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Abstract

Werecast the classical notion of “standard tableaux" in an alcove-geometric setting and extend
these classical ideas to all “reduced paths" in our geometry. This broader path-perspective
is essential for implementing the higher categorical ideas of Elias—Williamson in the setting
of quiver Hecke algebras. Our first main result is the construction of light leaves bases of
quiver Hecke algebras. These bases are richer and encode more structural information than
their classical counterparts, even in the case of the symmetric groups. Our second main result
provides path-theoretic generators for the “Bott—Samelson truncation" of the quiver Hecke
algebra.

1 Introduction

The symmetric group lies at the intersection of two great categorical theories: Khovanov—
Lauda and Rouquier’s categorification of quantum groups and their knot invariants [8,14]
and Elias—Williamson’s diagrammatic categorification in terms of endomorphisms of Bott—
Samelson bimodules. The purpose of this paper and its companion [2] is to construct an
explicit isomorphism between these two diagrammatic worlds. The backbone of this isomor-
phism is provided by the “light-leaves" bases of these algebras.

The light leaves bases of diagrammatic Bott—Samelson endomorphism algebras were
crucial in the calculation of counterexamples to the expected bounds of Lusztig’s and James’
conjectures [15]. These bases are structurally far richer than any known basis of the quiver
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Hecke algebra—they vary with respect to each possible choice of reduced word/path-vector
in the alcove geometry—and this richer structure is necessary in order to construct a basis in
terms of the “Soergel 2-generators" of these algebras. In this paper we show that the (quasi-
hereditary quotients of) quiver Hecke algebras, ], for o € Z*, have analogues of the light
leaves bases in the “non-singular” or “regular” case.

Without loss of generality, we assume that ¢ € Z° is weakly increasing. We then let
h = (ho,...,he—1) € N¢ be such that h,, < Omt+1 —0om for0 <m < £ —1land hy_1 <
e+oo—o¢—1. The light leaves bases we construct are indexed by paths in an alcove geometry
of type

Ah071 X oo X Ahg_lfl\Ah0+”~+hg_171

fore > h = ho + --- + h¢—1, where each point in this geometry corresponds to an £-
multipartition with at most #,, columns in the mth component (we denote the set of such
£-multipartitions by &7 (n)). In this manner, we obtain cellular bases of the largest possible
quasi-hereditary quotients of H{ controlled by non-singular Kazhdan—Lusztig theory (this
is the broadest possible generalisation, in the context of cyclotomic quiver Hecke algebras,
of studying the category of tilting modules of the principal block of the general linear group,
GLj, (k), in characteristic p > h).

Theorem A (Regular light leaves bases for quiver Hecke algebras) For each A € & (n) we
fix a reduced path Q) € Pathy (L) and for each S € Pathy, (1), we fix an associated reduced
path vector Pg terminating with Q. (this notation is defined in Sects. 3 and 2). We have that

(Y5 YT 1S.T € Pathy (1), 1 € 25(n))

is a cellular basis of Hy /My, H; where we quotient by the ideal generated by the element
y;, which kills all simples indexed by {—partitions with more than h,, columns in the mth

component.
We then consider the so-called “Bott—Samelson truncations” to the principal block

fn,a(HZ/HZ y@HZ) fn,a for fn,a = Z es

SeStdy o (1)

reP ()
which we will show (in the companion paper [2]) are isomorphic to the (breadth enhanced)
diagrammatic Bott—Samelson endomorphism algebras of Elias—Williamson [6]. The charm
of this isomorphism is that it allows one to view the current state-of-the-art regarding p-
Kazhdan-Lusztig theory (in type A) entirely within the context of the group algebra of
the symmetric group, without the need for calculating intersection cohomology groups, or
working with parity sheaves, or appealing to the deepest results of 2-categorical Lie the-
ory. Furthermore, this isomorphism will allow us to prove (in a future paper) the beautiful
“categorical blob” conjecture of Libedinsky-Plaza which brings together p-Kazhdan-Lusztig
theory and statistical mechanics [11]. In this paper, we specialise Theorem A by making
certain path-theoretic choices which allow us to reconstruct Elias—Williamson’s generators
entirely within the quiver Hecke algebra itself, using our language of paths.

Theorem B The Bott—Samelson truncation of the Hecke algebra f, - (HS /HS yhﬁg)fn,g is
generated by horizontal and vertical concatenation of the elements

ep,, forkss 5;5 com%ﬁ, ep,. and adjly;

o
aws SPOty, hex
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(this notation is defined in Sect. 4) for «, 8, y € Il such that « and B label an arbitrary pair
of non-commuting reflections and 3 and y label an arbitrary pair of commuting reflections.

The paper is structured as follows. In Sect. 2 we construct a “classical-type" cellular basis
of HY /HJ y, HY in terms of tableaux but using a slightly exotic dominance ordering—the
proofs in this section are a little dry and can be skipped on the first reading. In Sect. 3, we
upgrade this basis to a “light leaf type" construction and prove Theorem A. Finally, in Sect.
4 of the paper we illustrate how Theorem A allows us to reconstruct the precise analogue of
the light leaves basis for the Bott—Samelson endomorphism algebras for regular blocks of
quiver Hecke algebras (as a special case of Theorem A, written in terms of the generators of
Theorem B). We do this in the exact language used by Elias, Libedinsky, and Williamson in
order to make the construction clear for a reader whose background lies in either field.

This paper is a companion to [2], but the reader should note that the results here are entirely
self-contained (although we refer to [2] for further development of ideas, examples, etc).

2 A tableaux basis of the quiver Hecke algebra

We let &,, denote the symmetric group on n letters and let £ : &, — Z denotes its length
function. We let < denote the (strong) Bruhat orderon S,,. Giveni = (iy, ..., i,) € (Z/eZ)"
ands, = (r,r+1) € G, wesets, (i) = ({1, -y lr—1,brtlsirsbrg2y ---sin).

Definition 2.1 [3,8,14] Fix ¢ > 2. The quiver Hecke algebra (or KLR algebra), H,, is
defined to be the unital, associative Z-algebra with generators

lei li=(1,....in) € (Z/eD)"}U{y1, ...y} U Y1, oo Yt}

subject to the relations

eiej =38ijei  Yicjery € =1n, Yrei=eiyr Yrei =eso¥r  VrVs = Vshr

(RI)
forall r,s, i, j and
Yrys = ys¥r fors #r,r+1 Vs = Y5y for |r —s| > 1 (R2)
yrrei = (Wryre1 — 8iyipy1)ei Vrr1rei = Wryr + 8iipi)ei (R3)
0 ifi, =41,
_ i i

Yrte; = | i i (R4)

Ora1 —yr)ei iy =ip +1,

Or = yrper ifirgr =ir — 1

Wr1¥r Y1 — 1)€L ifi, =ipp0 =ir41 +1,

wr¢r+11ﬁrei =1 Wra¥r e + l)ei ifi, =i =1ir41—1 (R5)

Vrr1¥rYrire; otherwise

for all permitted r, s, i, j. We identify such elements with decorated permutations and the
multiplication with vertical concatenation, o, of these diagrams in the standard fashion of

@ Springer



C.Bowman et al.

LI

Fig.1 The element y; lﬁfe(o.l,z,s) Xy llf52€(0, 1,2,3,4) X y1 1#3‘6(0, 1,2,3)

1 2 3 1 2 3 4

[3, Section 1] and as illustrated in Fig. 1. We let * denote the anti-involution which fixes the
generators.

Definition 2.2 Fix ¢ > 2 and o € Z¢. The cyclotomic quiver Hecke algebra, H?, is defined
to be the quotient of H,, by the relation

yflomlon=1snsbe, =0 fori e (Z/eL)". 6

As we see in Fig. 1, the y; elements are visualised as dots on strands; we hence refer to
them as KLR dots. Given p < g we set

p q P

Wg = SpSp+1 - -Sqg—1 Wp = S8g—1"""Sp+15p Vg = Yp¥pt1-Yg-1
q

‘/fp = wqfl o '1//p+lwp'

and given an expression w = s;, - - “Si, € G, wesetyry, =1 - Vi, € Hn. We let X denote
the horizontal concatenation of KLR diagrams. Finally, we define the degree as follows,

=2 ifi, =ir41
deg(e;) =0 deg(y,) =2 deg(¥re) =41 ifi, =i,411 1.
0  otherwise

2.1 Box configurations, partitions, residues and tableaux

For a fixed n € N and £ > 1 we define a box-configuration to be a subset of
{li,j,ml|O<m<{,1<1i,j<n}

of n elements, which we call boxes, and we let By(n) denote the set of all such box-
configurations. We refer to a box [i, j,m] € A € By(n) as being in the ith row and jth
column of the mth component of A. Given a box, [i, j, m], we define the content of this box
to be ct[i, j,m] = o, + j — i and we define its residue to be res[i, j, m] = ct[i, j, m]
(mod e). We refer to a box of residue r € Z/eZ as an r-box.

We define a composition, A, of n to be a finite sequence of non-negative inte-

gers (A1, X2,...) whose sum, |[A| = Ay + Az + ---, equals n. We say that A is a
partition if, in addition, this sequence is weakly decreasing. An £-multicomposition
(respectively £-multipartition) A = (M@, ... A¢=D) of 1 is an ¢-tuple of compositions

(respectively partitions) such that A\ 4+ ... 4+ |[A¢~D| = n. We denote the sets of ¢-
multipartitions and ¢-multi-compositions of n by & (n) and C;(n), respectively. Given
A= QO AW AE=Dy e g5 (n), the Young diagram of X is defined to be the box
configuration,

(i, joml 1< j<A™ 0<m<e).

@ Springer
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We do not distinguish between the multipartition and its Young diagram. We let & denote
the empty multipartition. Given A € By(n), we let

Rem(A) = {[r,e,m]le i |[r+1,c,m] ¢ X, [r,c+1,m] ¢ A}
Add(}) = {[r,ec,m] ¢ X |[r—1,c,m]lerifr>1,[r,c—1,mlerifc>1}

for A € P¢(n) C By(n) this coincides with the usual definition of addable and removable
boxes. We let Rem, (A) € Rem(A) and Add,(A) € Add(A) denote the subsets of boxes of
residue r € Z/eZ.

Given A € By(n), we define a A- tableau to be a filling of the boxes of [A] with the numbers
{1,...,n}. For A € By(n), we say that a A-tableau is row-standard, column-standard, or
simply standard if the entries in each component increase along the rows, increase along
the columns, or increase along both rows and columns, respectively. We say that a A-tableau
S has shape A and write Shape(S) = A. Given A € By (n), we let Tab(X) denote the set of
all tableaux of shape A € B¢(n). Given T € Tab(}) and 1 < k < n, we let T~!(k) denote
the box [J € A such that T(LD) = k. We let RStd()), CStd(A), Std(1) C Tab()) denote the
subsets of all row-standard, column-standard, and standard tableaux, respectively. We let
Std(n) = Upez,(n)Std(A) forn € N.

Definition 2.3 We define the reverse cylindric ordering, >, as follows. Let 1 < i,i/, j, j' <
nand 0 < m,m’ < €. We write [i, j,m] > [i, j/,m']ifi <i’,ori =i’andm < m’, or
i=iandm =m'and j < j'. For A, u € By(n), we write A > u if the >-minimal box
O e (AU )\ N ) belongs to w.

Definition 2.4 We define the dominance ordering, t>, as follows. Let 1 < i,i’,j,j < n
and 0 < m,m’ < €. We write [i, j,m] > [i’, j/,m']ifm <m/,orm =m'andi < i/, or
i=i"andm =m’ and j < j’. Given A, u € By(n), we write A > p if the >-maximal box
Oe (AU wp)\(X N pw) belongs to A.

Given S, we write S| ¢, 0r Sl (respectively S| > ) for the subtableau of S consisting
solely of the entries 1 through k (respectively of the entries k through n). Given A € B, (n),
we let T, denote the A-tableau in which we place the entry n in the minimal >-node of A,
then continue in this fashion inductively. Given A € By (n), we let S, denote the A-tableau
in which we place the entry n in the minimal >-node of A, then continue in this fashion
inductively. Finally, given S, T two A-tableaux, we let w% € G,, be the permutation such that
w(T) =S.

Example 2.5 For A = ((2, 12), (22, 1), (13)), we have that w% = (4,5)(2,6) for Sand T,
the tableaux

1)2] 3[4 3|5
n=<g,78, 17181,
LU 11

Definition 2.6 Given any box, [r, ¢, m], we define the associated (>)-Garnir belt to be the
collection of boxes, Gar. ([r, ¢, m]), as follows

{lroj. k11j 2 L1<k<mpUllr, jom] 11 <j<cU{lr—1,7.m] e < JYULlr — 1 j k11 j 2 1,k > m}

with the convention that we ignore any box from the “zeroth" row. We define Gar. ([r, ¢, m])
to be the intersection of Gar,. ([r, ¢, m]) with the mth component and refer to this as the (>>)-
Garnir belt.

@ Springer
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Example 2.7 Leto = (0,3, 8) € Z>ande = 14.Given A = ((32,22, 1), (52,3, 2, 1), (42, 3, 1%))
and the box [3, 3, 1] € A, we colour Gar, ([3, 3, 1]) N A below

011]2 314 6 819 110]11
13]0]1 21314]5/|6 71819110
12|13 |1 ]2 , | 61718
11]12 011 5

10 14 T

The (>>)-Garnir belt is the subset of boxes coloured in orange.

Given h € Nf, we let Py (n) (respectively 4} (n)) denote the subsets of £-multipartitions
(respectively £-multicompositions) with at most /,, columns in the mth component.

Lemma2.8 Let A € Z,(n). For any box [i, j, m], the multiset of residues of the boxes in
AN Gar, [i, j, m] is multiplicity-free (i.e. no residue appears more than once).

Proof This follows immediately from the definitions since A € 2% (n). O

Let > be an ordering on B, (n). Given 1 < k < n, we let A? (k), (respectively R? (k))
denote the set of all addable res(T~!(k))-boxes (respectively all removable res(T~1(k))-

,,,,,

We define the (>)-degree of T € Std()) for A € Z2y(n) as follows,

n

deg> (M = Y (147 0] = IR7 K1)

k=1

We let res(T) denote the residue sequence consisting of res(T~'(k)) fork=1,...,nin
order. We set e1 1= ereg(1) € S, . We set

|45 (K) LA (k)
v = 1_[ Ve T e, and yJ = Ve % es, - 2.2)

k=1 k=1
For A € £;(n), the element yf was first defined in [7, Definition 4.15]. We remark that
vy =er, for A € & (n). Given S, T € Std(A) and w any fixed reduced word for w? we let

W-? = esyyer.

Definition 2.9 Weset Y, = (¢;, yk | i € (Z/eZ)",1 < k < n).

2.2 The quotient

A long-standing belief in modular Lie theory is that we should (first) restrict our attention to
fields whose characteristic, p, is greater than the Coxeter number, &, of the algebraic group
we are studying. This allows one to consider a “regular block" of the algebraic group in
question. What does this mean on the other side of the Schur—Weyl duality relating GLj, (k)
and k&, ? By the second fundamental theorem of invariant theory, the kernel of the group
algebra of the symmetric group acting on n-fold h-dimensional tensor space is the 2-sided
ideal generated by the element

Zg€6h+1<(‘5,l sgn(g)g € kG,
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Modulo “more dominant terms" this element can be rewritten in the form we introduced in
Eq. (2.2), as follows

y(7!+1) X IHZ—h—l (2.3)
by [7, 4.16 Corollary]. The simples of this algebra are indexed by partitions with at most &
columns. Given o € Z¢, we leth = (ho,...,he—1) € N¢ be such that &, < Om+1 — O for
O0<m<{—1and hy_; < e 4+ o9 — o¢—1. We define

Y= Do Y mrvn B, (24)

o<m<t

to be the higher level analogue of the element in (2.3).

Definition 2.10 Given weakly increasing o € Zt, we let h = (ho,...,he—1) € Nt be
such that h,, < opy1 —op for0 < m < € —1and hy—; < e + 09 — 0¢—1. We define
AT = HG I HG Y, HE.

In level £ = 1, the condition of Definition 2.10 is equivalent to g < e (and & (n) is the
set of partitions of n with strictly fewer than e columns).

2.3 Generator/partition combinatorics

Our cellular basis will provide a stratification of 5 in which each layer is generated by an
idempotent correspond to some multipartition. Whence we wish to understand the effect of
multiplying a generator of a given layer in the cell-stratification by a KLR “dot generator".
This leads us to define combinatorial analogues of the dot generators as maps on the set of
box configurations.

Definition 2.11 Let A € B¢(n) and let [i, j, m] € A. We say that [i, j, m] is left-justified if
either j < e or there exists some [i, j — p,m] € Afor 1 < p <e.

Definition 2.12 Let A € By(n). For a € X an r-box, we define Y, (1) = A — a U 8 where the
r-box B ¢ A is such that 8 > «, it is left-justified, and is minimal in > with respect to these
properties (if such a box exists). If such a box does not exist then we say that Y, (1) and B
are both undefined.

We write A »pu if A = Yy (u) for some o € pu and we then extend »-to a partial ordering
on B, (n) by taking the transitive closure. Suppose that {[i, jx, mz] | 0 < k < p}is a set of
r-boxes and that Yj;, j, m (A U [ik, jk, mg]) = AU [igg1, jrr1, mey1] for k > 1. We define

Y0 GOl jomiD) = (.U, jp. mp)).
We remark that A »pu implies that A > u and so»-is a coarsening of >.

Example 2.13 Lete = S5and £ = 1.For = (3,22, 1%) € £, (13), we have that Y3 2,0)(A) =
(3,2,17) U2, 6,0]. We have that Y , (1) = Yj2,6,0((3,2, 1) U[2,6,0]) = (3,2, 1) U
[1,5, 0]

Example2.14 Lete = 5and £ = 1 and r = 2. For A = (3,22, 1% € 2,(13), we have

Yl 1030 = (3,22, 19UI3,5,01-[4, 1,0]and Y7} | (1) = (3,22, 19U[2, 4,0]—[4, 1, 0]
(see Fig. 2).
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ol1]2 ol1]2 ol1]2
4]0 1|0 1lo] |2
3[4 3 4
2 2]

1] 1] (1]
0| 0| 0|
4| n 4|
3] E 3]

B B B

Fig.2 The box configurations, A, ¥[3 2, 0](}), and and Y[%L 1’0]()»)

Given an idempotent generator, e; for i € (Z/eZ)", of the KLR algebra, we wish to
identify to which layer of our stratification our idempotent belongs. To this end we make the
following definition.

Definition 2.15 Associated to any j = (ji, ..., ju) € (Z/eZ)", we have an element J €
Std(n) U {0} given by placing the entry k = 1,2, ...,n + 1 in the lowest addable ji-box
under > of the partition Shape(J<i—1), and formally setting J = 0 and Shape(J) = 0 if no
such box exists for some 1 < k < n.

2.4 A tableaux theoretic basis

We are now ready to construct our first basis of %, . This basis will serve as the starting point
for our light-leaves bases of Theorem A. The combinatorics of this basis will be familiar to
anyone who has studied symmetric groups and cyclotomic Hecke algebras (but with respect
to the, less familiar, (>)-ordering).

Definition 2.16 Let & € Z,(n). We define the Garnir adjacency set of an r-box o =
[i, j, m] ¢ X to be the set of boxes, y € A N Gar, («) such that [res(y) — r| < 1 and denote
this set by Adj-Gar, («). We set res(Adj-Gar, (@) = {res(y) | y € Adj-Gar, («)}.

Example 2.17 Continuing with Example 2.7, we have that Adj-Gar_([3, 3, 1]) = {[3, 2, 1],
(2,3, 1]}

Remark 2.18 We are endeavouring to construct a 2-sided chain of ideals of ., ordered by
» in which each 2-sided ideal is generated by an idempotent et, for A € &, (n). Equations
(2.6) and (2.7) of Theorem 2.19 will allow us to rewrite any element of ), in the required
form by moving a given box [ through the partition A one row at a time along the s>~ordering

until it comes to rest at some point A UL € & (n). For J the tableau in Fig. 3, then the eight
steps involved in rewriting e as an element of .= 2%1% are illustrated in Fig. 4.

The following theorem is the technical heart of this section. We define .77 2 = 7 (et, |
v = A7 (respectively HZ = HJ (er, | v = A)H;) for > any ordering on &y (n)
(respectively Z;(n)). Given > a total order on 2, (n), we let A0l > Al > ... 5 30
denote the complete set of elements of &7 (n) enumerated according to the total ordering >.
Given A € By(n — 1) and o ¢ A, we define

%(>>)\)U01 — Z %UeTMUm%U < %ZH)\U(X)'
{neBe(n—1)|u>r,a¢u}l
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01112 1(2]13
410 314
314 516
2 7
1] B
0] 9]
4] 10}
3] [11]
B 1

Fig.3 Lete = 5 and £ = 1. On the left, we have the residues for the partition 1 = (3, 22.19). On the right,
we have the tableau J € Std(3, 22, 16) for j =(0,1,4,0,3,4,2,1,0,4,3, 2,2) as in Definition 2.15

LA

J in Fig. 3 is rewritten in the form (2.8). The box moves through each row until it comes to rest at the point
J1 (13) =[1, 3, 0]. This involves repeated applications of Eq. (2.6) to deduce (2.8). For the purposes of later
referencing, we label the 9 boxes from bottom-to-top by o1 = [9, 6, 0], ap = [8,5,0],..., a9 = [1, 3, 0].
This visualisation is explained in Remark 2.18

Theorem 2.19 Let & € Py (n — 1) and assume o = [i, j,m] & A is left-justified. We set

a = Tyug ().

(a) Ifa =11, j, 0] for some j > 1then (i) yt,,, =0if \Ua ¢ Pp(n) and (ii) yayt,,, =0
ifAUa € Zy(n).

(b) Fora # [1, j, 0] for some j > 1, we set B to be the box determined by

YA Ua) =AUB  ifres(Adj-Gar(a)) = {r — 1}; 2.5
Yol AUa)=21UpB otherwise '
and we set b = T,ug(B).
o IfAUa ¢ P(n), then we have that
a,> b 2o (PAUB
iwb yTAUﬂ 1//(1 + or (2.6)

>~
IMive € =AU
w :i(ya_lwgyﬁuﬂwé’— 37, Vv + AT

(the cases are detailed in the proof).
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T \Uay 0140342104322 0140342104322 Taua
T/\Uag § - iz T/\Uag
Thve 0140342104322 0140342104322 Thvay

Fig.5 We continue with the example in Fig. 4 for A = (26, ]3). This is the righthand-side of Eq. (2.10) for

€Thue,

o IfAUa € P(n), then we have that
YaOT,,) € TV yT, Wi + ATV @7

(c) For j € (Z/eZ)", using the notation of Definition 2.15, we have that:
ej € £{ U] + A7 if Shape()) = v € Py (n) 08)
ej =0 if Shape(J) =0 '

where &%v is obtained from w-{v by possibly adding some dot decorations along the
strands. Thus if > is any total refinement of > then the 7Z-algebra ¢, has a chain of
two-sided ideals

[0] [1] [m]
OC%?)“ Ce%’;%)h C--'C,%ZZ}‘

= . (2.9)
Remark 2.20 In the proof, we will often relate ideals in smaller and larger algebras using
horizontal concatenation of diagrams, this is made possible by the definition of the reverse
cylindric ordering > (which distinguishes between box configurations based on the first
discrepancy upon reading a pair of box configurations backwards).

Remark2.21 If L U« € & (n), then yﬁw = e7,,, by Lemma 2.8.

AUa
Proof of Theorem 2.19 Part (a), let « = [1, j, 0] for some j > 1. Claim (ii) follows by
applying case 3 of R4 a times, followed by the commuting KLR relations and the cyclotomic
relation. The proof of claim (i) is similar. Thus (a) follows.

For parts (b) and (c), we assume that Egs. (2.6)—(2.9) all hold for rank n — 1. We further
assume that Eqgs. (2.7) and (2.6) have been proven for all v = p U a with u € Zp(n — 1)
such that 4 »-A; thus leaving us to prove Eqgs. (2.7) and (2.6) forv = AUa forA € Zp(n—1)
and Eq. (2.8) forall j € (Z/eZ)". Equation (2.9) follows immediately from Eq. (2.8) and the
idempotent decomposition of the identity in relation R1. By Definition 2.12, res() = res(f)
and we set this residue equal to r € Z/eZ.

Proof of Eq. (2.6) for a given A and «. We include a running example for ¢ = 5 and
¢ =1and A = (2%, 19). We assume that A U « ¢ Pp(n). There are four cases to consider,

depending on the residue of o’ := T;Ja (a — 1). We assume that ' is in the same row of
the same component as « (as otherwise yr,,, = y1,,, by definition). We let 8’ be the box
determined by

YSHG.Ua) =2U B ifres(Adj-Gar(a') = {r — 1};
YO:,()\ Ua)=2Up otherwise.
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®

(i)

Suppose o’ has residue r € Z/eZ and so ¥T,., = €T by Lemma 2.8. By application
of relations R3 and R4, we have that

eTi0e = Ya—1Ya—1€TyuqYaYa—1 — YaVa—1Ya—1€Ty e Ya—1- (2.10)

An example of the visualisation of the idempotents on the righthand-side of Eq. (2.10) is
given in the first step of Fig. 4; the corresponding righthand-side of Eq. (2.10) is depicted
in Fig. 5. Now, we have that

Ya—1€Tyue = (ytl—leTxu(xigafl) Mer Ker, 0.,

and so by our inductive assumption for Eq. (2.7) for rank @ — 1 < n, we have that

-1 b AU
Ya—1€Ty, € £V yﬁuﬂgmwa_l X eT,upd >4 + PP

—1
= Y5 Ve + 4T

where we have implicitly used the following facts: (i) Yoy(A Ua) = A Ua U B — o (ii)
Trvad>a = Taupd =, and (iii) e, ., = €T, Substituting this back into Eq. (2.10),
we obtain

Tie € TV, Vivam1 = yaViyT, Vo) + AP @.11)

as required (as in the second case in Eq. (2.6)). An example is depicted in Fig. 5 (although
we remark that the error terms belonging to Z%’Q(H)Uﬂ are actually all zero in this case).
Now suppose ' = [x, y, z] hasresidue r + 1 € Z/eZ. We have two subcases to consider.
We first consider the easier subcase, in which [x, y,z] = [i, 1,m]andsob =a — 1. We
have that [i + 1, 1,m] € Add,(Tiua{<,) Whereas Add, (Taugl<p) = . By relation
R4, we have that

b

Ve = Ya€Tiva = Ya-1€T,00 — €Ty Wa—1€TisVa—1€T,0, = Ya—1€T,00 — V37,05 Va -
UL —a’ . .

We have that y,_1y1, € 7,2, and so the former term is of the required form by
our assumption for A U 8/ — o’ = A,
Now, if y > 1 then the (a — 2)th, (a — 1)th and ath strands have residues r, r + 1, and r
respectively. We have that
Y = €Tave = €Tue Ya—2Va—1Va—2€T,0, — €Ty Ya—1Va-2Va—1€T,,

= —CTua Ya—2V¥a—1Ya—1Va—1 wg—ZeTAuﬂ + eT)0q Ya—1¥a—2Ya—2Va—2 Wa—leT;hUu .
(2.12)

where the first equality follows from Lemma 2.8, the second from relation R5 and the
third follows from relations R3 and R4. We set & = Shape(T,{ _,_,). The two terms in
Eq. (2.12) factor through the elements

et |, Ne 1 Ryre, , Mer, 1., eny_, ., Xyie,We, ry1 Ner, oy,
—_———— [N —;

EU[x,y,z] §U[x,y—1.z]
(2.13)

respectively.

We first consider the latter term on the righthand-side of Eq. (2.12) (which we will see,
is the required non-zero term). We note that [x, y — 1, z] and « have the same residue
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(iii)

(iv)

and so Y|y, y—17( U[x,y — 1, z]) = & U B. By our inductive assumption that Eq. (2.7)
holds for rank a — 2 < n, we have that

) >£)U
eT)wL<a—2 x yier = ya*zeTSU[x.y—l.z] € :l:lpg yﬁuﬁwtl:—z + %(fg) g (214)

Substituting this back into the second term of Eq. (2.13) we obtain

-2 b -2 b
I/f](: yiug I/Ia—Z X €r,r+l X €Tivad=a € :l:][,;; yﬁuﬁ ‘(//a—Q + %(»‘A)Uﬁ

and then substituting into the second term of Eq. (2.12) we obtain

€Ty lpa—l]//a—Zya—ZWa—ﬂba—leT)LUD, € iWu—ll//a—2wg_2)’TiUﬁ ]//5_2‘”0—2’#11—1 + %(>A)Uﬁ
= U v+ AT

as required.
We now consider the former term of Eq. (2.12) (which, we will see, is zero modulo the
ideal). We have that Y}, y 1(§ U [x,y,z]) = (6 Uy) » (§ U[x,y,z]) for y a box of
residue r + 1 € Z/eZ. We set ¢ = ngy (y). We have that
- £)U

et Werp = eryy,, € TY¢ zyTzuy Voot f’?;(j) ’
by our inductive assumption that Eq. (2.6) holds for rank @ — 2 < n. Concatenating, we
have that
>~ 1,0;_2 + %(H)L—[x,y,zJUy))Ua

a—2
Tyl gy Werri Wyrer r Mer o), € VYT, b v

and we note that the idempotent on the righthand-side belongs to the ideal

OV 444 S0 the result follows by our assumption for A Uy — [x, y, 7] =

WA
Now suppose o’ has residue d € Z/eZ such that |d — r| > 1. We set § =
Shape(Ty| -,_1). By case 2 of relation R4, we have that
Va€Tuse = Va-1(er,_, | B yfe, Keq Ker, | )Wa-1 2.15)
— ————
EUa

for k € {0, 1}. By the inductive assumption for rank @ — 1 < n of Eq. (2.6), we have that

ifo/ =[i,2,mlandd =r +2thener, | Kyper

a—1_> b W pE)UB
otherwise et Ke, } € 1Y), Meup Va1 + 7,75

As in the case (ii) above, we concatenate to deduce the result. Two examples of the
visualisation of the righthand-side of Eq. (2.15) are given in the third and fourth steps of
Fig. 4; the corresponding elements are depicted in Fig. 6.

Suppose o’ = [x, y, z] has residue r — 1 € Z/eZ (thus [x, y,z] = [i, j — 1, m] by
residue considerations) and that [i — 1, j, m] ¢ A (if [i — 1, j, m] € A, this implies that
AU« € Pp(n) and so the process would terminate). We remark that res(Adj-Gar(a)) =
{r — 1} and this is the unique case of the proof for which this holds.

Lety =[i —1,j — 1, m] and we set ¢ = Tuu(y) and let & = Shape(Ty | .,_;) (see
Fig. 7 for an example). By Lemma 2.8, eT,,, = yﬂ Lo+ We have that

-2
€True = €Taue ¢§—2wé~l €T (2.16)

-2
= eTuu Va—1Va 1 Ve VYa—1€T0, — T Va1¥e €Tria (2.17)
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0140342104232 7T, 0140342102432 T,,,

ij T/\U04 ié T)\Uas

0140342104232 Tavas 0140342102432 Tave,

Fig.6 The righthand-side of Eq. (2.15) for A = 5, 13) and o = a3 and a4 respectively

1 01
0 0 4]0
4 4 3|4
2 o - 2

[Cle[=[a]=[<[=]~]=

[e]e]=]=]

Fig.7 The lefthand-side is A U s as in Fig. 4 (with & shaded grey). The righthand-side labels the idempotents
obtained from applying Eq. (2.18). The middle box configuration is )y,

= €Tl wg+11/,;eTAUot - w;—l(eTs—y X er—lr.r X eTAu«lM)wg (2.18)
= —eTu Ve YeVaeTia — Var(ete_, Mer1 . Ker oy W (2.19)

€ —UiyT Vel — Viei(er,, W1 Rer, W +#5PF(220)

where the first and third equalities follow from the commuting case 2 of relation R4
and Lemma 2.8, and the second equality follows from case 1 of relation RS5; the fourth
equality follows from R3; the fifth is either trivial or follows from case (3) of R4 (in the
latter case, the error term is zero by our inductive assumption for rank ¢ — 1 < n of Eq.
(2.7)). For our continuing example, the righthand-side of Eq. (2.19) is depicted in Fig. 9;
the box-configurations labelling the idempotents on the left and righthand-sides of Eq.
(2.18) are depicted in Fig. 7.

We now consider the second term on the righthand-side of Eq. (2.18). We have that

€T, Mer—irr= €T yUli.j—1mlaUli, j+em]

By our inductive assumption for ranks a — 2, a — 1 < n for Eq. (2.6), we have that:

-y (p)Uy >(pUy)
€Te_yutijmtm) € %pa} 2 = €T Ui j—tmua € 7 ST

for p = Y[‘;’J;]_lym](é —v Uli,j—1,m]). Given & » (p U )./), we can left justify
w Uli, j + e, m] to obtain 7 U @. We note that Gar. (o) N 7t contains no nodes of residue
r or r = 1. Therefore

IS %(szy)uﬁ = e1; Ne—1,rX €Tual., € jfn(»k)uﬁ

€Te—yUli, j—1mlUaUli, j+e,m]

as required. (Note that y, § ¢ m by Lemma 2.8.) See Fig. 8 for an example.
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0]t 0]1
4]0 4]of1]
3 3[4

2 2
112 > I
0 [0]
4] 4]
3] 3]
2] 2]

Fig. 8 Rewriting the first term after the equality in Eq. (2.18). We have moved the 1-box using case (iii)
and this leaves us free to move the 2-boxes up their corresponding diagonals. The righthand-side is a box
configuration which is strictly higher than A U g in the >-ordering

0140342120432 0140342120432

TaUas Tavas

Tvas 0140342120432 0140342120432 Tvas

Fig.9 The righthand-side of Eq. (2.18) for A = (26, 13) and as as in Fig. 4. The left diagram factors through
the element yﬂu ; we will further manipulate this in Fig. 10 below
oG

Fig. 10 The leftmost term in Fig. 0140342120432

. . . Tauas
9 rewritten in the form in Eq.
(2.20). This diagram factors _ Trvar
o .
through yTxqu . In this case N
o = a5 and B = w7 as in the first 0140342120432 Aas

case of Eq. (2.5)

Proof of Eq. (2.7) for a given A and o.. We assume that Eq. (2.7) holds forall A € &, (n—1).
Wesetv = AUa € P(n) and we assume that « is of residue r € Z/eZ. We have that
€Tia = VT, - We have that

) Va1 F V0w if r =1 € res(Adj-Gar,(a));

_ 2.21
Ya YT U Yas if r — 1 ¢ res(Adj-Gar,_(«)); ( )

In the first case, this follows from case 3 of relation R4 and the commutativity relations, to
see this note that the (¢ — 1)th strand has residue r — 1 € Z/eZ. In the second case, the
statement follows from Lemma 2.8 and the fact that b = a. Letting 8’ be as in Sect. 2.4, we
note that y,_1yr1, € jfj?‘luﬁ ! and so the first case of Eq. (2.21) is of the required form by
our assumption for AU 8’ — o’ = u»A.

Proof of Eq. (2.8). Let j = (j1,..., ju—1,7) € (Z/eZ)". We can assume that
Shape(Jgu—1) = A € P, (n — 1) as otherwise ejXej, = 0X e, = 0 by induction.
Thus it remains to show that a

Uiyt Re, € 197, 9] + 4.

We can associate this rightmost r-strand to the (unique) left-justified 7-box « such that (J > «
for all O € A. (For example, J = [9, 6, 0] for A = (23, 19), see Fig. 4.) Thus every strand
in the diagram is labelled by a box. We pull the strand labelled by « through the centre of
the diagram (which is equal to the idempotent et, ) one row at a time using Eq. (2.6). We can
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utilise Eq. (2.6) precisely when A U o ¢ ), (n). Therefore this process terminates when we
reach the smallest addable r-box of A under the >-ordering, namely J~!(n). Thus Eq. (2.8)
follows. O

Proposition 2.22 [4, Lemma 2.4 and Proposition 2.5] We let w, w’ be any two choices of
reduced expression for w € &, and let v be any non-reduced expression for w. We have that

eiYwe; = eiYurej + Z£<£&/ eivx fx(V)ej (2.22)
eﬂﬁgei = Z£<y eg&elgi(y) (2.23)
yieivwej = €jYuweiVuk) + Xx<w €iVxe) (2.24)

Jor some f;(y), 8x(¥) € V-

Proposition 2.23 Let k be an integral domain. The k-algebra ¢ has spanning set
{1//%1&;‘ |S, T eStdh), L € Pu(n)}. (2.25)

Proof Letd € e; 7, e forsome, j € (Z/eZ)". By Eq. (2.8), we can rewrite e; (or equiva-
lently ¢;) so thatd = ix, ye@, CidxeT,aye; for some a,, a, which are linear combinations of
KLR elements tracing out some bijections x, y € &, respectively (but are possibly decorated
with dots and need not be reduced). It remains to show that ay, a, € % can be assumed
to be reduced and undecorated. We establish this by induction along the Bruhat order, by
working modulo the span of elements

Span {yrer, ¥y |u < xorv < y} + %M. (2.26)

If x is not reduced Yy eT, ay is zero modulo (2.26) by Eq. (2.23). Given two choices x, x" of
reduced expression for x € &,, we have that (¥, — ¥/ )er, a, belongs to (2.26) by Eq. (2 22)
followed by Eq. (2.7). Finally, if a is obtained from vy, by adding a linear combination of
dot decorations (at any points within the expression ¥, = wsil e I/ISik) then ¥, e1, ay is zero

modulo (2.26) by Eq. (2.24) followed by Eq. (2.7). Thus jﬁ,}z)‘ / jff’\ is spanned by elements
of the form

{Yxer, ¥y | for x, y arbitrary choices of fixed reduced expressions of x, y € &,} + :%‘;M.
(2.27)

It remains to show that a spanning set is given by the elements x = w-lsik, y = w;‘ for

S, T e Std(p).

GivenT e CStd(k)\Std(A) we have that wp has a pair of crossing strands from1 <i <
j<ntol < wTA(j) < wTA(l) nsuchthat T, (z) =[r,c,m]and T, (]) [r,c+1,m]
are in the same row and in particular so thati = j—1. It suffices to show that Yyer, ¥y belongs
to the ideal J”i’jf”‘ for a preferred choice of y; we choose y = s;w (for some w 676,, such
that s;w = y). Thus it remains to show that er, ¥, € %M. However, this immediately
follows from Eq. (2.6) because er, V5, = ¥y, ey,(T,) and we have that e ;) € J/;?a for
a=Y- +1)O‘) Al

leen any T € RStd(A)\Std(1) we let k be minimal such that T _, € Std(u) for some
€ Pp(k—1)and Shape(T| ;) = v for some v ¢ &), (k). We have thatet = €T, Mer_,
where Shape(er ) = v € €, (k)\Pp(k) andsoer_, € 27" by Eq. (2.6) and soer € A7
by concatenation and the definition of »- This implies that er, wTT* = T fer € A, as
required. O
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Theorem 2.24 Let k be an integral domain. The k-algebra 5 is graded cellular with basis
{1//% 1//;-A |S, T eStd(A), L € Pp(n)} (2.28)

anti-involution * and the degree function deg : Std — Z. For k a field, ¢ is quasi-
hereditary.

Proof We first prove that the spanning set of Proposition 2.23 is a k-basis. We will show
that the rank, as a k-module, of H{, thf, is less than or equal to ), . 5 (NP () |Std(1)]2.
The (>)-ordering does not give us an easily constructible basis of H (see [5]). Hu and
Mathas [7, Main Theorem] have shown that the classical ordering > does give us an easily
constructible basis {1//55)\ yi W-?A | S, T € Std(A)} and presentations of all these cell-modules
are given in [9, Definition 5.9]. We claim that Yn annihilates any (>>)-cell-module labelled

by a A € & (n); in other words y, Ws ySA € HD’\ for A € & (n). Once we have proven the
claim, we will deduce that the ideal is of the required rank, thus the spanning set is linearly
independent (and hence a basis) as required. The algebra is then cellular (by its construction
via idempotent ideals) with the stated basis (since we have a spanning set of the required
rank). Finally, we note that each layer of the cell chain contains an idempotent et, and so the
algebra is quasi-hereditary, as required. We now turn to the proof of the claim. If m < £ — 1
and hy, < o1 —oOm,orifm =€ — 1 and hy_1 < e + o9 — o¢—1 then the mth summand

Yoo (1), 0, B X Ing = eomomtlomthny) Blng (2.29)

in Eq. (2.4) is an idempotent whose residue sequence is not equal to that of any tableau
S € Std(%) for A € & (n) and therefore the claim is immediate. If ,, = 0,41 — 0Oy, then
the term in (2.29) is nilpotent and equal to

Yhm+1€T(g. . 4. (hm+1).0.... ‘Z Iy

n—hm

= Yhm+1€T (g, 0. (hm).(1).0,...0) X IHZ,,,M,I' (2.30)

The idempotent in (2.30) annihilates wsS-A y; unless SIi,. ha+1) 18 equal to
T@,...0. (). (1), 6,....0)- We now suppose that S{y; 5 41 is of thls form and we set Sy =
Om+1 mod e.

Since A € &, (n), we observe that [1, 1, m + 1] is the unique box in A of residue s, 41 €
Z/eZ in which we can place the integer 4, + 1 (or any integer smaller than 4,, + 1) without
violating the standard condition, by Lemma 2.8. The presentation of the Specht module in
[9, Definition 5.9] implies that (i) ¥y y)‘D e H> * for any w # wg_A for some S € Std(A) with
A € Pp(n) (since every (>>)-Garnir belt has fewer than e boxes) and (ii) yx yl‘\> e HY * for
any 1 <k<n

We are now ready to prove the claim. Using Eq. (2.24), we move the dot at the top
of yhm+11/fssA y'f down the (h,, + 1)th strand to obtain a linear combination of undec-
orated diagrams (in which we have undone some number of crossings s,,-strands) and
1//; ¥s,.(1,1,m+1)Y5. - By our above observation, all of these undecorated diagrams are labelled

.....

by non-standard A-tableaux. Therefore all of these terms (and hence yp,,, +1 ‘ﬂsSA y'f ) are zero,
by (i) and (ii). The claim and result follow. ]

Letk be an integral domain. We define the standard or Specht modules of .77 as follows,
Sk = {1stA + 7| S € Std(n)) (2.31)
for A € & (n). We immediately deduce the following corollary of Theorem 2.24.

Corollary 2.25 The module Sy (\) is the module generated by et, subject to the following
relations:
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eiet, = dires(ryyem, fori € (Z/el)";

yier, =0for1 <k <n;

Yer, =0 forany 1 < k < n such that s (T)) is not row standard;
WTSAeT.A = 0for S € RStd(A)\Std()).

Proof We have already checked that all of these relations hold (and so one can define a
homomorphism from the abstractly defined module with this presentation to Sk (A)) it only
remains to check that these relations will suffice (i.e. the homomorphism is surjective). We
know that Sy (1) has a basis indexed by standard tableaux and so the result follows. ]

‘We now recall that the cellular structure allows us to define bilinear forms, for each
A € Py (n), there is a bilinear form (, y* on Sk (1), which is determined by

YUt = Wyt ) e, (mod HY) (2.32)

forany S, T € Std(A). Let k be a field of arbitrary characteristic. Factoring out by the radicals
of these forms, we obtain a complete set of non-isomorphic simple .7, -modules

Dy (2) = Sk (1) /rad(Sk (1)), A € Pp(n).

Proposition 2.26 Let A € & (n) andlet Ay > Ay > - > A denote the removable boxes of
A, totally ordered according to the >-ordering. The restriction of Sy (1) has an € |-module
filtration

0=8*"* s ..o c 8" =Respo (Sk(L) (2.33)
given by
S** = k{y7, | Shape(S<n—1) = A — Ay for some z > y > x}.
For each 1 < r < z, we have that

@r i S(L— A (deg(A,)) =878V s s oY 4y (234)

Proof On the level of k-modules, this is clear. Lifting this to S, ,-modules is a standard
argument which proceeds by checking the relations of Corollary 2.25 in a routine manner. O

3 General light leaves bases for quiver Hecke algebras

The principal idea of categorical Lie theory is to replace existing structures (combinatorics,
bases, and presentations of Hecke algebras) with richer structures which keep track of more
information. In this section, we replace the classical tableaux combinatorics of symmetric
groups (and quiver Hecke algebras) with that of paths in an alcove geometry. This will allow
us to construct “light leaves" bases of these algebras, for which p-Kazhdan-Lusztig is baked-
in to the very definition. The light leaves bases of Sk (1) are constructed in such a way as to
keep track of not just the point A € [E; (or rather the single path, Ty, to the point A) but of the
many different ways we can get to the point A by a reduced path/word in the alcove geometry.
This extra generality is essential when we wish to write bases in terms of “2-generators" of
the algebras of interest.
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3.1 The alcove geometry

For ease of notation, we set H,, = hg+---+h,, forO <m < f,andh =ho+---+ he_1.
Foreach1 <i <nand0 < m < £ welets; ,, = &pgt-th,_)+i denote a formal symbol,
and define an h-dimensional real vector space

Eﬁf: (}9 RELm

o<m<t
1<i<hy,

and Eﬂ to be the quotient of this space by the one-dimensional subspace spanned by

E Eim-

o<m<t
ISi<hm

We have an inner product { , ) on £, given by extending linearly the relations
(i.ps €j.g) = 8i.j0pg

forall 1 <i,j <nand0 < p,q < ¢, where §; ; is the Kronecker delta. We identify
A € Cp(n) with an element of the integer lattice inside £, via the map

A Z ()L(’"))l-Tei,m
o<m<t
I<i<hn
where (—)T is the transpose map. We let ® denote the root system of type A;_; consisting
of the roots

{85,[) —gj,q N 0< p,q < Z, 1 § l ghp, l < ] ghq,WIth(l, P) # (]7q)}
and ®( denote the root system of type Aj,—1 X - -+ X Ap,_,—1 consisting of the roots
{eim—€jm:0<m<£,1<i#]j<hyl

We choose A (respectively Ag) to be the set of simple roots inside @ (respectively ®¢) of
the form &; — &;41 for some ¢. Given r € Z and « € ® we define s, . to be the reflection
which acts on Ej, by

SqreX =X — ({x, ) —re)a

The group generated by the s4 0 with @ € @ (respectively o € Pg) is isomorphic to the
symmetric group &y, (respectively to & ¢ := & X - - - x &p,_,), while the group generated
by the s4,re With o € ® and r € Z is isomorphic to @h, the affine Weyl group of type Aj,—1.
\ye setag = e —&1 and IT = AU{ap}. The elements § = {s4,0 : @ € A}U{sq,,—c} generate

Gy

Notation 3.1 We shall frequently find it convenient to refer to the generators in S in terms
of the elements of T1, and will abuse notation in two different ways. First, we will write s,
for sq 0 when a € A and sy, for s, . This is unambiguous except in the case of the affine
reflection Sy, —e, Where this notation has previously been used for the element sy . As the
element sy, o will not be referred to hereafter this should not cause confusion. Second, we will
write o = &; — gjy1 in all cases; if i = h then all occurrences of i + 1 should be interpreted
modulo h to refer to the index 1.
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We shall consider a shifted action of the affine Weyl group S » on E; ; by the element
o= (pg, P2, ..., Pe—1) € 7" where om = Om+hy—1,0np+h, —2,...,0p) € Zh’",

that is, given an element w € @h, we set w - x = w(x 4+ p) — p. This shifted action induces
a well-defined action on E;; we will define various geometric objects in Ej, in terms of
this action, and denote the corresponding objects in the quotient with a bar without further
comment. We let E(a, re) denote the affine hyperplane consisting of the points

E(a,re) ={x € Ep | sq,re - x = x}.

Note that our assumption that e > ho + - - - + hy—; implies that the origin does not lie on any
hyperplane. Given a hyperplane E(«, re) we remove the hyperplane from [E; to obtain two
distinct subsets E~ («, re) and E=(«, re) where the origin lies in E< (e, re). The connected
components of

En\(Ugea,E(a, 0))

are called chambers. The dominant chamber, denoted EZ, is defined to be

E, = [ E (0.

aedg

The connected components of

Eﬁ\(uaecb,rezﬁ(a» re))

are called alcoves, and any such alcove is a fundamental domain for the action of the group
@h on the set Alc of all such alcoves. We define the fundamental alcove A to be the alco/\\/e
containing the origin (which is inside the dominant chamber). We have a bijection from &,
to Ale given by w — wAy. Under this identification Ale inherits a right action from the
right action of @h on itself. Consider the subgroup

SGri=6p x - x Gy, é@h.

The dominant chamber is a fundamental domain for the action of & ; on the set of chambers
in Eﬁ . We let &/ denote the set of minimal length representatives for right cosets Gf\éh.
So multiplication gives a bijection & x &/ — ). This induces a bijection between
right cosets and the alcoves in our dominant Achamber. Under this identification, alcoves are
partially ordered by the Bruhat-ordering on &;, which is a coarsening of the opposite of the
order =

If the intersection of a hyperplane E(«, re) with the closure of an alcove A is generically
of codimension one in Ej, then we call this intersection a wall of A. The fundamental alcove
A has walls corresponding to E(e,0) witha € A together with an affine wall E(ag, —e).
We will usually just write E(w) for the walls E(a, 0) (when o € A) and E(«, —e) (when
o = a). We regard each of these walls as being labelled by a distinct colour (and assign the
same colour to the corresponding element of ). Under the action of &, each wall of a given
alcove A is in the orbit of a unique wall of Ag, and thus inherits a colour from that wall. We
will sometimes use the right action of S » on Alc. Given an alcove A and an element s € S,
the alcove As is obtained by reflecting A in the wall of A with colour corresponding to the
colour of 5. With this observation it is now easy to see that if w = s ...s; where the s; are
in S then wAy is the alcove obtained from A by successively reflecting through the walls
corresponding to s1 up to s;. We will call a multipartition regular if its image in EM lies
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in some alcove; those multipartitions whose images lies on one or more walls will be called
singular.

3.2 Paths in the geometry

We now develop a path combinatorics inside our geometry. Given amap p : {1,...,n} —
{1, ..., h} we define points P(k) € Ej, by

P(k) = Z €p(i)

1<i<k
for 1 < i < n. We define the associated path of length n by
P = (@ =P(),P(1),PQ2),...,Pn)
and we say that the path has shape 7 = P(n) € [E,. We also denote this path by

P= (Sp(l), ey Sp(,,)).

Given A € %, (n) we let Path(A) denote the set of paths of length n with shape A. We
define Pathy, (1) to be the subset of Path(A) consisting of those paths lying entirely inside
the dominant chamber; i.e. those P such that P(i) is dominant for all 0 < i < n. We let
Pathy (n) = Uyez, (nyPathy (A).

Given a path T defined by such a map p of length n and shape A we can write each p(j)
uniquely in the form ¢,(;) = Emj.c; where 0 < m; < £and 1 < ¢; < h;. We record
these elements in a tableau of shape AT by induction on j, where we place the positive
integer j in the first empty box in the c;th column of component m ;. By definition, such a
tableau will have entries increasing down columns; if A is a multipartition then the entries also
increase along rows if and only if the given path is in Pathy, (1), and hence there is a bijection
between Pathy (1) and Std(). For this reason we will sometimes refer to paths as tableaux,
to emphasise that what we are doing is generalising the classical tableaux combinatorics for
the symmetric group.

Example 3.2 Leto = (0,3,6) € Z3 and e = 9. For A = ((2, 1), (2, 1), (13)), the standard
A-tableaux of Example 2.5 correspond to the paths

Ty = (21, €2, €3, &4, €5, &1, €3, €4, €5, €1, €3, £5)
S = (e1, €1, €3, &5, €4, €2, €3, €4, €5, €1, €3, €5)
Given a path P we define
res(P) = (resp(1), ..., resp(n))

where resp (i) denotes the residue of the box labelled by i in the tableau corresponding to P.
Given paths P = (g1, ..., pmy) and Q = (g4(1), - - - » €g(n)) We say that P ~ Q if there
existsana € ® and r € Z and s < n such that

epry forl <t<s
P(s) € E(a, re) and Eq(t) = {s:;ep(t) for s ;1 ; <

In other words the paths P and Q agree up to some point P(s) = Q(s) which lies on
E(«, re), after which each Q(#) is obtained from P(¢) by reflection in E(«, re). We extend
~ by transitivity to give an equivalence relation on paths, and say that two paths in the same
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2110
4|17
6|19
14]21
25|29

wlv[v[w[v[w[w[w][=[=[=~[=]=]~
HHEEHHEEHEEEEEEEERRRE

Fig. 11 An alcove path in E;l in Path@(35, 115) and the corresponding tableau in Std(35, 115). The black
vertices denote vertices on the path in the orbit of the origin

equivalence class are related by a series of wall reflections of paths and given S € Pathy, (n)
we set [S] = {T € Path,(n) | S~ T}.
We recast the degree of a tableau in the path-theoretic setting as follows.

Definition 3.3 Given a path S = (5(0), S(1), S(2), ..., S(n)) we set deg(5(0)) = 0 and
define

deg(S) = ) d(S(k),S(k — 1)),
1<k<n

where d(S(k), S(k — 1)) is defined as follows. For o« € ® we set d,, (S(k), S(k — 1)) to be

o +1ifS(k—1) € E(x, re) and S(k) € E<(«, re);
o —1ifS(k—1) € E*(a, re) and S(k) € E(x, re);
e 0 otherwise as illustrated in (Fig. 12).

We let
deg(S) = > Y du(Stk — 1), 5(k)).

1<k<n aed

We say that P = (g(1), . . ., €p(n)) isareduced pathif d, (P(k—1),P(k)) = 0for1 <k < n
and @ € I1.

This definition of a reduced path is easily seen to be equivalent to that of [2, Section 2.3] .
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| | <
X / \

Fig. 12 The first and second paths have degrees —1 and +1 respectively. The third and fourth paths have
degree 0. Here we take the convention that the origin is below the pink hyperplane

There exist a unique reduced path in each ~-equivalence class (and, of course, each
reduced path belongs to some ~-equivalence class and so ~-classes and reduced paths are
in bijection). We remark that T, the maximal path in the reverse cylindric ordering >, is an
example of a reduced path. Given S € Pathy,(n), we let min[S] denote the minimal path in
the ~-equivalence class containing S. Given a reduced path P; € Path; (1), we have that

A, ep, = P() @ (D kp P()
w>A
decomposes (in a unitriangular fashion) as a sum of projective indecomposable modules for
some generalised p-Kostka coefficients ké,‘A € k. In general, we have

A ep, E N eq,

for reduced paths P,, Q, € Path;(X) and so the choice of reduced path does matter. (This
is not surprising, the auxiliary steps in Soergel’s algorithm for calculating Kazhdan—Lusztig
polynomials produces a different pattern depending on the choice of reduced expression.)
However, they do agree modulo higher terms under > as we shall soon see (and indeed, after
the cancellations in Soergel’s algorithm one obtains that the Kazhdan—Lusztig polynomials
are independent of choices of reduced expressions).

Lemma 3.4 Given A € & (n), let Py, Qy, S;. be any triple of reduced paths in Pathy (1). The
element ep, generates H=*/H™* and moreover

Vo vs, = ks + 1
for some k € k\{0}.

Proof Let R) be any reduced path in Pathy, (1). Two paths have the same residue sequence if
and only if they belong to the same ~-class. If S ~ R, then either S = R, or S terminates at
a point u > A. Thus, we have that

eR,Sk(v) # 0 implies v»>A or v = X and eg, S(A) = eg, D (1) = W]B:~ 3.1

This implies that eg, € H="/H* and therefore generates H=*/H>* and belongs to the
simple head of the Specht module; the result follows. O
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Definition 3.5 Given two paths
P= (&, iy, ..., 8i,) € Path(n) and Q= (¢gj,¢j,,...,¢j,) € Path(v)
we define the naive concatenated path

PXQ= (8,’1,8,'2,...,Sip,Sjl,Ejz,...,8.,'{]) € Path(u + v).

3.3 Branching coefficients

We now discuss how one can think of a permutation as a morphism between pairs of paths
in the alcove geometries of Sect. 3.1. Let A € C,(n). Given a pair of paths S, T € Path(1) we
write the steps in S and T in sequence along the top and bottom edges of a frame, respectively.
We can now reinterpret the element w% € &, (of Sect. 2) as the unique step-preserving
permutation with the minimal number of crossings.

In the following (running) example we label our paths by Ps(= T 33y) and Pz. For this
section, we do not need to know what inspires this notation; however, all will become clear
in Sect. 4.

Example 3.6 We consider k&g for k a field of characteristic 5; the characteristic is unimpor-
tant now, but inspires the notation and will be needed when we refer back to this example
later. We set « = &3 — &1 € I1. Here we have

b
Ps = (g1, 82,83, 81,62, €3, €1, 62, 83) and Py, = (e1, &2, €1, €2, €1, €2, €3, €3, £3)
are two examples of paths of shape (3%). The unique step-preserving permutation of minimal

length is given by

&1 & & & &1 & & &3 & b

Pl
P>
Pr = W 22
Py

g1 & & € & & € & &

Notice that if two strands have the same step-label, then they do not cross. This is, of course,
exactly what it means for a step-preserving permutation to be of minimal length.

Definition 3.7 Fix (S, T) an ordered pair of paths which both terminate at some point A €
Py (n). We now inductively construct a reduced expression for w?. We define the branching
coefficients

dp(S, Ty =wi  whereq = {1 <i <p|wp@) <wi(p)}|
and
Tp(S.T) = (- DHP=ksalic=inky, 1)

for 1 < p < n. These allow us to fix a distinguished reduced expression, y?, for w% as

follows,
w3 =di(S,T)...dy(S,T).
and we set

17 = esT,ser = esT1(S, DY2(S, T) - (S, Der.
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b

Fig. 13 Thereducedword,gii €1 €2 €1 €2 €1 €2 €3 €3 €3
(see also Examples 3.6 and 3.8)

So =P

S1

S2

S3

S4

Ss

Se

Sz

Ss

Po

wn
©
Il

€1 €2 €3 €1 €2 €3 €1 €2 €3

Example 3.8 We continue with the assumptions of Example 3.6. We have that
Loy = dp(Py, Py)

foreach p =1,2,3,4,5,6,9 because w:zi‘ (p) =z iforall 1 <i < p. We have that

d1(Py. Po) = w] ds(Py, Py) = wg
and so our reduced word is depicted in Fig. 13.

We can think of the branching coefficients as “one step morphisms" which allow us to
mutate the path S into T via a series of n steps (as each branching coefficient moves the
position of one step in the path) and so this mutation proceeds via n 4 1 paths

$=50,51,5,...,5, =T
see Fig. 13 for an example. We now lift these branching coefficients to the KLR algebra.

Remark 3.9 The “sign twist" in Definition 3.7 is of no consequence in this paper as we are
mostly concerned with constructing generators and bases of quiver Hecke algebras and their
truncations. However, in order to match-up our relations with those of Elias—Williamson,
this sign twist will be necessary and so we introduce it here for the purposes of consistency
with [2].

Now, let’s momentarily restrict our attention to pairs of paths of the form (S, T, ). In this
case, the branching coefficients actually come from the “branching rule" for restriction along
the tower --- C 27 | C s C ---. To see this, we note that

ﬂ%)\ = wl(s7 T)\)wZ(S, TA) . U)n(s, T)L)

where w, (S, T)) = w% ) for some removable box [J € Rem(A) and where

wi(S, T)wa (S, Th) ... wp—1(5, Th) = w(S<n-1, Th—) € 61 < G, (3.3)

@ Springer



Path combinatorics and light leaves for quiver Hecke algebras

By Proposition 2.26, we have that
Si (1 — O)(deg(A,)) = k{7, | Shape(S<,—1) = A — OI}. (3.4)

Thus the branching coefficients above provide a factorisation of the cellular basis of Theorem
2.24 which is compatible with the restriction rule.

Example 3.10 Continuing with Examples 3.6 and 3.8, the lift of the path-morphism to the
KLR algebra is as follows,

0 1 4 0 3 4 2 1 0 b

Pe
P
TP" N W
Py

0 1 2 4 0 1 3 4 0

At each step in the restriction along the tower, there is precisely one removable box of any
given residue and so the restriction is, in fact, a direct sum of Specht modules.

We wish to modify the branching coefficients above so that we can consider more general
(families of) reduced paths P;, in place of the path T, . Given S € Path;, (), we can choose a
reduced path vector as follows

Ps = (Ps,0,Ps1,...,Ps )

such that Shape(Ps x) = Shape(Sgy) for each 0 < k < n. In other words, we choose a
reduced path Ps ;, for each and every point in the path S. For 0 < p < n and Shape(S-,) +
&i, = Shape(S¢p), we define the modified branching coefficient,

P ®P;,
dp(S, Ps) = Tp """
and we hence define
S
Yo, = [ dv(S.Ps).
1<p<n

Here we have freely identified elements of algebras of different sizes using the usual embed-
ding 7 | <> 7 givenby d > d B (¥;cz,5 (). We set T* = (T§)".

Remark 3.11 For symmetric groups there is a canonical choice of reduced path vector coming
from the coset-like combinatorics which has historically been used for studying these groups.
For the light leaves construction of Bott—Samelson endomorphism algebras, Libedinsky and
Elias—Williamson require very different families of reduced path vectors whose origin can
be seen as coming from a basis which can be written in terms of their 2-generators [6,10].

Example 3.12 Continuing with Example 3.10 we have already noted that Py = T33). We

choose to take the sequence T,, for u = Shape((Pb )<k) for k > 0 as our reduced path vector
b b

Ps. Having made this choice, we have that T ="p Pa (this holds more generally, see the

Corollary 3.14 and the discussion 1mmed1atelyS prlor) ‘We record this in tableaux format to
help the reader transition between the old and new ways of thinking.

20 (12 1213|123} |1

1 2
(ﬁ,m,,;z,;i,34,34,45 Talsl6]|.[4]5
5 5 8

6| 6|7 718 7
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The light leaves basis will be given in terms of products TS ET for S, T € Path,(})
and “compatible choices" of P and P;. Here the only condmon for compatibility is that
Ps.» = Q) = Pt , for some fixed choice of reduced path Q,, € Path (1), in other words the
final choices of reduced path for each of S and T coincide. We remark that if Ps ,, # Pt , then
the product is clearly equal to zero (by idempotent considerations) and so this is the only
sensible choice to make for such a product. In light of the above, we let Q, be a reduced path
and we say that a reduced path vector Py terminates at Q;, if Pg ,, = Q,.

Theorem 3.13 (Thelightleavesbasis) Letk be an integral domainandh = (ho, ..., hy—1) €
N¢ be such that h,, < Om+l — O for 0 <m < € —1and hy—1 < e + o9 — 0y—1. For
each , € Py(n) we fix a reduced path Q, € Pathy, () and for each S € Path;,(A), we fix
an associated reduced path vector Pq terminating with Q,. The k-algebra ¢ is a graded
cellular algebra with basis

{TESTTET | S, T e Pathy (1), A € Z,(n)}
anti-involution % and the degree function deg : Path, — k.
Proof By Theorem 2.24, we have that
{03, Y7* | S, T € Pathy (1)}

provides a k-basis of ##=*/s#*. By Lemma 3.4, we have that Tgi eq, T% = ker, for
some k € k\{0} modulo higher terms under > and so

7, (Y@ Y)Y |S.T & Pathy, (3))
provides a k-basis of HTH | A7 By Eq. (3.3) and (3.4), we have that
Tr—e, XP; )
s, v g T%*)TTT” |'s € Std( — &), & € Rem(1), T € Path, (M)} (3.5)

provides a k-basis of =" /", By Proposition 2.26, we have that

Ty em,.

generates a left subquotient of .7#=*/.>* which is isomorphic to Sk(A — &;). Now, for
each pair ¢; € Rem(}) and s € Std(A — ¢;), we fix a corresponding choice of reduced path
Ps .—1 € Path, (A — ¢;). By Lemma 3.4 and Proposition 2.26, we have that the set of all

Tk—si ‘ZPi Ps{,l,] &P
Ps,u—18P; " Ty, XP;

Th—e; 5P;

13 (Y DR e R i

as we vary over all s € Path, (A — ¢;), &; € Rem(}), and T € Pathy, (1) provides a k-basis of
A= | #77* . Re-bracketing the above, we have that the set of all

TA & PSn 1X|P P

Th— s,g AT,
(O, Yoy, ") OrE g, " g (T )

as we vary over all s € Path, (A — ¢;), &; € Rem(}), and T € Pathy, (1) provides a k-basis of
A= | 727 Finally, simplifying using Proposition 2.22 we obtain that

Ps.n—1XIP;

s, ", Y& | SKP; € Pathy, (% — &), & € Rem(), T € Pathy, (1)}

Q,
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is a k-basis of ##=*/.#" where we note that the middle term in the KLR-product is our
modified branching coefficient. Repeating n times, we have that

Ps.oXP;, TPs.sz'Pi,,_l TPs_n,llXP

{TPS 1 T Psa— Q.

"y |'S, T € Pathy, (1))
is a k-basis of #=* /., repeating the above for the righthand-side, the result follows. 00

In particular, we can set Ps = (Qx | 4)x>0 and obtain the following corollary, which
specialises to Theorem 2.24 for Q, = T,.

Corollary 3.14 For each A € &, (n) we fix a reduced path Q; € Pathy,(X). The k-algebra
7 is a graded cellular algebra with basis

{05, & | S. T € Pathy (1), & € Py (n))

anti-involution * and the degree function deg : Path, — Z.

4 Light leaf generators for the principal block

We now restrict our attention to the principal block and illustrate how the constructions of
previous sections specialise to be familiar ideas from Soergel diagrammatics. In particular, we
provide an exact analogue of Libedinsky’s and Elias—Williamson’s algorithmic construction
of a light leaves basis for such blocks. In order to do this, we provide a short list of path-
morphisms which we will show generate the algebra f,, » (HS /HTy, HS )fs,o (thus proving
Theorem B). B

4.1 Alcove paths

When passing from multicompositions to our geometry Ej, ;, many non-trivial elements map
to the origin. One such element is § = ((h1), ..., (h¢)) € Pp(h). (Recall our transpose
convention for embedding multipartitions into our geometry.) We will sometimes refer to
this as the determinant as (for the symmetric group) it corresponds to the determinant
representation of the associated general linear group. We will also need to consider elements
corresponding to powers of the determinant, namely §; = ((hll‘ ) AP (hlz ) € Py(kh). We
now restrict our attention to paths between points in the principal linkage class, in other words
to paths between points in Gy, - 0. Such points can be represented by multicompositions x4 in
@h - 8¢ for some choice of k.

Definition 4.1 We will associate alcove paths to certain words in the alphabet
SU{l}={sq |x e TU{A}}

where sy = 1. That is, we will consider words in the generators of the affine Weyl group, but
enriched with explicit occurrences of the identity in these expressions. We refer to the number
of elements in such an expression (including the occurrences of the identity) as the degree
of this expression. We say that an enriched word is reduced if, upon forgetting occurrences
of the identity in the expression, the resulting word is reduced.

Given a path P between points in the principal linkage class, the end point lies in the
interior of an alcove of the form wAg for some w € &y,. If we write w as a word in our

@ Springer



C.Bowman et al.

alphabet, and then replace each element s, by the corresponding non-affine reflection s, in
&), to form the element w € G, then the basis vectors ¢; are permuted by the corresponding
action of w to give &5(;), and there is an isomorphism from Eh,l to itself which maps A to
w Ao such that 0 maps to w - 0, coloured walls map to walls of the same colour, and each basis
element &; map to ;). Under this map we can transform a path Q starting at the origin to a
path starting at w - 0 which passes through the same sequence of coloured walls as Q does.

Definition 4.2 GiventwopathsP = (¢&;,, €y, - . ., &i,) € Path(u) andQ = (g, &5, .-+, &j,)
€ Path(v) with the endpoint of P lying in the closure of some alcove wAp we define the
contextualised concatenated path

P®wQ=1_(8i, &0, s &i,) X (ew(ji)> Ew(ja)s - - - » sw(j,)) € Path(u + (w - v)).

If there is a unique such w then we may simply write P ® Q. If w = s, we will simply write
P ®q Q.

We now define the building blocks from which all of our distinguished paths will be
constructed. We begin by defining certain integers that describe the position of the origin in
our fundamental alcove.

Definition 4.3 Given o € I1 we define b, to be the distance from the origin to the wall
corresponding to o, and let by = 1. Given our earlier conventions this corresponds to setting

b£H1n+i_£Hzn+i+l =1
for 1 <i < hy41 and 0 < m < £ and that
bey, —enys1 = Om+1 — Om —hm + 1 bg—ey =e+00 —0p—1 —hg—1 + 1

for 0 < m < £ — 1. We sometimes write 8, for the element §;,. Given «, f € IT we set
b“/g = by + bﬂ.

Example 4.4 Lete =5,h =3 and £ = 1 asin Fig. 11. Then b,, ., and b, ., both equal 1,
while bey ¢, =3 and by = 1.

Example4.5 1ete =7,h=2and ¢ =2ando = (0,3) € Z2. Then b ¢, and by, _, both
equal 1, while b, =3, b =2,and by = 1.

We can now define our basic building blocks for paths.

Definition 4.6 Given & = ¢; — ¢;4+1 € II, we consider the multicomposition s, - 8, with
all columns of length b,, with the exception of the ith and (i + 1)st columns, which are of
length 0 and 2b,,, respectively. We set

M, = (e1, ..., 81,8, €it1,...,e4) and P, = (+¢;)

where denotes omission of a coordinate. Then our distinguished path corresponding to s,
is given by

Pu = M/ R P | € Path(sy - 8a).
The distinguished path corresponding to ¥ is given by
Py = (e1,...,8i-1,€i, Eit1,---,€n) € Path(§) = Path(sy - §)

and set Py = (P@)b“.
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Fig. 14 The leftmost two
diagrams picture the path Py

walking through an a-hyperplane
in ET& and the path PZ which
reflects this path through the same

a-hyperplane. The rightmost ‘ ‘
diagram pictures the path Py in

£ Vi
E| 3. We have bent the paths

slightly to make them clearer

Given all of the above, we can finally define our distinguished paths for general words in
our alphabet. There will be one such path for each word in our alphabet, and they will be
defined by induction on the degree of the word, as follows.

Definition 4.7 We now define a distinguished path P,, for each word w in our alphabet
S U {1} by induction on the degree of w. If w is sy or a simple reflection s, we have already
defined the distinguished path in Definition 4.6. Otherwise if w = s, w’ then we define

Py : =Py ®qy Pyr.
If w is a reduced word in @hl, then the corresponding path P, is a reduced path.

Remark 4.8 Contextualised concatenation is not associative (if we wish to decorate the tensor
products with the corresponding elements w). As we will typically be constructing paths as
in Definition 4.7 we will adopt the convention that an unbracketed concatenation of n terms
corresponds to bracketing from the right:

QIYLAIXBR Q=LA ®Qy ).

We will also need certain reflections of our distinguished paths corresponding to elements
of IT.

Definition 4.9 Given « € IT we set
P, = M RIPY* = M ®@q P2\ = (e, ..., +eim1, 6, +eitt, ... +en) B ()b
the path obtained by reflecting the second part of P, in the wall through which it passes.

Example 4.10 We illustrate these various constructions in a series of examples. In the first
two diagrams of Fig. 14, we illustrate the basic path P, and the path PZ and in the rightmost
diagram of Fig. 14, we illustrate the path Py. A more complicated example is illustrated in Fig.
11, where we show the distinguished path Py, for w =S¢y ¢ Se) ¢ Sey—e28e3—¢,Sep—¢ Sey—en
as in Fig. 11. The components of the path between consecutive black nodes correspond to
individual Pgs.

4.2 The principal block of .77,
We now restrict our attention to regular blocks of .72, . In order to do this, we first recall that

we consider an element of the quiver Hecke algebra to be a morphism between paths. The
easiest elements to construct are the idempotents corresponding to the trivial morphism from
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a path to itself. Given o a simple reflection or @ = (J, we have an associated path Py, a trivial
bijection wE: =1 € &y, 1, and an idempotent element of the quiver Hecke algebra

ep, = eres(Py) € HY -

More generally, given any w = 5,1)S,) - .. S,k , we have an associated path P, and an
element of the quiver Hecke algebra

P — o
€py 1= Cres(Py) = €P ) D P o) B P o) € Hp iy hb g

We let Std,, » (1) be the set of all standard A-tableaux which can be obtained by contextualised
concatenation of paths from the set

{Py | @ € T} U{P’ | @ € TT} U {Py}.

We let Zp(n,0) = {L € Py(n) | Stdy,c (1) # B} We let Stdy,o = Upes,(n,0)Stdn,o (A).
For example, the path in Fig. 11 is equal to P, ® P, ® Pg ® P ® P, ® Pg. We define

foo= D e (4.1)
SeStdy, o (2)
APy (n,0)

and the remainder of this paper will be dedicated to understanding the algebra
fn,a (Hg/HZYEH:)fn,o .

In fact, we will provide a concise list of generators for this truncated algebra (in the spirit of
[6]) and rewrite the basis of Theorem 3.13 in terms of these generators.

In this section, we use our concrete branching coefficients to define the “Soergel 2-
generators” of f, o (HS /H2y, HS) a0 explicitly. In the companion paper [2], we will show
that these generators are actually independent of these choices of reduced expressions (how-
ever, this won’t be needed here—we simply make a note, again, for purposes of consistency
with [2]).

4.3 Generator morphisms in degree zero

We first discuss how to pass between paths P,, and P, which are in different linkage classes
but for which w and w’ have the same underlying permutation. Fix two such paths

Py =P,0) ® P, ® -+ ® P,y € Pathy, (1) Py = Pﬂ(l) ® Pﬁ(z) R Pﬂ(k) € Path; (1)

with @, ..., a® g1 BK ¢ ITU {#}. We suppose, only for the purposes of this
motivational discussion, that both paths are reduced. In which case, we have that w € @h
and so the expressions w and w’ differ only by applying Coxeter relations in of @h and the
trivial “adjustment” relation s; 1 = 1s; (made necessary by our augmentation of the Coxeter
presentation). Moreover, w and w’ are both reduced expressions and so we need only apply
the “hexagon"” relation s;s;15; = s;+15;5;+1 and the “commutation" relation s;s; = ss;
for |i — j| > 1. The remainder of this subsection will be dedicated to lifting these path-
morphisms to the level of generators of the KLLR algebra. We stress that one can apply these
adjustment/hexagon/commutator path-morphisms to any paths (not just reduced paths) but
the reduced paths provide the motivation.
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Fig. 15 Weleth =3,¢=1, €1 E9 €3 €1 €9 €] €9 €1 €2 €1 €1 €1
e=>5and o = &3 —¢1. The

adjustmenttermadjg‘;) is 012403423104

illustrated

014034210234
E1 €2 €1 €9 €1 €2 €1 €1 €1 €3 €2 &1

Fig.16 Weleth =3,¢4=1,
e=5and e =¢e3 —e1. We

picture the paths Pgg and Py, . q

4.3.1 Adjustment generator

We will refer to the passage between alcove paths which differ only by occurrences of sy = 1
(and their associated idempotents) as “adjustment”. We define the KLR-adjustment generator
to be the element

) . ~~Pap
adjy, = Tp "

Examples of the paths Pyg, Py, and adjustment generators are given in Figs. 15 and 16.

4.3.2 The KLR hexagon diagram

We wish to pass between the two distinct paths around a vertex in our alcove geometry which
lies at the intersection of two hyperplanes labelled by non-commuting reflections. To this
end, we let o, 8 € IT label a pair of non-commuting reflections. Of course, one path around
the vertex may be longer than the other. Thus, we have two cases to consider: if by > bg
then we must pass between the paths Py, and Py ® Pgyp and if by < bpg then we pass
between the paths P;_4 ® Pypge and Pgypg, where here ¢ — ¢ := pbe—bp
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Fig.177 Weleth =3, =1,e=5anda =¢3 —¢) and B = ] — &2 and y = & — 3. The paths Py g4,

Pﬁaﬁ, Pyﬂy and Pﬁyﬂ are pictured

Fig.18 Weleth =3,¢=1,
e=5and f =€ —¢&p and
y = & — 3. We picture
hex A7 P

Pysy

Fig. 19 Weleth =1,¢ =4, ~
k= (0,2,4,6) € (Z/82)* and , ;
B=¢e1—¢erandy = &3 —&4.

We picture the element comﬁ z

the corresponding paths are
depicted in Fig. 20

We define the KLR-hexagon to be the element

aﬁa o Paﬁoc
hexXgop = Yo, @Pss

or hex

€2 €3 €2 €2 E3 €3 €3 €1 €3
12041040 3
0210143¢04
€1 €3 €3 €3 €2 €3 €3 €2 €2

> +e2
+es3 <—I—> +eq

+e1

Pn—ﬂ®Poc/ioc

for by = bg or by < bg respectively. Two such pairs of paths are despited in Fig. 17. For the
latter pair, the corresponding KLR-hexagon element is depicted in Fig. 18.

4.3.3 The KLR commutator

Lety, B € IT beroots labelling commuting reflections. We wish to understand the morphism
relating the paths P, ® Py to Py ® P,,. We define the KLR-commutator to be the element

com?’? =1
as illustrated in Fig. 19.
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Fig.20 Weleth =1,¢=4,
k= (0,2,4,6) € (Z/8Z)* and
B =¢e1—¢erandy =¢e3 —¢&4.

€9 €3 €4 €9 €3 €4 €9 €9 4 E: 4 €4 E4
246 1350760457321

‘We picture the element comﬁl};,

the corresponding paths are
depicted in Fig. 19

~
D w
o
o

4.4 Generator morphisms in non-zero degree

We have already seen how to pass between S, T € Std,, (1) any two reduced paths. We will
now see how to inflate a reduced path to obtain a non-reduced path. Given S, T € Std,, » (A),
we suppose that the former is obtained from the latter by inflating by a path through a single
hyperplane o € I1. Of course, since S and T have the same shape, this inflation must add
an Pi at some point (and will involve removing an occurrence of T4 in order to preserve n).
There are two ways which one can approach a hyperplane: from above or from below. Adding
an upward/downward occurrence of P,D, corresponds to the spot/fork Soergel generator.

4.4.1 The spot morphism

We now define the morphism which corresponds to reflection towards the origin through the
hyperplane labelled by o € IT. We consider the paths

Py = (€10 8i1, i €l r ) PY = (81, ..., 8i 1, 8 Ein1s -0 €1)P R (8))b
examples of these paths are depicted in Fig. 21. We define the KLR-spot to be the element
spot!, := T::b“

which is of degree +1 (corresponding to the unique step of off the az-hyperplane). We have
already constructed an example of an element spotf in great detail over the course of
Examples 3.6, 3.8 and 3.10 and Fig. 13.

@ Springer



C.Bowman et al.

Fig.21 Weleth =3,¢ =1,e = 5 and @ = ¢3 — ¢1 and we depict the paths P(b, and Pg (we actually only
depict Py which is a third of the path Pg). We have already constructed the corresponding element spotf in
great detail over the course of Examples 3.6, 3.8 and 3.10 and Fig. 13

€1 €2 €1 €2 €1 €2 €1 €1 €1 €3 €2 €3 €2 €3 €2 €1 €1 €1

Po ® P2

P¢®Pa
€1 €2 €3 €1 €2 €3 €1 €2 €3 €1 €2 €1 €2 &1 €2 €1 &1 €1

b
Fig.22 Fix{ =1landh =3 and e =5 and @ = 3 — &1 (so that by = 3). We picture the element Tgs‘g;;".

The first 9 and final 4 of the branching coefficients are trivial and so we do not waste trees by picturing all of
them. The corresponding paths are pictured in Fig. 23

Fig.23 Fix¢{ =1andh =3 and
e =5and ¢ = &3 — &7 (so that
by = 3). We depict the paths

Py ® P and Py ® P, (although
we do not depict the determinant
path). The corresponding fork
generator is pictured in Fig. 22

4.4.2 The fork morphism

We wish to understand the morphism from P, ® PZ to Py ® P,. We define the KLR-fork to
be the elements

Py@P
fork®® .= y &P

o

as illustrated in Fig. 22. The element forkga is of degree —1.
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Fig. 24 The first (respectively last) two paths are S and PZ originating in an alcove with « labelling an
upper (respectively lower) wall. Here we take the convention that the origin is below the pink hyperplane. The
degrees of these paths are 1, 0, 0, —1 respectively. We call these paths Uy, U1, Dy, and D respectively

4.5 Light leaves for the Bott-Samelson truncation

We now rewrite the truncated basis of Theorem 3.13 in terms of the Bott—Samelson generators
(thus showing that these are, indeed, generators of the truncated algebra). Of course, the
idempotent of Eq. (4.1) is specifically chosen so that the truncated algebra

fn,d(Hg/HZYQHZ)fn,U

has basis indexed by the (sub)set of alcove-tableaux (and this basis is simply obtained from
that of Theorem 2.24 by truncation). It only remains to illustrate how the reduced-path-vectors
can be chosen to mirror the construction of paths in Std,, , (1) via concatenation.

We can extend a path T € Std,, (1) to obtain a new path T in one of three possible ways

T=T®P, T=TQ®P, T=TQP

for some « € II. The first two cases each subdivide into a further two cases based on whether
o is an upper or lower wall of the alcove containing A. These four cases are pictured in
Fig. 24 (for Sy we refer the reader to Fig. 14). Any two reduced paths Py, Py € Std, (})
can be obtained from one another by some iterated application of hexagon, adjustment, and
commutativity permutations. We let

rex:zL
denote the corresponding path-morphism in the algebras H, /H{ y,H; (so-named as they
permute reduced expressions). In the following construction, we will assume that the elements
c%j exist for any choice of reduced path S’. We then extend S using one of the Uy, U}, Do, and
D paths (which puts a restriction on the form of the reduced expression) but then use a “rex
move" to obtain cellular basis elements “glued together” along an idempotent corresponding
to an arbitrary reduced path.

Definition 4.11 Suppose that A belongs to an alcove which has a hyperplane labelled by «
as an upper alcove wall. Let T' € Std,, (). If T = T' ® P,, then we inductively define

b = (c; ® ep“)rexE BPa
If T=T ®P), then we inductively define

T T o P'®P.
cp = (cp ® spotg)rexp .
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Now suppose that A belongs to an alcove which has a hyperplane labelled by o as a lower
alcove wall. Thus we can choose P, ® P, = P’ € Std(X). For T = T' ® P,, we inductively
define

cp :(cl: ® ep, ) (ep, ® (forky o spot‘;,‘))rexrr:W

andif T=T® PZ then then we inductively define

= (ch ®ep,)(er, ® forkgg)rex';w

Theorem 4.12 (The Libedinsky—Williamson light leaves basis) Given weakly increasing
o eZt weleth = (hy, ..., he_1) € N¢ be such that h,, < Om+1 —Omfor0<m <€ —1
and hy_1 < e + o9 — o¢_1. Suppose that n is divisible by h. For each . € Z(n, o)
we fix an arbitrary reduced path P, € Std, o (L). The algebra f, - (H /H, Y, HO ) n o is
quasi-hereditary with graded integral cellular basis B

{cg, e | P, T € Stdpo(3), A € Pp(n, 0)}

with respect to the ordering »on P, (n), the anti-involution * given by flipping a diagram
through the horizontal axis and the map deg : Std, (A) — Z.

Proof Suppose that Q,U € Std ,(v) with Q reduced and k < n divisible by A. By

. . P
induction, we may assume that cS = T(JU for some reduced path vector P, such that
Py = (Pu,0, Pu,1, ..., Puxk) with Py x = Q. By Theorem 3.13 and our inductive assumption,

the result holds for all k < n divisible by . Now suppose that A € 2% (n, o) and that A
belongs to an alcove, Aj, which has a hyperplane labelled by « and that © = X - s,. We
now reconstruct the element c$ in terms of the basis of modified branching coefficients (as in

Theorem 3.13) with P := P, reduced and T equal to either U ® P, or U ® PE;. This amounts
to defining a reduced path vector,

Pr = Py, Pra+1. Prok+2, .- -, PT.n)
for which ¢f = TTET. To do this, we simply set

Q®Py) lg; ifT=UQPyandk < j <n
Prj = (Q®Pi)i«<j ifT=U®Piandk<j<n
P if j =n.
To summarise: we incorporate the “rex" move into the final branching coefficient (and all

other branching coefficients are left unmodified). Choosing the reduced path vectors in this
fashion, we obtain the required basis as a special case of Theorem 3.13 . O

We have shown that we can write a basis for our algebra entirely in terms of the elements

Bap vB

ag Do
ep,, fork wpar COMpy.  epy, and adj,

9
wws SPOty, hex

for «e, B, y € I such that o and S label an arbitrary pair of non-commuting reflections and
B and y label an arbitrary pair of commuting reflections. Thus we deduce the following:

Corollary 4.13 Theorem B of the introduction holds.
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