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Product proliferation occurs in supply chains when manufacturers respond to diverse market needs by trying

to produce a range of products from a limited variety of raw materials. In such a setting, manufacturers

can establish market responsiveness and/or cost e�ciency in alternative ways. Delaying the point of the

proliferation helps manufacturers improve their responsiveness by postponing the ordering decisions of the

�nal products until there is partial or full resolution of the demand uncertainty. This strategy can be

implemented in two di�erent ways: (1) redesigning the operations so that the point of proliferation is swapped

with a downstream operation or (2) reducing the lead times. To establish cost e�ciency, manufacturers can

systematically reduce their operational costs or postpone the high-cost operations. We consider a multi-

echelon and multi-product newsvendor problem with demand forecast evolution to analyze the value of each

operational lever of the responsiveness and the e�ciency. We use a generalized forecast-evolution model to

characterize the demand-updating process, and develop a dynamic optimization model to determine the

optimal order quantities at di�erent echelons. Using anonymized data of Kordsa Inc., a global manufacturer

of advanced composites and reinforcement materials, we show that our model outperforms a theoretical

benchmark of the repetitive newsvendor model. We demonstrate that reducing the lead time of a downstream

operation is more bene�cial to manufacturers than reducing the lead time of an upstream operation by

the same amount, whereas reducing the upstream operational costs is more favorable than reducing the

downstream operational costs. We also indicate that delaying the proliferation may cause a loss of pro�t,

even if it can be achieved with no additional costs. Finally, a decision typology is developed, which shows

e�ective operational strategies depending on product/market characteristics and process �exibility.

Key words : Product proliferation; lead-time reduction; process redesign; delayed di�erentiation.

1. Introduction

Digital transformation in the retail industry (e.g., omni-channel retailing, recommendation systems,

and user-oriented product development using social media) has led to an increase in demand for

niche items in almost all product categories (Brynjolfsson et al. 2011). Retailers now carry more

diverse product portfolios than in past decades in both online and physical stores. The expansion
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of product portfolios has a negative impact on supply-demand mismatches in the retail industry

(Rajagopalan 2013). Arguably, the challenges associated with diverse product portfolios are not only

limited to downstream sales channels (retailers, online channels), but start with upstream operations

(Atal� and Özer 2012). In fact, it is not uncommon for manufacturers to attempt to ful�ll customer

demand for broad product lines by using the same upstream resources and di�erentiating products

over time as they get closer to markets. This strategy helps them to bene�t from economies of scale

for upstream resources and to postpone product di�erentiation until acquisition of more accurate

market demand forecasts.

Fashion apparel is perhaps the most celebrated industry where product proliferation is prominent

and has a profound impact on pro�tability (Lee and Tang 1997). Global manufacturers like Zara,

H&M, and Uniqlo sell a variety of clothes in each selling season, which are produced using the same

textile but sewn and colored di�erently. These manufacturers typically follow a series of operations

to make clothes, and the proliferation occurs along the production stages. After a product design

team develops new designs, for example, yarns selected by the team are ordered. Production occurs

sequentially involving the weaving, sewing, and dyeing processes. First, yarns are transformed into

textile by the weaving process. Then, the textile is sewn into di�erent models and sizes. Finally,

the items are dyed into di�erent colors to complete the production. Product proliferation occurs

sequentially during the sewing and dyeing processes.

We observe similar dynamics at Kordsa Inc., a global manufacturer of advanced composites and

reinforcement materials, such as tire cords, which actively operates in Turkey, the US, Brazil, Thai-

land, and Indonesia, with 11 production sites and around 4,500 employees. Figure 1 presents the

production steps of tire cords. The cords are sold to tire manufacturers, and their demand is both

volatile and seasonal due to the seasonality of tire sales. In the �rst production step, polypropylene

is processed into polymer threads. The threads are �rst twisted before they undergo the weaving

process. Finally, the woven products enter a chemical blending process in which they are dipped

into chemical liquids to bring the products to the right level of thermal resistance and elasticity.

Although the variety of polymer materials is limited, there exists a high variety of end products due

to the product proliferation in the last three stages.

Beyond fashion apparel manufacturers and Kordsa, the dynamics of product proliferation are also

observed in di�erent industries. According to an industry survey conducted by E2Open (2018), which

covers global manufacturers across various industries, the e�ective management of proliferation

along sequential production stages is considered one of the key success factors because the variety of

products sold by the surveyed manufacturers has increased on average by 236% from 2010 to 2017,

while total sales have grown by only 15% during the same time period.
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Figure 1 Overview of Kordsa's production stages

Manufacturers operating in such settings are often exposed to high demand uncertainty for

upstream production orders. As production moves forward, demand uncertainty is partially resolved

due to additional valuable demand information collected from the market. For downstream pro-

duction orders, however, manufacturers are exposed to high product variety. When trading o� cost

e�ciency in exchange for operational responsiveness, Fisher (1997) indicates that physically e�cient

supply chains are better aligned with products that have low demand uncertainty, whereas market-

responsive supply chains are better aligned with products that have high demand uncertainty. Due

to the evolutionary risk structure in a product proliferation model, the utilization of both market-

responsive and cost-e�cient strategies may improve pro�ts depending on the supply chain structure

and the cost, demand, and lead-time parameters.

Delaying di�erentiation is an e�ective strategy for improving the responsiveness of supply chains

in which product proliferation occurs (the terms �di�erentiation� and �proliferation� are used inter-

changeably). It enables manufacturers to take advantage of inventory pooling at upstream echelons,

while ensuring that the proliferation at downstream occurs with more accurate demand information.

There are two practical approaches to operationalizing delayed di�erentiation, both of which have

been widely popularized by their implementation in the fashion apparel industry. The �rst approach

is to redesign the processes so that the operations that cause proliferation are deferred to a later
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stage in the supply chain. Benetton, the Italian clothing company, is the �rst �rm that successfully

implemented this approach and reversed the order of the dyeing and knitting operations (Heskett

and Signorelli 1989, Lee and Tang 1997). Traditionally Benetton spun and dyed the yarns �rst and

then knitted the colored yarns. In 1972, the company began dyeing clothes rather than yarns to

postpone the costly dyeing operation. This allowed Benetton to postpone product di�erentiation

until it could observe accurate market demand information, leading to higher pro�ts due to the

decrease in supply-demand mismatches. Given the success of this approach, many other companies

followed Benetton's lead (Parsons and Graves 2005, Viswanathan and Allampalli 2012, Kouvelis

and Tian 2014).1

The second approach is to reduce lead times for each operation in the supply chain. Zara, the

Spanish fashion apparel company, followed this strategy and became the market leader in 2008

(Ghemawat and Nueno 2006). When lead times are long, demand forecasts are often plagued with

high uncertainty. Reducing lead times allows manufacturers to postpone the point of proliferation

and actual ordering decisions closer to market demand, making it possible to place production orders

based on more accurate demand forecasts. This, in turn, leads to a decrease in supply-demand

mismatches (Caro and Martínez-de Albéniz 2015).

To establish cost e�ciency, manufacturers can systematically reduce the cost of all operations

along the supply chain or postpone the high-cost operations to a later stage. The former helps them

reduce the unit product cost, whereas the latter makes it possible to avoid unnecessary overuti-

lization of expensive resources. The value of each operational lever of the responsiveness and the

e�ciency depends on the supply chain structure and the cost and lead-time values of each opera-

tion along the supply chain. Our objective in this paper is to quantify their costs and bene�ts. To

this end, we consider a multi-echelon and multi-product newsvendor model with demand forecast

evolution. We make three important contributions to the extant literature. First, from a model-

ing perspective, we develop an analytical framework for dynamically optimizing inventory/ordering

quantities in a multi-echelon and multi-product newsvendor setting with demand forecast evolution.

This framework extends the existing inventory models in the literature (Wang et al. 2012, Biçer and

Seifert 2017) by incorporating forecast evolution to multi-product and multi-echelon settings. Our

framework takes the supply chain structure along with lead times and cost values for each echelon as

inputs, incorporates the evolution of demand forecasts using a generalized model, and optimizes the

ordering decisions at each echelon. We characterize the optimal strategy and investigate the e�ects

1We remark that process redesign does not necessarily require operations to be swapped; it may also be achieved
by changing the way operations are performed (and associated costs). In the auto-tire industry, for example, it is
possible to meet the technical speci�cations requested by a customer by changing either technical grades used during
the fabrication process or the chemical recipes used during the blending process. The latter enables the postponement
of the point of proliferation, but increases production costs.
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on pro�ts of salient parameters�costs, lead times, proliferation points. We calibrate our model by

using anonymized sales data from Kordsa. Our approach outperforms a theoretical benchmark of

the repetitive newsvendor model such that it increases pro�ts by 135% over the benchmark.

Second, utilizing this framework, we analytically demonstrate the critical impact of cost changes,

lead-time reduction, and postponement points on optimal inventory levels and consequent pro�ts.

We establish that reducing the lead time of a downstream operation is more bene�cial to man-

ufacturers than reducing the lead time of an upstream operation by the same amount, whereas

reducing the costs of upstream operations is more favorable than reducing the costs for downstream

operations. We also show that delaying the proliferation may cause a loss of pro�t. Such a loss in

pro�ts may occur if its implementation requires swapping a high-cost downstream operation with

a low-cost upstream operation. Further, even when all costs across echelons are equal, delaying the

proliferation may still cause a loss of pro�t. This occurs when postponing the proliferation requires

swapping an upstream operation with a long lead time with a downstream operation with a short

lead time (see Theorem 3). These results are counterintuitive to conventional wisdom that the post-

ponement strategy would always help reduce the cost of mismatches between supply and demand

(please see Zinn (2019) for a historical review of the evolution of the postponement research). We

analytically develop a threshold value such that deferring the proliferation by swapping it with a

high-cost downstream operation causes a loss of pro�t when the cost of the downstream operation

exceeds the threshold value. We reveal how the threshold value is a�ected by demand volatility,

demand correlation, and the number of products in the portfolio.

Third, we translate the descriptive results into prescriptive insights for practicing managers,

particularly with respect to the implementation of delayed di�erentiation. We provide normative

support for when postponing the proliferation actually leads to a pro�t gain depending on the

costs and lead times of the operations in the supply chain. We also provide a decision topology

that indicates the most appropriate strategy based on product/market characteristics and process

�exibility.

2. Literature Review

Our research has a natural connection with studies that focus on postponement strategies for delay-

ing product di�erentiation. One stream within this literature focuses on the design of supply chain

structures (Johnson and Anderson 2000, Lee and Tang 1997, 1998), capacity investments (Kouvelis

and Tian 2014), and inventory levels at the decoupling points (i.e., vanilla boxes) (Swaminathan and

Tayur 1998, Paul et al. 2015). Common to these papers is that demand is assumed to be random

without an evolutionary form, so the bene�ts of postponement are only attributed to inventory

pooling�bene�ts due to improved forecast accuracy are not incorporated. Another stream focuses
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precisely on demand evolution. In particular, Aviv and Federgruen (2001a,b) analyze the value of

order postponement in a multi-period inventory setting where sales occur in each period and demand

forecasts are updated according to a Bayesian model. In a similar vein, Atal� and Özer (2012)

develop a two-stage production model with product di�erentiation occurring at the beginning of

the second stage under a Markov-modulated demand model. They show that the value of postpone-

ment increases with operational �exibility (as measured by di�erence in minimum and maximum

production limits). Our contribution to this literature is the development of a multi-echelon and

multi-product newsvendor model with demand forecast evolution. Utilizing this model, we quantify

the impact of supply chain structure, the cost and the lead-time values on pro�ts in a product-

proliferation setting. Thus, our results shed light on how to employ operational responsiveness and

cost e�ciency to improve the pro�ts.

Our paper is also connected to the operations management literature that focuses on the multi-

ordering inventory models with demand forecast evolution. The closest papers within this literature

are Wang et al. (2012) and Biçer and Seifert (2017) because they develop integrated dynamic inven-

tory models with the martingale model of forecast evolution (MMFE). Wang et al. (2012) model

a newsvendor with multiple ordering opportunities and increasing costs over time, and character-

ize optimal base-stock levels. Biçer and Seifert (2017) extend Wang et al. by including capacity

limitations and allowing for multiple products. In both papers, the ordering decisions are made

only for the end products, not for the components or the raw materials at the upstream echelons.

We contribute to the extant literature such that we optimize ordering decisions in a multi-echelon

setting in which the order quantity of a given operation determines the capacity for the immediate

downstream echelon. We also consider the possibility of product proliferation to occur at any eche-

lon in the supply chain. For the same reasons, our model di�ers from single-item inventory models

with evolving demand forecasts and multiple ordering opportunities. Song and Zipkin (2012) study

such a setting where order quantities can be updated downwards (after paying the cost) as new

demand information arrives. Cao and So (2016) consider an assembler ordering from two suppliers

(e�ectively two ordering decisions) with demand forecasts updated over time.

In addition to the above-mentioned theoretical contributions, we calibrate our model using empir-

ical data from Kordsa. In the company setting, evolution of demand forecasts occurs depending on

the advance demand (�rm orders) received from customers. We use a generalized demand model to

capture the demand dynamics when the �rm orders are used as the sole source of demand informa-

tion. We show how to �t the modeling parameters to empirical data and compare our model with a

theoretical benchmark of the repetitive newsvendor model. Our model outperforms the benchmark.
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3. Model Preliminaries

Consider a supply chain with (n+ 1) echelons, where the most downstream echelon n is closest to

the customer and echelon 0 is the farthest from the customer. Echelon i+ 1 is considered to be the

downstream and echelon i− 1 the upstream of echelon i. Supply chain activities occur sequentially

such that the operation at echelon i uses the output of echelon i−1 as input and transforms it into

output. The output of echelon i is then used as input for echelon i+ 1. Without loss of generality,

we assume that one unit of input is transferred into one unit of output. The manufacturer has to

make n ordering decisions at the time epoch ti for i∈ {0,1, · · · , n−1}. Hence, there is a positive lead

time at each echelon; ti+1− ti > 0 for i∈ {0,1, · · · , n− 1} and expediting is not allowed. For ease of

exposition, suppose for now that there is a single �nal product, and let Qi denote the order quantity

at echelon i. The order quantity Qi for i ∈ {1, · · · , n− 1} is constrained by the order quantity at

the previous echelon (i.e., Qi ≤ Qi−1), while the �rst order quantity Q0 is unrestricted. We use

Di to denote the demand forecast at time ti for i ∈ {0, · · · , n}, with the end demand forecast Dn

representing the actual market demand. The timeline of ordering decisions for this single-product

model without any product proliferation is depicted in Figure 2.

Time t0 t1 t2 tn-2 tn-1 tn

Q0 Q1≤Q0 Q2≤Q1 Qn-2≤Qn-3 Qn-1≤Qn-2 Sales = min(Qn-1, Dn)
Order 
quantity

Figure 2 Timeline of ordering decisions for a single-product model without product proliferation

The following sequence of events occurs at each decision epoch ti for i∈ {0, · · · , n− 1}: i) manu-

facturer observes the demand forecast Di; ii) the order quantity of the previous operation Qi−1 is

reviewed; iii) the order quantity Qi is determined, and the manufacturer incurs an operational cost

ciQi.

We model the evolution of demand forecasts Di from t0 to tn according to a generalized demand

model that can be developed in either an additive or a multiplicative form. In practice, there are two

common mechanisms employed to update demand forecasts. The �rst mechanism is the judgmental

forecast updating mechanism such that demand planners dynamically update the point forecasts for

future periods (Diermann and Huchzermeier 2017). They collect information from di�erent sources

and estimate the demand for future months. They dynamically update the forecasts in each period

until the actual demand is realized. The de-biased estimates in this approach can be modeled by

the martingale model of forecast evolution (MMFE) (Hausman 1969, Heath and Jackson 1994).
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The second mechanism is the advance demand information mechanism such that �rm orders

received from customers are the only source of demand information. Firm orders serve as a lower

bound for the actual demand, and they accumulate over time until the actual demand is realized

(i.e., occurs at time tn). When the demand model is constructed in such a way that Di denotes the

amount of accumulated advance demand that has to be ful�lled at time tn, the demand process

cannot satisfy the martingale property. In this case, the accumulated demand structure should be

captured by a submartingale with a positive drift rate because advance demand serves as a lower

bound for the actual demand. Our generalized demand model involves the drift rate as a modeling

parameter, so it can be used for both mechanisms.

In addition to the distinction between martingale and submartingale forms, there is another

dimension to categorize demand models: either (1) additive or (2) multiplicative. Both versions �t

well the empirical data under di�erent circumstances. For example, the multiplicative model �ts

well when demand uncertainty is relatively high or the forecasting horizon is long; while the additive

version �ts well when the forecasting horizon is short (Wang et al. 2012, Biçer et al. 2018, Oh and

Özer 2013).

In the following two subsections, we present the additive and the multiplicative versions of the

demand model that can be utilized in martingale or submartingale forms. We develop our analytical

results in Sections 4 and 5 based on a generalized demand distribution form, so each model can be

applied to our analytical framework.

3.1. Additive Demand Model

In the additive model, the demand forecasts are updated additively such that Di = D0 + µ(ti −

t0) + ε1 + ε2 + · · ·+ εi for i ∈ {1, · · · , n}, where µ is the drift rate and εi is the incremental forecast

adjustment at time ti that follows a normal distribution:

εi ∼N (0, σ
√
ti− ti−1), ∀i∈ {1, · · · , n}. (1)

The end demand conditional on the demand forecast at time ti follows the normal distribution:

Dn|Di ∼N (Di +µ(tn− ti), σ
√
tn− ti). (2)

Demand uncertainty for the distribution (2) depends on not only the volatility parameter σ but

also the time when the forecast is made. As ti approaches to tn, the forecast horizon is shortened

and the accuracy of forecasts is improved, which is relevant in practice. The (positive) drift rate

captures the upward trend in the demand process. If advance orders are the sole source of demand

information, the drift rate should be positive and set equal to the arrival rate of advance orders. If

forecasts are formed according to the judgmental forecasting, the drift rate should be set equal to
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Figure 3 A sample path of the demand forecast according to the a-MMFE with 95% two-sided con�dence intervals

zero. The case with the zero drift rate reduces to the additive version of the martingale model of

forecast evolution (a-MMFE).

In Figure 3, we present an example of the evolution of demand forecasts according to the a-

MMFE. We simulate a random path assuming that the initial demand forecast is scaled to one. We

set the σ parameter to a high value (i.e., σ= 1.3) to highlight the problems related to the a-MMFE.

The forecast evolves from t0 = 0 until tn = 1. The solid curve represents the mean forecast, and

the shaded area shows the 95% con�dence interval. As time approaches the realization of market

demand (t→ 1), the forecast accuracy increases signi�cantly as indicated by a reduction of the

distance between the upper and the lower bounds of the con�dence interval. The lower bound is

negative when t ≤ 0.60, although, true demand values cannot be negative. For this reason, the

a-MMFE �ts poorly empirical data when the forecast horizon is long.

The additive model causes some problems when an ordering decision is made for low-margin

products with a long lead time. The newsvendor solution indicates that the in-stock probability

for the optimal decision should be low for low-margin products. In Figure 3, for example, %10 in

stock-probability is around �−0.5 ×D0� when the ordering decision is made at t = 0. Thus, the

optimal order quantity can be found negative if a-MMFE is used for a such product when the lead

time is long.

3.2. Multiplicative Demand Model

The multiplicative model is structurally di�erent from the additive one such that the incremental

forecast adjustments are accumulated multiplicatively. In mathematical terms, Di =D0 exp(µ(ti−
t0) + ε1 + ε2 + · · ·+ εi), where εt follows a normal distribution:

εi ∼N (−σ2(ti− ti−1)/2, σ
√
ti− ti−1), ∀i∈ {1, · · · , n}. (3)
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The term exp(εi) follows a lognormal distribution and E(exp(εi)) = 1. The end demand conditional

on the demand forecast at ti follows a lognormal distribution:

ln(Dn)|Di ∼N (ln(Di) + (µ−σ2/2)(tn− ti), σ
√
tn− ti), ∀i∈ {0, · · · , n− 1}. (4)
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Figure 4 A sample path of the demand forecast according to the m-MMFE with 95% two-sided con�dence intervals

In Figure 4, we present an example of the evolution of demand forecasts according to the multi-

plicative martingale model of forecast evolution (m-MMFE). We simulate a random path assuming

that the initial demand forecast is scaled to one and the σ value is set to one. The coe�cient of

variation for σ= 1 is equal to 1.3, which is the same as in Figure 3. The forecast evolves from t0 = 0

until tn = 1. The solid curve represents the mean forecast, and the shaded area shows the 95% con�-

dence interval. As time approaches the realization of market demand (t→ 1), the forecast accuracy

increases signi�cantly as indicated by a reduction in the distance between the upper and the lower

bounds of the con�dence interval. Contrary to the a-MMFE, the m-MMFE avoids negative forecasts

such that the lower bound cannot be negative due to the lognormal property. Thus, it provides a

better �t with data than the a-MMFE when the forecast horizon is long.

4. Single-Product Model

In this section, we formulate the manufacturer's optimization problem and derive its solution for the

single-product case. Consider the single-product model shown in Figure 2, where the �nal product

is sold in a single market. The product is processed from raw materials through a sequence of

operations and sold in the market at a price of p per unit. We assume that there is no salvage value

for the excess inventory. Thus, a revenue of pmin(Dn,Qn−1) is collected at time tn. Let ci denote

the cost of processing the ith operation per unit input. This includes all the cost elements such as
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labor, utility, material, and other operational costs that the manufacturer incurs only from ti until

ti+1.

We formulate the manufacturer's optimization problem as a dynamic program (DP). At each

decision epoch ti, the manufacturer observes the state, which consists of the available supply Qi−1

at the upstream echelon and demand forecast Di, and then determines the order quantity Qi that

maximizes expected pro�ts. For the last decision epoch tn−1, the ordering decision is a constrained

newsvendor problem:

Vn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
EDn|Dn−1

[
pmin(Dn,Qn−1)

]
− cn−1Qn−1

}
. (5)

The ordering decisions at the earlier decision epochs (i.e., ∀i ∈ {0, · · · , n− 2}) can be determined

dynamically according to the following Bellman equation:

Vi(Qi−1,Di) = max
Qi≤Qi−1

{
EDi+1|Di

[
Vi+1(Qi,Di+1)− ciQi

]}
. (6)

The order quantity at t0 is not constrained, so we set Q−1 = +∞. Let the functions to be maximized

in Equations (5) and (6) be denoted respectively as:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

[
pmin(Dn,Qn−1)

]
− cn−1Qn−1, (7)

Gi(Qi,Di) = EDi+1|Di

[
Vi+1(Qi,Di+1)− ciQi

]
, (8)

with gi(Qi,Di) = ∂Gi(Qi,Di)/∂Qi.

Observe that the optimal value of Qi in Equation (6) depends on the demand forecasts in all

future decision epochs. We de�ne a new parameter Dj for j ∈ {i+ 1, · · · , n− 1} to represent the

critical demand forecast values at time tj. If Dj ≥ Dj ∀j ∈ {i+ 1, · · · , n− 1}, the optimal order

quantities in all the remaining decision epochs become equal to Qi. If Dj <Dj for j > i, the optimal

value of Qj becomes less than Qi. Therefore, Dj values for j ∈ {i + 1, · · · , n − 1} determine the

lower bounds for demand forecasts that make optimal order quantity at time tj equal to Qi. Solving

the DP model by backward induction, we characterize the optimal ordering policy at each decision

epoch, which is presented in the next theorem.2

Theorem 1. The optimal order quantity, denoted by qi for i∈ {0, · · · , n− 1}, satis�es:

qi = min(Qi−1,Q
∗
i ), (9)

2 The proofs of all results are presented in our online appendix.
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where Q∗i is the optimal order quantity for the unconstrained problem (without �Qi ≤Qi−1�), which

is found by the following expressions:

Q∗i = {Qi | gi(Qi,Di) = 0}, (10)

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)− ci = 0 (11)

with D{i+1,n−1} denoting the vector of demand forecasts from i + 1 to n − 1 and D{i+1,n−1} =

(Di+1, · · · ,Dn−1) denoting the vector of critical demand forecasts from i+ 1 to n− 1.

It can be easily veri�ed that equation (11) reduces to the newsvendor solution for i= n− 1 such

that:

gn−1(Qn−1,Dn−1) = pPr(Dn >Qi)− cn−1 = 0. (12)

For i < n− 1, the solution is still in the spirit of the newsvendor solution. The �rst term on the

right-hand side of Equation (11) gives the expected value of the marginal revenue generated by

ordering one additional unit after (Qi−1) units are already ordered. The marginal revenue depends

on not only the �nal demand realization Dn but also the updated demand forecasts at the remaining

decision epochs. Even when Dn >Qi, the marginal revenue may be zero if the manufacturer decides

to reduce the order quantity in any of the subsequent production stages. The remaining terms

of the right-hand side of Equation (11) give the expected value of the marginal cost of ordering

one additional unit when (Qi − 1) units are already ordered. When the Qi
th unit is ordered, the

manufacturer incurs the cost ci. If the demand forecast at the next decision epoch exceeds the

critical value (i.e., Di+1 ≥Di+1), the manufacturer orders Qi units at ti+1 and incurs an additional

cost of ci+1 per unit and so forth.

Proposition 1. Optimal order quantity in an upstream echelon is always higher than the expected

(optimal) order quantity in a downstream echelon such that qi >E[qi+j|Di], i= 0,1, · · · , n− 2, and

j = 1,2, · · · , n− 1− i.

Proposition 1 states that the interdependency between order quantities (due to supply constraints)

and the accumulating cost structure induce the manufacturer to order in large quantities for the

upstream operations even though the manufacturer expects the �nal order quantity to be lower.

Next, we present the impact of cost parameters on optimal order quantities and the expected pro�t.

Proposition 2. A- Let q = {q0, q1, · · · , qn−1} be the vector of optimal order quantities at each

decision epoch. If cj for j ∈ {0, · · · , n− 1} increases, the optimal order quantities are updated

such that q′ = {q′0, q′1, · · · , q′n−1}, where q′i is statistically smaller than qi (i.e., q′i ≺ qi) ∀i ∈
{0, · · · , n− 1}.
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B- Let c0 = c1 = · · · = ci−1 = ci+1 = · · · = cn−1 = cfixed and ci > cfixed. Swapping the operation i

with a downstream operation j ∈ {i+ 1, · · · , n− 1} increases the total expected pro�t if the two

operations swapped have the same lead time.

Part A of Proposition 2 describes how the order quantities are a�ected by an increase in the cost of

any operation. If the cost of an operation increases, order quantities at all decision epochs decrease.

Part B shows how the sequence of the operations should be redesigned depending on the operational

costs. The manufacturer increases its pro�ts by swapping a high-cost and upstream operation with a

low-cost and downstream operation if the operations swapped have the same lead time. Swapping the

high-cost operation with a downstream lower-cost operation increases the upstream order quantity

and hence the available supply (upper bounds) for the downstream operation. An increase in the

upper bounds for the downstream quantities provides the manufacturer with additional �exibility to

adjust order quantities according to updated demand forecasts, leading to higher pro�ts. Proposition

2.B holds if the lead times of the swapped operations are identical. The following Proposition

elaborates on the sensitivity of the pro�ts in lead times.

Proposition 3. A- Reducing the lead time of operation i for i ∈ {1, · · · , n− 1} by an amount

of ∆t≤ ti+1− ti increases expected pro�t more than what can be achieved by reducing the lead

time of operation j < i by the same amount of ∆t.

B- Let c0 = c1 = · · · = ci = · · · = cn−1, t1 − t0 = t2 − t1 = · · · = ti−1 − ti−2 = ti+1 − ti = · · · = tn −

tn−1 = ∆tfixed, and ti− ti−1 <∆tfixed. Then, swapping operation i with a downstream operation

j ∈ {i+ 1, · · · , n− 1} increases the total expected pro�t.

Part A of Proposition 3 states that reducing the lead time of a downstream operation is more

bene�cial to the manufacturer than reducing the lead time of an upstream operation by the same

amount. This result is in line with de Treville et al. (2004), who argue that the bene�ts of lead-

time reduction highly depend on the demand management activities, so any e�ort to reduce the

lead times should focus on downstream demand management activities. Proposition 3.A formally

proves that lead time reduction in a downstream echelon is more bene�cial than that of an upstream

echelon. Part B of Proposition 3 states that if all operations have the same cost value, swapping a

short-lead-time operation with a downstream operation that has a longer lead time helps increase

the pro�t.

Propositions 2.B and 3.B combined are in line with Lee and Tang (1997) and Cao and So (2016).

Lee and Tang (1997) state that redesigning the production processes so that high value-added and

short operations take place later than low value-added and long operations leads to higher pro�ts.

Cao and So (2016) �nd that a manufacturer can generate high pro�ts if a supplier with a long lead

time supplies a low-value component, whereas another supplier with a short lead time supplies a
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high-value component. Propositions 2.B and 3.B e�ectively establish the same result for a more

general setting.

The analytical results given by Propositions 1�3 provide useful insights and clear guidance on

how a manufacturer should implement process-redesign and lead-time-reduction practices. Even in

the absence of product proliferation at any echelon, manufacturers can still increase the pro�ts by

redesigning their processes to postpone high-cost operations. When a manufacturer aims to reduce

its operational costs, it should �rst focus on the upstream operations and then move sequentially

downstream. However, the manufacturer should start from the downstream operations and then

move upstream if the objective is to reduce the lead time.

5. Product Proliferation Model

We now extend the single-product model to the multi-product case where the raw materials or semi-

�nished products are transformed into a variety of products and product proliferation is allowed at

any decision epoch. Clearly, some of the insights from Section 4 can be generalized to the product

proliferation model. For example, Proposition 3.A also holds in the presence of product proliferation

(see the proof of Proposition 3.A in the online appendix for details). The objective of this section is

to better understand the impact of key modeling parameters on pro�ts when product proliferation

occurs along the supply chain.

To facilitate model development, in Figure 5, we present an example where product proliferation

occurs at two epochs: t1 and tn−2. We use Qj
i to denote the order quantity placed for component j

at time ti. We use a unique code to label the component j at ti. The code is a sequence of single

digits, and the length of the code shows how often product proliferation occurs from t0 until ti. In

our example in Figure 5, three di�erent components are ordered at t1, each taking a di�erent digit

number. The second proliferation occurs at tn−2, where the inventory of each component is allocated

to produce three di�erentiated products, amounting to nine stock-keeping units (SKUs) available

in the market. Thus, a new digit is added to the product code at tn−2. Suppose, for example, a

fashion-apparel manufacturer selling a product line to di�erent markets uses a three-digit product

code (e.g., 361). The �rst digit represents the size (e.g., small, medium, or large), the second digit

represents the color, and the third digit denotes the market. The three-digit code means that product

proliferation occurs three times along the supply chain (one for size, one for color, and the last for

di�erent markets).

The primary challenge in solving the product proliferation problem lies with the need to link

the demand dynamics to the ordering constraints. For each ordering decision, it is necessary to

consolidate the demand updates of di�erent end products and then allocate the limited supply

available from the previous operation to process di�erent semi-�nished or end products. We de�ne
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Time t0 t1 t2 tn-2 tn-1 tn
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Figure 5 Ordering decisions in a supply chain with the product proliferation at the decision epochs t1 and tn−2

two di�erent sets and their subsets to formalize the problem. To capture the resource constraints, we

use Θi to denote the set of all components produced at echelon i∈ {1, · · · , n} at time ti. We further

partition the set Θi into k pairwise disjoint subsets such as Θj
i for j ∈ {1, · · · , k} and k = |Θi−1|.

We de�ne Θj
i as the set that contains all components that use the same upstream resource as their

input. We then have, by de�nition:

Θi =
⋃

j∈Θi−1

Θj
i and ∅=

⋂
j∈Θi−1

Θj
i . (13)

Recalling our example in Figure 5, Θn−1 = {11,12,13,21,22,23,31,32,33}. There are nine order-

ing decisions in the previous period (i.e., t= tn−2); therefore, the set Θn−1 is partitioned into nine
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subsets such that:

Θn−1 = Θ11
n−1 ∪Θ12

n−1 ∪Θ13
n−1 ∪Θ21

n−1 ∪Θ22
n−1 ∪Θ23

n−1 ∪Θ31
n−1 ∪Θ32

n−1 ∪Θ33
n−1,

where Θ11
n−1 = {11}, Θ12

n−1 = {12}, Θ13
n−1 = {13}, Θ21

n−1 = {21}, Θ22
n−1 = {22}, Θ23

n−1 = {23}, Θ31
n−1 =

{31}, Θ32
n−1 = {32}, and Θ33

n−1 = {33}. Likewise, at t= tn−2, Θn−2 = {11,12,13,21,22,23,31,32,33}.
There are three ordering decisions in the previous period (i.e., t= tn−3) so Θn−2 is partitioned into

three subsets: Θ1
n−2 = {11,12,13}, Θ2

n−2 = {21,22,23}, and Θ3
n−2 = {31,32,33}.

With these sets de�ned, we can write down the ordering constraints between echelons. That is,

the sum of the order quantities for the products that use the same input cannot be larger than the

order quantity of the input at the immediate upstream echelon. In mathematical terms:∑
j∈Θki

Qj
i ≤Qk

i−1. (14)

Returning back to Figure 5, the order quantity constraints at tn−1 are Qj
n−1 ≤Q

j
n−2 for each j ∈

Θn−1. At tn−2, we have three ordering constraints:

Q11
n−2 +Q12

n−2 +Q13
n−2 ≤Q1

n−3,

Q21
n−2 +Q22

n−2 +Q23
n−2 ≤Q2

n−3,

Q31
n−2 +Q32

n−2 +Q33
n−2 ≤Q3

n−3.

We can then formalize the other order quantity constraints at ti as Q
j
i ≤Q

j
i−1 for i∈ {2, · · · , n− 3}

and j ∈Θi. Finally, at t= t1�that is, when the �rst proliferation occurs�we have Q1
1 +Q2

1 +Q3
1 ≤

Q0.

We also de�ne another set Υk
i , which represents the set of end products produced by using

component k at echelon i. Therefore, Υk
i includes the end products (sold in the markets), whose

availability depends on the order quantity decision of Qk
i . In Figure 5, for example, the quantity

Q1
1 has a direct in�uence on the ordering decisions of the end products: Q11

n−1, Q
12
n−1, and Q13

n−1.

Therefore, Υ1
1 = {11,12,13}. The set Υ0 = Θn−1 since the quantity Q0 has a direct in�uence on the

�nal inventory of all end products. Let pj for j ∈Θn denote the price of the products sold in the

market.

To determine the maximum expected pro�t at tn−1, we write the following stochastic programming

(SP) model (Shapiro et al. 2009, Ch. 1):

Maximize
Q
j
n−1,∀j∈Θn−1

z =
∑

j∈Θn−1

pjE
(
Wj(Q

j
n−1,D

j
n)
)
− cjn−1Q

j
n−1 (15)

subject to: ∑
j∈Θkn−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (16)

Qj
n−1 ≥ 0, ∀j ∈Θn−1, (17)
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where Wj(Q
j
n−1,D

j
n) = min{Qj

n−1,D
j
n} denotes the sales and Dj

n is a random variable. Constraint

(16) guarantees that the sum of the order quantities of the items in a set Θk
n−1 is less than the

amount of their parent item k. In the appendix, we provide the solution for the mathematical

problem (15)�(17). Speci�cally, we transform the SP model into a linear programming (LP) model

as demonstrated by Shapiro et al. (2009, Ch. 1�3). By analyzing the LP model and its dual, we

partition the demand space and determine the shadow prices (see Van Mieghem (1998) for a similar

method to solve an SP problem). We then proceed backwards in a similar fashion, using induction,

and determine the optimal ordering policy for upstream echelons. The optimal policy is satis�ed

when all products in a set Θk
i (for all k and i values) have the same marginal value of ordering

one additional unit. If the quantity Qk
i−1 is highly restrictive, the marginal value for all products in

the set Θk
i would have a positive value. If the quantity Qk

i−1 is excessive, the marginal value would

become zero. This analysis reveals the structure of the optimal policy as well.

Theorem 2. The optimal ordering policy for all the items in each decision epoch is resource-

constrained and state-dependent such that the optimal order quantity is found by:

qji =


Qj∗

i if
∑

j∈Θki

Qj∗

i <Qk
i−1,

Q̂j
i if

∑
j∈Θki

Qj∗

i ≥Qk
i−1,

(18)

where Qj∗

i satis�es the following expression:

g
Υ
j
i

i (Qj
i ,D

Υ
j
i

i ) =

+∞∫
D

Υ
j
i

i+1

g
Υ
j
i

i+1(Qj
i+1,D

Υ
j
i

i+1)f(D
Υ
j
i

i+1|D
Υ
j
i

i )∂D
Υ
j
i

i+1− c
j
i = 0 ∀j ∈Θk

i . (19)

Equations (18) and (19) imply that the solution for the product proliferation model reduces to that

of the single-product model (given by Theorem 1) when the quantity constraint is not binding (i.e.,∑
j∈Θki

Qj∗

i <Qk
i−1). If the constraint is binding (i.e.,

∑
j∈Θki

Qj∗

i ≥Qk
i−1), the limited amount of inputs is

allocated to the products by comparing their marginal pro�ts, which are given by Equation (19).

With the characterization of the optimal policy at hand, we can use our framework to analyze

the impact of the point of proliferation, costs, and lead times on pro�ts. If everything else remains

the same, delaying di�erentiation (moving any point ti with proliferation forward) is bene�cial to

the �rm. The following proposition shows how the value of delaying di�erentiation is a�ected by

the costs of downstream operations.

Proposition 4. The value of delaying the point of product proliferation increases as the costs of

downstream operations that take place after the point of proliferation increase.
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Proposition 4 underpins delaying di�erentiation by swapping costly operations that cause prolif-

eration with less costly downstream operations. As documented by the Benetton's case, delaying

the point of proliferation and the costly dyeing operation were both achieved by only swapping

two operations. If such an improvement achieved by a single change is not possible, redesigning

processes such that costly operations scheduled before the proliferation are swapped with less costly

post-proliferation operations should precede any attempt to delay the proliferation point.

Theorem 3. Deferring the proliferation by swapping the point of proliferation with the adja-

cent downstream operation results in a decrease (increase) in pro�ts if the cost of the downstream

operation is higher (lower) than a threshold value:

κ = cpP, (20)

where cp is the cost of the operation that causes the proliferation and P > 0 is a pooling factor. The

pooling factor is constrained to being greater than one (i.e., P > 1) if the lead time of the operation

that causes the proliferation is shorter than or equal to the lead time of the adjacent downstream

operation.

This theorem is built on the trade-o� between delaying product proliferation and delaying a high-cost

operation. Manufacturers may be exposed to such a trade-o� when they redesign their operations.

For the single-product model, Proposition 2.B shows that swapping a costly upstream operation

with a less costly downstream operation increases the pro�ts if the operations swapped have the

same lead time. Therefore, postponing an operation helps increase the pro�ts if its cost is higher

than the cost of the downstream operation given that both operations have the same lead time.

For the multi-product model, however, postponing the point of proliferation (by swapping it with a

downstream operation) increases the pro�ts if the cost of the downstream operation is lower than

the threshold. In the online appendix, we explicitly develop an expression for this threshold value

(Equation (86)). The value of κ determines the value of postponing the proliferation. The higher

the κ value, the more appealing it is to postpone the proliferation.

When P > 1, the cost of the downstream operation should be higher than the cost of the operation

that causes the proliferation to prevent any attempt to defer the proliferation. However, P value

can be less than one, which is possible only when the lead time of the operation that causes the

proliferation is strictly longer than the lead time of the adjacent downstream operation. If P < 1,

delaying the proliferation may cause a pro�t loss even when the costs of the two operations are

the same. In order to illustrate the intuition behind this �nding, we consider a hypothetical case in

which the lead time of the downstream operation is equal to zero and the lead time of the adjacent

upstream operation is very long. Product proliferation also occurs during the upstream operation.
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Swapping these two operations does not change the starting time of the product proliferation.

However, it does expedite the costly downstream operation, which in turn reduces the expected

pro�t.

Theorem 3 provides useful insights regarding the limits of deferring the product proliferation in

a sequential production system. Historically the operations management literature on delayed dif-

ferentiation has advocated for the postponement of product proliferation (see Zinn (2019) for the

review of the literature). Despite the widespread bene�ts of the postponement strategy, manufac-

turers may still di�erentiate products in the early stages of the production. Some manufacturers

even coordinate with their suppliers for joint product development, and the suppliers supply dif-

ferentiated components to be used in the initial stages of production (Petersen et al. 2005). This

strategy would be e�ective when non-di�erentiating operations are costlier and/or shorter than the

operation causing the di�erentiation.

The explicit analytical form of the cost threshold makes it possible to analyze the impact of

demand correlation, demand uncertainty, and the number of products on the value and cost of

postponing product proliferation. In the following corollary, we demonstrate the impact of demand

correlation on the cost threshold value.

Corollary 1. Suppose that the correlation between any two products in the product portfolio

is �xed and equal to ρ. The product proliferation takes place at a single echelon. The value of κ

decreases with the value of ρ.

The corollary indicates that the value of postponing the proliferation increases as the products

become more negatively correlated. This result is consistent with the existing literature on central-

ized inventory management (Eppen 1979) such that the value of inventory pooling increases as the

correlation between the demand for the products decreases. Postponing the proliferation means that

inventory is pooled for a longer time period; thus, its value is expected to increase as the correlation

decreases. Next, we elaborate on the impact of demand uncertainty on the κ value.

Corollary 2. Suppose that the demand for each product is independent and identically dis-

tributed. The volatility parameter σ (given by Equation (2) for the additive and Equation (4) for the

multiplicative model) is the same for each product. Then, the value of κ increases with σ.

Corollary 2 is also consistent with Eppen (1979) such that the value of postponing the proliferation

(i.e., inventory is pooled for a longer time period) increases with demand uncertainty. In the following

corollary, we present the impact of the number of products in the portfolio on the value of κ.

Corollary 3. Suppose that the demand for each product is independent and the cost of the

operation that causes the proliferation is independent of the number of products. Then, the κ value

increases with the number of products.
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Similar to the �rst two corollaries, Corollary 3 is consistent with Eppen (1979) such that the value of

postponing the proliferation increases with the number of products in the portfolio. In Corollary 3,

we assume that the cost of operation at each echelon is �xed. This corollary can also be extended to

the case in which the cost of operation that causes proliferation depends on the number of products.

Corollary 4. The value of postponing the proliferation is ampli�ed if the cost of the operation

that causes the proliferation increases with the number of products.

In the following section, we complement our analytical results with a case analysis based on

the data from Kordsa to compare our approach with a theoretical benchmark of the repetitive

newsvendor model. We also develop some strategies to establish operational responsiveness and cost

e�ciency and assess their performance under di�erent circumstances.

6. Case Analysis

We calibrate our model using data from Kordsa Inc. (refs blinded to respect the peer review).

Kordsa is a global manufacturer of advanced composites and reinforcement materials used in the

automotive, aerospace, construction, and infrastructure industries. The company operates in the

US, Brazil, Turkey, Indonesia, and Thailand with 11 facilities and around 4,500 employees. Kordsa

is the global leader in the tire cord market such that one third of automotive tires and two thirds of

aircraft tires are made from the cords manufactured by Kordsa. Over the last decade, Kordsa has

been exposed to an increase in product variety as its customers demand more di�erentiated cords

along di�erent dimensions such as elasticity, strength, and thermal resistance.

Cord production involves four stages: (1) polymer yarn production, (2) twisting, (3) weaving,

and (4) dipping operations. In the �rst stage, some chemicals are processed with polypropylene to

produce polymer yarns. The polymer yarns are of a single type so there is no product proliferation

in the �rst stage. In the second stage, polymer threads are twisted. The number of twists per meter

has a direct impact on the strength and the elasticity of the cords. Kordsa di�erentiates twisted

cords along the density of twists, measured as the number of twists per meter. Therefore, product

proliferation occurs in the second stage. In the third stage, twisted yarns are woven to form the

cords. The number of twisted cords used per meter square may di�er depending on the technical

features of the cord that are speci�ed by Kordsa's customers. For that reason, product proliferation

also occurs in the third stage. In the fourth stage, the cords are treated with a chemical blending

to bring the products to the right level of thermal resistance and elasticity. The same cords can

be treated di�erently, resulting in di�erent SKUs. Thus, product proliferation can occur in the last

stage. Although the polymer yarns produced in the �rst stage are of a single type, there is a large

variety of end products due to product proliferation in the last three stages.
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We use anonymized sales and order data of a product portfolio of 10 SKUs. Our dataset covers

the time period starting from January 2017 and ending in December 2019, and it consists of 1,548

data rows. Each row speci�es a unique sales transaction, including information such as product

code, the date the order was received, the delivery date requested, and the quantity ordered. Total

(pooled) demand that was requested to be delivered in each month from January 2017 to December

2019 is presented in Figure 6. To preserve the anonymity of the data, we randomly scale the true

values. We split the data into two sets (i.e., the training and test sets). The training set covers the
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Figure 6 Total demand requested to be delivered in each month

�rst two-year time period. We use this data to train our model and estimate the model parameters.

Then, we use the last year's data to assess the performance of our model compared to a theoretical

benchmark of the repetitive newsvendor model.

Following the supply chain representation used in Figure 5, we present the product proliferation

model of Kordsa in Figure 7. Polymer yarn is produced in the �rst stage, which is processed into �ve

di�erent components in the second stage. Four of them are not exposed to product proliferation in

the following stages because each of them is transformed into a fast-selling SKU. The last component

is further exposed to product proliferation in both the third and last stages. It is �rst processed into

four sub-products in the third stage and then into six SKUs in the fourth stage.

We assume that it takes two months to complete the production such that each operation lasts

a half month. We normalize the selling price of each SKU to $1 per unit. We also assume that the

total cost to produce one unit of each SKU is equal to $0.5. We assign higher cost values to the �rst

and last operations than the intermediate operations such that c0 = c3 = $0.15 and c1 = c2 = $0.1.

This cost allocation makes it possible to compare alternative strategies that are discussed below in

Subsection 6.3.
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Figure 7 Supply chain structure for the case analysis

In the following subsections, we �rst describe Kordsa's demand model, which is based on advance

order information. Then, we present the results by comparing our model with a repetitive newsven-

dor model. Next, we change the model parameters and assess di�erent strategies. Based on this
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assessment, we discuss the practical insights and develop a decision typology that shows e�ective

operational strategies. Finally, we use some key modeling parameters to analyze the sensitivity of

the model.

6.1. Demand Model at Kordsa Inc.

Kordsa receives orders from its customers in advance of the delivery dates. The time period that

elapses from receiving a customer order until its delivery is referred to as the demand lead time. The

demand lead time varies from a few weeks to a few months. Advance demand helps Kordsa better

forecast actual demand, which is consistent with the literature. For instance, Fisher and Raman

(1996) showed that even a small quantity of advance orders can help increase forecast accuracy

substantially. The demand planning team considers advance demand as an important factor that

highly correlates with actual demand.

Advance demand is collected in the form of �rm commitments. Customers guarantee that the

ordered amount is purchased in full on the pre-speci�ed delivery day. The volume of advance demand

is equal to D0 at the beginning of the forecasting horizon�that is, at time t0. Kordsa receives

orders during the forecasting horizon such that advance demand accumulates until tn. Therefore,

Di denotes accumulated advance demand, which amounts to the actual demand at time tn. The

demand process is characterized by a submartingale model such that E(Di|Dj) ≥ Dj for ti ≥ tj.

We use the multiplicative model with a positive drift rate given by Equation (4) to capture these

dynamics.

Equation (4) implies that the volume of demand that accumulates from ti to tn depends on the

amount of �rm orders already received from the customers (i.e., Di). The dependency between

the �rm orders and future demand is not captured in an additive model. However, we observe

such a dependency structure in both literature and practice when the forecast horizon is relatively

long. Fisher and Raman (1996) report that the amount of �rm orders highly correlates with future

demand. The same dynamics are also observed at Kordsa. For that reason, we use the multiplicative

process given by Equation (4) to model the forecast evolution process at Kordsa.

We estimate the µ and σ parameters of each SKU by �tting a normal distribution to ln(D4/D0)

values in the training set. The mean value of the �tted distribution is set equal to µ−σ2/2, and the

standard deviation is set equal to σ. We drop the time element for parameter estimation because

the length of the planning horizon is normalized to one. The advance orders are collected from the

customers homogeneously over the planning horizon. Therefore, the µ and σ values for each SKU

are �xed. We note that if advance orders are clustered within a speci�c time duration (e.g., t4− t3),

the model parameters would be di�erent for each echelon. In such a case, the parameters for each

echelon can be estimated by �tting a normal distribution to ln(Di/Di−1) for i∈ {1, · · · ,4}.
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Figure 8 The empirical density of ln(D4/D0) values for the selected SKU

For each SKU, we test for normality of ln(D4/D0) values according to the Kolmogorov-Smirnov

test. The null hypothesis that the empirical values follow a normal distribution is statistically true

for all the SKUs. We randomly select an SKU and show its empirical distribution in Figure 8, which

resembles the bell-shape curve of the normal density function.

6.2. Results

After estimating the µ and σ values for all the SKUs, we use Theorem 2 to calculate the order

quantities at the beginning of each echelon. At the beginning of each month over the test time

window, we obtain the pooled advance demand that has to be delivered within the next month,

which is equal to D0. The �rst production order (i.e., Q0) is also placed to ful�l the demand

requested to be delivered in the next month. A half month after placing the �rst production order,

the �rst process is completed and the production orders for the second operation are placed. At that

time, the advance demand values for the subcomponents are calculated from the test dataset. The

second process is completed after another half month, and then the production orders for the third

operation are placed. Final products are produced after completion of the fourth process, which

occurs two months after starting the �rst process. If the �rst process is started at the beginning of

month k, the whole production is completed and the �nal products are obtained at the end of month

k + 1. Then, the demand for each SKU requested to be delivered within month k + 1 is ful�lled

from inventory. We assume that excess inventory at the end of each month is salvaged and unmet

demand is lost.

We compare our approach with a theoretical benchmark of a repetitive newsvendor model. In the

benchmark model, the newsvendor quantities for the SKU j are calculated at time ti for i∈ {0,1,2,3}
by the critical-fractile formula:

Qj
i = Dj

i exp(µj(t4− ti) + zi×σj

√
t4− ti), (21)
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where zi is found by the inverse of the standard normal distribution:

zi = Φ−1
[(
p−

3∑
j=i

cj

)
/p
]
. (22)

If the quantity found by Equation (21) is less than the order quantity in the previous echelon (i.e.,

ti−1), the order quantity at time ti becomes equal to that of Equation (21). Otherwise, the order

quantity is constrained by the order quantity in the previous echelon. In a mathematical form,

qji =

{
Qj

i , if Qj
i ≤ q

j
i−1,

qji−1, otherwise.
(23)

The pro�t values for both our approach and the benchmark model are calculated by subtracting

total production cost from total revenue (i.e.,p
∑

j∈Θ4

min(Dj
4, q

j
3)). Figure 9 presents the results over

the test time window. The solid curve gives the pro�t values for our approach, whereas the dashed

curve shows the results for the benchmark model. Our product proliferation model outperforms the

benchmark model for ten months. However, the benchmark model performs slightly better than our

approach for two months: the tenth and eleventh months. The average pro�t is equal to $126.5K

based on our approach and $53.7K for the benchmark model. Therefore, our approach results in

135% higher pro�ts than the benchmark model.
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Figure 9 Comparison of pro�ts between our approach and the repetitive newsvendor model over the test period

The repetitive newsvendor model calculates the order quantities at each decision epoch using

the critical-fractile solution given by Equation (22). Hence, the newsvendor approach does not

take into account the possibility of reducing the order quantity in the subsequent stages. Our

approach corrects for this misalignment and determines the order quantities at each decision epoch

by considering the possibility that order quantities are updated backward in the following decision

epochs. For that reason, our approach outperforms the repetitive newsvendor model.
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The newsvendor model takes a more static approach than ours, which makes demand forecast-

ing more important than modelling the evolutionary dynamics of demand forecasts. In a dynamic

approach, similar to ours, modelling the evolutionary dynamics becomes more important than

increasing the forecast accuracy at the very beginning (Elmachtoub and Grigas 2021). Suppose, for

example, a manufacturer places monthly production orders for a production period of two months

in a single-echelon setting. The monthly capacity is equal to 300 units. Demand for the product

during a short selling season is between 100 and 500 units. If demand uncertainty is resolved one

month after starting the production and the pro�t margin is high, the manufacturer would order 200

units for the �rst month and determine the order quantity for the second month after observing the

updated demand forecast. Unless the demand turns out to be less than 200 units, the manufacturer

perfectly matches supply with demand. The manufacturer also bears the risk of ending up with

excess inventory (when demand becomes less than 200) given the high pro�t margin.

If demand uncertainty is resolved one month after starting the production and the pro�t margin

is low, the manufacturer would order 100 units for the �rst month and determine the order quantity

for the second month after observing the demand forecast. Unless the demand turns out to be more

than 400 units, the manufacturer perfectly matches supply with demand. The manufacturer also

takes the risk of ending up with lost sales (when demand becomes more than 400) given the low

pro�t margin.

In this example, high demand uncertainty at the very beginning does not have any severe impact

on the �rst ordering decision due to the availability of the second ordering opportunity. Thus, the

resolution of demand uncertainty until the second ordering epoch would be more important than

marginally improving the demand forecast at the very beginning. The demand uncertainty resolution

can be achieved by collecting information from the customers (e.g., advance orders). If this is not

possible, demand uncertainty at the very beginning has a huge impact on the ordering decisions.

In this case, a dynamic approach does not o�er any substantial improvement over the newsvendor

approach. Therefore, the manufacturer would use sophisticated statistical models (e.g., time series)

with historical data to improve the forecast accuracy at the very beginning.

6.3. Analysis of Alternative Strategies

Our analytical results o�er useful insights regarding the operational strategies that can be employed

to improve the bottom-line performance of supply chains with product proliferation. We now syn-

thesize these strategies and compare their relative performance.

We consider two types of supply chains: (1) in�exible supply chains where operations cannot be

swapped and (2) �exible supply chains where operations can be swapped. We begin our analysis

with the non-�exible supply chains. Propositions 2 and 4 state that reducing the cost is more ben-

e�cial at an upstream echelon than at a downstream echelon. Thus, manufacturers can improve
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pro�ts by systematically reducing costs, starting from upstream operations and then moving down-

stream. We call this strategy systematic cost reduction. Since upstream operations are often related

to procurement of raw materials or subassemblies, systematic cost reduction calls for prioritizing

the improvement of the procurement e�ciency via consolidating purchasing orders, creating pur-

chase bundles, using low-cost substitutes, or other policies (Paranikas et al. 2015). For in�exible

supply chains, delaying the proliferation is only possible via the lead-time reduction. Proposition 3

corroborates that manufacturers should try to reduce the lead time of downstream operations �rst

and then move upstream in the supply chain. We call this strategy systematic lead-time reduction.

When there is some �exibility to adjust the processes, manufacturers redesign the operations by

changing their sequence. Such process redesigning practices can also be complemented with the

lead-time and cost-reduction approaches to maximize the pro�t. We propose two di�erent process-

redesign strategies: (1) performance-based process redesign and (2) mixed strategy. To describe

these strategies, we de�ne six di�erent conditions regarding any two adjacent operations.

C.1 : Di�erentiation occurs during the upstream operation and no di�erentiation occurs during the

downstream operation.

C.2 : No di�erentiation occurs during both operations.

C.3a: The cost of the upstream operation is greater than or equal to the cost of the downstream

operation.

C.3b: The cost of the upstream operation is strictly greater than the cost of the downstream operation.

C.4a: The lead time of the upstream operation is shorter than or equal to the lead time of the

downstream operation.

C.4b: The lead time of the upstream operation is strictly shorter than the lead time of the downstream

operation.

Theorem 3 a�rms that manufacturers can improve pro�ts through a performance-based process

redesign strategy, which iteratively examines adjacent operations and swaps the orders if one of the

followings is satis�ed:

• [C.1 and C.3a and C.4a]

• or [C.2 and C.3a and C.4b]

• or [C.2 and C.3b and C.4a]

If, for example, there are two adjacent operations (i.e., i and i+ 1) with the same lead time such

that ci ≥ ci+1 and the di�erentiation occurs only during operation i, swapping these two operations

to postpone operation i later than operation i + 1 leads to an increase in pro�ts. The proof of

Theorem 3 shows that P > 1 in this case. Because ci ≥ ci+1, the cost of the downstream operation

(i.e., ci+1) does not exceed the threshold value κ, which is even greater than ci for P > 1. For

that reason, swapping the operations to postpone the proliferation results in a pro�t increase. If no
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di�erentiation occurs, postponing a high-cost and short-lead-time operation later than a low-cost

and long-lead-time operation leads to a pro�t increase. No swapping should occur if none of the

three conditions are met. Performance-based process redesign strategy is practical in the sense that

it does not require the calculation of the cost threshold value. Instead, it focuses on certain cases

that render swapping the operations pro�table.

If di�erentiation occurs during a low-cost or long-lead-time operation, performance-based process

redesign may induce decision makers to di�erentiate products in the early stages of supply chains.

In such cases, we augment process redesign with lead-time reduction to postpone high-cost and

high-di�erentiation processes at the same time. We refer to this strategy as the mixed strategy,

which �rst sorts operations according to their costs in an ascending order. Therefore, the low-cost

operations precede those with higher costs. After sequencing the operations in this way, the lead

times are reduced starting from the downstream operations.

We now limit our attention to two fast-selling products of Kordsa. The structure of the chain is

shown in Figure 10 such that product proliferation occurs during the second operation. We refer
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Figure 10 Base case: Supply chain structure for two fast-selling products

to this structure as the base case. We recall that the second and third operations have the same

cost values. If the performance-based process redesign is implemented over the base case, the only

change that needs to be made is to swap the second and third operations. Its structure is given in

Figure 11. This leads to an increase in pro�ts. We use Πb and Πp to denote the pro�t values under

the base case and the performance-based process redesign, respectively. Thus, Πp >Πb.

If the mixed strategy is implemented, the processes are ordered in the sequence given in Figure

12, and the lead time of the last operation is reduced by ∆t4. The value of ∆t4 is determined in

such a way that the pro�t under the mixed strategy, denoted by Πm, becomes equal to Πp. Since we

aim to compare four di�erent strategies (i.e., performance-based process redesign, mixed strategy,

systematic lead-time reduction, and systematic cost reduction), we design the structures of the

supply chains for these four strategies such that the realized pro�ts are the same with the original
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Figure 11 Performance-based process redesign: The second and the third operations are swapped
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Figure 12 Mixed strategy: Operations are sequenced from the lowest cost to the highest and the lead time of the

last operation is reduced by ∆t4

parameter values. We then change the price and volatility parameters to assess the performance of

each strategy for the innovative and standard products.

Under the systematic lead-time reduction strategy, the sequence of the operations is not changed.

We only reduce the lead time of the last operation by ∆t4 such that the pro�t under this strategy,

denoted by Πl, becomes equal to Πl = Πp. Under systematic cost reduction, the cost of the �rst

operation is reduced by ∆c1 such that the pro�t under this strategy, denoted by Πc, becomes equal

to Πc = Πp.

Strategy Expected Pro�t Key Parameter Values

Performance-based process redesign Πp = $104.5K Cost and lead time values are the same as the base case.
The only di�erence is that proliferation takes place at
time t2.

Mixed strategy Πm = $104.5K c1 = c2 = 0.1, c3 = c4 = 0.15, and ∆t4 = 0.0906 such that
t4 = 0.1594.

Systematic lead-time reduction Πl = $104.5K ∆t4 = 0.09502 such that t4 = 0.15498
Systematic cost reduction Πc = $104.5K ∆c1 = 0.02671 such that c1 = 0.12329

Table 1 Break-even structures of all four strategies

We generate 1,000 sample paths of the evolution of advance demand values and calculate the

expected pro�t by taking the average of the realized pro�ts for these sample paths. Therefore, we do

not use the test dataset because we compare the strategies based on the randomly generated sample
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paths. For the base case in Figure 10, the average pro�t obtained is $96.9K (i.e, Πb = $96.6K).

When the structure of the supply chain is switched to that seen in Figure 11 (i.e., performance-

based process redesign), the average pro�t increases by 8.17% to $104.5K. The mixed strategy with

∆t4 = 0.0906 yields the same expected pro�t as the performance-based strategy such that Πm =

Πp = $104.5K. Likewise, a systematic cost-reduction strategy with ∆c1 = 0.02671 results in the

same expected pro�t. Finally, we determine the equivalent systematic lead-time reduction strategy

such that reducing the lead time of the last operation by ∆t4 = 0.09502 leads to the same pro�t.

The break-even structures of all four strategies are given in Table 1.

After determining the break-even parameters for each strategy, we �rst increase the price by 30%

and the volatility by 50% for each product. Following the Fisher's product matrix (Fisher 1997),

we use these new parameter values to investigate the impact of each strategy on an innovative

product portfolio. For each sample path, we dynamically �nd the order quantities at each echelon

and calculate the realized pro�t depending on the evolution of demand. Then, the average pro�t

values are found for each strategy as follows:

Πm = $172111>Πl = $170914>Πp = $168978>Πc = $166921. (24)

The di�erence between any two values of pro�ts is statistically signi�cant based on the two-sample

t test.

We then reduce the price by 30% and the volatility by 50% for each product to analyze the impact

of each strategy on a standard product portfolio. Following the same approach above, we generate

1,000 sample paths of the evolution of advance demand values and �nd the average pro�t values.

For the standard product portfolio, the average pro�ts are as follows:

Πp = $49021>Πc = $47488>Πm = $43831>Πl = $43701. (25)

The values of Πm and Πl are very close such that their di�erence is not statistically signi�cant based

on the two-sample t test. However, the other pairs are statistically di�erent.

The strategic value that can be harvested by manufacturers from adopting these four strategies

depends naturally on characteristics of both the industry in which they operate as well as the

markets their products serve. When manufacturers do not have the process �exibility to conduct

re-sequencing or major process changes, it indicates that they are in relatively mature industries

where the processes are standardized and widely adopted. Such manufacturers have to rely on

established templates for producing their products. To improve pro�ts, they can conduct systematic

cost reduction and/or systematic lead-time reduction because these two strategies do not necessitate

re-sequencing processes. Naturally, performance-based process redesign and mixed strategy are not
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possible for them due to process in�exibility. Manufacturers using propriety processes to produce

their products, however, may have the �exibility to change the sequence of their operations and

redesign their processes based on cost and lead-time parameters. Therefore, such manufacturers can

implement any of the four strategies to improve pro�ts.

We develop a decision typology in Figure 13 that shows e�ective operational strategies depending

on product characteristics and process �exibility. We categorize manufacturers along two dimen-
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Figure 13 Decision typology based on product characteristics and process �exibility

sions. The �rst dimension is related to product characteristics. Analytical expressions (24) and (25)

show that the performance of each strategy depends on the product type. Therefore, we consider

two product types: (1) standard and (2) innovative. Manufacturers' �exibility to implement these

strategies depends on the process �exibility. For that reason, the second dimension of our cate-

gorization is process �exibility. Our categorization of manufacturers is similar to that developed

by Ferdows et al. (2016), who categorize manufacturers based on their product characteristics and

process �exibility.

1-Bottom-left quadrant (Systematic cost reduction): These manufacturers produce commodity-like

products using industry-standard production methods. Some business units of chemical companies

(e.g., DuPont, BASF, etc.) producing commodity-like products fall into this category. Such manu-

facturers cannot change the sequence of operations; hence, it is not possible for them to conduct a

performance-based process redesign or mixed strategy. Given that the products are sold at a low

margin, costs represent a signi�cant portion of revenues and the cost of raw materials may constitute

up to 80% of total revenue. Analytical expression (25) indicates that systematic cost reduction is



Biçer, Lücker, and Boyac�: Beyond Retail Stores: Managing Product Proliferation along the Supply Chain

32

the most e�ective way to improve the bottom line. Therefore, it is not uncommon in such industries

that manufacturers try to reduce upstream costs by pressuring their suppliers.3

2-Bottom-right quadrant (Performance-based process redesign): Some manufacturers excel in pro-

cess �exibility while producing standard products. Ferdows et al. (2016) give an example of a

US-based steel manufacturer producing steel rolls that established process �exibility through some

advanced processes. Analytical expression (25) shows that performance-based process redesign leads

to the highest increase in pro�ts for standard products. Manufacturers in this category can adopt

this strategy to cope with product proliferation owing to their process �exibility. This was certainly

the case for Benetton when it resequenced its operations to postpone the costly dyeing operations for

its highly standardized sweaters. As discussed in the introduction, this strategy helped the company

increase its pro�ts and market share signi�cantly.

3-Top-left quadrant (Systematic lead-time reduction): Manufacturers with strong brands, such

as some fashion-apparel manufacturers and pharmaceutical companies fall into this group (Fer-

dows et al. 2016). Although standard processes are used in production, the innovative/fashionable

nature of the product and the brand value allow premium pricing and generate higher margins. As

standardized processes leave little room for restructuring, lead time is the only lever for managing

proliferation. Like Zara, manufacturers in this category should systematically reduce lead times to

delay di�erentiation and thereby improve responsiveness and pro�ts.

4-Top-right quadrant (Mixed strategy): Manufacturers with proprietary products and processes,

such as Intel, can di�erentiate themselves through both product design and process technology

(Ferdows et al. 2016). Their products are sold in the market at a high margin, which makes lead-

time reduction appealing. With process �exibility, redesigning the processes to postpone high-cost

activities may also be possible, which ampli�es the value generated by reducing lead times. Ana-

lytical expression (24) indicates that manufacturers in this category are ideally suited for following

the mixed strategy of coupling cost-based process re-sequencing with lead-time reduction. ASML,

a Dutch company producing modular lithography systems for semiconductor manufacturers, has

implemented this strategy as part of its value-sourcing initiative (van Rooy 2010). The company

postponed the operations that required expensive components to a later stage in production, and

reduced their sourcing lead times by paying the suppliers premiums.4 This mixed strategy enables

ASML to delay both the point of proliferation and high-cost operations.

Kordsa does not have the �exibility to change the sequence of the operations. For example, the �rst

step of cord manufacturing is yarn production, which cannot be swapped with any other operation.

3 https://www.mckinsey.com/industries/chemicals/our-insights/pursuing-purchasing-excellence-in-chemicals

4 See also http://www.co-makers.com/gsls09/Buyers%20Breakfast%20GSLS09%20ASML.pdf
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The company also has a large product portfolio so there are both standard and innovative products.

For that reason, the principles of systematic cost reduction and systematic lead-time reduction

have been used to improve the performance. To achieve cost reduction starting from the upstream

operations, Kordsa internalized the yarn production through an e�cient and continuous process. To

reduce the lead time starting from the downstream operations, Kordsa increased the speed of the

dipping and weaving operations over years. The variety of chemical blends has been increased over

years to reduce the complexity in the earlier stages and postpone the proliferation to the last stage.

6.4. Sensitivity Analysis

The alignment of the operational strategies with the product and process characteristics given by

Figure 13 is a�ected by key parameters such as volatility, correlation between the demand values

for the products, and the number of products in the product portfolio. We now turn our attention

to the performance assessment of the four operational strategies when we vary the values of the key

parameters. We take the break-even structure in Table 1 as the basis of our analysis because the

expected pro�t realized by employing each strategy is the same in that case. We then vary one of

the parameters and evaluate the pro�t values for di�erent values of the parameter. To calculate the

expected pro�t, we generate 1,000 sample paths and take the average of the pro�ts.
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Figure 14 Assessment of the strategies for varying volatility

Figure 14 depicts the pro�t values for each strategy for the varying volatility multiplier. In partic-

ular, we multiply the volatility parameter σ with a multiplier ranging from one to two. The x-axis

represents the value of the multiplier, and the y-axis represents the expected pro�t. The red solid

curve represents the lead-time reduction strategy, the dark green dashed line the performance-based
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strategy, the blue dashed line the mixed strategy, and the purple dashed line the systematic cost

reduction. The multiplier value being equal to one corresponds to the break-even structure such

that pro�t values are the same for each strategy. As the volatility increases, the expected pro�t

decreases for all the strategies. The steepest decline is observed for the systematic cost reduction,

and the mixed strategy outperforms the other three strategies for high volatility values.

Corollary 2 indicates that the value of postponing proliferation increases with volatility. Therefore,

we expect the systematic cost reduction to underperform the other three strategies for high volatility

values because it is the only strategy in which proliferation is not delayed. That the lowest pro�t is

observed for the systematic cost reduction is thus consistent with Corollary 2.

The mixed strategy takes a balanced approach to manage product variety and demand uncer-

tainty. Although the point of proliferation is not delayed as much as the performance-based strategy,

it sequences the operations according to the cost values and postpones not only the proliferation

point but also the other ordering decisions. Owing to this balanced approach, the mixed strategy

outperforms other strategies for high demand uncertainty.
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Figure 15 Assessment of the strategies for varying correlation

Figure 15 shows the pro�t values for varying correlation values. The x-axis represents the cor-

relation between the demand values of the two products, and the y-axis represents the expected

pro�t values. We use the correlation value to generate the sample paths and calculate the order

quantities and pro�t values accordingly. The case with a correlation value of zero corresponds to

the break-even case in Table 1. As the correlation decreases, the expected pro�t for each strategy

increases. For negative correlation values, the lowest pro�ts are observed for the systematic cost
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reduction. This results from the fact that the proliferation is not delayed for the systematic cost

reduction and the value of postponing the proliferation decreases with the correlation. This result

is also consistent with Corollary 1.

As given in Table 1, the proliferation is delayed by 25% of total duration for the performance-

based strategy compared to the base case, whereas this value reduces to 9.06% and 9.52% for the

mixed and lead-time reduction strategies, respectively. Therefore, the performance-based strategy

yields the highest pro�ts for negative correlation values.

We remark that the analysis in Figure 15 is based on the assumption that demand correlation is

exogenously given. However, the correlation values may be a�ected endogenously by product avail-

ability such that a customer who is exposed to a stock-out would switch to another product. In this

case, a strong negative correlation is observed between the products that are out of stock frequently

(see Honhon et al. (2010) and Netessine and Rudi (2003)). While we do not analyze endogenous

factors, we conjecture that the bene�ts of product substitution is analogous to the bene�ts of shrink-

ing the product portfolio while keeping the sales volume the same. Following Corollary 3 and the

next sensitivity analysis, we expect that the bene�ts of postponing the proliferation decrease as the

products become more substitutable.
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Figure 16 Assessment of the strategies for di�erent numbers of products

In Figure 16, we present pro�t values for di�erent numbers of products. The products are selected

from Kordsa's portfolio based on their sales volume. We select the �rst four products in Table 7

and sort them in descending order according to their total sales during the training period. Note

that all products have the same product margin. We then add the products in sequence to the
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set of our analysis and calculate the expected pro�ts. The case with two products corresponds to

the break-even structure. As we increase the number of products, the performance-based strategy

outperforms the other strategies because the proliferation takes place at a later time epoch under

the performance-based strategy than those of the other strategies.

The results in this section provide useful insights regarding the boundaries of the decision typology

in Figure 13. The typology uses a basic categorization of products and processes, and it aligns

each category with an operational strategy. However, the performance of each strategy is a�ected

by the key modeling parameters. Systematic cost reduction focuses on reducing the cost in the

early production stages, and it would be e�ective for low volatility, positively correlated, and small

product portfolios. The performance-based strategy defers the proliferation later than any other

strategy because it primarily focuses on delaying the proliferation point. This strategy would be

more e�ective than the others when the number of products in the portfolio increases or the demand

values become more negatively correlated. The mixed strategy aims to delay the proliferation to

some extent, but it also focuses on delaying the other decision epochs and redesigning the processes

based on the cost values. Therefore, it takes a more holistic approach to improve the pro�ts. When

the volatility is increased, the bene�ts of this holistic approach exceed the bene�ts of solely focusing

on postponing the proliferation such as occurs in the performance-based strategy.

7. Concluding Remarks

In this paper, we develop an analytical model to quantify the impact of supply chain structure

along with the cost, demand, and lead-time parameters on pro�ts in a multi-echelon and multi-

product newsvendor model with product proliferation occurring at pre-speci�ed echelons. In such a

setting, decision makers can improve pro�ts by establishing the responsiveness and/or cost e�ciency.

Delaying proliferation helps decision makers establish the responsiveness, which can be implemented

through lead-time reduction or process redesign. Establishing the cost e�ciency is also possible

through systematic cost reduction or by postponing high-cost operations until there is partial or

full resolution of demand uncertainty. Utilizing our analytical framework, we develop a decision

typology that shows e�ective strategies depending on the product and the process characteristics.

Our model inherently assumes a make-to-stock supply chain with positive lead times for produc-

tion stages but zero promised lead time for customers (i.e., maximum length of time in which a

customer order is guaranteed to be delivered). When a customer is willing to wait, the manufacturer

can quote a positive promised lead time at a discounted price and follow a combination of make-to-

order and make-to-stock policies�that is, creating a decoupling point in the supply chain. Reducing

lead time in this context could possibly help companies delay di�erentiation after the decoupling

point, so product proliferation would take place after getting �rm customer orders, completely elim-

inating inventory risk at downstream echelons. We believe that the trade-o� between completely
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eliminating the downstream inventory risk and pro�t losses due to o�ering price discounts for longer

promised lead times would be an interesting avenue of future research that requires incorporation

of lead-time quotation and product proliferation models.
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Online Appendix

Proof of Theorem 1

At t= tn−1, the expected pro�t can be formalized as a newsvendor problem:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

(
pmin(Dn,Qn−1)

)
− cn−1Qn−1, (26)

= (p− cn−1)Qn−1− p
Qn−1∫
0

(Qn−1−Dn)f(Dn|Dn−1)∂Dn, (27)

where f(·|·) and F (·|·) denote conditional demand density and distribution functions, respectively. The

optimal order quantity is obtained by:

∂Gn−1

∂Qn−1

= p(1−F (Qn−1|Dn−1))− cn−1 = 0. (28)

With p > cn−1, Gn−1(·,Dn−1) is a concave function for any given Dn−1. Then,

Vn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
Gn−1(Qn−1,Dn−1)

}
. (29)

For Q∗n−1 = {Qn−1|∂Gn−1/∂Qn−1 = 0},

Vn−1(Qn−2,Dn−1) =

{
Gn−1(Qn−2,Dn−1) if Q∗n−1 >Qn−2,
Gn−1(Q∗n−1,Dn−1) if Q∗n−1 ≤Qn−2.

(30)

Vn−1(·,Dn−1) is a non-decreasing concave function due to the concavity of Gn−1(·,Dn−1). Then,

Gn−2(Qn−2,Dn−2) = EDn−1|Dn−2

(
Vn−1(Qn−2,Dn−1)

)
− cn−2Qn−2, (31)

which is also concave because Vn−1(·,Dn−1) is concave. Then, Gi(·,Di) is a concave function (by induction)

for i∈ {0,1, · · · , n− 2}, and the optimal policy is:

Q∗i = arg max
Qi

{Gi(Qi,Di}}, ∀i∈ {0,1, · · · , n}. (32)

Suppose in period i+ 1 for i∈ {0,1, · · · , n− 2},

Vi+1(Qi,Di+1) =

{
Gi+1(Qi,Di+1) if Q∗i+1 >Qi,
G∗i+1(Di+1) if Q∗i+1 ≤Qi,

(33)

where G∗i+1(Di+1) =Gi+1(Q∗i+1,Di+1). Then,

Gi(Qi,Di) = EDi+1|Di
[Vi+1(Qi,Di+1)]− ciQi, (34)

=

+∞∫
Di+1

Gi+1(Qi,Di+1)f(Di+1|Di)∂Di+1 +

Di+1∫
0

G∗i+1(Di+1)f(Di+1|Di)∂Di+1− ciQi, (35)

where Di+1 is the value of demand forecast at time i+ 1 that makes the optimal order quantity equal to

that of the previous period (i.e., Q∗i+1 =Qi). Taking the �rst derivative, we obtain the following result:

∂Gi

∂Qi

= gi(Qi,Di) =

+∞∫
Di+1

gi+1(Qi,Di+1)f(Di+1|Di)∂Di+1− ci = 0. (36)

Using Equation (36), the optimal value of Qi for i∈ {1, · · · , n− 2} can be found by backward induction.
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The optimal value of Qn−1 is given by Equation (28). Combining Equations (28) and (36), the optimal

value of Qn−2 can be calculated by:

gn−2(Qn−2,Dn−2) =

+∞∫
Dn−1

(pPr(Dn >Qn−2|Dn−1)− cn−1)fn−1(Dn−1|Dn−2)∂Dn−1− cn−2,

= pPr(Dn >Qn−2,Dn−1 >Dn−1)− cn−1Pr(Dn−1 >Dn−1)− cn−2. (37)

By induction, we obtain for i∈ {0,1, · · · , n− 1} the following result:

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)− ci, (38)

where D{i+1,n−1} is a vector denoting demand forecasts from period i+ 1 to n− 1. Then, the optimal order

quantity in each period can be found by qi = min(Qi−1,Q
∗
i ) such that Q∗i = {Qi|gi(Qi,Di) = 0}.

Proof of Proposition 1

The proof is straightforward from the �nal result of the proof of Theorem 1: qi = min(Qi−1,Q
∗
i ). If the

demand forecast in period i turns out to be high, the order quantity is constrained by qi−1. Otherwise,

qi < qi−1. Therefore, q0 >E[q1|D0]> · · ·>E[qn−1|D0].

Proof of Proposition 2

Part A: For j ∈ {i, · · · , n − 1}, suppose cj is increased by ∆cj , making the cost of processing the jth

operation equal to cj + ∆cj . Suppose Q′i =Qi and gi(Qi,Di) = 0. Then,

gi(Q
′
i,Di)− gi(Qi,Di) = gi(Q

′
i,Di) =−∆cjPr(D{i+1,j} >D{i+1,j}). (39)

If Q′i =Qi, the term gi(Q
′
i,Di) fails to be equal to zero after the cost increase, meaning that setting Q′i =Qi

does not optimize the ordering decision anymore. It follows from Equation (39) that the ordering decision

after the cost increase is optimized for Q′i < Qi such that gi(Q′i,Di) = 0 for Q′i < Qi. Thus, q′i ≺ qi for

i ∈ {0, · · · , j}, meaning that an increase in the cost of an operation leads to a reduction of order quantities

at upstream echelons. Because the downstream order quantities are constrained by the upstream ones, such

that Q0 ≥ Q1 ≥ · · · ≥ Qn−1, such a reduction of upstream order quantities also has a cascading impact of

reducing the downstream order quantities. Thus, q′i ≺ qi for i∈ {0, · · · , n− 1}.

Part B: Given c0 = · · ·= ci−1 = ci+1 = · · ·= cn−1 = cfixed < ci, the expected pro�t at t= t0 is written as

follows:

G0(Q∗0,D0|i= j) =

Q∗
0∫

0

g0(Q0,D0)dQ0, (40)

where Q∗0 is the optimal order quantity at t0 when i= j for j ∈ {0, · · · , n− 2}. Thus, G0(Q∗0,D0|i= j + 1)

gives a lower bound for the expected pro�t for i= j+1. Combining this expression with Equation (11) yields

the following result:
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G0(Q∗0,D0|i= j+ 1)−G0(Q∗0,D0|i= j) = −
Q∗

0∫
0

(ci− cfixed)Pr(D{1,i+1} >D{1,i+1})dQ0

+

Q∗
0∫

0

(ci− cfixed)Pr(D{1,i} >D{1,i})dQ0. (41)

Equation (41) always has a non-negative value because Pr(D{1,i} >D{1,i})≥ Pr(D{1,i+1} >D{1,i+1}). Thus,

swapping a high-cost operation with the adjacent downstream one leads to higher pro�ts. It is straightforward

by induction that swapping operation i with any operation from the set {i+1, · · · , n−1} increases the pro�t.

Proof of Proposition 3

Part A: If the lead time of operation i is reduced by ∆t, the starting times for the �rst i+ 1 operations

are updated as follows:

t0 + ∆t= t1 + ∆t= · · ·= tj + ∆t= · · ·= ti + ∆t. (42)

Then, ordering decisions for the �rst i+ 1 operations are made after a delay of ∆t. Delaying the ordering

decisions leads to improved demand accuracy for the �rst i+ 1 decisions as given by Equation (4), which

therefore increases the expected pro�t.

If the lead time of operation j is reduced by ∆t, the starting times for the operations until j are likewise

delayed for ∆t. Reducing the lead-time of operation i, compared to that of j for i > j, makes it possible to

also delay the decision epochs for j+1, j+2, · · · , i. This results in a higher pro�t than what can be achieved

by reducing the lead time of j, which completes the proof of the proposition.

The proposition can also be extended to the multi-product case. Suppose product proliferation occurs once

along the supply chain at time ti. Following the same logic, we can conclude that reducing the lead time of

operation j for j ∈ {i, · · · , n− 1} by an amount of ∆tj ≤ tj+1 − tj increases the expected pro�t more than

what can be achieved by reducing the lead time of operation j for j ∈ {0, · · · , i− 1}. Therefore, reducing the
lead times of operations post-proliferation yields higher pro�ts than reducing the lead times of those before

the proliferation.

Part B: The decision epochs are t0, t1, ..., tn−1 in the initial case. After swapping the operation i with

j ∈ {i+1, · · · , n−1}, the decision epochs for the operations {i+1, · · · , j} are updated as ti+1 +∆t, ti+2 +∆t,

..., tj + ∆t, where ∆t= ∆tfixed − (ti − ti−1). Therefore, the operations {i+ 1, · · · , j} are postponed by ∆t.

Because all operations have the same cost value, swapping the operations i and j leads to a pro�t increase.

Proof of Theorem 2

Let Dj
n,r ≥ 0 denote a realization of Dj

n such that r ∈ S, where S = {1,2, · · · } is de�ned as a large �nite set

of positive integers. The values of Dj
n,r ∀r ∈ S constitute the set of all possible demand realizations. We use

Wr
j to denote the sales value for a demand realization of Dj

n,r such that Wr
j =Wj(Q

j
n−1,D

j
n,r). Then, the

SP model (15)�(17) can be written as a large-scale LP model:

Maximize
Q

j
n−1

,∀j∈Θn−1

z =
∑

j∈Θn−1

(
pj
∑
r∈S

Pr(Wr
j )Wr

j − c
j
n−1Q

j
n−1

)
(43)
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subject to:

Wr
j −Q

j
n−1 ≤ 0, ∀j ∈Θn−1, ∀r ∈ S, (44)

Wr
j ≤Dj

n,r, ∀j ∈Θn−1, ∀r ∈ S, (45)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (46)

Qj
n−1 ≥ 0, Wr

j ≥ 0, ∀j ∈Θn−1, ∀r ∈ S. (47)

We remark that we add Constraints (44) and (45) to satisfy the condition Wj = min{Qj
n−1,D

j
n} for the

optimal solution. Then, the dual problem is:

Minimize
λj,r,βj,r,γ

w=
∑

j∈Θn−1

∑
r∈S

βj,rD
j
n,r +

∑
k∈Θn−2

γkQ
k
n−2 (48)

subject to:

λj,r +βj,r ≥ Pr(Wr
j )pj , ∀j ∈Θn−1, r ∈ S, (49)∑

r∈S

λj,r − γk ≤ cjn−1, ∀j ∈Θk
n−1, k ∈Θn−2, r ∈ S, (50)

λj,r ≥ 0, βj,r ≥ 0, γk ≥ 0, ∀j ∈Θk
n−1, k ∈Θn−2, , r ∈ S. (51)

The values of λj,r and βj,r for each j ∈Θn−1 are found by the parametric analysis:

1. λj,r = 0 and βj,r = Pr(Wr
j )pj for j ∈Θn−1 when Dj

n,r ≤Q
j
n−1.

2. Likewise, λj,r = Pr(Wr
j )pj and βj,r = 0 for j ∈Θn−1 when Dj

n,r >Q
j
n−1.

Then, the constraint (50) is written as follows:

pjPr(D
j
n >Q

j
n−1)− γk ≤ cjn−1, ∀j ∈Θn−1. (52)

We set a value for the dual variable γk for k ∈Θn−2 such that:

γk = (pj − cjn−1)− pjPr(Dj
n ≤Q

j
n−1) = gjn−1(Qj

n−1,D
j
n−1), ∀j ∈Θk

n−1. (53)

Then, the objective function value for the dual problem becomes:

w =
∑

j∈Θn−1

[
(pj − cjn−1)Qj

n−1− pj

Q
j
n−1∫

0

(Qj
n−1−Dj

n)f j(Dj
n)∂Dj

n

]
. (54)

Equation (54) is equivalent to the solution of the primal problem for the feasible Qj
n−1 values. It follows

from the strong theorem of duality that the optimal solution satis�es Equation (53). Therefore, we have the

following conditions of optimality:

γk = gjn−1(Qj
n−1,D

j
n−1)≥ 0, ∀j ∈Θk

n−1, k ∈Θn−2 (55)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2. (56)

If the constraint (46) is not binding for a given k ∈Θn−2, the dual variable γk becomes zero. In this case, the

optimal solution reduces to the solution of |Θk
n−1| independent newsvendor problems in the last period�that

is, the order quantity for each product in the set Θk
n−1 can be found by solving an unconstrained newsvendor
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problem. Otherwise, the optimal solution exists at the point where the marginal value of producing one unit

is the same for all products in the set Θk
n−1.

In period i∈ {1,2, · · · , n− 2}, the optimization problem is written as follows:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

G
Υj

i
i (Qj

i ,D
Υj

i
i ) (57)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, 0≤Qj
i , ∀k ∈Θi−1, ∀j ∈Θk

i . (58)

The term G
Υj

i
i (Qj

i ,D
Υj

i
i ) is the total expected pro�t generated from all the products in the set Υj

i , and D
Υj

i
i is

the vector of demand forecasts of the products in Υj
i at time ti. Note that Υj

i is the set of end products sold

in the market whose availability depends on the order quantity decision of Qj
i . We will discuss the derivation

of G
Υj

i
i (Qj

i ,D
Υj

i
i ) in detail below.

The dual problem (57)�(58) is formulated as:

Minimize
λj ,βj ,γk

w=
∑

k∈Θi−1

γkQ
k
i−1 (59)

subject to:

g
Υj

i
i (Qj

i ,D
Υj

i
i )≤ γk, ∀j ∈Θk

i , ∀k ∈Θi−1, (60)

with ∂G
Υj

i
i (Qj

i ,D
Υj

i
i )/∂Qj

i = g
Υj

i
i (Qj

i ,D
Υj

i
i ). Then, the optimal solution in each period i ∈ {1, · · · , n− 2} sat-

is�es the following equations:

γk = g
Υj

i
i (Qj

i ,D
Υj

i
i )≥ 0, ∀j ∈Θk

i , k ∈Θi−1 (61)∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (62)

Following the steps similar to the proof of Theorem 1, we obtain the following expression for t= tn−2:

G
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

G
Υj

n−2

n−1 (Qj
n−2,D

Υj
n−2

n−1 )f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1

+

D
Υ

j
n−2

n−1∫
0

G∗
Υ

j
n−2

n−1 (Q∗
j

n−2)f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1 − c
j
n−2Q

j
n−2, (63)

where D
Υj

n−2

n−1 is a random variable denoting the sum of demand forecasts of the items in the set Υj
n−2 at

t= tn−1 (i.e.,
∑

k∈Υj
n−2

Dk
n−1). D

Υj
n−2

n−1 is the value of demand forecast at t= tn−1 that makes the optimal order

quantity at tn−1 equal to that of the previous period (i.e., Qj
n−2). Then,

g
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 )f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1 − c
j
n−2, (64)
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where g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 ) = gkn−1(Qk
n−1,D

k
n−1) for any k ∈Υj

n−2 as given by Equation (55). Using the last

expression, we obtain the following result by induction:

g
Υj

i
i (Qj

i ,D
Υj

i
i ) =

+∞∫
D

Υ
j
i

i+1

g
Υj

i
i+1(Qj

i+1,D
Υj

i
i+1)f(D

Υj
i

i+1|D
Υj

i
i )∂D

Υj
i

i+1− c
j
i = γk, ∀j ∈Θk

i . (65)

If the constraint (58) for a given k is not binding, the dual variable γk becomes zero. In this case, the optimal

solution reduces to the solution of |Θk
i | unconstrained problems using Equation (11). Let Qj∗

i denote the

order quantity for j ∈Θk
i and k ∈Θi−1 satisfying Equation (11) and Q̂j

i denote the order quantity satisfying

Equation (65). Then, the optimal order quantity is found as follows:

qji =


Qj∗

i if
∑
j∈Θk

i

Qj∗

i <Qk
i−1,

Q̂j
i if

∑
j∈Θk

i

Qj∗

i ≥Qk
i−1.

(66)

Proof of Proposition 4

Suppose product proliferation occurs once at time ti along the supply chain. The mathematical model given

by (57)�(58) is then rewritten as follows with an objective function of maximizing the expected pro�t at

time ti:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

Gj
i (Q

j
i ,D

Θi
i ) (67)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (68)

Then, the value of postponing the point of the proliferation is calculated by ∂z/∂ti.

As the next step, we �x cji = cji+1 = · · · = cjn−1 = 0 ∀j ∈ Θi and analyze the impact of incrementally

increasing cji on the expected pro�t. Since cji = cji+1 = · · · = cjn−1 = 0, manufacturer orders the maximum

amount in all the remaining periods (i.e., {i, i+ 1, · · · , n− 1}) such that:

Qj
i−1 =Qj

i = · · ·=Qj
n−1. (69)

And,

Gj
i (Q

j∗

i ,D
j
i ) = Gj

i (Q
j
i−1,D

j
i ) ∀j ∈Θi, (70)

Given that the order quantity at ti is set equal to Qi−1, the expected pro�t is not a�ected by the ordering

decision and we have the following relationship:

∂Gj
i (Q

j
i ,D

j
i )/∂ti = 0 → ∂z/∂ti = 0. (71)

Having set cji = cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi implies that the constraint (68) is binding. Now, we slightly

increase cji such that cji > 0 and cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi. Then, we obtain:

Gj
i (Q

j
i ,D

j
i ) = (pj − cji )Qj

i − pj

Q
j
i∫

0

(Qj
i −Dj

n)f(Dj
n|D

j
i )∂D

j
n, (72)

= (pj − cji )Qj − pjQjΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

+σ
√
tn− ti/2

)
+pjD

j
iΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

−σ
√
tn− ti/2

)
. (73)
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From Equation (73), we obtain:

∂Gj
i (Q

j
i ,D

j
i )/∂ti > 0 → ∂z/∂ti > 0. (74)

Therefore, ∂z/∂ti increases as ci increases, which completes the proof of Proposition 4.

Proof of Theorem 3

Suppose the point of proliferation is deferred to ti+1 by swapping it with the adjacent high-cost operation.

We consider a generalized model such that |Θi+1| ≥ 2. Then, ci+1 is the cost of operation per unit that causes

the proliferation. And, ci is the cost of the high-cost operation. In the �rst part, we show that postponing the

proliferation causes a loss of pro�t if ci exceeds a certain threshold. To this end, we use marginal analysis. We

refer the reader to Gallego and Topaloglu (2019) for the applications of the marginal analysis in the context

of revenue management (especially the derivations of Lemma 1.4, Proposition 1.5, and Theorem 1.6 therein

are useful illustrations of reconstructing the Dynamic Programming formulation with marginal analysis).

The Bellman equation at time ti is then given by Equation (6):

Vi(Qi−1,D
Υi
i ) = max

Qi≤Qi−1

{
− ciQi +EDi+1|Di

[
Vi+1(Qi,D

Υi
i+1)

]}
, (75)

where the expression inside the maximization is equal to GΥi
i (Qi−1,D

Υi
i ), which is a concave function of

Qi−1 as stated above. Theorem 1 shows that the solution to problem (75) satis�es:

Qi =

{
Qi−1 if DΥi

i ≥D
Υi

i ,
Q∗i otherwise.

(76)

As stated in the proof of Theorem 2, the condition DΥi
i ≥D

Υi

i implies that the dual variable is larger than

zero: γi = gi(Qi,D
Υi
i )> 0. Thus,

E[Vi(Qi−1,D
Υi
i )] =

(
− ciQi−1 +E[Vi+1(Qi−1,D

Υi
i )]

)
Pr(γi > 0) (77)

+
(
− ciQ∗i +E[Vi+1(Q∗i ,D

Υi
i )]

)
Pr(γi = 0).

Following the same steps, we develop an expression for E[Vi(Qi−1− 1,DΥi
i )]:

E[Vi(Qi−1− 1,DΥi
i )] =

(
− ci(Qi−1− 1) +E[Vi+1(Qi−1− 1,DΥi

i )]
)
Pr(γi > 0) (78)

+
(
− ciQ∗i +E[Vi+1(Q∗i ,D

Υi
i )]

)
Pr(γi = 0).

In what follows, we apply the marginal analysis to complete the proof of the theorem. We �rst calculate the

expected marginal pro�t:

E[∆Vi(Qi−1,D
Υi
i )] = E[Vi(Qi−1,D

Υi
i )]−E[Vi(Qi−1− 1,DΥi

i )],

=
(
− ci +E[∆Vi+1(Qi−1,D

Υi
i )]

)
Pr(γi > 0). (79)

The �∆Vi(Qi−1,D
Υi
i )� term is equal to gi(Qi,D

Υi
i ) at the optimality, which can take a non-zero value if the

order quantity constraint is binding�that is, when γi > 0. Otherwise, gi(Qi = Q∗i ,D
Υi
i ) = 0, which is the

condition of optimality. Thus, the expectation term at the right-hand side of Equation (79) is equal to:

E[∆Vi+1(Qi−1,D
Υi
i )] = E[gi+1(Qi−1,D

Υi
i )]Pr(γi+1 > 0), (80)
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where gi+1(Qi−1,D
Υi
i ) = γi+1 = gji+1(Qj

i+1,D
j
i+1) ∀j ∈Θi+1 subject to

∑
j∈Θi+1

Qj
i+1 =Qi−1. Then, Equation

(79) is written as follows:

E[∆Vi(Qi−1,D
Υi
i )] =

(
− ci +E[gi+1(Qi−1,D

Υi
i )]Pr(γi+1 > 0)

)
Pr(γi > 0) (81)

Suppose now that the proliferation occurs at time ti, and its cost is still denoted by ci+1. We use the �̂�
sign to denote the value function for this case. Then, the Bellman equation at time ti is written as follows:

V̂i(Qi−1,D
Υi
i ) = max

Q
j
i
,∀j∈Θi,

∑
Q

j
i
≤Qi−1

{
− ci+1

∑
j∈Θi

Qj
i +EDi+1|Di

[
V̂i+1(QΥi

i ,DΥi
i+1)

]}
. (82)

Following the steps between Equations (75)�(81), we obtain the following result:

E[∆V̂i(Qi−1,D
Υi
i )] =

(
− ci+1 +E

[ ∑
j∈Θi

ωj ĝ
j
i+1(Qj

i+1,D
j
i+1)

]
Pr(γ̂i+1 > 0)

)
Pr(γ̂i > 0), (83)

where ωj is the allocation weight of product j, equal to Qj
i/Qi−1, so

∑
j∈Θi

ωj = 1.

From the concavity of Gi(Qi,D
Υi
i ), both E[∆Vi(Qi−1,D

Υi
i )] and E[∆V̂i(Qi−1,D

Υi
i )] are monotone decreas-

ing functions of Qi. And, E[∆Vi(0,D
Υi
i )] = E[∆V̂i(0,D

Υi
i )] = p −

n−1∑
j=i

cj because the marginal value of

producing one unit is equal to the pro�t at Qi−1 = 0. Therefore, V̂i(Qi−1,D
Υi
i ) > Vi(Qi−1,D

Υi
i ) when

E[∆V̂i(Qi−1,D
Υi
i )]>E[∆Vi(Qi−1,D

Υi
i )]. This relationship is satis�ed when(

− ci+1 +E
[ ∑
j∈Θi

ωj ĝ
j
i+1(Qj

i+1,D
j
i+1)

]
Pr(γ̂i+1 > 0)

)
Pr(γ̂i > 0) >

(
− ci +E[gi+1(Qi−1,D

Υi
i )]Pr(γi+1 > 0)

)
×

Pr(γi > 0). (84)

The term �E
[ ∑
j∈Θi

ωj ĝ
j
i+1(Qj

i+1,D
j
i+1)

]
Pr(γ̂i+1 > 0)Pr(γ̂i > 0)� is the expected marginal pro�t at ti+1 condi-

tional on that Qi−1 units are fully utilized in both ith and (i+ 1)th operations based on an allocation policy

determined at ti. Likewise, the term �E[gi+1(Qi−1,D
Υi
i )]Pr(γi+1 > 0)Pr(γi > 0)� is the expected marginal

pro�t at ti+1 conditional on that Qi−1 units are fully utilized in both ith and (i+ 1)th operations based on

an expected allocation policy determined at ti. Therefore,

E
[ ∑
j∈Θi

ωj ĝ
j
i+1(Qj

i+1,D
j
i+1)

]
Pr(γ̂i+1 > 0)Pr(γ̂i > 0)− ciPr(γ̂i+1 > 0)Pr(γ̂i > 0) =

E[gi+1(Qi−1,D
Υi
i )]Pr(γi+1 > 0)Pr(γi > 0)− ci+1Pr(γi+1 > 0) Pr(γi > 0). (85)

Combining the expressions (84) and (85),

ci > ci+1

Pr(γ̂i > 0)−Pr(γi+1 > 0)Pr(γi > 0)

Pr(γi > 0)−Pr(γ̂i+1 > 0)Pr(γ̂i > 0)
, (86)

where the right-hand side of this expression gives us the threshold value of κ. Hence, postponing the pro-

liferation causes a loss of pro�t if the cost of the high-cost downstream operation (i.e., ci) exceeds the cost

of the operation that causes the proliferation (i.e., ci+1) multiplied by a pooling factor (i.e., P = [Pr(γ̂i >

0)−Pr(γi+1 > 0)Pr(γi > 0)]/[Pr(γi > 0)−Pr(γ̂i+1 > 0)Pr(γ̂i > 0)]).

We now apply asymptotic analysis to prove that the pooling factor P is greater than one when lead times

for the two operations swapped are the same�that is, ti+1− ti = ti+2− ti+1. We recall that the proliferation

occurs at time ti+1 in the primary case. After switching the operations, it occurs at time ti, which is the
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𝑡0 𝑡1

Primary Case

Secondary Case

𝑡2 𝑡𝑖−1 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2 𝑡𝑛

𝑡0 𝑡1 𝑡2 𝑡𝑖−1 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2 𝑡𝑛

Figure 17 Product proliferation structure for both primary and secondary cases

secondary case. Figure 17 depicts the proliferation structure for both cases. The probability terms in the

pooling factor formula can be considered as the probability of observing an inventory shortage. For example,

Pr(γ̂i > 0) is the probability of observing an inventory shortage at time ti such that the optimal order

quantities at ti in the secondary case is higher than the allocated quantities.

Suppose that the lead times for the two operations swapped are set equal to zero. Thus, ti = ti+1 because

both operations start and end immediately at ti. When we increase the lead times slightly such that ti+1−ti =

ti+2− ti+1 =Kε where Kε is an in�nitesimal positive number, we obtain:

lim
ti→−ti+1

Pr(γi > 0)<Pr(γ̂i > 0), (87)

because pooling demand slightly reduces the risk of inventory shortage for the primary case. And,

lim
ti→−ti+1

Pr(γi+1 > 0) = Pr(γ̂i+1 > 0), (88)

because the expected order quantities at ti+1 projected at t0 are the same for both primary and secondary

cases. Plugging these results in the pooling factor formulation yields:

lim
ti→−ti+1

P > 1. (89)

The relationships given in Equations (87) and (88) are preserved when both operations have the same lead

times. Therefore, P > 1 when the lead times for the two operations swapped are the same.

We now consider another case in which the lead time of the operation that causes the proliferation is

substantially longer than the adjacent upstream operation such that ti+2− ti+1 >>> ti+1− ti in the primary

case. In this case, switching the two operations does not change the starting time of the operation that causes

the proliferation, but it postpones the other operation. Therefore, expediting the proliferation would be

viable even when 0<P < 1. In an extreme case such that the lead time of the adjacent upstream operation

is close to zero, P would be close to zero:

lim
ti+1−ti→+0

P = 0. (90)
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This result indicates that expediting the proliferation by swapping it with the adjacent upstream operation

may help increase the expected pro�t even when the cost of the upstream operation is very low, which

happens when the lead time of the upstream operation is close to zero. Combining this result with Equation

(89) yields that P < 1 is only possible when the lead time of the adjacent upstream operation is shorter

than the lead time of the operation that causes the proliferation.

Suppose that there are n products in both cases and a new product is added to the portfolio. The order

quantity at t0 is �xed to Q0 and the demand for the new product has a perfect negative correlation with one

of the existing products. Due to the perfect negative correlation, adding the new product does not change

Pr(γi > 0). But, other probability values increase. Thus, P increases after a new product whose demand has

a perfect negative correlation with one of the existing products is added to the portfolio. As the correlation

increases so does the value of Pr(γi > 0). However, the magnitude of the increase in Pr(γi > 0) is lower than

the magnitude of the increase for the other probability values. Thus, P also increases after adding the new

product for the positive correlation case. However, the magnitude of the change is lower than that of the

negative correlation case.

Proof of Corollary 1

Suppose that product proliferation occurs at time ti+1. We consider a generalized model such that |Θi+1| ≥ 2,

and the cost threshold is given by Equation (86):

κ = ci+1

Pr(γ̂i > 0)−Pr(γi+1 > 0)Pr(γi > 0)

Pr(γi > 0)−Pr(γ̂i+1 > 0)Pr(γ̂i > 0)
. (91)

Demand correlation does not a�ect the values of Pr(γ̂i > 0), Pr(γ̂i+1 > 0), and Pr(γi+1 > 0) because these

values do not depend on the pooled demand. Before postponing the proliferation, order quantities are placed

at the SKU level at ti and ti+1. After postponing the proliferation, the quantities are placed at the SKU

level at time ti+1. But, order quantities are placed based on pooled demand at time ti after postponing the

proliferation. Therefore, only Pr(γi > 0) depends on demand correlation.

As indicated in the proof of Theorem 2, the condition DΥi
i ≥D

Υi

i is equivalent to the condition that the

dual variable is larger than zero: γi = gi(Qi,D
Υi
i )> 0. The probability of Pr(γi > 0) increases with demand

correlation. Equation (91) shows that the cost threshold value decreases as the value of Pr(γi > 0) increases.

Thus, the κ value decreases with demand correlation, which completes the proof of the corollary.

Proof of Corollary 2

As the volatility increases so does the values of Pr(γi > 0), Pr(γi+1 > 0), Pr(γ̂i > 0), Pr(γ̂i+1 > 0). The

increase in Pr(γi+1 > 0) is the same as the increase in Pr(γ̂i+1 > 0). This results from the fact that order

quantities placed at time ti+1 are determined based on the same dynamics before and after switching the

operations. However, Pr(γi > 0) is less a�ected by demand uncertainty than Pr(γ̂i > 0). The decision at

time ti is based on the pooled demand, not at the SKU level. For that reason, as the volatility increases, the

increase in Pr(γi > 0) becomes lower than the increase in Pr(γ̂i > 0). Plugging these dynamics into Equation

(91), we conclude that the cost threshold value increases as the volatility increases.
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Proof of Corollary 3

The proof follows directly from the proof of Corollary 2. Similar to Corollary 2, as the number of products

increases, so do the values of Pr(γi > 0), Pr(γi+1 > 0), Pr(γ̂i > 0), Pr(γ̂i+1 > 0). The increase in Pr(γi+1 > 0)

is the same as the increase in Pr(γ̂i+1 > 0). However, Pr(γi > 0) is less a�ected by the number of products

than Pr(γ̂i > 0). Plugging these dynamics into Equation (91), we conclude that the cost threshold value

increases as the number of products increases.

Proof of Corollary 4

Suppose the product proliferation occurs at echelon j. The number of components that can be produced at

echelon j is equal to |Θj |. We now consider the case in which the value of cj increases with |Θj |.

Corollary 3 demonstrates that the κ value increases with the value of |Θj |. Equation (86) indicates that

the κ value increases with the cost of the operation that causes the proliferation (i.e., ci+1 in Equation (86)).

Combining Corollary 3 with Equation (86), hence, the value of postponing the proliferation is ampli�ed if cj

increases as a result of increasing number of products (i.e., |Θj |).

It follows from Equations (59) and (60) that the expected pro�t increases with |Θj | because the number

of constraints increases with |Θj |. This leads to an increase in the value of the dual parameter γk, which

in turn increases the expected pro�t. However, the expected pro�t decreases with cj . Therefore, there is a

trade-o� between increasing the number of products and increasing the cost value. This trade-o� determines

the boundaries of product portfolios such that adding too many products to a portfolio may hurt pro�ts.


