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Abstract
Design diversity between redundant channels is a way of improving the dependability of
software-based systems, but it does not alleviate the difficulties of dependability assessment.
Assuming failure independence between channels is unrealistic. Using statistical evidence from
realistic testing, standard inference procedures can estimate system reliability, but they take no
advantage of a system’s fault-tolerant structure. We show how to extend these techniques to take
account of fault tolerance by a conceptually straightforward application of Bayesian inference.
Unfortunately, the method is computationally complex and requires the conceptually difficult
step of specifying 'prior' distributions for the parameters of interest. This paper presents the
correct inference procedure, exemplifies possible pitfalls in its application and clarifies some
non-intuitive issues about reliability assessment for fault-tolerant software.

1. Introduction
Design diversity between the redundant channels of a fault-tolerant architecture appears to be an effective way of
improving the dependability of software-based systems [Littlewood et al. 2000b]. However, it does not simplify
the problem of assessing the reliability or safety of a specific system, e.g. for the purposes of licensing.

Consider for instance a two-channel, 1-out-of-2, software-based diverse system, as could be for instance a
protection system (Fig. 1) (we will use this example throughout our discussion).

Fig. 1. Our example system

Estimating its probability of failure per demand (pfd)  would be simplest if we could assume independence
between failures of the two channels. Then, we could just assess the pfd of the two channels separately and
multiply them together. Evidence of even modest reliability of the channels would suffice to claim much higher
reliability for the system. But assuming independent failures has been shown to be completely unrealistic by both
experiments [Knight & Leveson 1986] and theoretical modelling [Littlewood et al. 2000b]. Positive correlation
between channel failures should normally be expected, essentially because, for the builders of diverse versions of
a program, some demands will be more difficult - more error-prone - than others. So, even if diverse versions
(channel software designs) are produced ‘independently’, their failures are more likely to happen on certain
demands than on others, which leads to positive correlation. What is worse, research has found no simple way of
setting an upper bound for the correlation between failures of the two channels. So, it is necessary actually to
evaluate the pfd of the two-channel system as a whole.

The simplest way to assess the reliability of a system - fault tolerant or otherwise - is to observe its failure
behaviour in (real or simulated) operation. If we treat the fault-tolerant system as a black box  (Fig. 2a), i.e., we
ignore the fact that it is indeed fault-tolerant, we can apply standard techniques of statistical inference to estimate
its pfd on the basis of the amount of realistic testing performed and the number of failures observed. However,
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this ‘black-box’ approach to reliability estimation has severe limitations  [Littlewood & Strigini 1993], [Butler &
Finelli 1991]: if we want to demonstrate very small upper bounds on the pfd, the amount of testing required
becomes very expensive and then infeasible. It is then natural to ask whether we can use the additional
knowledge that we are dealing with a fault-tolerant system to reduce this problem - to achieve better confidence
for the same amount of testing.

We reasonably assume that we can observe whether either channel fails, so that testing produces evidence about
the reliability of each channel by itself as well as of the whole system. Thus, we treat the system as a ‘white-box’
(Fig. 2b). In addition, we have a priori knowledge about the effect of the channels' failures on system failure: we
know that we are dealing with a 1-out-of-2 system. In short, we have much more information than in the ‘black
box’ scenario. We may hope that this additional information can be used to reduce the uncertainty about system
reliability. This is the problem which we address in this paper.
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Fig. 2. Black-box vs. white-box inference

We first briefly introduce Bayesian inference: the more widely known approach of "classical" inference, which
typically employs  different ad hoc methods for different inference problems, does not seem suitable in this case
in which we wish to perform inference in a consistent way on various aspects of a system. We then describe the
procedure for applying Bayesian inference to our 2-channel system. Bayesian inference presents two kinds of
difficulty: conceptually, it depends on the user specifying "prior" probability distributions, which many people
find difficult to specify; computationally, it can be very demanding, requiring numerical computation of complex
integrals. Various methods are commonly applied to reduce both difficulties. In the rest of the paper we proceed
to discuss both some standard method and some apparently promising ad hoc methods. It turns out that none of
these will be useful in all cases.

2 Bayesian inference
In our scenario, we count the demands to the system and the failures (of one or both channels) observed, and
from this information try to predict the probability of failures on a future demand. This is a problem of statistical
inference. Standard techniques for statistical inference are divided into "classical" and "Bayesian". Their
applications to estimating the reliability of a system as a black box (i.e., ignoring how it behaves internally - in
our case, ignoring that one channel may fail without the whole system failing) is standard textbook material.  The
classical methods produce "confidence" statements, like "we have 95% confidence that the probability of failure

per demand is less than 10-3". Classical inference is the more widely known approach, but it has drawbacks. The
meaning of a "confidence level" is defined in terms of the experiment that produced it, and cannot be translated
into probabilities for events of actual interest, e.g. system failure over a pre-specified duration of operation. It is
difficult or meaningless to compare values of confidence bounds and confidence levels obtained for different
systems or under different regimes of observation, and to devise a classical inference procedure for a system
described by multiple parameters, as is our case.

The Bayesian approach, on the other hand, produces probability statements, which we can combine to derive
probabilities of other events of interest. Furthermore, inference procedures for any situations can be easily
derived from the general approach.

In our case, the Bayesian approach considers that the actual pfd of the system is unknown, and thus treats it as a
random variable. In a sense, the system that one is trying to evaluate was extracted at random from a population
of possible systems, with different reliabilities and different probabilities of being actually produced. Any one of
these could have been delivered, as far as the observer can tell from the available information. Reliability
estimation consists, roughly speaking, in deciding whether the actual system is, among this population, one of
those with a high pfd or with low pfd. This population is described by a prior probability distribution: for each



Assessing the Reliability of Diverse Fault-Tolerant Systems

- 3 -

possible value of the pfd, a probability is stated that the system has that value of pfd (more precisely, a
probability density function is specified). This prior distribution must describe the knowledge available before
testing. Then, the frequency with which we observe failures gives us reason to alter this probability distribution.
For instance, passing a certain number of tests shows that the system is less likely to be one with very high pfd.
Bayes’s theorem completely specifies the changes in probabilities as a function of the observations. A posterior
distribution for the pfd is thus obtained, which takes account of the knowledge derived from observation.

With Bayesian inference, one can answer the question ‘How likely is it that this software has pfd ≤ 10-4 ?’ with an
actual probability. This can be used in all kinds of reliability calculations. One can also, given the probability
distribution for the pfd, calculate the probability that the software will survive a given number of demands
without failures, i.e., the probabilities of events of actual interest.

The Bayesian approach has the advantage of a consistent and rigorous treatment of all inference problems, but in
our case we have additional reasons for preferring it over the “classical” approach: we need to produce an
inference procedure for a new, non-textbook scenario - a fault-tolerant system; and we need inference about
multiple variables (the pfds of the individual channels and of the system) linked by mutual constraints.

However, Bayesian methods present two difficulties. First, although the formulae for the inference are
straightforward to derive, the calculations which they require may be very complex, often with no closed-form
solution. Numerical solutions may be time-consuming and vulnerable to numerical errors. Fast computers help,
but one may need to write ad hoc software.

The second difficulty is more basic. Bayesian inference always requires one to start with prior probability
distributions for the variables of interest: it (rightly) compels us to state the assumptions that we bring to the
problem. But formulating the prior distributions may require somewhat subtle probabilistic reasoning. The prior
distribution must be one that the assessor does consider a fair description of the uncertainty about the system
before the system is tested. Even experts in a domain may find it very difficult to specify their prior beliefs in a
mathematically rigorous format. In some cases, if undecided between alternative priors, the only practical
solution may be to adopt the more pessimistic one. The difficulty may be alleviated by checking how sensitive the
predictions are to the variation between the different priors that appear plausible. As observations accumulate,
they may start to "speak for themselves", making the differences in the priors irrelevant. Statisticians have
developed various ways for simplifying both problems (computational complexity and difficulty in specifying
priors). In our discussion we will consider the most popular among such general "tricks", as well as some ad hoc
ones.

3 Problem statement and Bayesian inference procedure
We consider the system of Fig. 1, subjected to a sequence of n independent demands.

If we treat the system as a black box, i.e. we can only observe system failure or success (Fig. 2a), the inference
proceeds as follows. Denoting the probability of failure on demand for the system as p, the posterior distribution
of p after seeing r failures in n demands is:

f x r n L n r x f xp p( | , ) ( , | ) ( )∝ , (1)

where )|,( xrnL  is the likelihood of observing r failures in n demands if the pfd were exactly x. This is given in

this case by the binomial distribution, L n r x
n

r
x xr n r( , | ) ( )=







 − −1 . f p ( )•  is the prior distribution of p, which

represents the assessor’s beliefs about p, before seeing the result of the test on n demands.

(1) is the general form of Bayes’s formula, applicable to any form of the likelihood and any prior.

In the white-box scenario, instead, we can discriminate among four different possible outcomes for each demand:
We use these notations:

Event Version A Version B Number of occurrence in n tests Probability
α fails fails R1 PAB

β fails succeeds R2 P PB AB−

γ succeeds fails R3 P PA AB−

δ succeeds succeeds R4 1 − − +P P PA B AB

The probability model now has the four parameters shown in the last column of the table, but since these four
probabilities sum to unity, there are only three degrees of freedom: the triplet PA, PB and PAB completely specifies
the model. An assessor will need to specify a joint prior distribution for these three parameters,

),,(,, zyxf
BAAB PPP .
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The likelihood of observing r1 common failures of both channels, r2 failures of channel A only and r3 failures of
channel B only in n tests is now given by a multinomial function:

( ) ( )
L r r r n P P P

n

r r r n r r r
P P P P P P P P

AB A B

AB
r

B AB

r

A AB

r

AB A B
n r r r

( , , , | , , )

!

! ! !( )!
( )

1 2 3

1 2 3 1 2 3

1 2 3
1 2 31

=

− − −
− − + − − − − − (2)

The posterior distribution, similarly to (1), is:

),,(),,|,,,(),,,|,,( ,,321321,, zyxfPPPnrrrLnrrrzyxf
BAABBAAB PPPBAABPPP ∝ (3)

Given a joint distribution for PA, PB, PAB, we can always deduce the distribution 
ABPf  of the system pfd, by

integrating out PA and PB. So, for a given prior joint distribution, there are two options for inferring system
reliability from the test results. in the white-box method, we obtain the posterior joint distribution via (3) and then

deduce the posterior 
ABPf from this. We can also apply the black-box method: we first derive the prior 

ABPf  and

then update it to obtain a posterior via (1). Comparing the two results will be for us a way of comparing the two
methods.

How to solve these formulas is clear even though it may be computationally expensive. There remains the
problem of specifying prior distributions, which we address in the next section.

4 Prior distributions
Here we study ways of specifying prior distributions. Our main concern is to help assessors to specify priors, by
imposing a useful structure for their interrelated beliefs about the pdfs of the channels and of the system. A useful
side effect is often a simplification of the calculations. We omit the mathematical details and concentrate on the
practical conclusions; a more mathematical and more detailed discussion is available in [Littlewood et al.
2000a].

4.1 Dirichlet distribution
It is common in Bayesian statistics to use a conjugate family of distributions to represent prior beliefs. This term
denotes a parametric family of distributions that has the property for a particular problem (i.e. likelihood
function) that if an assessor uses a member of the family to represent his/her prior beliefs, then the posterior will
automatically also be a member of the family. If a conjugate family exists for a certain likelihood function(this is
not always the case), it is unique. For our white-box scenario, the conjugate family is that of Dirichlet
distributions.

It turns out that, with a Dirichlet prior, the posteriors for the probability of system failure derived via the  ‘white-
box’ and via the ‘black-box’ methods are identical, no matter what we observed. In other words, whatever the
detailed failure behaviour of the two channels, there is no benefit from taking this extra information into account
in assessing the reliability of the system. So if an assessor’s prior belief is indeed a Dirichlet distribution, there is
no advantage in using ‘white-box’ inference. On the other hand, if the assessor’s belief are not represented by a
Dirichlet distribution, choosing this distribution as a convenient simplification would make it impossible to
exploit any potential gain from the white-box inference.

4.2 Prior distributions with known failure probabilities of the versions
Another form of simplification of the prior distribution may be possible if there is a very great deal of data from
past operational use for each version (e.g. if they are commercial-off-the-shelf - COTS - items), so that each
channel’s probability of failure on demand can be estimated with great accuracy. We can then approximate this
situation by assuming that the pfds of the versions are known with certainty and are PAtrue  and PBtrue . In other

words, the uncertainty of the assessor concerns only the probability of system failure.

We illustrate this set-up with a few numerical examples, shown in Table 1. In each case we assume that
PAtrue = 0 001. , PBtrue = 0 0005. . Clearly, a 1-out-of-2 system will be at least as reliable as the more reliable of the

two versions, so the prior distribution of the system pfd is zero outside the interval [0, 0.0005]. We consider two
examples of this distribution: a uniform distribution and a Beta(x, 10, 10) both constrained to lie within this
interval.

We make no claims for ‘plausibility’ for these choices of priors. However, it should be noted that each is quite
pessimistic: both priors, for example, have mean 0.00025, suggesting a prior belief that about half channel B
failures will also result in channel A failure.
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Table 1
Uniform prior Pab|Pa,Pb Percentiles

10% 50% 75% 90% 95%

Prior 0.00005 0.00025 0.000375 0.00045 0.000475

r1=0 Black Box 0.000011 0.00007 0.000137 0.000225 0.000286
White Box (version failures) 0.000008 0.00005 0.000095 0.000148 0.00018
White Box (no version failures) 0.000268 0.00042 0.000462 0.00048 0.000485

r1 = 1 Black Box 0.000045 0.000155 0.000246 0.000342 0.000396
White Box (version failures) 0.00004 0.00012 0.000179 0.000238 0.000271

r1 = 3 Black Box 0.00015 0.0003 0.000384 0.000443 0.000465
White Box (version failures) 0.000165 0.000283 0.000343 0.00039 0.000413

r1 = 5 Black Box 0.000235 0.000375 0.000435 0.00047 0.00048
White Box (version failures) 0.000345 0.00044 0.000469 0.000482 0.000485

Non-uniform prior Pab|Pa,Pb Percentiles
10% 50% 75% 90% 95%

Prior 0.000175 0.000245 0.000283 0.000317 0.000335

r1=0 Black Box 0.000146 0.000215 0.000253 0.000286 0.000306
White Box (version failures) 0.00013 0.000188 0.00022 0.00025 0.000269
White Box (no version failures) 0.000205 0.000278 0.000313 0.000345 0.00036

r1 = 1 Black Box 0.000161 0.000228 0.000265 0.0003 0.000318
White Box (version failures) 0.00015 0.00021 0.000244 0.000275 0.000291

r1 = 3 Black Box 0.000185 0.000251 0.000287 0.00032 0.000336
White Box (version failures) 0.000195 0.000255 0.00029 0.00032 0.000335

r1 = 5 Black Box 0.000205 0.000271 0.000305 0.000335 0.000353
White Box (version failures) 0.00024 0.000304 0.000335 0.00036 0.000375

Table 1: Two groups of results are summarised: with uniform prior and non-uniform prior,
Pab|Pa,Pb=Beta(x,10,10) on the interval [0, 0.0005]. The percentiles illustrate the cumulative distribution
P(θ≤X) = Y, where X are the values shown in the table and Y are the chosen percentiles, 10%, 50%,
75%, etc. Rows labelled ’Black box’ represent the percentiles, calculated with the black-box inference,
those labelled ’White box’ show the percentiles calculated for a posterior derived with (3). ’(no version
failures)’ and ’(version failures)’ refer to two different observations, in which no individual failures of
channels and individual channel failures were observed, respectively.

We assume that n=10,000 demands are executed in an operational test environment. The rows in Table 1, for
each of the two prior distributions studied, differ in the numbers of failures (of each channel and of both together)
observed over the 10,000 demands. The rows marked “version failures” describe cases in which the observed
numbers of channel A and of channel B failures take their (marginal) expected values, i.e. 10 and 5 respectively.
The other case is the extreme one where there are no failures of either channel.

In each case our main interest is in how our assessment of the system reliability based upon the full information,
r1, r2, r3, (“white-box”) differs from the assessment based upon the black-box evidence, r1, alone.

In Table 1, the first row with r1=0 shows the increased confidence that comes when extensive testing reveals no
system failures. The black-box posterior belief in the system pfd is better (all percentile values are lower) than the
prior belief. More importantly, the posterior belief in the ’r1=0, White box (version failures)' rows, based on
observing version failures but no system failures, is more optimistic than the black-box posterior. Here the extra
information of version failure behaviour allows greater confidence to be placed in the system reliability,
compared with what could be claimed from the system behaviour alone.

The result is in accord with intuition. Seeing no system failures in 10,000 demands, when there have been 10
channel A failures and 5 channel B failures suggests that there is some negative correlation between failures of
the channels: even if the channels were failing independently we would expect to see some common failures (the
expected number of common failures, conditional on 10 As and 5 Bs, is 2.5).

The rows where (r1≠0) show what happens when there are system failures (common failures of the versions), with
the same numbers of version failures (10 As, 5 Bs). As would be expected, the more system failures there are on
test, the more pessimistic are the posterior beliefs about system reliability. More interesting, however, is the
relationship between the black-box and white-box results. Consider the rows with (r1=5). These rows of Table 1
represent the most extreme case, in which all demands that are channel B failures are also channel A failures. This
would suggest strongly that there is positive correlation between the failures of the two versions. Here the black-
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box method gives results that are too optimistic compared with those based on the complete (white-box) failure
data.

These results show that ‘white-box’ inference can produce advantages (albeit small ones in this example).

However, this table also shows a consequence of our simplifying assumption (perfectly known channel pfds) that
is clearly wrong. When r1=0, that is there have been no failures of either version (and hence no system failures),
the posterior distribution of the pfd is worse than it was a priori. How can the observation of such ‘good news’
make us lose confidence in the system?

The reason for this paradox lies in the constraints on the parameters of the model that are imposed by assuming
the versions reliabilities are known with certainty. Consider Table2:

Table 2
A fails A succeeds total

B fails θ PB-θ PB
B succeeds PA-θ 1-PA-PB+θ 1-PB

total PA 1-PA 1

There is only one unknown parameter, θ, the system pfd, which appears in all the cells above representing the
four possible outcomes of a test. If we observe no failures in the test, this makes us believe that the entry in the (A
succeeds, B succeeds) cell, 1-PA-PB+θ, is large. Since PA, PB are known, this makes us believe that θ is large.

Of course, it could be argued that observing no version failures in 10,000 demands, with the known version pfds
0.001, 0.0005, is extremely improbable - i.e. observing this result in practice is essentially impossible. This does
not remove the difficulty, however: it can be shown that whatever the value of n, the ‘no failures’ posterior will
be more pessimistic than the prior.

The practical conclusion seems to be that this particular simplified prior is only useful if the number of demands
in test is great enough to ensure that at least some version failures are observed.

4.3 Priors allowing conservative claims for system reliability
Here we show that even if PA and PB are not known with certainty, assuming that they are can be used to obtain
conservative estimates in many cases, and is therefore useful despite the problems described in section 4.2.

Clearly for every prior f P P PAB A B, , ( , , )• • •  (with its corresponding marginal distribution of the probability of system

failure, f PAB
( )• ), if we have upper bounds on the probabilities of channel failures, PAmax and PBmax, we could

define a new prior, f P P PAB A B

*
, , ( , , )• • • , such that P PA A= max , with certainty, maxBB PP =  with certainty, and

the probability of system failure is as in the true prior, f PAB
( )• .

Now we compare the posterior marginal distributions, ),,,|( 321 rrrnf
ABP •  and f n r r rPAB

* ( | , , , )• 1 2 3 , derived

from the same observation (n : r1, r2, r3), respectively with the true and the approximated priors, f P P PAB A B, , ( , , )• • •

and f P P PAB A B

*
, , ( , , )• • • . We illustrate the relationship between the two posterior distributions in Table 3.

The prior f P P PAB A B, , ( , , )• • •  used in Table 3 is defined as follows:

• f f fP P P PA B A B, ( , ) ( ) ( )• • = • • , i.e. the prior distributions of PA and PB are independent.1

• The marginal distributions f PA
( )•  and f PB

( )•  are Beta distributions, f PA
( )• = Beta(x,20,10) and

f PB
( )• = Beta(x, 20, 20) within the interval [0, 0.01]:  PAmax = PBmax = 0.01.

• The assessor is "indifferent" among the possible values of PAB, i.e.:

  f P P
P PP A B

A B
AB

( | , )
min( , )

• = 1
 within [0, min(PA, PB)] and 0 elsewhere.

The system was subjected to n = 4000 tests, and the failures of the system, channel A and B, represented by r1, r2

and r3, respectively, are shown in the table. The selected examples cover a range of interesting testing results: no
failure, no system failure but channel failures, system failure only, a combination of system and channel failures.

                                                          
1 The assumption we make can be spelled out as: “Even if I were told the value of PA, this knowledge would not change my
uncertainty about PB (and vice versa)”. Notice that this assumption is not equivalent to assuming independence between the
failures of the two channels, which is well known to be unreasonable. In fact, our assumption says nothing about the
probability of common failure, PAB.
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The percentiles reveal that the simplified prior always gives more pessimistic predictions than the true prior: the
probability that the system reliability will be better than any reliability target will be greater with the true prior,

f dataPAB
( | )• , than with the simplified one, f dataPAB

* ( | )• .

This observation, if universally true, suggests a relatively easy way of avoiding the difficulty in defining the full
f P P PAB A B, , ( , , )• • • . If assessors can specify their beliefs about upper bounds on the channels pfds, PAmax and PBmax,

and system pfd, f PAB
( )• , these can be combined into the simplified prior, f P P PAB A B

*
, , ( , , )• • • , to obtain

conservative prediction.

Table 3 illustrates a small part of the numerical experiments we carried out with different priors and assumed
testing results. It presents the typical cases in which the observations are consistent with the priors: the number of
channel failures are within the variation due to the random failures. In all cases the simplified prior produced
more conservative predictions than the true prior. It must be noted, however, that for some extreme case of
observations which are not consistent with the priors (their occurrence is virtually impossible with the assumed
priors) the conservatism of the simplified prior is not guaranteed. General conditions under which the simplified
prior is guaranteed to generate conservatism are yet to be identified.

Table 3
Percentiles 10% 50% 75% 90% 95%

Prior 0.00025 0.00225 0.0035 0.00435 0.00485

r1 = 0, r2 = 0 f n r r rPAB
( | , , , )• 1 2 3 0.00278 0.003525 0.00406 0.00445 0.00473

r3 = 0 f n r r rPAB

* ( | , , , )• 1 2 3
0.0055 0.00635 0.0067 0.00705 0.00725

Black-box posterior 0 0 0.000125 0.00035 0.0005

r1 = 1, r2 = 0 f n r r rPAB
( | , , , )• 1 2 3 0.0029 0.00372 0.0042 0.00455 0.0048

r3 = 0 f n r r rPAB

* ( | , , , )• 1 2 3
0.0055 0.00638 0.0067 0.00685 0.00735

Black-box posterior 0 0.00033 0.00058 0.00092 0.00115

r1 = 1, r2 = 24 f n r r rPAB
( | , , , )• 1 2 3 0 0.0001 0.00035 0.00062 0.00076

r3 = 20 f n r r rPAB

* ( | , , , )• 1 2 3
0.00035 0.00123 0.00178 0.00235 0.00275

r1 = 0, r2 = 20 f n r r rPAB
( | , , , )• 1 2 3 0 0 0.00022 0.00049 0.00067

r3 = 15 f n r r rPAB

* ( | , , , )• 1 2 3
0.00015 0.00135 0.00224 0.0029 0.00331

Table 3: The percentiles of the prior marginal distribution f PAB
( )•  and the following three posterior

distributions: f n r r rPAB
( | , , , )• 1 2 3 , f n r r rPAB

* ( | , , , )• 1 2 3  and black-box posterior.

The usefulness of the conservative prior f P P PAB A B

*
, , ( , , )• • •  seems limited. Indeed, for the important special case

of testing which does not reveal any failure (r1 = 0, r2 = 0, r3 = 0), the conservative result is too conservative and
hence not very useful: the posterior will be more pessimistic than the prior, due to the phenomenon explained in
section 4.2. This fact reiterates the main point of this paper: prior elicitation is difficult and there does not seem
to exist easy ways out of this difficulty.

The last two cases presented in Table 3 with testing results (r1 = 1, r2 = 24, r3 = 20) and (r1 = 0, r2 = 20, r3 = 15),
respectively, illustrate the interplay between the black-box and the white-box inferences. In the case with a single
system failure the black-box posterior is more pessimistic than the full white-box posterior, while in the case with
no system failure the black-box posterior gives more optimistic prediction about system reliability. In the case (r1

= 1, r2 = 24, r3 = 20) we have evidence of negative correlation between failures of channels. The expected
number of system failures under the assumption of independence is 1.4 in 4000 tests, while we only observed 1.
In the case (r1 = 0, r2 = 20, r3 = 15) even though no system failure is observed the evidence of negative
correlation is weaker (lower number of individual failures is observed). As a result, the white-box prediction is
worse than the black-box one.

In summary, using the black-box inference for predicting system reliability may lead to overestimating or
underestimating the system reliability.

5. Conclusions
We have studied how to use the knowledge that a system is internally a fault-tolerant system, of which we can
observe the individual channels, to improve the confidence in its reliability that we can derive from observing its
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behaviour under realistic testing. I.e., we have studied  what we call ’white box’ inference, in which failures of the
channels, masked by fault tolerance, are taken into account, as opposed to ’black box’ inference in which they are
ignored.

Bayesian inference is the correct method for ’white box’ inference about a fault-tolerant systems: we do not see a
better way for consistently performing inference about multiple parameters (the pfds of the channels and of the
whole systems) linked by reciprocal constraints.

We have described the proper application of this approach to infer the pfd of a 1-out-of-2, on-demand system.

Recognising that this method, albeit correct, is practically very cumbersome to apply, we have then looked for
ways of simplifying its practical use. The most standard method - using prior distributions from a conjugate
family of distributions, which is often a somewhat arbitrary but useful approximation - turns out to be useless for
this particular problem as it is equivalent to ignoring the fault-tolerant structure of the system. We have then
explored more ad hoc methods for simplifying the correct inference method. In one simplification, the
reliabilities of the channels are taken as known with certainty. It turns out that this approximation, plausible in
some situations, produces the artefact of counterintuitive (and useless) conclusions in the important case of no
observed failures.  Last, we showed that even if this assumption is not justified it may be used in some cases (see
4.3) as it seems to allow a conservative approximation that dispenses with the need to specify complete prior
distributions: this may be useful in practice, but not universally so.

In conclusion, it is for the time being unavoidable to adapt the application of the inference procedure to the
specific case at hand, selecting those specific approximations that work best for the conditions observed. The
practical difficulties could be alleviated by better, specialised software tools, relieving the burden of the multiple
sensitivity analyses and ’what if’ analyses that may be necessary. The main requirement is that such tools must
guarantee the necessary numerical precision, to avoid the risk of decisions being driven from mere artefacts of
numerical error.

The immediate conclusion is that it is important to be aware of how ’white box’ inference should be performed,
but in many cases its difficulties will make it unattractive. We expect that in some cases its outcome will appear
immediately useful (e.g. as a way of trusting that a certain claimed pfd is conservative), and hope that these will
lead to improving mathematical techniques and tools and thus reduce the mechanical difficulties of applying the
approach. The more basic difficulty - the dependence on prior distributions - is actually at the same time the basic
advantage of Bayesian inference: it requires one to make explicit the assumptions underlying the inference
activity and it clearly measures how much  added confidence can really be derived from observing the system’s
behaviour.

Acknowledgement
This work was supported partially by British Energy Generation (UK) Ltd. under the ’DIverse Software PrOject’
(DISPO) and by EPSRC under the ’Diversity In Safety Critical Software’ (DISCS) project. The authors wish to
thank Martin Newby for helpful discussions.

References
[Butler & Finelli 1991]  R. W. Butler and G. B. Finelli, “The Infeasibility of Experimental Quantification of Life-
Critical Software Reliability”, in ACM SIGSOFT ’91 Conference on Software for Critical Systems, in ACM
SIGSOFT Software Eng. Notes, Vol. 16 (5), New Orleans, Louisiana, pp.66-76, 1991.
[Knight & Leveson 1986]  J. C. Knight and N. G. Leveson, “An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming”, IEEE Transactions on Software Engineering, SE-12 (1), pp.96-
109, 1986.
[Littlewood et al. 2000a]  B. Littlewood, P. Popov and L. Strigini, “Assessment of the Reliability of Fault-
Tolerant Software: a Bayesian Approach”, in 19th International Conference on Computer Safety, Reliability and
Security (SAFECOMP’2000), Rotterdam, Netherlands, Lecture Notes in Computer Science, Springer-Verlag,
2000a. Also available at http://www.csr.city.ac.uk/people/peter.popov/papers/SAFECOMP2000_Copyright.pdf
[Littlewood et al. 2000b]  B. Littlewood, P. Popov and L. Strigini, “Modelling software design diversity - a
review”, ACM Computing Surveys, (to appear) 2000.
[Littlewood & Strigini 1993]  B. Littlewood and L. Strigini, “Validation of Ultra-High Dependability for
Software-based Systems”, Communications of the ACM, 36 (11), pp.69-80, 1993.


