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Abstract

Semiotic dynamics is a novel field that studies how semiotic
conventions spread and stabilize in a population of agents.
This is a central issue both for theoretical and technological
reasons since large system made up of communicating agents,
like web communities or artificial embodied agents teams, are
getting widespread. In this paper we discuss a recently in-
troduced simple multi-agent model which is able to account
for the emergence of a shared vocabulary in a population of
agents. In particular we introduce a new deterministic agents’
playing strategy that strongly improves the performance of
the game in terms of faster convergence and reduced cogni-
tive effort for the agents.

Introduction
Imagine a population of artificial embodied agents explor-
ing an unknown environment. One of the first tasks they
should face is exchanging informations about their discov-
eries. In particular, when a new ’thing’ is met, they should
be able to agree on its identification. If the agents were en-
dowed with short range communication systems only, the
agreement would take place locally, and, in a second time,
should hopefully become global. But how could this hap-
pen? A first hypothesis is that they could agree on the ge-
ographical location of the object and everybody could go
and see it. This is of course very costly, and definitely not
efficient since each new finding of the same object would
require the same spending procedure. Moreover it would
require a mechanism of global coordination, which is not al-
ways available. Instead, it would be desirable that each agent
could recognize the object the first time it sees it and then as-
sign a true ’name’ to it. The global agreement on the name
would then allow for a great saving of time and would also
be crucial for the birth of a communication system among
agents. This kind of problems inspired the well known
”Talking Heads Experiment” in which embodied software
agents were shown to be able of bootstrapping a shared set
of semiotic conventions (Steels, 1999).

In the following, we shall assume that our agents are en-
dowed with the necessary tools needed to recognize and
physically deal with an object and we shall concentrate on

the dynamics that leads to the obtention of a shared set
of conventions in a population. This is the general prob-
lem investigated by the field of Semiotic Dynamics, ac-
cording to which language is an evolving and self orga-
nized system (Steels, 2000). The term evolving must not
be misleading. The evolution of language across genera-
tions is a well investigated aspect, and multi-agent modeling
has already proved to be a powerful tool for its investiga-
tion (Hurford, 1989; Nowak et al., 1999). In our context, on
the other hand, the focus is on much shorter timescales, so
that we are not dealing with transmission across generations
nor, more in general, Darwinian concepts. The issue of the
self-organization of language on fast temporal scales is, of
course, of the outmost importance and generality. Besides
artificial systems, where it is obvious that the agreement has
to take place rapidly, it concerns human dynamics, too. In
particular the user based tagging systems presently spread-
ing on the web (such as del.icio.us or flickr.com), where
users manage tags to share and categorize informations, of-
fer wonderful examples of self-organized communication
systems. Gaining hints into population-scale semiotic dy-
namics is then important for a twofold reason. On the one
hand it is necessary to interpret and understand presently oc-
curring phenomena, and on the other hand it can be very im-
portant to provide indications for the design of large scale
technological systems.

In this paper we focus on a recently introduced multi-
agent model (Baronchelli et al., 2005), inspired by the so-
called Naming Game (Steels, 1995), which, though being
very simple in its definition, is able to account for the birthof
a shared set of conventions in a population. We investigate
also how the properties of the system change with the popu-
lation size. We then study how a modification of the rules of
the original model, from random to deterministic strategies,
allows to improve the performance of the population: both
the time required for the consensus to emerge and the agents
memory requirements are indeed substantially lowered.

http://arXiv.org/abs/physics/0511201v1


A simple model of semiotic dynamics
Let us consider a population ofN agents which perform pair-
wise games in order to agree on the name to assign to a sin-
gle object. Each agent is characterized by his inventory or
memory, i.e. a list of name-object associations that is empty
at the beginning of the process and evolves dynamically dur-
ing time. At each time step, two agents are randomly se-
lected, one to play as speaker, the other one as hearer, and
interact according to the following rules:

• The speaker has to transmit a name to the hearer. If his
inventory is empty, he invents a new word, otherwise he
selectsrandomlyone of the names he knows;

• If the hearer has the uttered name in his inventory, the
game is a success, and both agents delete all their words
but the winning one;

• If the hearer does not know the uttered word, the game is
a failure, and the hearer inserts the word in its inventory,
i.e. he learns it.

A remark concerning the presence of a single object is
in order. From a linguistic point of view it is equivalent to
the rather strong assumption of preventing homonymy, thus
making different objects independent. This simplification
allows for a strong reduction in the complexity of the model
and, moreover, does not seem so drastic when thinking of
artificial agents that assign randomly extracted real numbers
to new objects.

Another point concerns the difference with some other
well-known models of opinion and consensus formations.
In Axelrod’s model (Axelrod, 1997), each agent is endowed
with a vector of opinions, and can interact with other agents
only if their opinions are already close enough; in Sznajd’s
model (Sznajd-Weron and Sznajd, 2000) and in the Voter
model (Krapivsky, 1992), the opinion can take only two dis-
crete values, and an agent takes deterministically the opin-
ion of one of his neighbors. Also in (Deffuant et al., 2000),
the opinion is modeled as a unique variable and the evolu-
tion of two interacting agents is deterministic. In the Nam-
ing Game model on the opposite, each agent can potentially
have an unlimited number of possible discrete states (or
words, names)at the same time, accumulating in his mem-
ory different possible names for the object: the agents are
able to ”wait” before reaching a decision. Moreover, each
dynamical step can be seen as a negotiation between speaker
and hearer, with a certain degree of stochasticity.

To understand the behavior of the system (see
also (Baronchelli et al., 2005)), we report in Figure 1
three curves obtained averaging several runs of the process
in a population ofN = 2× 103 agents. They represent
the evolution in time of the total number of words present
in the systemNw(t), which quantifies the total amount of
memory used by the process, of the number of different
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Figure 1: Process evolution - The total number of words in
the system,Nw(t) (or total memory used), the number of dif-
ferent words,Nd(t), and the success rate,S(t), are plotted as
a function of time. The final convergence state is character-
ized by the presence of the same unique word in the inven-
tories of agents. Thus, at the end of the process, we have
Nw(t) = N andNd(t) = 1, while the probability of a success
is equal to 1 (S(t) = 1). The curves have been obtained av-
eraging over 300 simulation runs for a population of 2×103

agents.

words,Nd(t), and of the success rate,S(t), defined as the
probability of a successful interaction between two agentsat
time t. The first thing to be noted is that the system reaches
a final convergence state in which all agents have the same
unique word, i.e. a final proto-communication system has
been established. It is thus interesting to proceed with
a more detailed analysis of how this final state of global
communication emerges from purely binary interactions.

The process starts with a trivial phase in which the inven-
tories are empty, so that the invention process is dominat-
ing andN/2 different words are created on average. This
rapid transient is followed by a longer period of time in
which most interactions are unsuccessful (S(t)≃ 0), and the
sizes of inventories keep growing. However the amount of
memory used does not increase indefinitely, since correla-
tions are progressively built up among inventories and in-
crease the probability of successful interactions. In partic-
ular, theNw(t) curve exhibits a well identified peak, whose
height and occurrence time are important parameters to de-
scribe the process. Slightly after the peak, there is a quite
abrupt transition from a disordered state in which communi-
cation among agents is difficult to a nearly optimal situation,
which is captured by a jump of the success rate curve. The
process then ends when the convergence state (Nd(t) = 1,
Nw(t) = N) is reached. Finally, it is worth noting that the de-
veloped proto-communication system is not only effective
(each agent understands all the others), but also efficient (no
memory is wasted in the final state).
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Figure 2: Scaling with the population sizeN. In the up-
per graph the scaling of the peak and convergence time,tmax

andtconv, is reported, along with their difference,tdi f f . All
curves scale with the power lawN1.5. Note thattconv and
tdi f f scaling curves present characteristic log-periodic oscil-
lations. The lower curve shows that the maximum number of
words (peak height,Nmax

w = Nw(tmax)) obeys the same power
law scaling.

To gain a deeper comprehension of the process it is im-
portant to investigate how the main features scale with the
system sizeN. In particular, it is relevant to know how the
agents’ cognitive effort in terms of memory and the time re-
quired to reach the final state depend on the population size.
The global memory used is maximum when the number of
words is the highest, i.e. at the peak of theNw(t) curve. The
scaling of the peak timetmaxand heightNmax

w = Nw(tmax) are
therefore studied, together with the convergence timetconv,
in Figure 2. It turns out that all these quantities follow power
laws: tmax∼ Nα, tconv∼ Nβ, tdi f f = (tconv− tmax) ∼ Nδ, and
Nmax

w ∼ Nγ with exponentsα ≈ β ≈ γ ≈ δ ≈ 1.5. More pre-
cisely, each agent accumulates at the peak a number of or-
der N0.5 different words, which means that the necessary
memory per agent grows notably when the system size is
increased.

Let us mention that the values forα and γ can in fact
be understood through simple analytical arguments. As-
sume indeed that, at the maximum, the average number of
words per agent scales ascNa. The probability for an agent
chosen as speaker to utter a specific word is 1/(cNa), and
the probability that the hearer already possesses this word
is cNa/(N/2). The balance of unsuccessful interactions
(which increaseNw by one unit) and successful ones (which
decreaseNw by 2cNa) can then be written as:

dNw(t)
dt

∝
1

cNa

(

1−
2cNa

N

)

−

1
cNa

2cNa

N
2cNa . (1)

At the maximum,dNw(t)
dt = 0, so that the only possibility is

a = 1/2. Similar arguments can be applied to the derivation

of the exponent for the time of the peak. It is important to
stress that these analytical results can be obtained thanksto
the simplicity of the microscopic interaction rules.

In summary, the time to convergence grows quite fast as a
function of the system size, and the necessary memory used
by each agent also diverges whenN grows. A natural and
important question is therefore whether it is possible to im-
prove the performance of the system. More precisely, a ma-
jor challenge would be to improve the population-scale per-
formances of the process without loosing the simplicity of
the microscopic rules, which is the precious ingredient that
allows for in-depth investigations of global-scale dynamics.
We will address this problem in the next section.

Smart Strategy
In the model described in the previous section, agents, when
playing as speakers, extract randomly a word in their in-
ventories. This feature, along with the drastic deletion
rule that follows a successful game, is the distinctive trait
of the model. Indeed, most of the previously proposed
models of semiotic dynamics prescribe that a weight is
associated to each word in each inventory: this weight
determines its probability of being chosen (see, for in-
stance (Lenaerts et al., 2005), and references therein). As
a natural consequence the effect of a successful game con-
sists in updating the weights, rewarding the weight associ-
ated with the winning word and possibly reducing the others.
Such sophisticated structures can in principle lead to faster
convergence, but make the models more complicated, com-
promising the possibility of a clear global scale picture of
the convergence process.

In order to maintain the simplicity of the dynamical rules,
it seems natural to alter the purely stochastic selection rule
of the word chosen by the speaker. In the model previously
described, all the words of a given agent’s inventory share a
priori the same status. However, a simple parameter to dis-
tinguish between them is their ”arrival time”, i.e. the time
at which they enter in his inventory. In particular two words
are easily distinguished from the others: the last recorded
one and the last one that gave rise to a successful game,
i.e. the first that was recorded in the new inventory gen-
erated after the successful interaction. Natural strategies to
investigate consist therefore in choosing systematicallyone
of these particular words. We shall refer to these strategies
as ”play-last” and ”play-first” respectively. Other selection
rules are of course possible but would be either more com-
plicated or more artificial.

The scaling behavior of the model when the ”play-last”
strategy is adopted is very interesting (data not shown). The
peak time and height scale respectively astmax∼ Nα with
α ≈ 1.3 andNmax

w ∼ Nγ with γ ≈ 1.3, i.e. the used memory
is reduced, while the convergence time scales astconv∼ Nβ

with β ≈ 2.0. At the beginning of the process, playing
the last registered word creates a positive feedback that en-
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Figure 3: Play-smart strategy - scaling with the population
sizeN. Top - For the time of the peaktmax∼ Nα, α ≈ 1.3,
while for the convergence time we havetconv∼ aNα + bNδ

with δ ≈ 1.3, δ ≈ 1.0. Bottom - the maximum number of
words scales asNmax

w ∼ Nγ with γ ≈ 1.3. The ”play-smart”
rule gives rise to a more performing process, from the point
of view of both convergence time and memory needed.

hances the probability of a success. In particular a circulat-
ing word has more probabilities of being played than with
the usual stochastic rule, thus creating a scenario in which
less circulating words are known by more agents. On the
other hand the ”last in first out” approach is highly inef-
fective when agents start to win, i.e. after the peak. In
fact, the scalingtconv∼ Nβ can be explained through sim-
ple analytical arguments. Let us denote byNa the number
of agents having the word ”a” as last recorded one. This
number can increase by one unit if one of these agents is
chosen as speaker, and one of the other agents is chosen as
hearer, i.e. with probabilityNa/N× (1−Na/N); the prob-
ability to decreaseNa of one unit is equal to the probability
that one of these agents is a hearer and one of the others is
a speaker, i.e.(1−Na/N)Na/N. These two probabilities are
perfectly balanced so that the resulting process for the den-
sity ρa = Na/N can be written as an unbiased random walk
(with actually a diffusion coefficientρa(1− ρa)/N2); it is
then possible to show that the time necessary for one of the
ρa to reach 1 is of orderN2. In summary, in this framework it
is much more difficult to bring to convergence all the agents,
since each residual competing word has a good probability
of propagating to other individuals.

The ”play-first” strategy, on the other hand, leads to a
faster convergence. Due to a sort of arbitrariness in the
strategy before the first success of the speaker, the peak re-
lated quantities keep scaling as in the usual model, so that
tmax∼Nα andNmax

w ∼Nγ with α ≈ γ ≈ 1.5 (data not shown).
This seems natural, since playing the first recorded word is
essentially the same as extracting it randomly when most
agents have only few words. In fact, in both cases no vir-
tuous correlations or feedbacks are introduced between cir-
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Figure 4: ”Play-smart” strategy - FractionV(t) of agents
who have played at least one successful game at time t. The
transition between the initial condition, in which all agents
play the last heard word, to the final one, in which agents
play the word which took part in their last successful inter-
action, is continuous. The growth gets faster after the peak
of Nw.

culating and played words. However, playing the last word
which gave rise to a successful interaction strongly improves
the system-scale performances once the agents start to win.
In particular it turns out that for the difference between the
peak and convergence time we obtain(tconv− tmax) ∼ Nδ

with δ ≈ 1.15 (data not shown), so that the behavior of the
convergence time is the result of the combination of two dif-
ferent power law regimes, i.e.tconv∼ aNα + bNδ. On the
other hand, the stochastic rule leads to(tconv− tmax) ∼ N1.5

as shown in Figure 2. This means that the ”play-first” strat-
egy is able to reduce the time that the system has to wait be-
fore reaching the convergence, after the peak region. This
seems the natural consequence of the fact that successful
words increase their chances to be played while suppress-
ing the spreading of other competitors.

In summary, we have seen that, compared to the usual ran-
dom extraction of the played word, the ”play-last” strategy
is more performing at the beginning of the process, while
the ”play-first” one allows to fasten the convergence of the
process, even if it is effective only after the peak of the total
number of words. It seems profitable, then, to define a third
alternative strategy which results from the combination of
the two we have just described. The new prescription, which
we shall call ”play-smart”, is the following:

→ If the speaker has never took part in a successful game, he
plays the last word recorded;

→ Else, if the speaker has won at least once, he plays the last
word he had a communicative success with.

The first rule will thus be applied mostly at the beginning,
and as the system evolves, the second rule will be progres-
sively adopted by more and more agents. Since the change
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Figure 5: Success rate curvesS(t) for the various strate-
gies: stochastic, ”play-last”, ”play-first” and ”play-smart”.
At the beginning of the process the stochastic and ”play-
first” strategies yield similar success rates, but then the deter-
ministic rule speeds up convergence. On the other hand also
the ”play-smart” and the ”play last” evolve similarly at the
beginning, but the latter reaches the final state much earlier
through a steep jump. It is worth noting that for three strate-
gies theS(t) curves present a characteristicS− shapedbe-
havior, while in the ”play-last” one the disorder-order tran-
sition is more continuous (see inset in the top figure). All
curves, both forN = 103 andN = 104, have been generated
averaging over 3×103 simulation runs.

in strategy is not imposed at a given time, but takes place
gradually, in a way depending of the evolution of the sys-
tem, such a strategy has also the interest of being in some
sense self-adapting to the system’s actual state. In Figure3,
the scaling behaviors relative to the ”play-smart” strategy
are reported. Both the height and time of the maximum fol-
low the scaling of the ”play-last” strategy:tmax∼ Nα and
Nmax

w ∼ Nγ with α ≈ γ ≈ 1.3. The convergence time, on
the other hand, scales as a superposition of two power laws:
tconv∼ aNα + bNδ with α ≈ 1.3,δ ≈ 1.0. Thus, the global
behavior determined by the ”play-smart” modification is in-
deed less demanding in terms of both memory and time. In
particular, while the lowering of the peak height yields in
fact a slower convergence for the ”play-last” strategy, the
progressive self-driven change in strategy allows to fasten
the convergence further than for the ”play-first” strategy.

It is also worth studying how the transition between the
initial situation in which most agents play the last recorded
word to that in which they play the last successful word
takes place in the ”play-smart” strategy. In other words we
want to study the probabilityV(t) of finding an agent that
has already been successful in at least one interaction at a
given time. Results relative to a population of 104 agents
are shown in Figure 4. Interestingly, the transition from the
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Figure 6: Total number of wordsNw(t) for the various strate-
gies: stochastic, ”play-last”, ”play-first” and ”play-smart”.
Due to different scaling behaviors of the process, differences
become more and more relevant for largerN (top figure:
N = 103; bottom figure:N = 104). The ”play-smart” ap-
proach combines the advantages of ”play-last” and ”play-
first” strategies.

initial situation to the final one is continuous, and there isa
sudden speeding up after the peak.

Finally, in order to have an immediate feeling of what dif-
ferent playing word selection strategies imply, we report in
Figures 5 and 6 the success rateS(t) and the total number
of words,Nw(t) relative to the four strategies described pre-
viously, for two different sizes. The ”play-first” and ”play-
smart” curves exhibit the same ”S-shaped” behavior forS(t)
as in the case of the stochastic model, while the ”play-last”
rule affects qualitatively the way in which the final state is
reached. Indeed, in this case the transition between the ini-
tial disordered state and the final ordered one is more contin-
uous (see the inset in the top figure). Moreover, Figure 6 il-
lustrates that the choice of the strategy has substantial quan-
titative consequences for both necessary memory and time
needed to reach convergence, even if the changes in scaling
behavior could at first appear rather limited (fromN1.5 to
N1.3). In particular, the ”play-smart” strategy, which adapts
itself to the state of the system, leads to a drastic reduction of
the memory and time costs and thus to a dramatic increase
in efficiency.

Conclusion
In conclusion, we have discussed a multi-agent model of
Semiotic Dynamics which is able to describe the conver-
gence of a population of agents on the use of a particular
semiotic convention (a name to assign to an object, in our
case). The model relies on very simple microscopic interac-
tion rules, thus being appropriate for accurate global scale
investigations. We have then shown that the modification of
the rule followed by agents to select the word to be transmit-



ted gives rise to a process which is less demanding in terms
of agents memory usage and leads to a faster convergence,
too. Due to the possible utility of Semiotic Dynamics mod-
els for the design of technological systems, we believe that
the findings presented here are not only intrinsically interest-
ing from a theoretical point of view, but can also be relevant
for applications.
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