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Abstract. What processes can explain how very large populations are able to

converge on the use of a particular word or grammatical construction without global

coordination? Answering this question helps to understand why new language

constructs usually propagate along an S-shaped curve with a rather sudden transition

towards global agreement. It also helps to analyze and design new technologies that

support or orchestrate self-organizing communication systems, such as recent social

tagging systems for the web. The article introduces and studies a microscopic model

of communicating autonomous agents performing language games without any central

control. We show that the system undergoes a disorder/order transition, going trough

a sharp symmetry breaking process to reach a shared set of conventions. Before the

transition, the system builds up non-trivial scale-invariant correlations, for instance

in the distribution of competing synonyms, which display a Zipf-like law. These

correlations make the system ready for the transition towards shared conventions,

which, observed on the time-scale of collective behaviors, becomes sharper and sharper

with system size. This surprising result not only explains why human language can

scale up to very large populations but also suggests ways to optimize artificial semiotic

dynamics.

http://arXiv.org/abs/physics/0509075v2
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1. Introduction

Bluetooth, blogosphere, ginormous, greenwash, folksonomy. Lexicographers have to add

thousands of new words to dictionaries every year and revise the usage of many more.

Although precise data is hard to come by, lexicographers agree that there is a period

in which novelty spreads and different words compete, followed by a rather dramatic

transition after which almost everyone uses the same word or construction [1]. This

‘semiotic dynamics’ has lately become of technological interest because of the sudden

popularity of new web-tools (such as del.icio.us or www.flickr.com) which enable human

web-users to self-organize a system of tags and that way build up and maintain social

networks and share information. Tracking the emergence of new tags shows similar

phenomena of slow spreading followed by sudden transitions in which one tag overtakes

all others. There is currently also a growing number of experiments where artificial

software agents or robots bootstrap a shared lexicon without human intervention [2, 3].

These applications may revolutionize search in peer-to-peer information systems [4] by

orchestrating emergent semantics [5] as opposed to relying on designer-defined ontologies

such as in the semantic web [6]. They will be needed when we send groups of robots to

deal autonomously with unforeseeable tasks in largely unknown environments, such as in

the exploration of distant planets or deep seas, hostile environments, etc. By definition it

will not be possible to define all the needed communication conventions and ontologies

in advance and robots will have to build up and negotiate their own communication

systems, situated and grounded in their ongoing activities [7]. Designers of emergent

communication systems want to know what kind of mechanisms need to be implemented

so that the artificial agents effectively converge towards a shared communication system

and they want to know the scaling laws to see how far the technology will carry.

2. The Naming Game

Some of the earlier work on studying the emergence of communication conventions has

adopted an evolutionary approach [8, 9, 10, 11, 12, 13, 14, 15]. Roughly speaking,

the degree in which an agent’s vocabulary is similar to that of others is considered

to determine its reproductive fitness, new generations inherit some features from

their parents (vocabularies, possibly with errors due to their transmission, or learning

strategies), and natural selection drives the population towards convergence. Here we are

interested however in phenomena that happen on a much more rapid time-scale, during

the life-span of agents and without the need for successive generations. All agents will

be considered peers that have the right to invent and negotiate language use [16, 17].

We introduce and study a microscopic model of communicating agents, inspired by the

so-called Naming Game [17], in which agents have only local peer-to-peer interactions

without central control nor fitness-based selection, but nevertheless manage to reach

a global consensus. There can be a flux in the population, but generation change

is not necessary for reaching coherence. Peer-to-peer emergent linguistic coherence
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Figure 1. Inventory dynamics: Examples of the dynamics of the inventories in a

failed and a successful game, respectively. The speaker selects the word highlighted in

yellow. If the hearer does not possess that word he includes it in his inventory (top).

Otherwise both agents erase their inventories only keeping the winning word.

has recently been studied also in [18] focusing on how a population selects among a

set of possible grammars already known to each agent, whereas here we investigate

how conventions may develop from scratch as a side effect of situated and grounded

communications. The Naming Game model to be studied here uses as little processing

power as possible and thus establishes a lower-bound on cognitive complexity and

performance. In contrast with other models of language self-organization, agents do

not maintain information about the success rate of individual words and do not use

any intelligent heuristics like choice of best word so far or cross-situational learning.

We want to understand how the microscopic dynamics of the agent interactions can

nevertheless give rise to global coherence without external intervention.

The Naming Game is played by a population of N agents trying to bootstrap

a common vocabulary for a certain number M of individual objects present in their

environment, so that one agent can draw the attention of another one to an object,

e.g. to obtain it or converse further about it. The objects can be people, physical

objects, relations, web sites, pictures, music files, or any other kind of entity for which a

population aims at reaching a consensus as far their naming is concerned. Each player is

characterized by his inventory, i.e. the word-object pairs he knows. All the agents have

empty inventories at time t = 0. At each time step (t = 1, 2, ..) two players are picked

at random and one of them plays as speaker and the other as hearer. Their interaction

obeys the following rules (see Fig. 1):

• The speaker selects an object from the current context;

• The speaker retrieves a word from its inventory associated with the chosen object,

or, if its inventory is empty, invents a new word;

• The speaker transmits the selected word to the hearer;

• If the hearer has the word named by the speaker in its inventory and that word
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is associated to the object chosen by the speaker, the interaction is a success and

both players maintain in their inventories only the winning word, deleting all the

others;

• If the hearer does not have the word named by the speaker in its inventory, the

interaction is a failure and the hearer updates its inventory by adding an association

between the new word and the object.

This model makes a number of assumptions. Each player can in principle play with

all the other players, i.e. there is no specific underlying topology for the structure

of the interaction network. So the game can be viewed as an infinite dimension

(or “mean field”) Naming Game (an almost realistic situation thanks to the modern

communication networks). Second, we assume that the number of possible words is

so huge that the probability that two players invent the same word at two different

times for two different objects is practically negligible (this means that homonymy is

not taken into account here) and so the choice dynamics among the possible words

associated with a specific object are completely independent. As a consequence, we can

reduce, without loss of generality, the environment as consisting of only one single object

(M = 1). In this perspective it is interesting noting that Komarova and Niyogi [13],

have formally proven, adopting an evolutionary game theoretic approach, that languages

with homonymy are evolutionary unstable. On the other hand, it is commonly observed

that human languages contain several homonyms, while true synonyms are extremely

rare. In [13] this apparent paradox is resolved noting that if we think of ”words in a

context”, homonymy does indeed disappears from human languages, while synonymy

becomes much more relevant. These observations match perfectly also with our third

assumption, according to which speaker and hearer are able to establish whether the

game was successful by subsequent action performed in a common environment. For

example, the speaker may refer to an object in the environment he wants to obtain and

the hearer then hands the right object. If the game is a failure, the speaker may point

or get the object himself so that it is clear to the hearer which object was intended.

3. Phenomenology

The first property of interest is the time evolution of the total number of words owned

by the population Nw(t), of the number of different words Nd(t), and of the success rate

S(t). In Figure (2) we report these curves averaged over 3000 runs for a population

of N = 1000 agents, along with two examples of single run curves. It is evident that

single runs originate quite irregular curves. We assume in these simulations that only

two agents interact at each time step, but the model is perfectly applicable to the case

where any number of agents interact simultaneously.

Clearly, the system undergoes spontaneously a disorder/order transition to an

asymptotic state where global coherence emerges, i.e. every agent has the same word

for the same object. It is remarkable that this happens starting from completely empty
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Figure 2. Temporal evolution: we report here time evolution curves of a Naming

Game played by N = 1000 agents. Without loss of generality (see text) we consider

M = 1 objects. Bold curves are obtained averaging 3000 runs, while the light ones are

obtained by a single run. (a) Total number of words in the system Nw(t) vs. t (t here

denotes the number of games played) ; (b) Number of different words in the system

Nd(t), whose average maximum is N/2; (c) Success rate S(t), calculated by assigning

1 to a successful interaction and 0 to a failure and averaging over many realizations.

In the inset it is shown that, up to the disorder/order transition, the success rate is

well described by the relation S(t) = 3t/N2.

inventories for each agent. The asymptotic state is one where a word invented during

the time evolution took over with respect to the other competing words and imposed

itself as the leading word. In this sense the system spontaneously selects one of the many

possible coherent asymptotic states and the transition can thus be seen as a symmetry

breaking transition.

The key question now is whether one can prove that this transition will always take

place and on what time-scale. For our model, it is easy to prove that an absorbing

state will be eventually reached with probability 1. Here an absorbing state is a state in

which all the agents have only one word, the same for the whole population. The proof

is straightforward. In fact from any possible state there is always a non-zero probability

to reach an absorbing state in, for instance, 2(N − 1) interactions. A possible sequence

is as follows. A given agent speaks twice with all the other N−1 agents using always the

same word (say A). After these 2(N − 1) interactions all the agents have only the word

A. Denoting with p the probability of the sequence of 2(N−1) steps, the probability that

the system has not reached an absorbing state after 2(N−1) iterations is smaller or equal

to (1 − p). Therefore, iterating this procedure, the probability that, starting from any

state, the system has not reached an absorbing state after 2k(N−1) iterations, is smaller

than (1−p)k which vanishes exponentially with k. This very general argument, anyway,

does not give any idea about how and on which time scale the absorbing state is reached.

Alternatively one can define the overlap state function as O = 2
N(N−1)

∑
i>j

|ai∩aj |

|ai||aj |
, where

ai is the ith agent’s inventory, whose size is |ai|, and |ai ∩ aj | is the number of words in

common between ai and aj . The overlap function monitors the level of lexical coherence
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in the system. Averaged over several runs, it always shows, numerically, a growth with

time, i.e. 〈O(t + 1)〉 > 〈O(t)〉. On the other hand, looking at the single realization,

this function grows almost always, i.e. 〈O(t + 1)〉 > O(t) except for a set a very rare

configurations whose statistical weight is negligible. This monotonicity combined with

the fact that the overlap function is bounded, i.e. O(t) ≤ 1, strongly supports that

the system will indeed reach a final coherent state but a formal proof is still lacking.

This is consistent with the fact that the coherent state is the only state stable under

the dynamical rules of the model. The more challenging question then concerns under

what scaling conditions convergence is reached.

We can distinguish three phases in the behavior of the system, compatible with

the S-shaped curve typically observed in the spreading of new language conventions in

human populations [1, 19, 20]. Very early, pairs of agents play almost uncorrelated

games and the number of words hence increases over time as Nw(t) = 2t, while the

number of different words increases as Nd(t) = t. In this phase one can look at the

system as a random graph where pairs of agents are connected if they have a word in

common. Because two players always have the same word after a failed game, each

failure at this stage corresponds to adding an edge to the graph. This fixes a time scale

of order t ∼ N to establish a giant component in the network [21] and for sure after a

time of the order of t ∼ N log N there will be, in the thermodynamic limit (N → ∞),

only the giant component surviving [22].

Then the system enters a second stage in which it starts building correlations (i.e.

multiple links connecting agents who have more than one word in common) and collective

behavior emerges. We see in the simulations (see inset of fig.1c) that the rate of success

S(t) in this stage increases as S(t) ≃ 3t/N2 and we have been able to show analytically

why this is the case ‡.
In this article, we focus on the third stage, when the disorder/order transition takes

place. It occurs close to the time when Nw(t) reaches its maximum. Although one might

assume intuitively that the transition towards global coherence is gradual, we see in fact

a sudden transition towards a consensus, and, even more remarkably, the transition gets

steeper and steeper as the population size increases. This is important because it shows

that the system scales up to large populations.

Time-scales. In order to better see this phenomenon and then understand why it is the

case, we first look more carefully at the time scales involved in the process, specifically

how the observables of the system scale with the size N of the population. Figure (3a)

shows the scaling of the peak and convergence times of the total number of words with

N . Both curves exhibit a power law behavior§ with an exponent 3/2. The distributions

for peak and convergence times, for a given size N , are not Gaussian but fit well with

the Weibull extreme value distribution [23] (data not shown).

‡ Details will be reported elsewhere.
§ Slight deviation from a pure power-law behavior are observed for the scaling of the convergence time.

These deviations exhibit a log-periodic behavior and deserve further investigations.
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Figure 3. Scaling relations: (a) scaling of the time where the total number of

words reaches a maximum (tmax) as well as of the convergence times (tconv) with

the population size N . Both curves exhibit a power law behavior with exponent 3/2.

Statistical error bars are not visible on the scale of the graph. An interesting feature

emerges from the ratio between convergence and maximum times, which exhibits a

peculiar oscillating trend on the logarithmic scale (mainly due to convergence times

oscillations). (b) scaling of the maximum number of words that the system stores

during its evolution with the population size N . The curve exhibits a power law

behavior with exponent 3/2. Statistical error bars are not visible on the scale of the

graph. It must be noted that the values represent the average peak height for each

size N , and this value is larger than the peak of the average curve. (c) Curves of

the success rate S(t) are reported for various systems size. The time is rescaled as

t → (t/tS(t)=0.5) so that the crossing of all the lines at t/tS(t)=0.5 = 1 is an artifact.

The increase of the slope with system size is evident, showing that the disorder/order

transition becomes faster and faster for large systems, when the dynamics is observed

on the system time scale N3/2. The form of the rescaling has been chosen in order

to take into account the deviations from the pure power-law behaviour in the scaling

of tconv, rescaling each curve with a self consistent quantity (tS(t)=0.5). (d) Bottom

right: Success rate S(t) for various systems size. The curves collapse well after time

rescaling t → (t− tS(t)=0.5)/(t
2/3
S(t)=0.5)

5/4, indicating that the characteristic time of the

disorder/order transition scales as N5/4.

The scaling of the maximum number of words Nw(tmax) is clearly governed by a

power law distribution Nw(tmax) ∼ N3/2 as well, as shown in Figure (3b). Here is

how the exponent can be understood using scaling arguments. We assume that, at the

maximum, the average number of words per agent scales as Nα, with α unknown. Then

it holds:

dNw(t)

dt
∝ 1

cNα
(1 − q) − q

cNα
2cNα, (1)

where, following the model rules, 1
cNα is the probability for the speaker to play a specific

word. q is he probability that the hearer possesses the word played by the speaker which

can be estimated as cNα

N/2
(N/2 being the number of different words). This is a mean-field

assumption since one neglects the correlations among the inventories and one assumes

that the probability for an agent to possess a given word is word-independent and is
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proportional to the number of words in the agent’s inventory. So the two terms are

the gain term (in case of a failed game) and a loss term (in case of a successful game)

respectively where 2cNα (strictly speaking 2(cNα − 1)) words are removed from the

inventories.

Imposing dNw(t)
dt

= 0 one gets α = 1/2. Exploiting the relation S(t) ≃ 3t/N2

pointed out earlier and valid also at the the peak, one can predict the scaling of peak

time as tmax ∼ N
3

2 .

Summarizing, we have a first time scale of the order N where the system performs

uncorrelated language games and the invention process takes place. It follows the

much more interesting time scale N
3

2 , which is the time-scale for collective behaviors

in the system, i.e. the time scale over which the multi-agent system collectively builds

correlations and performs the spontaneous symmetry breaking transition.

Figure (3c) reports success rate curves, S(t), for different population sizes, all

rescaled according to a transformation equivalent to t → t/N3/2 (see Figure caption

for details on the rescaling). It is immediately clear that the qualitative behavior of

these curves, when observed on the collective time-scale N3/2, changes with system size

N . In particular the transition between a regime of scarce or absent communication,

S(t) ≃ 0, and a situation of efficient communication, S(t) ≃ 1, i.e. the disorder/order

transition, tends to become steeper and steeper when the population size increases. In

order to explain this phenomenon we need to look at what happens slightly before the

transition.

4. Network Analysis

We first investigate the behavior of agent inventories and single words at the microscopic

level. Since each agent is characterized by its inventory, a first interesting aspect to

investigate is the time evolution of the fraction of players having an inventory of a given

size. A nontrivial phenomena emerges in the fraction of players with only one word

(data not shown). At the beginning, this fraction grows since each player has only

one word after his first interaction, then it decreases, because the first interactions are

usually failures and agents store the new word they encounter, and eventually it grows

again until the moment of convergence when all the players have the same unique word.

So, the histogram of the number of agents versus their inventory sizes k is a precious

description of the system at a given time. In particular, slightly before the convergence,

the normalized distribution p(k) deviates from a relatively flat structure to exhibit a

power-law behavior. We can therefore write:

p(k) ∼ k−βf(k/
√

N) (2)

with a cut-off function f(x) = 1 for x << 1 and f(x) = 0 for x >> 1. From simulations

it turns out that β ≃ 7/6.

We now turn to an analysis of the single words themselves. In Figure (4) the

different words are ordered according to their popularity so that the ranking of the
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Figure 4. Single words ranking: The ranking of single words is presented for

different times for a population size of N = 104. The histograms are progressively well

described by a power law function. For times close to convergence the most popular

word (i.e. that ranked as 1st) is no more part of the power law trend and the whole

distribution should be described with eq. (3).

most common single word is 1. During the first two stages, the distribution of the

words can be described with a power law. However, approaching the transition, the first

ranked single word starts to become more and more popular, while all the other words

are power-law distributed with an exponent α which changes over time (reminiscent

of Zipf’s law [24] and consistent with Polya’s urn and other recent approaches [25]).

Concretely, the global distribution for the fraction of agents possessing the R-ranked

word, n(R), can be described as:

n(R) = n(1)δR,1 +
Nw/N − n(1)

(1 − α)((N/2)1−α − 21−α)
R−αf(

R

N/2
), (3)

where the normalization factors have been obtained imposing that
∫ ∞
1 n(R)dR =

Nw/N ‖. On the other hand from equation (2) one gets, by a simple integration,

Nw/N ∼ N1−β/2, which gives n(R)|R>1 ∼ 1
Nβ/2−α R−αf( R

N/2
). This implies that in the

thermodynamic limit N(1), i.e. the number of players with the most popular word,

is a finite fraction of the whole population (a feature reminiscent of the Bose-Einstein

condensation [26]).

To explain why the disorder/order transition becomes steeper and steeper in the

thermodynamic limit, we must investigate the dynamics that leads to the state where

all agents have the same unique word. In other words, we need to understand how the

network of agents, where each word is represented by a fully connected clique ¶, reaches

its final state of fully connected graph with only single links. A successful interaction

determines the removal of a node from all the cliques corresponding to the deleted

words of the two agents while a failure causes the increment of an element of the clique

‖ We substituted the discrete sums with integrals, an approximation valid in the limit of large systems.
¶ i.e. a subset of three or more nodes, with all possible links present.
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corresponding to the uttered word. Combining this view of the population as a network

with the fact that the spreading of the most popular word exceeds that of less common

ones, we see that evolution towards convergence proceeds in a multiplicative fashion,

pushing further the popularity of the most common word while decreasing that of the

others. An interaction in which the most common word is played will more likely lead

to success, and hence the clique corresponding to the most common word will tend to

increase, while other cliques will lose nodes. To put this argument on a formal footing,

we can conveniently assume that just before the transition all agents already know the

most popular word. Thus, we have only to determine how the number of the links

deleted after a successful interaction, Md, scales with N , so that we can estimate the

rate at which the smaller cliques disappear from the network. It holds:

Md =
Nw

N

∫ ∞

2
n2(R)NdR ∼ N3− 3

2
β (4)

where the product between the average number of words of each agents (i.e. the average

number of cliques involved in each reduction process), Nw

N
, the probability of having a

word of rank R (i.e. the probability that the corresponding clique is involved in the

reduction process), n(R), and the number of agents that have that word (i.e. the size

of the clique), n(R)N , is integrated starting from the first deletable word (the second

most popular). From simulations we have that β ≃ 7/6 so that Md ∼ N5/4 and the

ratio Md/N
3/2 ∼ N− 3

2
(β−1) = N−1/4 goes to zero for large systems. This explains the

greater slope, on the system timescale, of the success rate curves for large populations

(Figure (3c)). In Figure (3d) the time is rescaled as t → (t − const.N3/2)/N5/4 (see

Figure caption for more details on the precise scaling), and the different S(t) curves

collapse indeed well.

5. Discussion and conclusions

In this article we have introduced and studied a model of communication which does not

rely on generational transmission (genetic or cultural) for reaching linguistic coherence

but on self-organization. The model defines the microscopic behavior of the agents

and is therefore directly implementable and thus applicable for building emergent

communication systems in artificial multi-agent systems. We showed that the model

exhibits the same phenomena as observed in human semiotic dynamics, namely a period

of preparation followed by a rather sharp disorder/order transition. We have identified

the different time-scales involved in the process, both for individual and collective

behaviors. We have explained this dynamics by observing a build up of non trivial

dynamical correlations in the agents’ inventories, which display a Zipf-like distribution

for competing synonyms, until a specific word breaks the symmetry and imposes itself

very rapidly in the whole system.

The Naming Game model studied here is as simple as possible. One can imagine

more intelligent and hence more realistic strategies and the invention and learning

may involve much more complex forms of language, but that would make the present
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theoretical analysis less clear. By focusing on few and simple rules, we have been able

to identify the main ingredients to describe how the population develops a shared and

efficient communication system. The good news, from the viewpoint of applications, like

emergent communication systems in populations of software agents, is that a well-chosen

microscopic behavior allows a scale-up to very large populations.
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