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TRANSACTIONS ON BIG DATA

A Distributed Stream Library for Java 8

Yu Chan, Andy Wellings, lan Gray and Neil Audsley

Abstract—Java 8 has introduced new capabilities such as lambda expressions and streams which simplify data-parallel computing.
However, as a base language for Big Data systems, it still lacks a number of important capabilities such as processing very large
datasets and distributing the computation over multiple machines. This paper gives an overview of the Java 8 Streams API and
proposes extensions to allow its use in Big Data systems. It also shows how the API can be used to implement a range of standard Big
Data paradigms. Finally, it compares performance with that of Hadoop and Spark. Despite being a proof-of-concept implementation,
results indicate that it is a lightweight and efficient framework, comparable in performance to Hadoop and Spark, and is up to 5 times

faster for the largest input sizes tested.

Index Terms—Big Data, Java, distributed computing, programming models

1 INTRODUCTION

Recently, the 8th release of Java added support for aggre-
gate data operations to the language. This paper identifies a
number of weaknesses that are encountered when attempt-
ing to apply this to the programming of very large scale, and
distributed, applications. It proposes a significant extension
to the Java 8 streaming model to handle distributed data
processing and storage.

Big Data is the term used for a collection of large and
complex applications that are difficult to process using
traditional data processing techniques, either due to the
sheer scale of the data being produced, or tight timing
requirements placed on the processing of the data. For
example, the Large Hadron Collider can output a raw data
stream of approximately 1PB/s [1]. This must be filtered
before storage, placing a timing requirement on the filtering
and storage stages. In some domains, requests for analytics
and mining of stored datasets must be serviced sufficiently
fast for the end user. In these situations, faster processing
allows for potentially greater accuracy (i.e. by covering a
larger historical dataset).

Java is the base language for a number of popular Big
Data frameworks, including Hadoop [2], Spark [3] and
Storm [4]. The introduction of streams and lambda expres-
sions in Java 8 has brought Big Data closer to the core
language. Java 8 streams allow programmers to view data
processing in terms of pipelines of operations, and comple-
menting it are lambda expressions that simplify functional
programming. However, this stream-based programming
model is still not sufficient for Big Data for two main
reasons. Firstly, streams are limited to computations within
a single machine, and there is no mechanism for distribut-
ing computations over multiple machines. This is due to
streams being built on Java’s Executor framework, which
has no concept of distribution. Secondly, Java’'s default
stream sources (such as collections and arrays) either store
their data in-memory and thus cannot support very large
datasets, or are not optimised for data-parallel computation.

In this paper, we address the above-mentioned is-
sues and extend the programming model with Distributed
Streams (which introduce the concept of distributed com-
puting on a cluster) and Distributed and/or Stored Collec-

tions (which introduce the concepts of accessing very large
datasets on-demand and of datasets that are distributed
over a cluster).

Section 2 gives the background and motivation of Big
Data computing in Java, and outlines the Java 8 Stream API.
Section 3 details the requirements of Big Data computing
and how Java 8 Streams fall short of these requirements. Our
proposed extensions to the existing programming model
and API are presented in Section 4, and our prototype
implementation is described in section 5. Section 6 shows
how MapReduce can be implemented in the proposed
model while section 7 covers Spark and Storm. Section 8
evaluates these approaches, section 9 discusses related work
and finally, section 10 concludes.

2 BACKGROUND

The most popular open-source Big Data frameworks are
targeted towards Java and/or higher-level languages that
run on the JVM (eg. Scala). This is mainly because of the
write-once-run-anywhere nature of JVM bytecode making it
easier to deploy code on heterogeneous clusters. In this sec-
tion, we review the popular Big Data frameworks Hadoop,
Spark and Storm, in particular comparing their respective
programming models.

The recent introduction of Java 8 has brought the lan-
guage a step closer to having native Big Data capabilities
due to the addition of the following:

e Java 8 Streams [5] provide a new programming
model for data-parallel computation on a single ma-
chine. On multicore hardware it is able to parallelise
a computation over multiple threads to speed up
execution.

o Lambda expressions [6] simplify functional program-
ming in Java, allowing concise instantiation of func-
tional interfaces instead of using anonymous class
syntax. These are used extensively in Java 8 Streams,
making its code more readable.

Section 2.3 provides more details on Java 8 Streams.
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2.1 Hadoop and MapReduce

Hadoop [2] is a prominent open source implementation of
MapReduce [7], a popular batch processing model for Big
Data computations. Such a model allows computations on a
dataset that is typically partitioned over a cluster of nodes.

Before a MapReduce computation takes place, the re-
quired data needs to be distributed over the cluster. Hadoop
achieves this with the Hadoop Distributed File System (HDFS)
[8], which is overlaid on the host file system and manages
the distribution of datasets across a cluster. Files in HDFS
are divided into blocks (usually of 64MB) and replicated on
different nodes by default. To avoid data coherency issues,
files can only be written to once.

MapReduce requires programmers to implement map-
pers and reducers, each of which normally run on a node
in the cluster. With reference to Hadoop, a MapReduce
computation consists of three stages:

1) The map stage: Input data from a given file in HDFS
is processed by a set of mappers, which output key-
value pairs as a result.

2) The shuffle stage: The key-value pairs are collected
over a set of reducers, with the same keys sent to the
same reducer. For each key, the values are collected
and sorted in a key-value-list pair.

3) The reduce stage: Each reducer processes all given
key-value-list pairs and outputs the result in a local
HDFS file. The full result of the computation is the
concatenation of all partial results.

The number of mappers and reducers do not have to be
equal. If the dataset is spread across the mapper nodes,
Hadoop can optimise execution times by having each map-
per node work on its local data.

2.2 Spark, Storm and stream-based processing

Though suitable for many applications, the MapReduce
model is inflexible due to the fixed stage sequence. More
recently, focus has shifted to in-memory stream-based mod-
els for Big Data processing, with the Spark [3] and Storm [4]
frameworks being prominent examples of such models.

Spark removes some of MapReduce’s limitations by
exposing a pipeline-based programming model for data
processing. Instead of implementing mappers and reducers,
programmers specify a pipeline of operations on a Resilient
Distributed Dataset (RDD). An operation either returns a new
RDD (a transformation, which can be chained) or returns a
value (an action, which terminates the pipeline).

Storm executes fopologies which run indefinitely on a
cluster. A topology defines a directed acyclic graph of
nodes and data streams (vertices). A stream consists of an
unbounded sequence of tuples. A node is either a spout (data
source — a Twitter feed, for example) or a bolt (consumes and
processes streams, and may emit new streams).

2.3 Java 8 Streams

A Java 8 stream is a sequence of data elements that can
be processed by a pipeline of operations. Streams can be
generated from several sources, including;:
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e Collections, by calling the stream method if
the desired stream should be sequential, or the
parallelStream method for a parallel stream;

o Arrays, by calling the Arrays. stream method;

o Factory methods in the Stream class;

o Files, by calling the BufferedReader.lines
method.

After retrieving the stream from a source, a pipeline of
aggregate operations can be performed on it, consisting
of zero or more intermediate operations followed by a
terminal operation. From the programmer’s perspective, an
intermediate operation returns a new stream of processed
elements from the given stream, and a terminal operation
returns a non-stream result.

Streams, pipelines and operations have the following
properties and restrictions:

o Pipelines are evaluated lazily. The terminal operation
triggers computation of the pipeline.

e DPipelines are short-circuiting. Only enough elements
are consumed as required by the terminal operation.

o Pipelines are linear. There is a single stream source,
and there is no branching mechanism for routing
elements to different downstream operations.

e Streams can be traversed at most once. To use the
data source again, a new stream has to be created.

o Operations should not change the data source if the
source does not support concurrent modification.

Java 8 Streams further classify intermediate operations as
stateless and stateful, depending on whether the operation
needs to hold any state as data passes through. For example,
map is a stateless operation as each element can be pro-
cessed independently of another. However, the distinct
operation (remove all duplicate elements from the Stream)
is stateful because it must keep track of all encountered
elements.

Details of the Java 8 Stream API can be found at [9].

2.4 Big Data example: word-count

An example of a Big Data computation is word-count,
which will be used throughout the paper to illustrate related
concepts. The simplest form of word-count is to count the
number of words in a given input file. This can be expressed
in Java 8 as shown in figure 1.

3 BIG DATA IN JAVA 8

In this section we identify the necessary attributes of Big
Data programming models, and then discuss the short-
comings of the Java 8 programming model with respect to
these attributes and how these shortcomings can potentially
be solved using a distributed stream model. We take an
incremental approach to introducing Big Data in Java §,
as many projects start out small and realise the need for
Big Data in later stages. For such cases, it may be easier
to use a backward-compatible Big Data framework instead
of rewriting programs using a very different programming
model.

One of the most important attributes of Big Data pro-
gramming models is the efficient processing of very large
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import
import

java.nio.file.x;
Java.util.*;
import java.util.regex.x;
import java.util.stream.x*;
public class WordCount {
public static long wordcount (Stream<String> lines)
Pattern delim = Pattern.compile ("\\s+");
return lines
.flatMap(line -> Stream.of (delim.split (line)))
.count () ;
}
public static void main(String[] args) {
Path filename = Paths.get (args[0]);
Stream<String> s = Files
.lines (filename)
.parallel();
System.out.println (wordcount (s));
}
}

Fig. 1. Simple word-count application using Java 8 Streams.

datasets. This usually implies some form of data distribution
mechanism as these datasets often do not fit in a single
machine. For example, Hadoop uses its HDEFS file system
to transparently spread large files across the cluster. Spark,
on the other hand, has wider support of data sources from
text files on the local filesystem to distributed filesystems
(including HDFS, Cassandra and Amazon S3) [10].

Data locality is also an important Big Data attribute.
Since it is expensive to move data between nodes in a
cluster, data needs to be kept local as much as possible.
Nevertheless, Big Data programming models also provide a
mechanism for moving data for cases where this is necessary
(for aggregation, for example). Hadoop, which implements
the MapReduce programming model, has a shuffle stage
where all key-value pairs emitted from mappers are sent to
the appropriate reducer depending on the key. In Spark, the
movement of data (if any) is determined by the transforma-
tions and actions specified in the pipeline. In Storm, data
locality is maintained by splitting each spout or bolt into
tasks, running them over the nodes in a cluster and keeping
the data streams between tasks local as much as possible.

3.1 Issues with the Java 8 programming model

There are three main problems with using Java 8 Streams as
a Big Data programming model:

1) Java 8 Streams exist within a single JVM, and JVMs
tend to only support individual SMP or ccNUMA
machines, therefore stream computations will be
limited to individual machines. There is no concept
of a cluster and hence of distributing data or com-
putations to other nodes in a cluster. Distribution
requires the explicit use of middleware, such as MPI
or an RPC framework. A difficulty of large-scale
computation is that it requires support for both dis-
tribution of computation and distribution of data.
Both methods potentially speed up processing, de-
pending on the workload. An I/O-bound workload
will see a speed improvement when distributing
data, whilst a CPU-bound workload will benefit
more from distributed computation.

Data
source

|

° nOdeo

i

° nOdel
° nOdeZ

|

Distributed stream

nodel

oo

node0

source

Distributed pipeline

Fig. 2. Conceptual model of a distributed stream (top) and a distributed
pipeline (bottom). Boxes indicate compute nodes, and the arrows indi-
cate data flow from data source to pipeline operations.

2)  Only in-memory datasets are well supported (by the
Java collections framework), but these are not useful
for very large datasets as it implies loading the
entire dataset into memory. Datasets from existing
on-disk sources (eg. Buf feredReader.lines) are
not optimised for large amounts of data and are
likely to cause out-of-memory errors with large files.
Furthermore, there is no concept of a dataset that is
distributed over a cluster.

3) Using short-circuiting evaluation in a distributed
computing model may have performance implica-
tions. Nodes will need to check if each data item
they are working on is required by the terminal
operation which may be on another node.

When considering a distributed programming model for
Java 8 Streams, it should be noted that streams and pipelines
can be distributed among compute nodes independently
(see figure 2). A data source in a distributed stream is spread
over or accessed by multiple nodes, while operations in a
distributed pipeline span multiple nodes. Both methods po-
tentially speed up processing, depending on the workload.
An I/O-bound workload will see a speed improvement on
a distributed stream, while a CPU-bound workload will
benefit more on a distributed pipeline.

4 THE DISTRIBUTED STREAM FRAMEWORK

In order to fulfill the distributed computing requirements of
Big Data programming models in Java outlined in section 3,
we introduce the Distributed Stream framework.

Central to this framework is the concept of Distributed
Streams. A Distributed Stream facilitates parallelism by hav-
ing a replicated pipeline that operates on different parts of
a dataset, which is usually located in multiple nodes. There
are several reasons for using Distributed Streams:

o The dataset is too large to fit on disk in one node.
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package dstream;

public class ComputeNode {

public String getName () ;

public boolean isSelf();

public static ComputeNode getSelf () ;

public static ComputeNode findByName (String name);
}

public class ComputeGroup extends List<ComputeNode> {
public ComputeGroup (Collection<ComputeNode> nodes) ;
public ComputeGroup (ComputeNode node) ;
public static ComputeGroup getCluster();

}

package dstream.util;

public interface DistributedCollection<E>

extends Collection<E> {

public ComputeGroup getComputeGroup () ;

public DistributedStream<E> stream();

public DistributedStream<E> parallelStream();

public static DistributedCollection<E> wrap (
Collection<E> ¢, ComputeGroup grp);

public static DistributedCollection<E> wrap (
Collection<E> c);

Fig. 3. The ComputeNode and ComputeGroup classes.

e Itis too slow to read the entire dataset from a single
node (due to limited I/O bandwith, for example).

o The dataset is located in storage nodes with spe-
cialised hardware, allowing fast parallel data access
from a cluster.

The Distributed Stream framework does not limit an
implementation to any particular programming paradigm.
Thus, an implementation may run identical programs on
every compute node which co-ordinate via the trans-
port layer (the single-program-multiple-data or SPMD
paradigm, which the prototype implementation uses), or
it may utilise a driver node to distribute work to other
nodes (the driver-worker or master-slave paradigm). The
rest of this section describes the framework’s components
in greater detail.

4.1 Compute nodes and groups

Before distribution of data and computation can be sup-
ported, a method of identifying and grouping compute
nodes is needed for decisions such as which node to
send data to. We therefore define the ComputeNode class,
which represents a compute node in the cluster, and the
ComputeGroup class, which represents a group of compute
nodes (see figure 3).

At program startup, all ComputeNode objects are ini-
tialised by the framework. Each compute node has a unique
name (the model does not prescribe a node naming conven-
tion). There are also methods to get the current node or a
specific node by its name.

The ComputeGroup class has constructors that accept
individual compute nodes or a collection of them, as well as
a static getCluster method to retrieve the entire cluster.
Standard Java List methods can be called to modify the
group’s members.

If more functionality such as fault tolerance is needed,
implementers can define new types of compute groups
which extend ComputeGroup. These may monitor the sta-
tus of nodes and amend the list of compute nodes as
required.

The use of compute nodes and groups is optional as in
many cases, data is partitioned across the entire cluster and
computation therefore has to occur on all nodes.

Fig. 4. The Distributed Collection interface.

4.2 Distributed Collections

While Distributed Streams handle the data processing as-
pect of Big Data computing, they need to work on dis-
tributed datasets. For this, we introduce the concept of
a Distributed Collection as a data source for a Distributed
Stream. A Distributed Collection encapsulates data that is
partitioned across a cluster.

Previously [11], we proposed the concept of Stored
Collections, which extend Java (in-memory) collections to
efficiently read large datasets from a local disk. Distributed
forms of in-memory collections and Stored Collections are
useful for caching intermediate results from Distributed
Streams. Thus, recomputing data is avoided at the expense
of memory or disk space usage. To support this, it must be
possible to save data to these collections from a Distributed
Stream. Since it is not possible to include all the data formats
that Stored Collections will read from, the interface was
designed to be easily extensible.

Since maps are also part of Java’s collection framework,
distributed maps will also be a necessary extension.

The Distributed Collection interface is shown in figure 4.
This extends a Java collection with the following;:

e The overridden stream and parallelStream
methods now return Distributed Streams.

e The getComputeGroup method returns informa-
tion about participating compute nodes.

¢ The wrap methods create a new Distributed Col-
lection by grouping normal (non-distributed) collec-
tions across nodes together.

4.3 Drop-in replacement

To maintain compatibility, Distributed Streams are a drop-
in replacement for Java 8 Streams. We propose a new
DistributedStream interface that extends the existing
Stream interface, overriding methods that return Streams
with those that return DistributedStreams. A partial
definition of the Distributed Stream interface is in figure 5.

Primitive-type Stream interfaces will have correspond-
ing Distributed Stream interfaces (DistributedInt-—
Stream, DistributedLongStream and Distributed-
DoubleStream).

Returning to the word-count example, these drop-in
replacement extensions allow code describing the pipeline
to be identical in both Streams and Distributed Streams
(see figures 1 and 6 for a comparison). In this case, the
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package dstream;

public interface DistributedStream<T>

extends Stream<T> {

public DistributedStream<T> distinct();

public DistributedStream<T> filter (
Predicate<? super T> predicate);

public <R> DistributedStream<R> flatMap (
Function<? super T,? extends
Stream<? extends R>> mapper);

Fig. 5. The Distributed Stream interface.

package dstream;

public interface DistributedStream<T>
extends Stream<T> {

public <R, A> R localCollect (
Collector<? super T, A, R> collector);

public <R> R localCollect (Supplier<R> supplier,
BiConsumer<R, ? super T> accumulator,
BiConsumer<R, R> combiner);

public DistributedStream<T> localDistinct ();

public DistributedStream<T> localForEach (
Consumer<? super T> action);

import java.util.regex.x;
import java.util.stream.x;
import dstream.x;

import dstream.util.x;

public class WordCount {
public static long wordcount (Stream<String> lines)
Pattern delim = Pattern.compile ("\\s+");
return lines
.flatMap(line —-> Stream.of (delim.split (line)))
.count () ;

}

public static void main(String[]
String filename = args([0];
Collection<String> c = new
DistributedStringStoredCollection (filename) ;
Stream<String> s = c.parallelStream();
System.out.println (wordcount (s));

args) 1

Fig. 7. Local operations in the Distributed Stream interface.

package dstream;

@FunctionalInterface

public interface Partitioner<T> ({
public int partition(T data);

}

Fig. 6. Simple word-count application using Distributed Streams.

lines argument in the wordcount method will be a
DistributedStream. The pipelines are also replicated on
each participating compute node.

However, some operations require communication be-
tween nodes to ensure correctness of results (the count
operation in this example). This is solved by overriding
these operations so that they behave as expected. Thus,
the count operation in Distributed Streams additionally
sums up the partial results of each participating node and
sends the total count back to the nodes. The flatMap
operation, on the other hand, does not require inter-node
communication for correct results and its implementation
can thus be left unchanged.

Finally, making these operations work across a compute
group introduces two further issues:

o For operations such as collect, a large result re-
quires significant network communication to repli-
cate data elements on each node. This is often unde-
sirable or unnecessary.

e For cases where the programmer actually intends to
obtain local results on each node (for example, to
obtain a partial count for further computation), this
is currently not possible.

To address the issues, we provide new local variants of these
operations that handle data within a node (see figure 7 for a
few of these operations). Both variants behave identically on

Fig. 8. Partitioner interface.

single-node clusters, but the local operations are more effi-
cient over multiple nodes and can thus be used to construct
more efficient pipelines.

4.4 Distribution of data and computation

Distributed Streams take data locality into account and
process local data as far as possible, to avoid moving
data around the network unnecessarily. However, at certain
points in the pipeline, it may be required for data to be
distributed and gathered over the compute nodes to do par-
titioning and aggregation, such as in the MapReduce shuffle
stage. Java 8 Streams support gathering of data with the
general-purpose terminal operations collect and reduce,
but there are currently no operations for distributing data
according to a given algorithm (as there is no requirement
to do this in the current Java 8 Streams). Therefore, we intro-
duce a set of operations called distribute which facilitate
the transfer of data using inter-node communication.

The Distributed Stream model does not require that
all participating compute nodes execute exactly the same
operations in the evaluation of a pipeline. For example, a
pipeline can read data on a given set of input nodes, filter
it on a different set of compute nodes, and then store it on
a further different set of output nodes. The distribute
operation can thus be viewed as moving the evaluation of
part of the pipeline from one subset of the target cluster
to another. It is also essential for splitting a stream into
multiple streams.

In order to support distribution of data across the cluster,
it is first necessary to provide some standard interfaces
that allow the programmer to specify how the data should
be partitioned. Figure 8 shows the interface that allows
user-specified partitioning of data. Similar interfaces for
primitive-type partitioners for the appropriate primitive-
type Distributed Streams are also defined.




TRANSACTIONS ON BIG DATA

package dstream;

public interface DistributedStream<T>

extends Stream<T> {

public DistributedStream<T> distribute();

public DistributedStream<T> distribute (
Partitioner<? super T> p);

public DistributedStream<T> distribute (
ComputeGroup grp) ;

public DistributedStream<T> distribute (
ComputeGroup grp, Partitioner<? super T> p);

public DistributedStream<T> distribute (
ComputeNode node) ;

package dstream;

public interface DistributedStream<T>
extends Stream<T> {
public DistributedStream<T>[]
int numStreams) ;
public DistributedStream<T> join (
DistributedStream<T>... streams);

split(

Fig. 9. Methods for distributing data between compute groups.

The partition method accepts a data element and
returns an index representing a node in the compute group.
For ease of use, it is not important for the programmer to
know the size of the compute group, so if the index is out
of range it will be wrapped around by the framework. This
makes the partitioner suitable for range partitioning if the
compute group size is known, as well as load balancing
methods such as hash-based partitioning.

With a method to partition data, we define several vari-
ants of the dist ribute method that transfer data from one
compute group to another, as shown in figure 9.

Parameters change the behaviour of distribute as
follows:

o If used without parameters, distribute sends data
to the same compute group according to a default
hash-based partitioner.

o If a partitioner is given, it is used in place of the
default hash-based partitioner.

o Ifacompute group/node is given, data is partitioned
and sent to that group/node instead. The nodes in
the specified compute group do not have to be part
of the initial compute group.

A distribute operation returns a new Distributed Stream
consisting of the same data elements which may have been
moved across nodes.

Distributed Streams inherit pipelines from Java 8
Streams, which are linear in nature. While adequate in most
cases, this hinders the concise implementation of programs
which are better expressed with non-linear pipelines. These
limitations can be addressed by allowing the splitting and
joining of pipelines. Hence, two new operations are intro-
duced (see also figure 10) to support these actions:

e The split operation splits the current pipeline
into a specified number of pipelines. Each resulting
pipeline receives the same stream of data elements
from the current pipeline.

e The join operation merges a number of pipelines
with the current pipeline. The resulting pipeline re-
ceives data elements from all pipelines.

To preserve data locality, these operations do not transfer
data across nodes. However, a subsequent distribute
operation may be used to move the data to the desired
locations.

Fig. 10. The split and join operations for creating non-linear
pipelines.

node0 nodel

5
Data [
source

Fig. 11. A distributed pipeline to illustrate the problem of short-circuit
evaluation in a distributed environment. Circles and ellipses represent
pipeline operations, while arrows represent data flow.

A key property of Java 8 Streams is that they are short-
circuiting, but extending this to a distributed pipeline envi-
ronment impacts efficiency in the following ways:

o The pipeline has to wait for existing data items to
be fully processed before deciding if more data items
are needed. This may result in idle pipeline sections
in certain nodes.

o Requests for data items originate from the terminal
operation, and for distributed pipelines this has to
be communicated upstream to different nodes which
increases overhead. There is also the additional prob-
lem of choosing the node(s) from which to retrieve
data.

Figure 11 shows an example pipeline that uses a
distribute operation, and where operations A and (ter-
minal) C are on different nodes. If the entire pipeline is
short-circuiting, operation A will wait for a message from
operation C to begin processing the next data item. The
inefficiency is compounded if operation A potentially takes
a long time to let a data item through the pipeline (eg.
filtering). The time spent waiting in upstream operations
could have been used to process data speculatively to keep
those operations better utilised.

Consequentially, the solution employed is to view the
distribute operation as terminating the current pipeline
and starting another. This ensures that each section of the
pipeline is on a single node and is evaluated as efficiently as
possible without having to be concerned with parallelism in
other pipeline sections. Therefore, this solution of restricting
short-circuit evaluation to each node is simpler than enforc-
ing it across nodes.

4.5 Summary
This section has detailed the four components in the Dis-
tributed Stream framework:

1) Compute nodes and compute groups for identifying
and grouping nodes in a cluster.
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2) Distributed Collections for representing distributed
datasets and storing intermediate results.

3) Distributed Streams as a drop-in replacement for
Java 8 Streams.

4) New eager operations for distributing data across
nodes and support for splitting of streams.

5 PROTOTYPE IMPLEMENTATION

This section gives an overview of the proof-of-concept
framework we implemented. In general, it is based on the
default Java 8 Stream implementation, inheriting and ex-
tending several of its classes. This allows for future changes
to the default implementation without affecting Distributed
Streams too significantly.

5.1 Transport layer

Since there is no requirement to use any particular transport
layer, a patched version of the MPJ Express [12] library was
used for several reasons:

e It is based on MPI, a message-passing protocol
widely used in cluster-based parallel computing.

o Itis lightweight and written in Java.

o It supports MPI in full multithreaded mode.

If required, the transport layer can be changed (e.g. to RMI)
without significant modifications to the rest of the library.

Each compute node is identified by an integer identical
to its global MPI communicator (COMM_WORLD) rank. The
name of each node is the string “node” concatenated with
its rank (in other implementations, this can be read from a
configuration file, for example). The ComputeNode class in
our implementation is also the program’s entry point. The
main method initialises MPI, discovers the other nodes in
the cluster and runs the actual program. It also cleans up
after the program finishes.

As defined in section 4.1, a ComputeGroup is a List
of compute nodes. Thus it supports all List opera-
tions. The getCluster method creates a new compute
group containing all nodes in the cluster as discovered
by ComputeNode.main. The first node in each group is
designated as the root.

The current prototype assumes no node failures. For
a more robust implementation, this can be handled by
configuring a timeout interval between messages sent to
and received from a node, and retrying the computation,
possibly on another node, if the timeout has been exceeded.

5.2 Distributed Collections

The DistributedCollection interface overrides the
default methods stream and parallelStream. It also
implements new static wrap methods which return a
WrappedDistributedCollection of the same data type
(see figure 12 for more details). It keeps a reference to the
local collection, which is used when generating iterators and
spliterators, or retrieving the local size of the collection.

package dstream.util;

public interface DistributedCollection<E>
extends Collection<E> {
public static <E> DistributedCollection<E> wrap (
Collection<E> c, ComputeGroup grp) {
return new WrappedDistributedCollection (c,
}

grp) ;

public static <E> DistributedCollection<E> wrap (
Collection<E> c) {
return new WrappedDistributedCollection(c,
ComputeGroup.getCluster());

}

class WrappedDistributedCollection<E>
extends AbstractCollection<E>
implements DistributedCollection<E> ({
private ComputeGroup grp;
private Collection<E> c;

public WrappedDistributedCollection (
Collection<E> c, ComputeGroup grp) {
this.c = ¢;
this.grp = grp;

}

@Override

public ComputeGroup getComputeGroup () {
return grp;

}

@Override
public Iterator<E> iterator() {
return c.iterator();

}

@Override
public Spliterator<E> spliterator() {
return c.spliterator();

}

Fig. 12. Implementation of the WrappedDistributedCollection
class and usage in DistributedCollection.wrap methods.

5.3 Distributed Streams — Distribution of data exten-
sions

As mentioned in section 4.4, the distribute operation
terminates the existing pipeline and starts a new one. The
following algorithm describes the core of all distribute
operation variants.

The existing pipeline 1is terminated with a
localForEach operation, which sends each element to
the appropriate destination node. (The MPI implementation
serialises each element. Thus, our implementation can only
send objects that implement the Serializable interface.)
After all elements are sent, an end-of-data marker is sent
to all participating nodes. We use a null object message to
represent this marker.

Concurrently, a new pipeline is created and converts
incoming messages into data elements. It determines that
no more data is available when it has received end-of-data
markers from all participating nodes.
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Since stream computations block until the terminal op-
erator has output a result, extra threads are created to keep
the two pipelines executing concurrently.

5.4 Distributed Streams — Drop-in replacement exten-
sions

We give details of how some of the Distributed Stream op-
erations are implemented to satisfy the drop-in replacement
requirement.

The reduce operation: There are a number of reduce op-
erations for each stream type, but all have implementations
similar to the following:

1) A reduction is performed on local data elements
with the localReduce operation.

2) The local result is sent to the first node in the
compute group.

3) The first node receives and accumulates all local
results, and sends the final result to the other nodes.

4) The other nodes receive the final result. All nodes
return the same value.

Unlike in MapReduce, where a reduce stage may output
large amounts of data, a reduce operation combines data
items into a single value. Again, with our simple prototype,
we assume the nodes are reliable.

The allMatch operation can be expressed as a reduction
with the result being the logical-AND of local allMatch
operations on each participating node.

The count operation can be expressed as a reduction with
the result being the sum of local count operations on each
participating node.

The distinct operation can be expressed in terms of the
distribute operation followed by the localDistinct
operation. The distribute operation sends elements with
the same hash value (which includes all identical elements)
to the same node. The localDistinct operation then
removes duplicate elements within each node.

The forEach operation: To be consistent with the other
terminal operations, each participating node needs to per-
form the specified action on every element in the Distributed
Stream. Thus, each node broadcasts its local data elements
to other nodes, thereby ensuring that each local stream
contains elements from all nodes. However, this is un-
likely to be efficient. The localForEach operation avoids
broadcasting elements and is intended for programmers to
optimise their implementations.

6 MAPREDUCE IN DISTRIBUTED STREAMS

Section 5 described how the API extensions are imple-
mented. In this section we consider how the MapReduce
programming model can be expressed in terms of the Dis-
tributed Stream model.

With Java 8 streams, performing MapReduce computa-
tions across a cluster was not possible as the framework
operated within a single node. Distributed streams solve
this problem by defining operations to transfer data across
nodes. In MapReduce, the shuffle stage is where data trans-
fer is needed. This stage can be broken down into sub-stages
and implemented with distributed streams as follows:

8
Node 0 Node 1
_ _
Map | Mapper Mapper

Distribute Distribute Distribute

Shuffle % !
[Collect & sortﬂ [Collect & sortﬂ [Collect & sortﬂ

Reduce Reducer Reducer I I

i+
i

Fig. 13. Expressing a MapReduce computation in terms of distributed
streams. Arrows indicate the flow of data. The mapper, reducer, local
collect and local sort may span multiple stream operations.

1) The distribute operation transfers data (in key-
value form) between compute nodes such that those
with the same key are sent to the same node.

2) The localCollect operation on each node ac-
cumulates incoming data into a collection of key-
value-list pairs. The value lists are optionally sorted.
Since localCollect is a terminal operation, a new
stream consisting of elements in the collection is
created and passed to the reduce stage.

Figure 13 shows in general how a MapReduce computa-
tion can be represented with pipeline operations.

Special cases such as summing, counting and collecting
are built into Distributed Streams. Hence the resulting code
is more concise if such operations are used.

6.1 Illlustrative example

We return to the word-count example introduced in section
2.4, however with a change in the problem specification to
more effectively demonstrate how Distributed Streams can
be used in MapReduce computations. This time a detailed
word-count, which outputs a sorted list of words together
with their frequencies, is used. Since Distributed Streams
and Distributed Collections are drop-in replacements, the
same algorithm can be used on an input text file distributed
over the cluster, and the computation also occurs cluster-
wide (see figure 14).

If only a subset of nodes are needed for reduction, the
pipeline can be modified to distribute the elements to the
required subset. Using the example above, the user need
only make a small change to the pipeline by adding a
distribute operation:

.distribute (lines.getComputeGroup () .get (0))

between the flatMap and collect operations.

7 IN-MEMORY DISTRIBUTED

STREAMS

STREAMING IN

This section focuses on comparing the expressive power of
Distributed Streams with Spark and Storm.
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import java.util.regex.x;
import java.util.stream.x*;
import dstream.x;

import dstream.util.x;

public class WordCountDetailed {
public static wvoid wordcount (
DistributedCollection<String> lines) {
Pattern pat = Pattern.compile ("\\s+");
Map<String, Long> words = lines
// Generate a distributed, parallel stream
.parallelStream()
// Map stage
.flatMap(line —-> Stream.of (pat.split(line)))
// Shuffle stage
.collect (Collectors.groupingBy (
w —> w, TreeMap: :new,
Collectors.counting()));
Set<Map.Entry<String, Long>>
entries = words.entrySet();
entries
// Generate a normal,
.stream()
// Reduce stage
.forEach (e —-> {
System.out.println(
e.getKey () + "\t" + e.getValue()); });

sequential stream

}

public static void main(String[] args) {
String filename = args[0];
wordcount (new DistributedStringStoredCollection (
filename));

Fig. 14. Detailed word-count application using Distributed Streams.

7.1 Spark and comparisons with Distributed Streams

Since both Spark and Distributed Streams are stream-based
programming models, there are some similarities. For exam-
ple, Spark pipelines are also lazily evaluated, and their Java
syntax resembles that of Java 8 streams. Also, transforma-
tions are analogous to intermediate operations and actions
are equivalent to terminal operations.

To demonstate the similarities between Spark’s trans-
formations/actions and Distributed Streams’ operations,
table 1 lists a number of Spark transformations/actions
together with the equivalent operations in Distributed
Streams.

There are also significant differences between the mod-
els. Spark was designed specifically for Big Data applica-
tions, whereas Distributed Streams have to maintain com-
patibility with Java 8 Streams. RDDs can be reused, un-
like Java 8 Streams, and Spark allows caching of data in
memory for frequently-used RDDs to avoid recomputing
data. Also, Java 8 Streams are conceptually separate from
Java collections (which can be the source of a stream), but
Spark RDDs do not have such a distinction. Depending on
its position in the pipeline, an RDD may contain data from
HDES blocks, or transformed data cached in memory, or
even information on how the data should be processed (to
support lazy evaluation). This allows the entire pipeline to
be lazy even across compute nodes.

Terminal operations in Distributed Streams use all-to-all
communications by default, due to Java semantics. How-
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ever, the group of nodes which receive the output of ter-
minal operations can be changed from this default to any
subset through the use of distribute and local versions of
terminal operations. Spark’s driver-worker paradigm limits
all-to-all communications to its internal shuffle operations
(which are often needed).

Spark, being a high-level framework, does not have
operations for distributing data according to an arbitrary
partitioner. However, it has operations such as sample and
intersection that are less straightforward to implement
in Distributed Streams. Spark also exposes the concept
of data partitions to the programmer, while Distributed
Streams do not. Thus, there are no equivalents for several of
Spark’s operations such as coalesce and mapPartitions
which are exclusively for altering the number or location of
partitions in the cluster.

7.2 Distributed Stream implementation for Spark

Due to the similarities in programming models, parts of
the Spark and Distributed Stream pipelines can be almost
identical. However, a Distributed Stream implementation
will need to be aware of the following due to differences
in the programming models:

e More Distributed Stream pipelines may be needed to
implement a similar Spark pipeline. A terminal op-
eration (except distribute) in Distributed Streams
waits for all data in the stream to be processed
before returning, and the next pipeline will not be-
gin execution until this happens. This behaviour is
inherited from Java 8 Streams. This may cause under-
utilisation of the nodes, and cannot be optimised by
the implementation unlike Spark. To mitigate this,
a separate thread can be created to execute another
pipeline concurrently, but the programmer has to
judge the feasibility of this (for example, to ensure
that there are no data dependencies between the
pipelines).

e A feature of Spark is that it can provide caching
and reuse of computed values in a pipeline. This is
not currently automated by Distributed Streams. The
programmer must implement this manually through
the use of localCollect and Distributed Collec-
tions.

e Since Spark has the concept of a driver program
which defines the pipeline and submits work to the
master node, actions such as collect send data to
the driver instead of to all processes on participating
nodes. To achieve a similar effect of sending all
data to one compute node, the distribute (node)
operation can be used.

o Like Distributed Stream operations, a number of
Spark transformations and actions require signifi-
cant inter-node communication when dealing with
datasets spanning multiple nodes and should be
avoided if there are still many elements in the
dataset.

e If the underlying data source has no redundancy
(we believe this is rare as common distributed file
systems such as HDFS and Lustre [13] have this
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TABLE 1
Comparison of Spark Transformations/Actions and Distributed Stream Operations.

Spark Distributed Stream Description
.countByKey () | .collect (Collectors. Counts the occurrence of each key and returns a
groupingBy (e -> e.getKey(), Inapofkeyfountpahs
Collectors.counting()))
.filter (p) .filter (p) Removes elements in the Distributed Stream
that do not satisfy the predicate.
.foreach (f) .forEach (f) Execute a function over each element.
.groupByKey () | .collect (Collectors. groupingBy (e Groups key-value pairs into key-value-list pairs.
-> e))
.map (f) .map (f) Replaces each element with those from the map-
ping function.
.reduce (f) .reduce (f) Reduces the elements to a single value using a
binary function.
.take (n) .limit (n) .collect ( Returns the first n elements in a List.
Collectors.toList ())

static void wordcount (JavaRDD<String> lines) {

Pattern pat = Pattern.compile ("\\s+");

List<Tuple2<String, Integer>> result = lines
.flatMap(line —-> Arrays.asList (pat.split (line))
// Convert to (word, 1)
.mapToPair (s —-> new Tuple2<String, Integer> (s, 1)
// Add pairs with same words together
.reduceByKey ( (i1, 12) -> il + 1i2)
// Save as list of (word, count) pairs
.collect ();

// Print each (word, count) pair

for (Tuple2<?,7?> t result)

System.out.println(t._1() + "\t" + t._2());

Fig. 15. Detailed word-count application using Spark.

property), the Distributed Collection will need to
implement it.

7.3 Spark example

To demonstrate the similarities and differences between
Spark and Distributed Streams, we refer to the detailed
word-count example in section 6.1. The corresponding
Spark code [14] (using Java 8) is shown in figure 15.

After replacing each line of text with the individual
words (using flatMap), each word is converted to a (word,
1) pair. The reduceByKey transformation reduces values
(word, M) and (word, N) to (word, M + N). The collect
action ends the pipeline, saving the remaining pairs into
a List. Finally, the list contents are printed to standard
output.

7.4 Storm and comparisons with Distributed Streams

Storm is also a stream-based programming model, but it
is eager and emphasises task-parallel computations, setting
it apart from Distributed Streams which are mainly lazy
and data-parallel. Nodes in Storm normally run different
computations which are then joined together with streams.
Hence it is closer to a distributed pipeline model (see section
3) where each node processes a segment of the pipeline and
does not have knowledge of the entire pipeline. On the other
hand, a Distributed Stream is primarily replicated pipeline-
based and makes use of compute groups to partition the
cluster for different data-parallel computations.

public class Splitter implements IRichBolt {

// Private variables are initialised in the

// prepare () method

private OutputCollector collector;

@Override public vold execute (Tuple line) {
Pattern pat = Pattern.compile ("\\s+");
// Send each word to next bolt
for (String word: pat.split(line.getString(0)))

collector.emit (new Values (word)) ;

collector.ack (line);

}
}

public class Counter implements IRichBolt {
// Private variables are initialised in the
// prepare () method
private OutputCollector collector;
private TreeMap<String, Integer> wordcount;
@Override public vold execute (Tuple t) {
String word = t.getString(0);
// Update occurrences or add new word
if (wordcount.containsKey (word))
wordcount .put (word, wordcount.get (word)
else
wordcount .put (word,
collector.ack(t);

+ 1);

1);

Fig. 16. Detailed word-count application using Storm.

7.5 Distributed Stream implementation for Storm

Since Storm uses a distributed pipeline model, the program-
mer can achieve a similar result by splitting the pipeline into
several segments and executing the distribute operation
at segment boundaries. For nodes that send data to mul-
tiple destinations, the distribute variant that accepts a
collection of compute groups can be used.

7.6 Storm example

For Storm, we split the pipeline into two bolts shown in
figure 16. The bolts can be incorporated into a topology with
the code in figure 17.

When run, the Splitter accepts lines of text and
outputs individual words. Concurrently, the Counter adds
each word from the Splitter into a TreeMap or updates
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TopologyBuilder builder = new TopologyBuilder();
builder.setSpout ("input", ...);
builder.setBolt ("split",

new Splitter()).shuffleGrouping("input");
builder.setBolt ("count",

new Counter ()) .shuffleGrouping ("split");
VIR

Fig. 17. Storm topology for detailed word-count application.

TABLE 2
Evaluated Workloads, Attributes and Input Sizes.

Workload Attributes Input sizes

Grep Disk-intensive 2GB - 32GB

Sort Disk- & comms-intensive |2GB - 32GB
Word-count (detailed) |Disk-intensive 2GB - 32GB
Bayes (naive) Disk-intensive 1GB - 32GB
Connected components | Graph, comms-intensive |210 — 220 vertices
PageRank Graph, comms-intensive |219 — 220 vertices

its occurrence if already present. Since Spark topologies run
indefinitely, an external signal, special marker or timeout is
needed to indicate the end of input and that the TreeMap is
ready to be output.

8 EVALUATION

The purpose of this evaluation is to demonstrate that the
extended Distributed Stream APIs described in this paper
allow efficient description of both map-reduce and dis-
tributed streaming processing.

Direct comparisons of end-to-end execution times for
Distributed Streams, Spark and Hadoop are often not ap-
propriate because each system performs different styles of
computation, at different times, and with different data dis-
tribution, replication, and fault tolerance guarantees. There-
fore this section attempts to remove initial distribution from
the comparison and focus solely on the computation by pre-
distributing the input data. This is how Hadoop (and Spark
on HDFS) works normally, but it is not required by Storm
or the Distributed Streams approach.

We based our evaluation on a subset of the Big-
DataBench benchmark suite [15]. Table 2 lists the workloads
that were evaluated, along with their attributes and the
input sizes used. For each workload, a Distributed Stream
application was implemented and compared against the
provided Hadoop and Spark implementations. Although
the input sizes are smaller than standard Big Data work-
loads, we believe that they are sufficient for exploring the
performance of the frameworks because the data is further
broken down into smaller chunks for distribution and pro-
cessing.

8.1 Experimental setup
All tests were carried out on a national, shared cluster' with
the following allocation of nodes:

1.N8  High
http:/ /n8hpc.org.uk)

Performance Computing cluster (URL:
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1) A master node and 10 compute nodes were used,
with a total of 160 compute cores.

2) A master node and 20 compute nodes were used,
with a total of 320 compute cores.

There were two Intel E5-2670 CPUs per node (for a total
of 16 cores per node). Each node had 64 GB of RAM, an
attached 7200RPM hard disk, and ran CentOS 6.7 Linux.
All nodes were connected with InfiniBand. Hadoop version
1.2.1, Spark version 1.3.0 and Java 8u45 were used.

Using two cluster sizes allows evaluating the frame-
work’s scalability as more nodes are added. However, the
shared nature of this cluster made measurements less ac-
curate (there was the potential of interference from other
users).

To minimise any differences in input data access, all tests
read their input data from HDFS (as this was the default for
the Hadoop and Spark tests) with data replication disabled.
Input data was copied to HDEFS before any measurements
began, and the OS buffers were cleared before each test.
The master node acted as the HDFS namenode as well as
the jobtracker, while the compute nodes were each HDFS
datanodes and tasktrackers.

In the BigDataBench suite, the Hadoop and Spark work-
loads read their data from HDFS. Thus, to use the same
data source for all tests, a HDFSStringCollection was
implemented for Distributed Stream tests. It reads data from
HDES as a DistributedCollection of lines when a
stream is obtained. Since HDFS files are already partitioned
across the cluster, each compute node reads from local file
blocks to preserve data locality. For writing data, we im-
plemented a HDFSStringCollectionWriter class that
writes to a new HDEFS file using the add method (since
HDEFS files can only be written to once).

8.2 Results and evaluation

The following metrics were obtained:

o Execution time — the elapsed time of the computa-
tion, excluding the time taken to copy data to HDFS.

o Network usage — the total volume of data transferred
over the network during the computation, again
excluding the initial copying of data to HDFS.

10 runs were carried out for each input size, and the
average values and standard deviations were obtained.
Figures 18 and 19 show the execution times and network
usage for cluster 2 respectively. Distributed Streams scaled
similarly well compared to Hadoop and Spark, with the
results from cluster 1 following a similar pattern.

For disk-intensive workloads, we also analysed the disk
usage of all frameworks and found that throughout the
workload’s execution, Distributed Streams had the highest
disk read throughput and spent the least amount of time
with disks idle. This is due to more optimised disk usage
patterns. On each node, Distributed Streams allows only
one task to read from disk at any time thereby keeping
disk access mostly sequential, whilst the other frameworks
do not. Thus, it was more efficient in reading data from
disk and computation than the other frameworks. This
behaviour cannot be changed in the other frameworks, as
they leave these I/O optimisations to the operating system.
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Note that even though the tests were carried out as fairly
as possible, Distributed Streams are a proof-of-concept and
are not heavily optimised. On the other hand, Hadoop and
Spark have been under active development for several years
and are thus much more optimised. Fault tolerance is also
not implemented in Distributed Streams. However we have
removed fault tolerance as much as possible from the other
systems and so we believe such overhead is not significant.

8.2.1 Execution time

The Distributed Stream implementations of disk-intensive
workloads (Bayes, Grep, Sort and Word-count) ran signifi-
cantly faster than or comparable to those for Hadoop and
Spark.

For graph workloads (Connected components and
PageRank), execution times for Distributed Stream imple-
mentations vary widely depending on the input size. Be-
sides being less optimised, another reason is that Hadoop
and Spark have optimised graph processing frameworks
and libraries (Pegasus and GraphX) while the graph algo-
rithms for Distributed Stream implementations were written
from scratch. Despite these limitations, Distributed Streams
were still fastest for the smallest datasets. It is likely that
if more efficient graph algorithms and optimisations are
used, they can scale as well as Hadoop and Spark for larger
datasets.

8.2.2 Network usage

Hadoop and Spark attempt to load-balance tasks across the
cluster, which may require nodes to read data on a non-
local disk and have it sent across the network. Distributed
Streams does not do this, except for sending data items
that straddle HDFS blocks. This can be seen in results for
the Grep and Word-count workloads, with network usage
being higher and less predictable for Hadoop and Spark
than Distributed Streams.

As previously mentioned, Distributed Streams are not
heavily optimised. This is especially true of the communi-
cation layer. Though network usage of Distributed Streams
was generally in the high end, they still ran as fast as (if not
faster than) the other frameworks for non-graph workloads.
This highlights the efficiency of Distributed Streams, and
especially the Java 8 Stream framework that it builds upon.

8.3 Summary

Currently, Distributed Streams do not provide any fault
tolerance above that which is already provided by the
underlying communication layer implementation. Yet, these
results illustrate that as a thin layer, the Distributed Streams
API is a suitable extension to Java 8 Streams for Big Data
computations.

With Distributed Streams being proof-of-concept, we
believe there is room for efficiency improvements. To sup-
port larger clusters, reliability issues will also need to be
addressed, and we are confident that performance will not
be sacrificed as a result.

9 RELATED WORK

Big Data research and development has been dominated
by the MapReduce and streaming programming models,
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which were discussed in section 2. This section gives a brief
overview of other developments.

A Big Data framework which also uses Java 8 Streams
has been proposed in [16]. It differs from our approach
in that their extended stream model is used within other
Big Data engines (such as Hadoop), while our framework
proposes a new engine. Our approach does not require
an existing engine for processing data, and is backward
compatible with the existing model.

Other streaming models include the Cascading [17]
framework, which implements a Java-based programming
model with concepts borrowed from Unix pipes. Its main
abstraction is the flow, which consists of pipelines of com-
putation bound to data sources and sinks. This differs from
Java 8 Streams in that the pipelines can be defined indepen-
dent of data sources, while pipelines in Java 8 Streams must
be constructed from a known data source.

There have also been attempts to improve existing pro-
gramming models. For example, to address the inflexibility
of the MapReduce model, frameworks such as Twister [18]
have extended the model by adding iteration and caching
of data across MapReduce jobs. This reduces the amount of
data read during each iteration and thus speeds up execu-
tion. HaLoop [19] also modifies Hadoop to make it easier to
build iterative applications, something that is difficult in the
basic MapReduce model. HaLoop again aggressively caches
data and results to reduce recalculation. CoHadoop [20] sug-
gests a lightweight extension to the Hadoop programming
model to allow control over the placement of data.

A combination of the above-mentioned approaches can
be found in the Stratosphere [21] platform, which includes a
high-level query language, Meteor, implemented on top of
a generalised MapReduce programming model, PACT [22].
PACT extends MapReduce to support more user-defined
functions (besides map and reduce), acyclic data flows and
arbitrary length records (as opposed to key-value pairs in
MapReduce).

Hazelcast [23] implements distributed versions of Java
collections. However, they are in-memory only and require
populating the collections before computation can begin.

10 CONCLUSIONS

In this paper we have proposed and implemented a
proof-of-concept version of Distributed Streams. Distributed
Streams provide the following features which address the
limitations of the existing Java 8 Stream model:

o It provides compute nodes and groups to support
computation across a cluster.

o It provides replicated and distributed pipelines for
distributed stream-based processing, as well as new
operations for the distribution of data across a clus-
ter.

e It provides Distributed Collections to encapsulate
data that is partitioned across a cluster, allowing
them to be used as data sources for Distributed
Streams.

e Itis a drop-in replacement for Java 8 Streams, allow-
ing programmers to easily port existing applications
to run over a cluster.
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Most of the Java 8 programming model was directly
applicable to distribution. However the main difficulty ob-
served was that short-circuit evaluation is very inefficient
when distributed. Accordingly, a new operation had to be
added to the Java model to allow for this. Otherwise, the
proposed framework is a drop-in replacement for existing
Java 8 code. In addition, pipelines have been made more
flexible in Distributed Streams, allowing for more expres-
siveness in the programming model.

More generally, this work looked at taking a parallel
programming model (Java 8 Streams) and making it dis-
tributed. This provides backward compatibility and allows
programmers to incrementally optimise sections of their
code. This is in contrast to most Big Data programming
models which start out as distributed models.

Our results have shown that Distributed Streams can in
many cases achieve similar execution times compared to
Hadoop and Spark. This indicates that Java 8 Streams may
be more effective at fully utilising the resources of compute
nodes of the distributed system. In the future, we plan to
further optimise the performance of Distributed Streams by
integrating existing research on optimising network traffic
and to address reliability issues by implementing SPMD
fault tolerance in the communication layer and supporting
dynamically changing clusters.
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