Code [6], Open Sources [7] as well as work by other people
interested on open source (for example, [8-12]). We have also used several on-line
resources dedicated to various open source projects [13, 14] and interviewed both
individuals working on open source projects at their free time and individuals
involved with open source as part of their job in large corporations. From there, we
tried to dissect open source further by determining the characteristics that open source
projects should or usually have. We determined a set of characteristics that are almost
always present and others that vary among open source projects, and this serves as the
core of this work.

The rest of this paper is structured as follows: Section 2 presents a brief history
of open source, which is important for understanding its motives and directions;
Section 3 describes some open source characteristics that can be used in determining
whether a project is or not open source; Section 4 provides some initial conclusions of
our work; and Section 5 outlines areas that can be researched further.

2 A Brief History of Open Source

2.1 How it started
The idea of building software within a cooperating community, where the source code
was made available so that everyone could modify and redistribute it began with the
GNU project at MIT in the early 1980s. The intention was to provide freedom relating
to software systems. In 1985 the Free Software Foundation (FSF) was pioneered by
Richard Stallman to generate some income for the free software movement, not
restricting itself to GNU.

Free software, as defined by the FSF, is a program that grants various
freedoms to its users. A free software program provides its users with [15]:

• Freedom to run the program for any purpose
• Freedom to study and adapt the code for personal use
• Freedom to redistribute copies of the program, either gratis or for a fee
• Freedom to distribute improved or modified versions of the program to the

public

The discourse used by the FSF tends to be confrontational and against

proprietary (closed) software, since they view anyone producing this kind of software
as big obstacles to the four basic freedoms mentioned above. This is reflected in the
restrictive viral nature of some of their licenses (see section 3.3).

2.2 Free Software and Open Source Movements
In the early 1998, the term Open Source was coined as a response to the
announcement made by Netscape on its plan to give away the source code of its web
browser. The new term came out of a strategy meeting in which people present
realised that:

“…it was time to dump the confrontational attitude that has been
associated with ‘free software’ in the past and sell the idea strictly on the
same pragmatic, business-case grounds that motivated Netscape.” [16]

Immediately afterwards, the Open Source Initiative (OSI) was set up to

manage and promote the Open Source Definition (OSD). The OSD was composed as a
guideline to determine whether a particular software distribution can be called open
source or not. OSD asserts nine criteria that open source software must follow; the
main three are:

• The ability to distribute the software freely
• The availability of the source code, and
• The right to create derived works through modification.

The rest of the criteria deals with the licensing issues and spell out the “no
discrimination” stance that must be followed [1]. They are:

• The integrity of the author’s source code must be preserved, making the source
of changes clear to the community

• No discrimination against persons or groups both for providing contributions
and for using the software

• No restriction on the purpose of usage of the software, providing no
discrimination against fields of endeavour

• The rights attached to the software apply to all recipients of its (re)distribution
• The license must not be specific to a product, but apply to all sub-parts within

the licensed product
• The license must not contaminate other software, permitting the distribution of

other non-open source software along with open source one

The Open Source and Free Software movements can be compared to two
political parties within a community. While two political parties agree on the basic
principles but disagree on practical issues, the Open Source and Free Software do
exactly the opposite. They disagree on the basic principles (commercialism, licensing,
etc.), but agree on (most of) practical recommendations (availability of source code,
ability to modify the code, etc.). They even work together on many specific projects to
achieve the same goal: to provide software that is free (in terms of liberty) for all [17].

2.3 Commercialisation of Open Source
Open source is often seen as a marketing ploy to make Free Software more attractive
to business users since it allows greater liberties with its licenses (see section 3.3).
This means that the open source licenses are more accommodating to people or
companies to make profit from the software, as long as the source code remains
available and can be modified freely.

The most prominent way of commercialising open source is by providing
service and distribution packages for software developed in an open source fashion.
This is due to the fact that open source software is usually more difficult to install
since it was originally aimed for the hacker community. Another way of making
money out of open source is by using the relevant open source as a platform, upon
which commercial (often proprietary) application software can be built.

More and more computing corporations turn their attention to open source as a
business opportunity. What they are looking for in this new development method is
innovation, and sharing source code is perceived to be a good way for facilitating
creativity. Commercial organizations are also attracted to contributing to open source
projects as they see a strategic opportunity to undermine (more powerful/dominating)
competitors. On the down side, they are afraid that maintaining control of an active
open source project can be difficult. They are particularly concerned with the risk of
code forking – the evolution of two (or more) separate strands of work from the
original code base, which threatens compatibility. This fear prevents some individuals
and many companies from active participation in open source developments [7].

Although this code forking risk is always present, it is usually overcome by the
novel attitude that the open source community has. Instead of basing their reputation
on “what they have”, they measure it against “what they give”. This “gift-culture”
encourages people to contribute more and binds people together in the same strand of
work. More information on the “gift-culture” is available from Eric Raymond’s paper,
Homesteading the Noosphere [18].

2.4 The Open Source Approach compared with Others
To provide a clearer picture on where open source (free) software stands in relation to
other software, we provide some comparisons (mostly in licensing and distribution
terms) among several categories of software. For simplicity, we could say that the two
main categories are the “free” software (meaning open source as well) and the
“proprietary” software.

There are two kinds of software within the “free” category: non-copylefted free
software and copylefted software. Non-copylefted free software comes from the
author with permission to modify and redistribute, and in a legal term it means “not
copyrighted”. On top of that, it is allowed to add more restrictions to the modified
version, which means that some copies (modified versions) may not be free at all.
Anyone can compile the program and redistribute the binary as proprietary software.
Public domain software is a special case of non-copylefted free software. On the other
hand, with copylefted software, it is not allowed to have additional restrictions to be
added when someone redistributes or modifies the software. As a consequence, every
copy of copylefted software, even after modification, must be a free software. The
most prominent distribution terms for copylefted software are covered in the GNU
GPL (General Public License).

Proprietary software is closed software in that the source code is not available
to the public. It has very restrictive terms on its condition of use, and its redistribution
or modification is prohibited. There are two special cases within this group of
software: shareware and freeware. Both allow people to download, use and
redistribute the software for free, but modification is (almost) impossible because they
are usually released in executable (binary) format only. The difference is on the limit
of usage, if someone wants to keep using a shareware, he/she must pay a license fee.
One important note is that freeware must not be confused with free software,
especially because modification of a freeware is not possible (since the source code is
not available).

Non−copylefted
free software

Free Download

Free Software

GPL’ed

Open Source

Freeware Shareware

Closed

Proprietary

Copylefted

Public domain

Figure 1: Categories of software

The classification of software in the manner above can be seen diagrammatically as
Figure 1, which was adapted from the software categories based on the Free Software
Foundation view [19]. Table 1 below summarises the main comparisons between the
characteristics of those software categories.

There are subtle differences between open source and free software, in particular
around licensing issues. For example, open source software may use proprietary
library (e.g. the KDE project [20] was using a proprietary library called Qt until
September 2000), which is unacceptable in free software. Further investigation
surrounding these differences could provide better understanding, as highlighted in
section 5.

Table 1: Comparisons of different kinds of software

 Open Source (Free) Software Proprietary Software
 Non-copylefted Copylefted Closed Shareware Freeware
Availability of source code Y Y N N N
Permission to

• redistribute
• modify
• add restriction

Y
Y
Y

Y
Y
N

N
-
N

Y
-
N

Y
-
N

Modified version always free N Y - - -
Free Download Y Y N Y Y
Time Limit in usage N N N Y N
Possibility of making money Y Y Y Y N

3 Characteristics of Open Source
By exposing the characteristics that open source projects usually have, we hope to be
able to develop a clearer picture on what it really means for a particular project or
software development to be an open source project1 or not. The idea is to have a “ tick-
list” of open source characteristics, against which the characteristics of the project in
question can be compared. Additionally, these characteristics highlight the fact that
just stating that a project is open source does not necessarily provide a precise
definition.

3.1 Disciplines to consider
In the spirit of DIRC2, a research project that we are working on, it is important to
highlight that software development is a very complex process that draws upon
knowledge/expertise from many scientific disciplines. Therefore, to understand it
better, it is necessary to emphasise its interdisciplinary nature. It appears that open
source software development is no exception, and in order to determine the relevant
open source characteristics, there are several disciplines that we would like to
consider:

• Computing Science
Covering the technical aspects that need to be considered to engage in an open
source project.

• Management Issues
Dealing with managerial issues and how they relate to open source projects.

• Social Sciences

1 The term ‘project’ is used loosely in this paper, as it is doubtful whether OSS projects fulfil the more
generic management definition of a unique/novel activity with explicit/finite timescales. Should the use
of this term create conflicts of definition, for readers, they can interpret the term ‘project’ as
‘undertakings’ or ‘ initiatives’ .
2 DIRC is a UK EPSRC project based on a Dependable Interdisciplinary Research Collaboration
(DIRC) on computer-based systems (see http://www.dirc.org.uk/).

Addressing areas related to the communities involved in open source projects
and their behaviour.

• Psychology
Accounting for the characteristics of the individuals involved in open source
projects.

• Organisational Aspects
Dealing with aspects such as organisational structures.

• Economics
Looking into economic models that underlie open source projects and/or
corporations with respect to their involvement in open source projects.

• Law
Focusing on legal issues.

Clearly, the OSI definition for the term open source does address legal issues

extensively, and encompasses some economic aspects. On the other hand, it hardly
touches on computing science areas; it also completely ignores the areas of
management, psychology, social sciences and organizational aspects. Furthermore,
there is no guarantee that a given project, by simply adhering to the OSI definition of
the term open source, benefits from the positive effects that are usually related to the
term open source (e.g. being reviewed by many people). The open source software
characteristics proposed by Wang and Wang [11] address some technical aspects, and
in less depth, legal and managerial aspects.

In our attempt to understand open source, we determined a set of
characteristics that occur under that umbrella term, while considering the various
disciplines mentioned above. Some characteristics are common to all efforts we were
able to investigate, whereas others vary between projects. The set of characteristics we
deem relevant for discussing open source are described below, section 3.2 covering
those that are common throughout open source projects and section 3.3 addressing
those that vary between projects.

3.2 Common characteristics
Open source projects have many common characteristics. All items listed under the
OSI definition of open source, OSD (see section 2.2), are the basic requirements for
projects to qualify as open source. Moreover, active open source projects rely upon
several other characteristics. We have identified six characteristics that are present in
successful open source projects, these are addressed below.

Community
All active open source projects have a well-defined community with common interests
that are either involved in continuously evolving its related products and/or in using
its results. Anecdotally, the community, in its vast majority, is composed by men.
Communications tend to be constructive, at times becoming confrontational.

Motivation
The biggest question surrounding the open source phenomena is why do people do it?
What is the explanation behind having people providing contributions for free? The
answer to these questions is not as straightforward as one might have thought. There
are different types of contributors, individuals and corporations. Individuals usually

contribute for personal satisfaction; some have really strong philosophical beliefs
others do not care as much about such issues. Corporations usually get involved with
the aim to gain market share, undermine their competitors, or simply rely on products
generated by open source without having to build a fully equivalent product from
scratch.

Peer recognition also plays a role on motivating contributions. By having their
contributions recognized as appropriate and of good quality by the community
involved, both individuals and corporations have their status raised within the given
project. Consequently, their opinions are considered more carefully with respect to
project related decisions and their reputation may even improve outside the project
boundaries.

Developers’ profile
The set of people that contribute code to specific open source projects is always
composed of those that are also users of the code produced. This means that open
source developers are a subset of the open source user community, i.e. all open source
developers are users, but not all users are developers (Figure 3).

This characteristic explains the fact that there are normally no precise
specifications or requirements documents clarifying what is to be achieved in the
project. It also highlights that it is quite unrealistic to expect the open source
community to start developing arbitrary kinds of software. Software developers are
usually not expert users of medical systems, nuclear plant control systems, or air
traffic control systems.

Process of accepting submissions
An open source project evolves by receiving submissions from various sources to
address various aspects of the project. The most common submissions are those of
bug reports and source code, others include documentation and test cases.
Furthermore, open source projects often post the areas in which they are interested in
receiving submissions. As a consequence, multiple concurrent submissions may be
received addressing the exact same area. Therefore, open source projects have in place
processes for accepting various types of submissions, also making it clear on how to
handle multiple concurrent submissions.
 The process of accepting submissions is composed of two main parts: the
decision making process and the process of disseminating information on
submissions. How these two parts get implemented varies from one open source
project to another (see section 3.3).

Development improvement cycles
Product improvement in the open source software development process can manifest
in both breakthrough and continuous improvement modes. Breakthrough
improvement involves dramatic and relatively impromptu changes [21]. Evidence of
this form of product improvement in open source development was provided by
Raymond [5] in the development of Fetchmail. He notes that:

“The real turning point in the project was when Harry Hochheiser sent me his
scratch code for forwarding mail to the client machine’s SMTP port…this
SMTP-forwarding concept was the biggest single payoff I got…The Cruftiest

parts of the driver vanished. Configuration got radically simpler…the only
way to lose mail vanished…and performance improved.” (p. 47-50)

Continuous improvement involves an increased frequency of change but in smaller
and more incrementally consolidating stages [21]. This philosophy of product
development recognises that small improvements build up to larger improvement
overtime, but with the added advantage of being far easier to implement. Incremental
product improvement through bug finding and fixing is a development hallmark of the
open source paradigm and is embodied in Eric Raymond’s original characterisation
“ release early, release often” [5] The idea is to get quick feedback, which can then be
incorporated back into the product.

More recently such anecdotal claims have been further reinforced by the
research findings of Aoki et al. with the open source Jun project [22]. They tracked
the evolution of the software over 360 versions and identified both incremental
improvements within single version updates followed by significant functionality
increases requiring major modification to the existing architecture. Both of these
forms of product improvement are generically shown in Figure 2 below.

Product
Improvement

Breakthrough

Continuous

Time

Figure 2: Open source product improvement over time.

Modularity
The benefits of modular design are well established in all engineering disciplines, as it
supports increased understanding during design and concurrent allocation of work
during implementation [23]. However, due to the globally distributed nature of open
source development, well-defined interfaces and modularised source-code are a
prerequisite for effective remote collaboration [24].

3.3 Variable characteristics
The areas in which open source projects vary are much more numerous than those that
they have in common. Below is a discussion of some of those.

Choice of work area
As previously mentioned, open source projects often request contributions to the areas
in which they are interested in receiving submissions. Some open source projects will

process both solicited and spontaneous contributions, whereas other open source
projects may be prone to ignoring spontaneous contributions.

Balance of centralisation and decentralisation
The communities within various open source projects are organised differently. Some
have a very strict hierarchy differentiating among various levels of developers (see
Figure 3), whereas others have a much looser structure. The strict hierarchies bring
with them a more centralised power structure, for example, the core developers have
more power than ordinary (co-) developers in making executive decisions. In some
open source projects (e.g. Apache), it is even possible to have more than two levels of
developers. But not all open source projects have multi-level developer groups.
Looser organisational structures have all their developers on the same level, which
implies decentralisation of decisions, at times being based on full consensus for
approving decisions.

Meritocratic culture
The basic model underlying open source projects is that knowledge shown by means
of contributions increases the perception of merit, which in turn leads to power.
Exactly how this transition takes place varies from project to project in terms of
timing and the obstacles that must be overcome, and depends on the actual
organisational structure of the project. For example, Figure 3 shows the possible
transition from passive to active users when they start contributing to the project. If
they could then show their ability (or they could gain respect from the community),
they might be invited into the developer group, where they would have greater rights
over the code (e.g. to incorporate their own modifications into the code base). In some
projects, there is also a possibility of promotion from the co-developer to the core
developer group. The transitions can also go the other way, e.g. a core developer
might wish to resign and become a co-developer instead (or even leave the project
completely) due to other commitments or personality clash.

Business model
Depending on the domain that an open source project addresses, different business
models may motivate the involvement of commercial corporations, researchers,
individual developers and end-users. The business models we have identified so far
are: own use, packaging and selling, and platform/foundation for commercial or
research software development.

Decision making process
The decision making process relies on four dimensions that vary from open source
project to project. These are the quality goals, the acceptance criteria enacted, the
cognitive abilities of the decision group, and the social structure within the project.
Quality goals vary widely from one open source project to another; this can be
observed even in the same application area (e.g. one focusing on performance and
another on portability). The acceptance criteria used also vary among open source
projects. It can be the best solution out of the first n submissions, some form of
aggregation of multiple submissions (even by requesting that someone changes their
solution to add some other aspect seen elsewhere), some memory of previous
submissions by the same person, the first submission received, etc. Additionally, the

ability to recognise better solutions is highly dependent on the cognitive abilities of
the decision group. This implies that the decision making process on accepting
submissions varies among projects and potentially within projects as well, unless the
same people are involved in all decisions.

The social structure inherent to an open source project may be a defined
hierarchy where different groups of people get to evaluate different submissions (e.g.
by focus area) and/or some people exercise greater power, or a monolithic group
composed of all developers. The social structure impacts directly on the decision
making process. If the group is monolithic then the acceptance of submissions may be
achieved by consensus or majority voting. If there is some other form of social
structure, the same consensus or majority voting may apply, at times with the votes of
some of the members counting more than others.

Users

Active users (Contributors)

Transition

Transition

Non−developers Developers

Co−developers Core developers

Passive users

Reporting bugs Suggesting new features Reviewing code Modifying code Making decisions

Implementing new featuresFixing bugs

Transition

Figure 3: The classification of open source users and developers

Submission information dissemination process
The information on submissions and their acceptance may be passively disseminated
by the means of newsgroups or comments in the code itself, it may be actively
disseminated by using emails and mailing lists, or there may be some dedicated web
space for statistical information.

Project starting points
Open source software projects may start from scratch or from existing closed source
software systems, either commercial or research. From the various projects that we
studied we could only find examples of projects that transitioned the full package
from closed to open source at once. Nevertheless, one can envision some closed
source software making a gradual transition to open source, one part (e.g. a
subsystem) at a time.

Visibility of software architecture
The software architecture of a computing system depicts its structure(s) and comprises
its software components, the externally visible properties of those components, and
the relationships among them [25]. The architecture of an open source software
system may be itself open or closed. The “closedness” may occur intentionally or
accidentally. Having an intentionally closed software architecture means that the core
group will consciously not reveal the structure to the general public. An
unintentionally closed software architecture suggests that the structure exists in some
people’s minds only.

Documentation and testing
Documentation and testing are important aspects of the software development process.
Good documentation allows people to use – and more specifically in open source
projects, to understand and modify – the software. Thorough testing enables the users
(and the developers) to have confidence that the software they are using (or
developing) is going to function as expected.

These two areas are often overlooked or vary widely in the open source
development process. Open source contributors tend to be more interested in coding
than documenting or testing. This is probably due to the nature of open source that
tries to replace the formal testing process with “many eyeballs” effect in eliminating
the bugs. Also, adding comments in the source code is often perceived as sufficient for
documentation. There has been some effort in addressing the problem of lack of
documentation (e.g. the Linux Documentation Project [26] and Mozilla Developer
Documentation web page [27]), but this is still a rarity for smaller open source
projects. We have yet to find some sort of testing strategies for open source projects.
They might exist, but implicitly and not open to the outside the project.

Licensing
The basic freedoms of open source software and how they differ from other software
distributions were discussed in section 2.1 and 2.4 earlier. Here we consider the main
varying features of OSD and FSF qualifying licenses3. Whether the software is viral or
can become closed (proprietary) reflects the two main varying features of free and
open source software.
 Table 2 illustrates this with some of the more popular public licenses
conforming to the OSD/FSF definitions. Viral licenses ensure that if any of the
software code is used in other software developments then this will cause all of the
software to come under the terms of that original license. The other varying feature

3 The term ‘qualifying’ refers to the four fundamental freedoms that both the OSD and FSF agree on.

Table 2: Varying characteristics of open source licenses

Licenses Is it viral? Can it be closed?
GPL Yes No
LGPL No No
BSD No Yes
Q Public No No
IBM No Yes
Netscape (i.e. Mozilla) No Yes

concerns whether the license allows any of the original source code to be distributed
in binary form only in future derived software products.

Operational support
In order to facilitate concurrent software development and fast controlled evolution,
all open source projects implement some form of configuration management. This is
enacted by using CVS, other tools, or even an ad-hoc solution using some web-based
support.

The communication within communities related to specific open source
projects is done almost exclusively by electronic means, which are also used to
organise their work. The electronic means most commonly used are dedicated mailing
lists, newsgroups, and web site. The exact structure and usage of web sites, mailing
lists and newsgroups vary among open source projects.

Size
Size is not a distinctive measure in open source projects. Both involved-community
and code base sizes vary widely from project to project.

4 Conclusion
The term open source is being used within the computing science community at large
in a vague manner, consequently creating confusion and misunderstandings. In our
efforts to understand open source we have done an extensive literature review,
explored several web sites related to the topic, and interviewed some individuals and

OSD Community

Motivation Developers’ profile

Process of accepting submissions

Development improvement cycles

Modularity

Choice of work area

Balance of centralisation and decentralisation

Meritocratic culture

Business model

Decision making pro cess

Submission dissemination information process

Starting points

Visibility of software architecture

Doc. and testing

Size

Operational support

Licensing

COMMON

VARIABLE

Figure 4: Open source characteristics – common and variable

corporations involved with open source. Our work was performed bearing multiple
disciplines in mind.

We have determined many project characteristics that are relevant for open
source. Some of these characteristics are common to all efforts, whereas others vary
among open source projects (Figure 4).

How the various characteristics relate to the disciplines discussed in section
3.1 is highlighted in Table 3.

The set of open source characteristics we found can be used as a tick-list both
for analysing and for setting up open source projects. We understand that there is no
way that an absolute tick-list can ever be generated due to the variations that exist
from one open source project to another, so additional variable characteristics may
exist. Our proposed tick-list provides a starting point for understanding open source
and its many meanings.

Table 3: Open source characteristics and disciplines considered

 Computing
Science

Management
Issues

Social
Sciences

Psychology Organizational
Aspects

Economics Law

OSD √ √ √
Community √ √
Motivation √ √ √ √
Developers’
profile

√ √ √

Process of
accepting
submissions

√ √ √

Development
improvement
cycles

√ √ √

Modularity √ √ √
Choice of work
area

√ √ √

Balance of
centralisation
and
decentralisation

 √ √

Meritocratic
culture

 √ √

Business model √
Decision
making process

√ √ √ √

Submission
information
dissemination
process

 √ √

Project starting
points

√ √ √

Visibility of
software
architecture

√ √ √ √ √

Documentation
and testing

√ √ √

Licensing √ √
Operational
support

√ √ √ √

Size √ √ √ √

Our work has led us to understand that it would be unreasonable to try to
discuss open source software in general. There are as many differences among open
source software projects as among non-open source software projects. Furthermore,
many of the characteristics present in open source software projects are not restricted
to open source software environments, they may also be found in some proprietary
environments. Simply using the term open source is not enough, just as using the term
proprietary software does not suffice.

Consequently, discussions comparing software project processes and
approaches ought to occur at a lower level of granularity, at the individual
characteristics level, in order to be fruitful. Whether projects are more or less
successful, or exhibit a lower or higher expected quality, depends on the
characteristics of the development and maintenance environment that they are in.

5 Future Work
There are many issues still left to be investigated with respect to understanding and
exploiting the open source approach. Future work should further clarify the exact
differences between open source and free software, as well as generate a table relating
various existing open source and free software projects to the characteristics we set
forth, while describing how each of these projects implement the variable parts.

There are also dependability issues that need to be addressed. We shall be
looking into statistical information, such as bug density, fixing time, hacking
incidents, etc., regarding open source software, free software, and proprietary
software. This shall be done by grouping software packages according to their
individual characteristics, rather than by grouping them under the labels that we have
just used above (open source, free and proprietary software), with the aim of
determining which openness characteristics foster more dependable systems or not.

6 Acknowledgements
This paper has been funded by the UK EPSRC project on Dependable
Interdisciplinary Research Collaboration (DIRC – http://www.dirc.org.uk/). We would
like to thank the volunteers – in particular, Julian Coleman, Stuart Wheater, and Mike
Ellison – that spent their time while sharing their experiences with us. We would also
like to thank our colleagues from the DIRC project involved in the Open Source
activity for various fruitful discussions contributing towards this paper.

7 References
[1] “The Open Source Initiative: Open Source Definition” ,

http://www.opensource.org/docs/definition.html.
[2] “The Linux Home Page at Linux Online” , http://www.linux.org/.
[3] “The Apache Software Foundation” , http://www.apache.org.
[4] “mozilla.org” , http://www.mozilla.org/.
[5] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary, O'Reilly & Associates, 1999.
[6] G. Moody, Rebel Code: Linux and the Open Source Revolution, The Penguin

Press, 2001.
[7] C. Dibona, M. Stone, and S. Ockman, Open Sources: Voices from the Open

Source Revolution, O'Reilly & Associates, 1999.

[8] A. Mockus, R. T. Fielding, and J. Herbsleb, “A Case Study of Open Source
Software Development: The Apache Server,” Proceedings of ICSE 2000, pp.
263-272, 2000.

[9] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case
Study,” Proceedings of International Conference on Software Maintenance
(ICSM'00), 2000.

[10] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A Quantitative Profile
of a Community of Open Source Linux Developers” , SILS TR-1999-05, 1999.

[11] H. Wang and C. Wang, “Open Source Software Adoption: A Status Report,”
IEEE Software, March/April, pp. 90-95, 2001.

[12] J. Feller and B. Fitzgerald, “A framework analysis of the open source software
development paradigm,” Proceedings of 21st International Conference on
Information Systems, pp. 58-69, 2000.

[13] “SourceForge” , http://sourceforge.net/.
[14] “Geocrawler” , http://www.geocrawler.org/.
[15] “The Free Software Definition - GNU Project - Free Software Foundation

(FSF)” , http://www.fsf.org/philosophy/free-sw.html.
[16] “The Open Source Initiatiative: History of the OSI” ,

http://opensource.org/docs/history.html.
[17] “Why Free Software is better than Open Source” ,

http://gnu.metagensoft.com/philosophy/free-software-for-freedom.html.
[18] E. S. Raymond, “Homesteading the Noosphere” ,

http://tuxedo.org/~esr/writings/homesteading/homesteading/.
[19] “Categories of Free and Non-Free Software” ,

http://www.gnu.org/philosophy/categories.html.
[20] “K Desktop Environment Home” , http://www.kde.org/.
[21] N. Slack, S. Chambers, C. Harland, A. Harrison, and R. Johnston, Operations

Management, 2nd ed, Financial Times Pitman Publishing Series, 1998.
[22] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka, B. Reeves,

A.Takashima, and Y. Yamamoto, “A Case Study of the Evolution of Jun: an
Object-Oriented Open-Source 3D Multimedia Library,” Proceedings of 23rd
ICSE Conference, Toronto, Canada, pp. 524-532, 2001.

[23] R. N. Britcher, The Limits of Software: People, Projects, and Perspectives,
Addison Wesley, 1999.

[24] T. Bollinger, R. Nelson, K. M. Self, and S. J. Turnbull, “Open-Source
Methods: Peering Through the Clutter,” IEEE Software, July/August, pp. 8-11,
1999.

[25] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
Addison Wesley, 1998.

[26] “Linux Documentation Project” , http://www.linuxdoc.org.
[27] “Mozilla Developer Documentation” , http://www.mozilla.org/docs/.

