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Abstract.  
The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is 

inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and 

high computational performance. Previous studies on FPA assume fixed parameter values based on empirical 

observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is 

made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve 

this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical 

applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC’13 for real-

parameter single-objective optimization problems. It is found that the optimal FPA parameters depend 

significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, 

it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust 

predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a 

function of problem dimensions and affordable computational cost. 
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1 Introduction 

 

In many complex multi-modal design problems in industry and engineering, tracking of global 

optimum solutions remains a highly challenging task. Often, conventional optimization 

methodologies do not perform adequately in this class of problems as they may be trapped in 

local optima. Then, the use of nature-inspired metaheuristic algorithms is recommended (Yang 

2008). There is a high number of well-established metaheuristic optimisation algorithms in 

literature, including the Genetic Algorithm (GA) (Holland 1975), Firefly Algorithm (Yang 
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2010), Particle Swarm Optimization (PSO) (Kennedy 2011), Cuckoo Search (CS) (Gandomi 

et al. 2013) as well as very recent ones such as the Coronavirus Herd Immunity Optimizer 

(CHIO) (Al-Betar et al. 2021) and the Aquila Optimizer (Abualigah et al. 2021).  

The Flower Pollination Algorithm (FPA) was developed by Xin-She Yang in 2012 and it is a 

population-based metaheuristic optimization algorithm inspired by the evolution process of 

flowering plants. FPA is characterised by simplicity and flexibility in its formulation as well 

as high efficiency in its computational performance (Alyasseri et al. 2018). Furthermore, many 

studies show that it can outperform other well-established metaheuristic optimization 

algorithms (e.g. Yang 2012; Bekdas et al. 2015; Mergos and Mantoglou 2020). A simple 

explanation of the efficiency of FPA is based on the fact that it mimics the reproduction process 

of flowering plants. The latter has been so successful that flower species dominate the 

landscape of earth (Walker 2009).  

As a result, FPA has been adopted by many optimization studies and it has been applied 

successfully to numerous optimization problems in diverse scientific fields, including 

electrical and power systems (e.g. Abdelaziz et al. 2016a; Abdelaziz et al. 2016b; Singh and 

Salgotra 2016), structural design (e.g. Bekdas et al. 2015; Mergos and Mantoglou 2020, 

Nigdeli et al. 2016), computer gaming (e.g. Abdel-Raouf et al. 2014a), meteorology (e.g. Heng 

et al. 2016), image science (e.g. Zhou et al. 2016a) and many others (Alyasseri et al. 2018; 

Abdel-Basset et al. 2018b). 

Following its original development, several studies proposed modified and hybridized versions 

of FPA to improve its performance for different optimization problems (Alyasseri et al. 2018). 

For example, Abdel-Raouf et al. (2014b) developed an improved FPA variant by using chaotic 

maps instead of random numbers and they found significant increase in the computational 

performance. Zhou et al. (2016b) developed an elite opposition-based FPA version that was 

tested with 18 benchmark functions yielding excellent results. Putra et al. (2016), developed a 

modified version of FPA with dynamic switching probability and the use of real-coded GA as 

mutation for local and global search to solve economic load dispatch optimization problems in 

power generation systems. Draa (2016) developed a new FPA variant based on the so-called 

generalized opposition-based learning (GOBL). Wang et al. (2016) merged the standard FPA 

with the concept of the bee-pollinator to solve the data clustering problem. Al-Betar et al. 

(2019) used the island model population technique to restrain premature convergence of FPA. 

Abdel-Basset et al. (2018a) developed a modified FPA version based on the crossover for 

solving the multidimensional knapsack problems. Zhou et al. (2017) developed the discrete 

greedy flower pollination algorithm that is using order-based crossover, pollen discarding 
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behaviour and partial behaviours for solving the spherical traveling salesman problem. Fouad 

and Gao (2019) developed a novel FPA variant for global optimization by generating a set of 

global orientations for all members of the population and constructing a set of best solution 

vectors relating to all generated global orientations. Rodrigues et al. (2015) developed a binary 

version of FPA to address combinatorial and discrete optimization problems.  Multi-objective 

versions of FPA have also been developed (e.g. Yang et al. 2014; Tamilselvan and Jayabarathi 

2016; Gonidakis 2016) to solve optimization problems with more than one design objectives. 

In addition, hybridized FPA versions have been proposed in literature to achieve better balance 

between local and global search. In these versions, hybridization of FPA is achieved using 

local search algorithms (e.g. Jensi and Jiji 2015; Abdel-Basset and Hezam 2016), population-

based algorithms (e.g. Abdel-Raouf et al. 2014c; Dubey et al. 2015; Hezam et al. 2016; Nigdeli 

et al. 2017) or other components. 

In the previous studies, researchers apply specific sets of parameters of the original FPA or 

their invented FPA variants that outperform some benchmarks optimization algorithms on 

benchmark problems. Nevertheless, the selection of these parameters sets is typically based on 

conventions, empirical choices and/or experimental comparisons of limited scale. The latter 

typically take place for very specific and limited in scope and number optimization problems 

that cannot drive to more general conclusions. 

In this paper, a comprehensive and systematic experimental study is conducted to identify 

appropriate FPA parameters values that maximize its computational performance on a wide 

range of optimization problems. To serve this goal, FPA parameters tuning is conducted herein, 

which represents a separate optimization problem with FPA parameters set as the design 

variables and computational performance set as the design objective. It is clarified that the 

tuning approach followed herein aims at identifying fixed optimal parameter values. The 

adaptation and control of these parameters during the run of the algorithm to further maximise 

its performance is not examined in the present study. In the following, section 2 discusses the 

inspiration and formulation of the FPA algorithm, section 3 sets FPA parameters tuning as an 

appropriate optimization problem, section 4 describes the functions used to tune FPA 

parameters and section 5 presents the main findings of this study.  

 

2 Flower Pollination Algorithm 

 

FPA imitates the reproduction process of flowering plants. Similar to other biological systems, 

the ultimate goal of flower species is reproduction, which is achieved by pollination. Flower 
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pollination, which is typically related to the transfer of pollen, is either biotic or abiotic (Yang 

2012, Glover 2007). In the former pollination type, pollen transfer takes place by animals and 

insects (e.g. bees, bats, butterflies, birds) which are called pollinators. Pollinators are capable 

of flying long distances. Therefore, biotic pollination could be considered as a global 

optimization mechanism (Yang 2012). Furthermore, the flight behaviour of pollinators has 

similar characteristics to Lévy flights (Yang 2008; Pavlyukevich 2007). In the abiotic type of 

pollination, pollen is transferred by the wind and/or water diffusion. A well-known example 

of abiotic pollination is the grass (Yang 2012; Glover 2007). Typically, abiotic pollination 

occurs at short distances. Hence, it could be considered as a local optimization mechanism 

(Yang 2012). An additional important feature of flower pollination is the so-called flower 

constancy. More particularly, some pollinators tend to select specific flower species and bypass 

others (Yang 2012). In this way, flowers manage to transfer more pollen to the same species. 

Furthermore, pollinators avoid the risks related to exploring other flower species and ensure 

guaranteed nectar intake. 

The afore-described types of flower pollination process, the behaviour of pollinators and 

flower constancy have been idealized in the following basic rules of FPA: 

  

1. Biotic pollination is treated as a global pollination process with pollinators performing 

Lévy flights. 

2. Abiotic pollination is treated as a local pollination mechanism. 

3. Flower constancy is considered by the assumption that the reproduction probability is 

proportional to the similarity of flowers involved. 

4. The type of pollination mechanism (local or global) is governed by a switching 

probability p in [0, 1]. 

 

In the following, for simplicity, it is assumed that each plant develops one flower, which 

produces only one pollen gamete (Yang 2012). Following this assumption, there exists no need 

to differentiate between pollen gametes, flowers and plants.  

In FPA, a solution vector xi is represented by a flower i. The algorithm employs two different 

search procedures: the global and local pollination. Following the first and third rules of FPA, 

the global pollination procedure could be represented mathematically by the following 

equation: 

 

 𝒙!"#$ = 𝒙!" + 𝛾 ∙ 𝐿(𝜆) ∙ (𝒈∗ − 𝒙!"), (1) 
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where 𝒙!"represents flower i at iteration t, g* is the best flower of all the population of flowers 

at iteration t, 𝜆 is a constant, γ is a constant scaling factor to control the step size, and 𝐿(𝜆) > 0 

is the Lévy flight step size that represents the strength of the pollination and is drawn from a 

Lévy distribution, where Γ(𝜆) is the standard gamma function and s > 0.  

 

 𝐿~
&'(&) *+,-!"# .

/
∙ $
0$%"

,				(𝑠 > 0),  (2) 

 

  
Fig. 1: Flowchart of the original FPA. 
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On the other hand, the local pollination rule (second rule) and flower constancy (third rule) are 

represented by the following equation, where 𝒙1"and 𝒙2"  are different flowers of the same 

population and ε is drawn from a uniform distribution in [0, 1].   

 

 𝒙!"#$ = 𝒙!" + 𝜀 ∙ 4𝒙1" − 𝒙2" 5.   (3) 

 

Following the fourth rule, the type of flower pollination (local or global) is controlled by a 

switch probability p in [0, 1]. Summarizing the previous information, the flowchart of FPA is 

shown in Fig. 1, where d represents the number of problem dimensions and n is the size of 

flowers population.  

 

3 Parameter tuning 

 

Parameter tuning of an optimization algorithm aims at finding appropriate values of its 

parameters that maximize its computational performance. Therefore, parameter tuning can be 

considered as an optimization problem in the search space of the algorithm’s parameters (Yang 

2008, Eiben and Smit 2011). In the case of stochastic evolutionary algorithms, parameter 

tuning can represent a highly complex optimization problem of stochastic nature, interacting 

design variables, multiple local optima and very expensive objective function evaluations 

(Yang 2008, Eiben and Smit 2011).  

If A represents an evolutionary optimization algorithm with a vector of parameters p, Φ stands 

for a specified optimization problem and ξ represents of a measure of computational 

performance, then parameter tuning can be stated as: 

 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝜉 = 	𝐴(𝛷, 𝒑).   (4) 

 

In order to maximize the performance of an evolutionary algorithm, appropriate performance 

metrics are necessary. These metrics should refer to either the solution speed or the solution 

quality achieved by the algorithm. Solution speed may be quantified in terms of the 

computational effort (e.g. number of function evaluations Nr) required to achieve a minimum 

value δ (target value) of the objective function f(x). In this case, the parameter tuning problem 

of Eq. (4) can be stated as: 
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 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑁3 = 	𝐴(𝛷(𝑓(𝒙), 𝛿), 𝒑), 𝑤ℎ𝑒𝑟𝑒:	   (5) 

 𝛷(𝑓(𝒙), 𝛿) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓(𝒙)	𝑡𝑜	𝑟𝑒𝑎𝑐ℎ	𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒	𝛿	    

 

Alternatively, computational performance can be expressed in terms of solution quality which 

may be quantified as the best fitness value fb achieved after terminating a pre-specified 

computational effort in terms, for example, of function evaluations N. In this case, parameter 

tuning may be written in the following form:  

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓4 = 	𝐴(𝛷(𝑓(𝒙), 𝑁), 𝒑), 𝑤ℎ𝑒𝑟𝑒:	   (6) 

 𝛷(𝑓(𝒙), 𝑁) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓(𝒙)	𝑎𝑓𝑡𝑒𝑟	𝑁	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠	    

 

Due to the stochastic nature of evolutionary algorithms, multiple runs on the same optimization 

problem with the same set of parameters may yield different results. Therefore, statistical 

measures are required to quantify the computational performance such as the mean fb and Nr 

values as well as their standard deviations after a number of independent solution runs. 

A wide variety of tuning methods exist in literature (Eiben and Smit 2011). They can be 

classified as non-iterative or iterative depending on if they generate a fixed set of parameter 

vectors or if they start with a set of parameter vectors that modify iteratively during execution. 

Furthermore, they can be categorized as single-stage or multi-stage procedures depending on 

whether they conduct the same number of tests for all parameter vectors or they use a more 

sophisticated approach. In addition, they can be incorporated in four main categories: sampling 

methods, model-based methods, screening methods and meta-heuristic methods (Eiben and 

Smit 2011). Sampling methods reduce the number of parameter vectors with respect to a full-

factorial design. They are characterised by simplicity but they can lead to high computational 

costs. Model-based methods generate metamodels of the objective function landscapes. They 

can reduce greatly the required computational effort, but their accuracy depends on the quality 

of the approximation of the real functions. Screening methods focus only on those parameter 

vectors that show more promising results. In this manner, they can reduce the computational 

cost, but they are also prone to get trapped in local optima. Metaheuristic methods use 

evolutionary algorithms to search for the parameters vector that is maximizing computational 

performance. These methods can be highly efficient in terms of both computational cost and 

quality of obtained solutions. Nevertheless, their computational performance depends on the 

values of their parameters, which could drive to an iterative procedure when the same 
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metaheuristic algorithm is used to tune its own parameters in a so-called self-tuning framework 

(Yang et al 2013). 

Due to its simple formulation, FPA has only three parameters variables. These are the size of 

the population n, the switch probability p and the scaling factor to control the Lévy flight step 

sizes γ. An additional parameter that could be considered is constant 𝜆 of the Lévy distribution. 

However, since this value is more generally related to Lévy flights it was decided to assume in 

this study a fixed value of this parameter 𝜆 = 3/2, following the recommendations of Yang 

(2012). Based on the previous observations, the FPA parameters vector examined herein is the 

vector 𝒑 = (𝑛, 𝑝, 𝛾).  

The method employed in this study for tuning FPA parameters is a simple non-iterative, single-

stage sampling method. This decision is made because FPA relies on a very limited number of 

independent parameters. Furthermore, in practice, these parameters are given limited rounded 

values. This effectively means that a sampling method of adequate density can represent 

sufficiently the range of parameters used in FPA practice. Moreover, this approach offers 

insight into how the performance of the FPA algorithm varies with its parameters revealing 

useful information regarding its robustness, distribution of solution quality and sensitivity. 

Nevertheless, it is clarified that the adopted approach may not be the most appropriate in cases 

where the degree of solution accuracy sought and/or the number of algorithm parameters are 

high since the associated computational cost can become prohibitive. 

In the rest of this study, the following discrete values sets are examined for the different FPA 

parameters. An exhaustive search of all 5·6·5 = 150 combinations of these parameter values is 

conducted to specify the optimal parameter vector 𝒑∗ that maximizes FPA performance. Each 

of these combinations is termed as an FPA instance following the terminology recommended 

in Eiben and Smit (2011). 

   

𝑛 = (20, 40, 60, 80, 100), 

𝑝 = (0,0.2,0.4,0.6,0.8,1.0) 

𝛾 = (1056, 1057, 1058, 105$, 1) 

 

4 Optimization problems 

 

As described in the previous section, the optimization problems related to parameter tuning 

can be described by Eqs (5) or (6). The first component of these problem settings is the 

objective function 𝑓(𝒙) that is bound to be minimized. In this study, the set of functions 
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specified in IEEE-CEC’13 (Liang et al. 2013) for real-parameter single-objective optimization 

problems is employed. This set is comprised of 28 benchmark functions fi (i =1, 2, …, 28) 

shown in Table 1 (Liang et al. 2013) together with their global optimum values. All fi functions 

represent minimization problems with a variable number of dimensions d. Three different 

dimensions are examined herein: d = 5, 10 and 20. All test functions are scalable and shifted 

to o = [o1, o2, …, od], which is randomly distributed in [-80, 80]d. Moreover, the search space 

for all functions is defined in [-100, 100]d. In addition, some functions are rotated by using 

orthogonal (rotation) matrices that are generated from standard normally distributed entries by 

the Gram-Schmidt orthonormalization. The test functions can be classified in three main 

categories: unimodal, basic multimodal and compositions functions that are generated by 

combinations of the former functions (Liang et al. 2013). 

 

Table 1: IEEE-CEC’13 benchmark functions 
 Function No. Function Name Global optimum  

 fi*  

Unimodal 

1 Sphere Function -1400 

2 Rotated High Conditioned Elliptic Function -1300 

3 Rotated Bent Cigar Function -1200 

4 Rotated Discus Function -1100 

5 Different Powers Function -1000 

Basic 

Multimodal 

6 Rotated Rosenbrock’s Function -900 

7 Rotated Schaffers F7 Function -800 

8 Rotated Ackley’s Function -700 

9 Rotated Weierstrass Function -600 

10 Rotated Griewank’s Function -500 

11 Rastrigin’s Function -400 

12 Rotated Rastrigin’s Function -300 

13 Non-Continuous Rotated Rastrigin’s Function -200 

14 Schwefel's Function -100 

15 Rotated Schwefel's Function 100 

16 Rotated Katsuura Function 200 

17 Lunacek Bi_Rastrigin Function 300 

18 Rotated Lunacek Bi_Rastrigin Function 400 

19 Expanded Griewank’s plus Rosenbrock’s Function 500 

20 Expanded Scaffer’s F6 Function 600 

Composite 

Multimodal 

21 Composition Function 1 700 

22 Composition Function 2 800 

23 Composition Function 3 900 

24 Composition Function 4 1000 

25 Composition Function 5 1100 

26 Composition Function 6 1200 

27 Composition Function 7 1300 

28 Composition Function 8 1400 

 



10 

For each FPA instance (i.e. set of parameters), 20 independent runs are performed for each 

function fi  (i = 1 to 28) and number of dimensions d (i.e. d = 5, 10, 20), conducting in total 

10000·d maximum function evaluations (MaxFES) for each run as recommended in Liang et 

al. (2013). Uniform random initialization within the search space is assumed. For each 

algorithm run, the error value (i.e. the best solution found by the algorithm minus the global 

optimum of the test function shown in Table 1) is recorded when the number of function 

evaluations becomes equal to N = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)·MaxFES 

to assess the speed of convergence of the different instances following the recommendations 

in Liang et al. (2013). It is recalled herein that an FPA instance is specified by a combination 

of the following parameters: 

• n 
• p 
• 𝛾 

An instance run is assumed to converge to a global optimum of a function when the solution 

error becomes less than 10-8. Since FPA instances do not necessarily converge to the global 

optima within 10000·d MaxFES, especially for the complex multi-modal functions of Table 1, 

the parameter tuning optimization problems addressed herein assume the form of Eq (6), where 

the number of function evaluations N takes all eleven values where function errors are 

recorded. In this manner, the variation of the optimal FPA parameters as a function of the 

provided computational effort will also be identified.  

The total number of optimization problems examined in the following is equal to 28 

different functions times 3 different dimensions and 11 different numbers of function 

evaluations (i.e. 28·3·11 = 924). For each of these problems, the performance of all 150 FPA 

instances is examined and compared in terms of means or standard deviations of the error 

values calculated from the 20 independent runs. The parameters vector of the FPA instance 

with the smallest mean error or standard deviation of errors represents the optimal parameter 

tuning for the problem under investigation.  

 

5 Calculation results 

 

In this section, the main results obtained by the different FPA instances for the optimization 

problems of §4 are presented. Tables 2-7 present the best mean errors and corresponding 

standard deviations achieved by all FPA instances from 20 independent runs for all the 

optimization problems described above. It is important to clarify that these results do not 
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originate from a specific instance but from the optimal instances for each optimization 

problem. It is clear, in these tables, that the errors are more significant for the complex multi-

modal functions. Furthermore, they always reduce with the number of function evaluations, 

but they tend to be higher as the number of dimensions increases. It is also worthy of 

mentioning that for most of the unimodal functions convergence to global optimum is achieved 

for all 20 independent runs from one or more FPA instances. For the cases where all runs of 

more than one instances converge to a global optimum, then the best FPA instance is defined 

herein as the one that achieved on average the earliest convergence. This effectively means 

that the optimization problem assumed in these cases takes the form of Eq. (5).  

 
Table 2: Best mean solution errors of all FPA instances for the CEC’13 test functions with d = 5  

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 1.20E+02 9.96E-09 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 9.88E-09 1.00E-08 1.00E-08 1.00E-08 

2 1.29E+06 4.32E-02 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 9.88E-09 

3 1.56E+08 1.39E+01 1.25E-02 1.08E-07 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

4 8.11E+03 6.39E-04 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

5 5.97E+01 1.89E-07 9.86E-09 1.00E-08 9.78E-09 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

6 5.41E+00 1.83E-01 2.51E-06 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

7 3.17E+01 7.09E-01 1.54E-01 3.08E-02 1.11E-02 5.73E-03 7.67E-04 2.29E-04 4.79E-05 1.54E-05 1.44E-05 

8 1.99E+01 1.89E+01 1.77E+01 1.66E+01 1.55E+01 1.38E+01 1.21E+01 1.01E+01 9.35E+00 8.93E+00 8.73E+00 

9 3.53E+00 1.56E+00 1.09E+00 7.62E-01 5.33E-01 4.26E-01 3.35E-01 2.98E-01 2.64E-01 2.50E-01 2.41E-01 

10 3.17E+01 1.98E-01 8.52E-02 5.33E-02 3.32E-02 2.68E-02 1.96E-02 1.52E-02 1.22E-02 9.88E-03 7.08E-03 

11 2.47E+01 1.98E+00 7.89E-01 3.02E-01 2.04E-01 1.19E-01 7.60E-02 4.97E-02 6.67E-04 1.19E-06 1.30E-08 

12 2.86E+01 4.52E+00 2.28E+00 1.12E+00 6.53E-01 4.56E-01 4.49E-01 4.48E-01 4.12E-01 3.10E-01 2.53E-01 

13 2.89E+01 6.22E+00 3.26E+00 2.40E+00 1.99E+00 1.89E+00 1.50E+00 1.18E+00 1.05E+00 8.22E-01 6.23E-01 

14 5.87E+02 1.66E+02 1.04E+02 8.60E+01 5.53E+01 4.41E+01 3.16E+01 2.80E+01 2.58E+01 2.31E+01 2.26E+01 

15 7.11E+02 3.14E+02 2.08E+02 1.30E+02 9.39E+01 7.79E+01 6.27E+01 5.43E+01 4.38E+01 4.03E+01 3.72E+01 

16 1.80E+00 4.60E-01 3.48E-01 2.78E-01 2.53E-01 2.34E-01 2.11E-01 2.02E-01 1.84E-01 1.75E-01 1.68E-01 

17 3.39E+01 1.11E+01 7.86E+00 7.04E+00 6.42E+00 6.15E+00 5.86E+00 5.36E+00 4.83E+00 4.37E+00 4.20E+00 

18 3.60E+01 1.30E+01 1.03E+01 8.36E+00 7.31E+00 6.61E+00 6.28E+00 5.80E+00 5.37E+00 5.00E+00 4.67E+00 

19 4.24E+00 4.11E-01 2.43E-01 1.84E-01 1.61E-01 1.47E-01 1.30E-01 1.21E-01 1.13E-01 9.64E-02 9.23E-02 

20 1.64E+00 9.49E-01 6.82E-01 5.47E-01 4.45E-01 3.73E-01 3.15E-01 2.80E-01 2.63E-01 2.49E-01 2.36E-01 

21 4.19E+02 1.24E+02 9.70E+01 7.78E+01 6.45E+01 5.30E+01 4.39E+01 3.87E+01 3.65E+01 3.57E+01 3.53E+01 

22 8.64E+02 3.77E+02 2.97E+02 2.58E+02 2.40E+02 2.25E+02 2.00E+02 1.92E+02 1.82E+02 1.70E+02 1.63E+02 

23 9.46E+02 5.26E+02 4.20E+02 3.41E+02 2.99E+02 2.79E+02 2.51E+02 2.36E+02 2.32E+02 2.27E+02 2.24E+02 

24 1.53E+02 1.12E+02 1.04E+02 1.00E+02 9.96E+01 9.84E+01 9.57E+01 9.05E+01 8.92E+01 8.51E+01 8.28E+01 

25 1.48E+02 1.09E+02 1.04E+02 1.02E+02 1.02E+02 1.01E+02 1.00E+02 9.88E+01 9.73E+01 9.69E+01 9.67E+01 

26 1.42E+02 9.88E+01 8.97E+01 8.29E+01 7.49E+01 7.18E+01 6.92E+01 6.60E+01 5.84E+01 5.74E+01 5.65E+01 

27 4.00E+02 3.40E+02 3.14E+02 2.88E+02 2.85E+02 2.80E+02 2.78E+02 2.73E+02 2.61E+02 2.59E+02 2.58E+02 

28 3.73E+02 1.79E+02 1.10E+02 9.29E+01 8.09E+01 7.06E+01 6.73E+01 6.39E+01 6.17E+01 5.97E+01 5.71E+01 
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Table 3: Best mean solution errors of all FPA instances for the CEC’13 test functions with d = 10 

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 1.23E+03 1.12E-05 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

2 5.37E+06 2.15E+01 3.55E-05 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 9.76E-09 9.99E-09 1.00E-08 

3 5.93E+09 1.08E+07 8.69E+04 5.04E+03 4.19E+01 1.12E+00 6.30E-01 3.39E-01 1.97E-01 9.74E-02 4.70E-02 

4 1.11E+04 2.48E-01 1.62E-06 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

5 1.71E+02 5.74E-04 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

6 1.04E+02 3.71E+00 2.87E-01 2.39E-03 1.08E-06 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

7 1.17E+02 2.65E+01 1.25E+01 8.29E+00 6.25E+00 5.30E+00 3.64E+00 2.59E+00 2.00E+00 1.68E+00 1.48E+00 

8 2.07E+01 2.05E+01 2.04E+01 2.04E+01 2.04E+01 2.03E+01 2.03E+01 2.03E+01 2.03E+01 2.03E+01 2.03E+01 

9 9.96E+00 6.18E+00 4.41E+00 3.68E+00 3.37E+00 3.21E+00 3.10E+00 3.05E+00 3.03E+00 3.02E+00 2.99E+00 

10 1.49E+02 2.91E-01 5.61E-02 3.42E-02 2.94E-02 2.91E-02 2.90E-02 2.85E-02 2.38E-02 2.17E-02 1.95E-02 

11 8.29E+01 1.62E+01 7.28E+00 4.95E+00 3.63E+00 3.46E+00 3.33E+00 2.79E+00 2.39E+00 2.14E+00 1.84E+00 

12 9.02E+01 2.35E+01 1.18E+01 9.86E+00 9.25E+00 9.16E+00 9.03E+00 7.79E+00 6.86E+00 6.32E+00 6.03E+00 

13 9.11E+01 3.10E+01 1.87E+01 1.60E+01 1.55E+01 1.44E+01 1.31E+01 1.22E+01 1.14E+01 1.07E+01 1.04E+01 

14 1.81E+03 9.23E+02 6.14E+02 5.02E+02 3.91E+02 2.60E+02 2.30E+02 2.00E+02 1.98E+02 1.81E+02 1.62E+02 

15 1.82E+03 1.13E+03 9.30E+02 7.98E+02 6.83E+02 6.22E+02 5.86E+02 5.57E+02 5.50E+02 5.36E+02 5.31E+02 

16 1.60E+00 6.55E-01 5.18E-01 4.43E-01 4.15E-01 3.94E-01 3.83E-01 3.64E-01 3.60E-01 3.45E-01 3.37E-01 

17 1.14E+02 4.29E+01 3.05E+01 2.42E+01 2.15E+01 2.04E+01 1.89E+01 1.77E+01 1.73E+01 1.66E+01 1.61E+01 

18 1.23E+02 4.34E+01 3.27E+01 2.78E+01 2.44E+01 2.23E+01 2.05E+01 1.85E+01 1.78E+01 1.72E+01 1.69E+01 

19 5.72E+01 2.17E+00 1.20E+00 8.60E-01 7.26E-01 6.59E-01 6.08E-01 5.87E-01 5.48E-01 5.28E-01 5.21E-01 

20 4.29E+00 3.58E+00 3.35E+00 3.13E+00 3.05E+00 2.95E+00 2.86E+00 2.80E+00 2.76E+00 2.74E+00 2.71E+00 

21 4.86E+02 2.08E+02 1.40E+02 1.11E+02 9.70E+01 9.15E+01 9.04E+01 9.01E+01 9.00E+01 9.00E+01 9.00E+01 

22 2.12E+03 7.64E+02 4.61E+02 3.73E+02 3.65E+02 3.25E+02 3.11E+02 3.11E+02 2.96E+02 2.89E+02 2.85E+02 

23 2.18E+03 1.46E+03 1.23E+03 1.01E+03 9.09E+02 8.27E+02 7.92E+02 7.78E+02 7.70E+02 7.53E+02 7.36E+02 

24 2.23E+02 1.73E+02 1.56E+02 1.50E+02 1.44E+02 1.37E+02 1.34E+02 1.31E+02 1.28E+02 1.24E+02 1.22E+02 

25 2.28E+02 2.04E+02 1.89E+02 1.84E+02 1.80E+02 1.76E+02 1.74E+02 1.72E+02 1.72E+02 1.70E+02 1.66E+02 

26 2.00E+02 1.45E+02 1.28E+02 1.23E+02 1.22E+02 1.20E+02 1.16E+02 1.14E+02 1.12E+02 1.10E+02 1.09E+02 

27 6.20E+02 4.15E+02 3.94E+02 3.86E+02 3.80E+02 3.71E+02 3.62E+02 3.52E+02 3.46E+02 3.40E+02 3.36E+02 

28 8.70E+02 2.34E+02 1.67E+02 1.34E+02 1.16E+02 1.08E+02 1.03E+02 1.01E+02 1.00E+02 1.00E+02 1.00E+02 

 
Table 4: Best mean solution errors of all FPA instances for the CEC’13 test functions with d = 20  

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 3.18E+03 7.36E-06 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

2 2.49E+07 5.68E+04 2.30E+02 3.09E-01 8.26E-04 4.85E-07 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

3 4.39E+10 8.77E+07 6.96E+06 1.83E+06 1.81E+05 1.65E+04 1.01E+03 1.65E+02 1.33E+02 1.23E+02 9.17E+01 

4 2.52E+04 3.60E+02 2.13E+00 1.27E-02 6.93E-05 2.99E-07 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 

5 6.85E+02 4.77E-03 1.08E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 9.97E-09 1.00E-08 

6 4.91E+02 6.71E-01 9.12E-02 9.10E-04 1.16E-06 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 9.96E-09 

7 2.19E+02 4.22E+01 3.16E+01 2.41E+01 2.02E+01 1.78E+01 1.59E+01 1.42E+01 1.31E+01 1.21E+01 1.13E+01 

8 2.10E+01 2.08E+01 2.08E+01 2.08E+01 2.08E+01 2.08E+01 2.08E+01 2.07E+01 2.07E+01 2.07E+01 2.07E+01 

9 2.41E+01 1.73E+01 1.46E+01 1.34E+01 1.31E+01 1.29E+01 1.26E+01 1.22E+01 1.19E+01 1.15E+01 1.12E+01 

10 6.18E+02 1.05E+00 8.70E-02 8.36E-03 5.10E-03 4.09E-04 1.62E-05 4.23E-07 1.39E-08 1.00E-08 1.00E-08 

11 2.03E+02 5.17E+01 2.54E+01 1.98E+01 1.94E+01 1.85E+01 1.76E+01 1.75E+01 1.71E+01 1.45E+01 1.22E+01 

12 2.06E+02 6.23E+01 3.60E+01 3.44E+01 3.30E+01 2.75E+01 2.39E+01 2.19E+01 2.10E+01 2.07E+01 2.05E+01 

13 1.99E+02 9.74E+01 6.95E+01 6.11E+01 5.81E+01 5.49E+01 5.12E+01 4.87E+01 4.78E+01 4.56E+01 4.25E+01 
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14 3.95E+03 1.99E+03 1.64E+03 1.42E+03 1.25E+03 1.17E+03 1.15E+03 1.11E+03 1.09E+03 1.04E+03 1.03E+03 

15 4.18E+03 2.81E+03 2.52E+03 2.19E+03 1.99E+03 1.88E+03 1.79E+03 1.78E+03 1.73E+03 1.70E+03 1.70E+03 

16 1.96E+00 9.20E-01 7.84E-01 7.14E-01 6.56E-01 6.22E-01 5.99E-01 5.86E-01 5.64E-01 5.56E-01 5.36E-01 

17 2.95E+02 1.22E+02 8.60E+01 6.87E+01 5.98E+01 5.49E+01 5.13E+01 4.87E+01 4.56E+01 4.35E+01 4.27E+01 

18 3.00E+02 1.32E+02 9.76E+01 7.86E+01 6.61E+01 6.00E+01 5.71E+01 5.56E+01 5.31E+01 5.18E+01 5.09E+01 

19 1.09E+03 7.78E+00 4.03E+00 2.74E+00 2.23E+00 2.01E+00 1.98E+00 1.82E+00 1.69E+00 1.62E+00 1.56E+00 

20 9.85E+00 8.53E+00 8.01E+00 7.61E+00 7.35E+00 7.11E+00 7.01E+00 6.95E+00 6.92E+00 6.89E+00 6.86E+00 

21 1.07E+03 3.35E+02 3.03E+02 2.58E+02 2.06E+02 1.67E+02 1.51E+02 1.44E+02 1.41E+02 1.39E+02 1.38E+02 

22 4.33E+03 2.50E+03 2.02E+03 1.73E+03 1.52E+03 1.48E+03 1.39E+03 1.36E+03 1.33E+03 1.30E+03 1.30E+03 

23 4.89E+03 3.70E+03 3.09E+03 2.76E+03 2.52E+03 2.37E+03 2.29E+03 2.28E+03 2.27E+03 2.27E+03 2.27E+03 

24 2.68E+02 2.47E+02 2.41E+02 2.38E+02 2.36E+02 2.36E+02 2.36E+02 2.35E+02 2.34E+02 2.33E+02 2.32E+02 

25 2.69E+02 2.52E+02 2.45E+02 2.44E+02 2.42E+02 2.42E+02 2.41E+02 2.39E+02 2.38E+02 2.38E+02 2.37E+02 

26 2.12E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 

27 9.65E+02 6.73E+02 5.02E+02 4.74E+02 4.71E+02 4.69E+02 4.44E+02 4.27E+02 4.18E+02 4.12E+02 4.09E+02 

28 2.81E+03 9.37E+02 5.63E+02 5.39E+02 3.99E+02 3.55E+02 3.50E+02 3.49E+02 3.49E+02 3.48E+02 3.36E+02 

 
Table 5: Best error standard deviations of all FPA instances for the CEC’13 test functions with d = 5 

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 9.42E+01 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

2 1.03E+06 4.76E-02 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

3 2.09E+08 8.26E+00 4.67E-02 4.34E-07 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

4 4.59E+03 5.36E-04 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

5 2.76E+01 2.75E-07 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

6 3.28E+00 1.75E-01 5.48E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

7 9.53E+00 5.94E-01 1.15E-01 5.24E-02 3.69E-02 1.71E-02 1.44E-03 7.94E-04 1.49E-04 4.37E-05 4.35E-05 

8 9.21E-02 4.39E-02 3.38E-02 3.60E-02 3.70E-02 2.98E-02 3.14E-02 2.86E-02 2.91E-02 2.90E-02 2.60E-02 

9 3.60E-01 2.39E-01 1.86E-01 2.04E-01 2.15E-01 2.03E-01 2.04E-01 2.01E-01 1.61E-01 1.56E-01 1.42E-01 

10 1.28E+01 6.03E-02 3.02E-02 2.10E-02 1.34E-02 1.11E-02 9.75E-03 7.18E-03 5.03E-03 6.10E-03 5.75E-03 

11 4.98E+00 9.80E-01 5.71E-01 4.66E-01 4.06E-01 3.12E-01 2.46E-01 2.22E-01 2.88E-03 4.63E-06 1.18E-08 

12 6.49E+00 1.66E+00 1.02E+00 6.77E-01 5.43E-01 6.22E-01 6.42E-01 4.79E-01 4.92E-01 4.42E-01 3.46E-01 

13 5.73E+00 2.25E+00 1.61E+00 1.31E+00 1.36E+00 1.00E+00 8.41E-01 7.11E-01 7.48E-01 6.65E-01 6.16E-01 

14 7.83E+01 5.90E+01 4.25E+01 3.88E+01 3.50E+01 2.91E+01 9.97E+00 8.74E+00 6.55E+00 7.68E+00 7.69E+00 

15 1.02E+02 5.71E+01 4.87E+01 5.96E+01 4.80E+01 4.87E+01 4.16E+01 4.09E+01 3.73E+01 3.81E+01 3.80E+01 

16 3.88E-01 1.14E-01 8.82E-02 5.55E-02 6.11E-02 5.42E-02 5.35E-02 5.04E-02 4.74E-02 4.37E-02 4.48E-02 

17 6.09E+00 2.05E+00 1.69E+00 1.31E+00 1.18E+00 1.12E+00 1.04E+00 9.38E-01 9.18E-01 8.11E-01 7.95E-01 

18 6.34E+00 2.16E+00 1.76E+00 1.34E+00 1.43E+00 1.21E+00 1.20E+00 1.09E+00 1.02E+00 7.82E-01 9.08E-01 

19 2.26E+00 1.23E-01 7.09E-02 6.44E-02 4.98E-02 5.96E-02 5.65E-02 5.18E-02 5.06E-02 4.69E-02 4.49E-02 

20 7.20E-02 7.96E-02 8.44E-02 9.17E-02 8.90E-02 1.09E-01 1.04E-01 1.05E-01 1.10E-01 9.85E-02 8.24E-02 

21 4.07E+01 1.83E+01 1.60E+01 1.31E+01 1.33E+01 1.20E+01 2.11E+01 2.30E+01 2.10E+01 2.12E+01 2.18E+01 

22 7.88E+01 5.73E+01 5.57E+01 5.00E+01 4.72E+01 3.56E+01 3.68E+01 3.43E+01 4.11E+01 3.83E+01 3.62E+01 

23 9.70E+01 5.73E+01 5.92E+01 5.72E+01 5.98E+01 5.01E+01 4.49E+01 4.77E+01 4.69E+01 4.80E+01 4.34E+01 

24 9.62E+00 3.48E+00 2.45E+00 2.66E+00 2.66E+00 2.36E+00 2.20E+00 3.74E+00 3.59E+00 3.54E+00 3.44E+00 

25 9.88E+00 2.86E+00 1.79E+00 1.20E+00 1.41E+00 1.42E+00 1.31E+00 1.06E+00 5.16E-01 1.30E-01 3.82E-02 

26 9.68E+00 2.88E+00 1.94E+00 1.18E+00 7.88E-01 8.50E-01 7.68E-01 7.70E-01 7.30E-01 7.29E-01 7.29E-01 

27 1.00E+01 7.22E+00 7.64E+00 7.91E+00 7.90E+00 7.31E+00 7.41E+00 7.56E+00 6.79E+00 5.29E+00 4.91E+00 

28 2.58E+01 2.52E+01 2.08E+01 6.33E+00 8.85E+00 1.60E+01 1.14E+01 1.62E+01 1.33E+01 1.82E+01 1.80E+01 
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Table 6: Best error standard deviations of all FPA instances for the CEC’13 test functions with d = 10 

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 5.23E+02 1.08E-05 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

2 2.83E+06 7.48E+01 1.09E-04 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

3 2.55E+09 1.16E+07 1.41E+05 1.32E+04 1.29E+02 2.43E+00 1.42E+00 8.07E-01 4.86E-01 2.55E-01 1.31E-01 

4 3.71E+03 6.92E-01 3.46E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

5 7.02E+01 4.28E-04 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

6 3.41E+01 1.46E+00 3.64E-01 8.91E-03 4.46E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

7 2.63E+01 6.66E+00 5.94E+00 4.49E+00 4.01E+00 3.20E+00 2.21E+00 1.61E+00 1.39E+00 1.34E+00 1.32E+00 

8 7.18E-02 5.90E-02 4.84E-02 4.54E-02 4.61E-02 4.40E-02 3.94E-02 4.31E-02 4.26E-02 3.80E-02 3.54E-02 

9 4.65E-01 4.13E-01 3.35E-01 3.61E-01 3.81E-01 4.24E-01 3.92E-01 4.33E-01 4.23E-01 4.45E-01 4.41E-01 

10 7.89E+01 6.16E-02 2.24E-02 1.78E-02 1.50E-02 1.16E-02 1.15E-02 1.09E-02 9.97E-03 9.85E-03 8.79E-03 

11 9.02E+00 4.68E+00 2.81E+00 1.92E+00 1.76E+00 1.48E+00 1.45E+00 1.45E+00 1.41E+00 1.31E+00 1.22E+00 

12 1.27E+01 5.12E+00 4.08E+00 3.10E+00 3.09E+00 2.86E+00 2.46E+00 2.26E+00 1.89E+00 1.78E+00 1.76E+00 

13 1.26E+01 4.81E+00 4.06E+00 3.39E+00 3.57E+00 3.64E+00 3.84E+00 3.99E+00 3.43E+00 3.77E+00 3.40E+00 

14 1.17E+02 8.58E+01 6.95E+01 7.39E+01 7.03E+01 6.13E+01 6.99E+01 7.29E+01 6.97E+01 7.14E+01 7.46E+01 

15 1.24E+02 8.31E+01 6.94E+01 8.30E+01 7.89E+01 8.18E+01 7.66E+01 7.99E+01 8.14E+01 7.37E+01 7.59E+01 

16 3.24E-01 1.10E-01 8.83E-02 7.00E-02 6.20E-02 6.18E-02 5.92E-02 5.87E-02 5.96E-02 5.23E-02 5.54E-02 

17 1.74E+01 4.91E+00 5.02E+00 3.70E+00 3.56E+00 3.24E+00 2.75E+00 2.55E+00 2.64E+00 2.09E+00 2.25E+00 

18 1.67E+01 4.58E+00 3.06E+00 3.04E+00 3.66E+00 3.01E+00 2.96E+00 2.78E+00 2.49E+00 2.31E+00 2.31E+00 

19 7.61E+01 5.04E-01 2.67E-01 2.15E-01 1.66E-01 1.49E-01 1.28E-01 1.44E-01 1.38E-01 1.47E-01 1.43E-01 

20 3.41E-05 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 5.09E-03 

21 3.22E+01 2.04E+01 2.60E+01 1.22E+01 1.93E+01 1.87E+01 1.84E+01 2.09E+01 1.94E+01 1.98E+01 1.68E+01 

22 1.22E+02 9.07E+01 8.34E+01 8.00E+01 8.79E+01 9.09E+01 6.63E+01 6.74E+01 7.35E+01 7.21E+01 7.16E+01 

23 1.15E+02 9.47E+01 9.90E+01 1.05E+02 9.25E+01 8.79E+01 8.47E+01 7.66E+01 8.22E+01 8.32E+01 8.18E+01 

24 1.40E+00 2.91E+00 3.29E+00 3.16E+00 3.17E+00 3.23E+00 3.28E+00 3.29E+00 3.30E+00 3.25E+00 3.24E+00 

25 1.70E+00 2.40E+00 2.77E+00 2.42E+00 2.76E+00 2.87E+00 2.92E+00 2.70E+00 2.73E+00 2.61E+00 2.88E+00 

26 3.11E+00 1.57E-01 4.13E+00 2.60E+00 1.80E+00 1.33E+00 2.23E+00 2.17E+00 2.24E+00 2.34E+00 2.31E+00 

27 1.66E+01 1.24E+01 4.05E+00 1.68E+00 2.39E+00 2.56E+00 2.83E+00 1.67E+00 1.09E+00 7.90E-01 6.24E-01 

28 7.10E+01 2.07E+01 7.97E-03 2.46E-06 4.69E-10 2.15E-13 2.02E-13 2.02E-13 2.02E-13 2.02E-13 2.02E-13 

 
Table 7: Best error standard deviations of all FPA instances for the CEC’13 test functions with d = 20  

 Number of function evaluations normalized to MaxFES = 10000·d 

Function 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 8.31E+02 4.47E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

2 1.00E+07 4.49E+04 2.85E+02 3.82E-01 2.64E-03 1.55E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

3 2.35E+10 6.35E+07 1.07E+07 2.22E+06 3.05E+05 2.91E+04 1.87E+03 4.51E+02 4.45E+02 4.30E+02 4.03E+02 

4 5.31E+03 2.27E+02 1.40E+00 8.11E-03 3.08E-05 1.38E-07 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

5 1.83E+02 2.81E-03 2.08E-09 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

6 1.52E+02 8.28E-01 1.57E-01 1.54E-03 3.95E-06 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 3.39E-24 

7 5.90E+01 8.80E+00 6.44E+00 4.93E+00 4.09E+00 3.76E+00 4.07E+00 3.84E+00 3.74E+00 3.65E+00 3.35E+00 

8 4.84E-02 3.36E-02 3.42E-02 3.37E-02 3.25E-02 3.08E-02 3.26E-02 3.38E-02 3.23E-02 3.09E-02 3.09E-02 

9 6.97E-01 5.43E-01 5.46E-01 5.40E-01 5.50E-01 4.53E-01 5.39E-01 5.93E-01 5.76E-01 6.37E-01 6.38E-01 

10 1.99E+02 2.88E-01 1.27E-02 9.44E-03 5.82E-03 5.47E-04 2.58E-05 7.69E-07 8.92E-09 3.39E-24 3.39E-24 

11 1.82E+01 7.93E+00 7.30E+00 6.83E+00 5.85E+00 5.38E+00 3.93E+00 4.28E+00 3.79E+00 4.14E+00 3.59E+00 

12 1.56E+01 8.64E+00 8.26E+00 6.68E+00 6.89E+00 6.51E+00 6.31E+00 5.68E+00 4.92E+00 4.72E+00 4.51E+00 

13 1.69E+01 1.03E+01 8.30E+00 7.80E+00 7.60E+00 6.24E+00 6.83E+00 5.52E+00 7.48E+00 6.73E+00 8.00E+00 
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14 1.54E+02 1.24E+02 9.80E+01 9.17E+01 9.97E+01 1.05E+02 1.06E+02 1.07E+02 9.81E+01 1.08E+02 1.07E+02 

15 1.49E+02 1.25E+02 1.05E+02 1.26E+02 1.18E+02 1.04E+02 1.13E+02 1.22E+02 1.15E+02 1.04E+02 9.47E+01 

16 2.53E-01 1.24E-01 8.90E-02 8.31E-02 7.94E-02 8.38E-02 6.19E-02 5.78E-02 5.75E-02 7.31E-02 5.79E-02 

17 3.03E+01 9.84E+00 7.77E+00 5.76E+00 5.18E+00 6.07E+00 5.36E+00 5.83E+00 5.17E+00 4.86E+00 4.85E+00 

18 3.70E+01 9.54E+00 7.80E+00 6.80E+00 6.84E+00 6.63E+00 6.37E+00 5.83E+00 5.49E+00 5.37E+00 4.55E+00 

19 1.17E+03 9.29E-01 8.02E-01 6.61E-01 5.66E-01 4.28E-01 3.53E-01 4.28E-01 4.41E-01 4.12E-01 3.67E-01 

20 1.27E-13 1.45E-13 1.45E-13 3.04E-13 3.04E-13 3.04E-13 3.04E-13 3.04E-13 3.04E-13 3.04E-13 3.04E-13 

21 6.66E+01 6.60E+00 8.46E+00 8.48E+00 6.75E+00 6.45E+00 1.91E+01 1.68E+01 1.45E+01 1.50E+01 1.41E+01 

22 1.75E+02 1.53E+02 1.19E+02 1.52E+02 1.41E+02 1.47E+02 1.29E+02 1.14E+02 1.28E+02 1.27E+02 1.26E+02 

23 1.67E+02 1.27E+02 1.31E+02 1.46E+02 1.35E+02 1.40E+02 1.34E+02 1.25E+02 1.35E+02 1.40E+02 1.36E+02 

24 2.82E+00 2.18E+00 1.58E+00 2.15E+00 2.01E+00 2.13E+00 2.15E+00 2.27E+00 2.24E+00 2.25E+00 2.28E+00 

25 2.97E+00 2.31E+00 1.98E+00 2.20E+00 2.14E+00 2.32E+00 2.46E+00 2.26E+00 2.25E+00 2.08E+00 2.40E+00 

26 4.63E+00 2.27E-02 1.47E-03 3.43E-04 1.91E-04 1.31E-04 1.53E-04 1.74E-04 7.91E-05 1.10E-04 2.01E-04 

27 2.16E+01 1.72E+01 1.96E+01 2.08E+01 2.34E+01 2.71E+01 2.98E+01 2.90E+01 2.44E+01 1.98E+01 1.85E+01 

28 2.16E+02 9.04E+01 7.79E+01 8.06E+01 7.73E+01 7.58E+01 7.56E+01 9.57E+01 1.11E+02 1.05E+02 1.04E+02 

 

Figure 2 presents, in the form of boxplots, the population sizes of the optimal FPA instances 

for all 28 CEC’13 functions as a function of the number of evaluations and the number of 

problem dimensions. In this figure, the optimal instances are determined on the basis of 

minimum mean errors. The box plots show the minimum, maximum and median (red line) n 

values. Inside the boxes, the 25th to 75th percentiles are contained. It can be seen that the optimal 

population sizes can take any value between 20 and 100, which are the boundaries assumed in 

this study, but the majority of optimal n values lies between 20 and 60 flowers. The optimal 

population sizes seem to be increasing as the function evaluations and the problem dimensions 

are increasing. The median optimal n value is 20 for almost all steps of function evaluations 

for d = 5 and the early evaluation steps for d = 10 and 20. However, the same median population 

size increases to 40 for the later evaluation steps of d = 10 and 20. These observations drive to 

the conclusion that larger population sizes can be more effective for high-dimensional 

problems and where higher computational effort is afforded. 

Furthermore, Fig. 3 shows the population sizes of the optimal FPA instances for the same 

optimization problems as a function of the number of function evaluations and the number of 

problem dimensions when these instances are determined based on the minimum standard 

deviations of the errors of the 20 independent runs. These instances are termed here as ‘robust’ 

since they manage to minimize the uncertainty in the FPA outcomes. It can be seen that again 

the robust n values tend to increase with the number problem dimensions and function 

evaluations. The median values range between 40 and 60 for d = 5 and 10 but they can increase 

up to 80 for d = 20. Comparing these results with Fig. 2, it can be concluded that the optimal 

FPA instances based on minimum expected errors do not always match with the most robust 

instances and that larger population sizes tend to produce more robust FPA outcomes. 
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Fig. 2: Variation of optimal n values, based on minimum mean errors, with the number of function 

evaluations for different problem dimensions  

 

 

 

Fig. 3: Variation of optimal n values, based on minimum error standard deviations, with the number of 

function evaluations for different problem dimensions 

 

Figure 4 presents the switch probabilities of the optimal FPA instances, based on minimum 

average errors, for all the objective functions under consideration as a function of the number 

of function evaluations and the number of problem dimensions. It is found that the optimal p 
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values tend to increase with the number of dimensions with a typical median of 0.2 for d = 5 

and 10 and a median of 0.4 for d = 20. This observation shows that global (biotic) pollination 

can be more advantageous to high-dimensional problems. It is also interesting to note that the 

optimal p values tend to slightly decrease with the number of function evaluations especially 

for the low-dimensional problems. This decrease of the optimal switch probabilities in the later 

evaluation steps can be explained by the fact that it allows for more extensive exploitation of 

the search space via local pollination. 

Moreover, Fig. 5 illustrates the most robust switch probabilities as a function of the 

computational effort and number of dimensions. It is observed that the most robust p values 

vary in large ranges with a typical median of 0.4 for d = 5 and 10 and of 0.6 for d = 20. The 

robust p values seem to be independent of the number of function evaluations. On the other 

hand, they tend to increase with the problem dimensions. When compared with the optimal 

switch probabilities based on minimum expected errors, the robust switch probabilities seem 

to obtain larger values. This observation could be explained by the fact that larger switch 

probabilities allow for more extensive exploration of the search space by biotic pollination and 

therefore it is less likely that FPA is trapped in local optima. 
 

 
Fig. 4: Variation of optimal p values, based on minimum mean errors, with the number of function 

evaluations for different problem dimensions  
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Fig. 5: Variation of optimal p values, based on minimum error standard deviations, with the number of 

function evaluations for different problem dimensions 

 
Figure 6 illustrates the scale factors γ of the Lévy flight step sizes of the optimal FPA 

instances, based on minimum expected errors, of the different CEC’13 functions with respect 

to the number of objective function evaluations and problem dimensions. It is observed that 

the majority of optimal γ values range between 1 and 0.1, with a typical median of 0.1 for d = 

5 and 10 and of 1.0 for the last evaluation steps of d = 20. The latter observation may be due 

to the fact that high-dimensional problems require larger Lévy flight steps for the search space 

to be sufficiently explored. The optimal γ values do not seem to be significantly influenced by 

the amount of function evaluations. 

In addition, Fig. 7 shows the most robust γ values as a function of the computational effort 

and number of dimensions. It is observed that most of the robust γ values vary in broader ranges 

than previously (i.e. between 1 and 0.0001) with a typical median of 0.1 in the very early 

evaluation steps and 0.01 in the later steps. These results do not seem to be significantly 

affected by the number of problem dimensions. When compared with the optimal γ values 

based on minimum expected errors, the robust scale factors seem to get smaller values. This 

observation could be explained by the fact that smaller step sizes allow for better exploitation 

of the search space. 
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Fig. 6: Variation of optimal γ values, based on minimum mean errors, with the number of function 

evaluations for different problem dimensions  

 

 
Fig. 7: Variation of optimal γ values, based on minimum error standard deviations, with the number of 

function evaluations for different problem dimensions 

 

From the previous discussions, it can be concluded that the optimal instances for minimum 

average errors and error standard deviations of the 20 independent runs do not necessarily 

coincide. Hence, it is interesting to examine the Pareto fronts of average errors versus error 

standard deviations obtained from the various FPA instances. Fig. 8 presents such Pareto fronts 

obtained for the objective function f7 with d = 20 after 4000·d and 10000·d function 
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evaluations. It can be seen in this figure that the best mean error drops considerably from 20.2 

for 4000·d function evaluations to 11.4 for 10000·d function evaluations. On the other hand, 

the minimum error standard deviation drops slightly from 4.1 to 3.4 for the same numbers of 

function evaluations. The points that correspond to minimum standard deviations have mean 

errors of approximately 35.6 for 4000·d and 17.5 for 10000·d function evaluations. This means 

that, for the specific optimization problems, the mean errors of the robust solutions are 1.8 and 

1.5 times higher than the minimum mean errors for 4000·d and 10000·d function evaluations, 

respectively. 

To obtain a broader image of the trade-offs between the robust optimal solutions and the 

solutions for minimum mean errors, Fig. 9 presents the ratios of the mean errors of the robust 

optimal solutions to the minimum mean errors obtained for all optimization problems as a 

function of the number of function evaluations and the number of problem dimensions. It is 

interesting to note that the vast majority of these ratios range between 1 and 2 with typical 

median values ranging between 1.1 and 1.4. This shows that the robust solutions and the 

solutions for minimum mean errors are typically in close proximity. The ratios seem to increase 

slightly with the number of problem dimensions but there is no clear trend between these ratios 

and the number of function evaluations. 

 

  
Fig. 8: Mean error vs standard error deviation Pareto fronts of function f7 and d = 20 after a) 4000·d; b) 

10000·d function evaluations 
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Fig. 9: Ratios of the mean errors of the robust optimal solutions to the minimum mean errors obtained for all 

optimization problems as a function of a) function evaluations and b) the problem dimensions 

 

In the previous, the ranges of optimal parameter values are presented for the various 

optimization problems consisting of different objective functions, number of function 

evaluations and number of problem dimensions. Comparisons are also presented between the 

most robust FPA instances and the FPA instances yielding the minimum average errors after a 

number of independent runs. However, for practical applications, it is also important that 

specific parameter values are recommended herein that are also independent of the examined 

objective functions. The latter is useful because in practice FPA is applied to objective 

functions other than the ones specified in Table 1.  

To recommend these optimal parameter values, for each objective function, number of 

function evaluations and problem dimensions, the FPA instances are ranked according to their 

average errors or error standard deviations from the 20 independent runs. Then, the average 

rankings from all 28 objective functions are obtained for each combination of function 

evaluations and problem dimensions. The FPA instance with the minimum ranking is 

considered as the optimal FPA instance for the specific combination of function evaluations 

and problem dimensions. 

Figure 10 presents the derived optimal parameters as a function of problem dimensions and 

function evaluations and Tables 8-10 present the same values for more clarity. Fig. 10a shows 

that a population of 20 individuals is optimal for small numbers of function evaluations. For 

the later stages of function evaluations, the results depend on the number of problem 

dimensions. The larger the number of dimensions the earlier it is required to use a population 

of 40 individuals. More specifically, for d = 20, n = 40 becomes optimal after 5000·d function 

evaluations, for d = 10 after 7000·d and for d = 5 after 10000·d function evaluations. Regarding 

the switch probabilities, Fig. 10b presents that p = 0.2 is always the optimal value for d = 5 and 

p = 0.4 for d = 20. For d = 10, the results are less clear as it seems that the optimal p value 

a) b) 
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fluctuates between 0.2 and 0.6 depending on the number of function evaluations. With respect 

to the Lévy flight steps scale factor γ, Fig. 10c shows that γ = 0.1 is almost always optimal for 

d = 5 and 10. However, the optimal step size increases to γ = 1 for most function evaluations 

when d = 20. In almost all cases, optimal γ ranges between 0.1 and 1.  

It is worth noting here that Figs 10a-c can be used synchronously to fully determine optimal 

FPA parameter settings. For example, it can be deduced that for an optimization problem with 

d = 20 dimensions where 10000·d function evaluations are afforded, the optimal parameter 

setting consists of a population size n of 40 individuals, switch probability p of 0.4 and step 

size γ of 1. 
 

  

 

 

Fig. 10: Optimal parameter values based on minimum mean errors as a function of problem dimensions and 

function evaluations for different objective functions: a) n; b) p and c) γ 

 

Table 8: Optimal n values based on minimum mean errors for different objective functions 

 Number of function evaluations normalized to MaxFES = 10000·d 

Dimensions 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d = 5 20 20 20 20 20 20 20 20 20 20 40 

d = 10 20 20 20 20 20 20 20 40 40 40 40 

d = 20 20 20 20 20 20 40 40 40 40 40 40 
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Table 9: Optimal p values based on minimum mean errors for different objective functions 

 Number of function evaluations normalized to MaxFES = 10000·d 

Dimensions 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d = 5 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

d = 10 0 0.2 0.4 0.4 0.6 0.6 0.6 0.2 0.2 0.2 0.2 

d = 20 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

 

Table 10: Optimal g values based on minimum mean errors for different objective functions 

 Number of function evaluations normalized to MaxFES = 10000·d 

Dimensions 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d = 5 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 

d = 10 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

d = 20 1 1 1 1 1 0.1 0.1 1 1 1 1 

 

 

5 Conclusions 

  

The Flower Pollination Algorithm (FPA) is a recently developed population-based 

metaheuristic optimization algorithm imitating the evolution mechanisms of flowering plants. 

FPA is characterised by simplicity in its formulation as well as high computational 

performance and it has been found to outperform other well-known optimization algorithms. 

Previous studies related to FPA assume pre-fixed parameter values based on rather empirical 

choices and/or experimental comparisons of limited scale and scope. 

In this study, a systematic effort has been made to specify appropriate FPA parameters values 

that maximize its computational performance on a wide range of optimization problems. To 

serve this goal, a simple non-iterative, single-stage sampling method is employed for 

parameters tuning oriented towards practical applications of FPA. The tuning method is 

applied to the set of 28 functions specified in IEEE-CEC’13 for real-parameter single-objective 

optimization problems for three different numbers of problem dimensions and eleven numbers 

of function evaluations.  

It is found that the FPA parameters that minimize the average errors depend significantly on 

the objective function, the problem dimensions and function evaluations. More particularly, 

the optimal population sizes seem to be increasing as the function evaluations and the problem 

dimensions are increasing. The respective optimal switch probabilities and Lévy flight step 

scale factors seem to increase with the number of problem dimensions and not to be affected 

significantly by the number of function evaluations.  
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In addition to the FPA parameters minimizing average prediction errors, the parameters 

yielding the most robust FPA predictions for a number of independent runs are also examined 

herein. It can be seen that the robust parameters can differ significantly from the minimum 

mean error parameters. Nevertheless, it is found that the mean errors of the robust parameter 

sets do not vary highly from the minimum mean errors.  

At the end of this study, an effort is made to recommend FPA parameter values that are 

independent of the examined objective functions. These recommendations are based on the 

average rankings of the different parameter sets for the different objective functions. It is found 

that the optimal population sizes vary between 20 and 40 individuals depending on the problem 

dimensions and number of function evaluations. Similarly, the optimal switch probabilities 

typically vary between 0.2 and 0.4 and the optimal Lévy flight steps scale factors between 0.1 

and 1.0 again depending on the problem dimensions and afforded function evaluations. 

Further studies will focus on the application of the proposed tuning method to test and tune 

other nature-inspired algorithms for both the CEC test suites and other real-world design 

benchmarks. Different performance metrics will be investigated and compared, together with 

other tuning methods, in future studies. 
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