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Abstract: Eco-friendly systems are necessitated nowadays, as the global consumption is increasing.
A data-driven aspect is prominent, involving the Internet of Things (IoT) as the main enabler of a
Circular Economy (CE). Henceforth, IoT equipment records the system’s functionality, with machine
learning (ML) optimizing green computing operations. Entities exchange and reuse CE assets. Trans-
parency is vital as the beneficiaries must track the assets’ history. This article proposes a framework
where blockchaining administrates the cooperative vision of CE-IoT. For the core operation, the
blockchain ledger records the changes in the assets’ states via smart contracts that implement the
CE business logic and are lightweight, complying with the IoT requirements. Moreover, a federated
learning approach is proposed, where computationally intensive ML tasks are distributed via a
second contract type. Thus, “green-miners” devote their resources not only for making money, but
also for optimizing operations of real-systems, which results in actual resource savings.

Keywords: blockchain; federated learning; circular economy; green-miner; time-wise offloading;
green computing

1. Introduction

A Circular Economy (CE) is composed as a regenerative ecosystem. The working pe-
riod of current products is extended, and the consumption of new materials is confined [1,2].
Closed economy loops are established with resources being utilized over-and-over by dif-
ferent actors. The core phases of CE models typically can involve (i) long-lasting design,
(ii) maintenance, (iii) repair, (iv) reuse, (v) remanufacturing, (vi) refurbishing, and (vii)
recycling. The large-scale application of these CE aspects drives modern business models
and economic transformation [3,4]. The CE review studies in [1,2] present the business
principles of the new initiative. Further CE models and indicative examples are detailed
in [3]. The survey in [5] examines the maturity of the most recent proposals (during
2019–2020). The enhanced collaborations between the involved entities in a CE lifecycle
is considered of great importance, both for businesses that want to make the transition to
circular operational models as well as for start-ups that are building their circular model
from scratch [5]. Smart devices and the IoT ecosystem enable new forms of interaction
and business models. The transformation of the traditional market into a service-oriented
setting is now a fact. The integration of CE and IoT further promotes such data-driven
service-oriented architectures (SoA) [5–7].

Today, the integration of emerging computer technologies is ongoing, such as the
use of blockchains as distributed ledgers for the CE assets or as enablers of modern
federated learning approaches. The blockchain technology started gaining ground as a
cyber-cryptocurrency that was not controlled by any centralized authority [8]. Today,
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there is a plethora of new application domains, with each one exhibiting different design
properties [9,10]. In contrast to cryptocurrency mining, where we need to deploy a resource-
expensive mechanism in order to verify the node/miner effort (i.e., block hashing), in the
Circular Economy and Internet of Things (CE-IoT) field we mainly utilize blockchain as
a ledger that records/logs the changes in the CE assets’ status. Therefore, we need to
promote a fast and efficient functionality. The active partners perform the cooperative
business logic and accountability through smart contracts, while the chain verification is
retained, simple, and fast. The goal is to offer a common view of the assets’ state, with
smart contracts providing share data with integrity, while enhancing the interoperability
and transparency between the interacting partners. A CE can also involve small-medium
enterprises (SMEs) that might not possess the skills or the resources [11] to perform
the computationally heavy machine learning (ML) procedures that optimize the green
operation of the installed services/equipment, such as the example in [12] where ML is
utilized to improve the energy consumption of a data center and other relevant cases
such as [13–15]. Thereupon, blockchaining is also promoted as an enabler for federated
learning. The CE-IoT participants can assign the related tasks on smart contracts with
miners performing part of the ML operations (i.e., training or model evaluation). Then,
they send the results to the relevant beneficiaries. Once the contribution is validated, the
miner is paid in gas (Ethereum or other cryptocurrency).

While our approach is applicable for a wide spectrum of CE-IoT applications, in
this study we demonstrate the operation of blockchaining in the field of Information
and Communications Technology (ICT). The CE assets in this domain may include any
computer device and their counterparts. Specifically, we monitor the infrastructure of a
medium-scale Internet provider in Cyprus, called Cablenet. The main monitoring and
decision-making setting is presented in [16,17], where we detailed a complete circular
scenario and the implementation of an enhance recycle-reward and e-waste management
service. The CE-IoT framework is managed by an efficient and scalable multi-agent system,
where the agents collect data from IoT-monitors and are abreast of the assets’ Location,
working Condition, and Availability (LCA) properties. The main contributions of this
paper include the following:

• An upgrade of the original CE-IoT blockchain with the principles of the HYPERLEGER
project (https://www.hyperledger.org/, accessed on 23 July 2021) and its utilization
by multiple actuator types;

• The incorporation of federated ML and the development of the “green-mining” concept;
• An extension of the main federated ML protocol and introduction of the “time-wise

ML data offloading technique” that overcome the underlying obstacles, enhance
confidentiality and privacy, and make the use of ML in blockchain cost-efficient.

Section 2 presents related works. Then, Section 3 details the operation of the core
blockchain as well as the enhanced green computing functionality of CE-IoT with ML and
the potential of federated learning with blockchains. Section 4 discusses the overall results
and refers to future work. Finally, Section 5 concludes this work.

2. Materials and Methods
Related Works—CE Studies, Trends, and Applications

The researchers in [18–20] try to analyze and understand the factors that are affecting
the consumption in the context of CE ecosystems in general. Circular solutions are gaining
great attention from researchers these days. The digital transformation of the economy is
considered a main driver of CE, with the data-driven approaches gaining ground.

Several reviews are now presenting new business models and novel applications
concerning CE strategies [1–3]. More-and-more traditional markets are transformed into
service-oriented ones, with the CE and IoT integration promoting data-driven settings [6,21].
The proposed solutions are overarching a wide range of industrial domains.

Manufacturing and Industry 4.0 are such prominent domains for CE [22–27]. The
main goal here is to enhance intelligence and visibility into digital assets. The management

https://www.hyperledger.org/
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of the supply chain is also important [28,29]. The use of blockchain, Big Data analytics,
and Artificial Intelligence (AI) is applied in an attempt to improve the transparency and
traceability of products throughout their working lifetime (e.g., [29–35]). Similarly with our
study, globalization and the concepts of reuse, remanufacture, and recycle are examined
under the sponsorship and support of the United Nations (UN).

The automobile industry is another prominent sector of CE. Danish research [36]
records that on a daily basis, an arbitrary (personal) car transports around 1.4 people on
average, while for 23 h it is parked. The spare seats are of great importance for ride-sharing
applications. GoMore [37] enables the driver to ask other people to join a ride on a planned
route and share some costs. Such approaches increase the persons that are onboard per car
and decreases the vehicles on the street. More than 1 million users are utilizing this service,
resulting in around 300,000 seats in Denmark alone. GoMore is a chief company in Europe
incorporating peer-to-peer car condo and ride-sharing and the main commercial enterprise
for this business in Scandinavia.

Michelin deployed a leasing service for truck fleets in Europe [38]. Specifically, it
leases services concerning the trucks’ tires per kilometer. The fleet fee depends on the
vehicle type and the traversed distance. The Fleet Solutions [38] are decreasing the risk for
varying costs, which involve unexpected damages from owning the tires, differences in
tire performance, and purchase fees. Thus, Michelin absorbs some risks, without a client
having to pay a permanent price for the tires and their change afterwards.

In French, Alstom produced the HealthHub—a protection system that monitors the
health of railway components and predicts system failures [39]. Analytics are utilized
in order to prolong and retain the working lifetime of trains, signaling equipment, and
infrastructure assets. Therefore, it captures the degree of performance of train components,
such as the brake pads, the wheels, or the put on-and-tear-inclined pantograph carbon
strips (a framework that transfers current to railways from overhead wires) and diagnoses
their status.

The MAN Truck and Bus [40] is one of the main international manufacturers of
transport and commercial vehicle to businesses. The German company provides advice
services and support for vehicle design for fleets, infrastructure, operations, maintenance,
and carrier. It has started a data-driven service to help bus fleets and commercial trucks to
comply with the low-carbon transportation initiatives. This involves battery swapping and
charging infrastructure issues, variety, making plans, loading and capacity planning, as
well as air-conditioning and heating demands.

The food industry is another main sector that can benefit from a CE [41]. In [42], an
IoT installation in the food processing industries monitors and facilitates the transportation
services amongst the supply chain. This also includes the advancement of the underlying
packaging processes along with designs that support recycling and low new material
usage. In [43], the IoT enhances the traceability of goods and ensures food safety for the
customers. In [44], an IoT-based monitoring system is implemented and supports the food
quality control procedures from the production to the consumption stages. Furthermore,
information dissemination on IoT ecosystems can help a company in administrating its
operations and achieve sustainable business practices [41–44]. For example, in [45], the
researchers built a system dynamics model that gathers information for the food industry
supply chain and evaluates the environmental impacts of reverse logistics operations,
enhancing the overall green performance. The researchers in [46] implement an interactive
seed library that mentions the stories of culturally diverse urban food growers and inter-
links the environmental sensors of their gardens. Therefore, the overall solution tries to
promote more sustainable food practices in cities.

Banking and insurance sectors have been also benefitted by CE initiatives. The IoT,
AI, deep learning, and Big Data analytics are advancing Financial Technology (FinTech)
and enable the creation of augmenting and smart banking services [47,48]. Relevant
products may include product leasing, peer-to-peer provisioning, upcycling, zero-waste,
remanufacturing, or reverse manufacturing [49]. In general, banks are trying to utilize
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the new technologies and adapt their role in the CE landscape by defining a common
understanding of CE amongst the various stakeholders, establishing widely accepted
guidelines for CE finance, providing credit to relevant businesses, adjusting the current
finance models to fit into the CE world, implementing green banks, as well as training their
staff and creating a culture of green operation, material reuse, and waste decrement [50,51].
Banks, venture capital groups, private equity foundations, and others in the financial
domain are exhibiting increasing enthusiasm for such opportunities, driven by the potential
for financial returns related with less exposure to linearity risks, lower resource dependency,
as well as the ability to comply with the stakeholders’ expectancies [52–54]. The study
in [55] proposes the use of blockchains and cryptocurrencies as a modern mean to retain
sustainability by empowering the creation of community-based incentive systems on
a variety of platforms. Such platforms are gradually connected and build new “token
economies”, with tokens circulating within and between them. The goal is that the new
income sources will be able to mitigate unsustainable operations on a large scale.

Several research proposals are suggested as well, e.g., [56,57]. SmartTags utilize the
GS1 barcode standard and build a product passport. Through these labels that are printed
on products, data exchange is enabled for the modern CE settings including unique asset
identification, as well as the tracking of collecting, reading, and sensing parameters.

Other IoT solutions are materializing solutions for household waste source separation,
promoting the sustainable waste management in China [56]. These technologies are trying
to predict and explain peoples’ behavior that is required for source separation at the
household level. By monitoring and evaluating accountability rules, several aspects of the
waste management cycle are improved.

3. Results—The CE-IoT Blockchain and Federated Learning
3.1. The Core CE-IoT Blockchain

We utilize the CE-IoT permissioned-blockchain in order to record and trace the assets’
status. An initial version of the proposed blockchain solution was presented in [17]. In
this work, we adopt the method in [17] within a real-life scenario where multiple actuators
are used. The current setting also complies with the guidelines and directives of the
HEYPERLEDGER project, which constitutes an umbrella initiative for blockchain research.

3.1.1. Motivating Example

Figure 1 illustrates an emulated iteration of the CE-IoT loop. As aforementioned, our
organization (Cablenet) uses its equipment to serve end-customers. When the system is
upgraded, the related machinery is sold to start-ups in the UK. Similarly, these companies
can re-sell the CE assets when their utility goes beyond a threshold. Afterwards, the
assets are gifted to third-world countries that use older technologies in their networks.
When the products are no longer working, they are recycled in businesses that are close
to these areas. Finally, a subset of useful materials is exported back to the manufacturers
and the loop starts again. Instead of just dropping the equipment, which could end up
in landfills or swamps, the working lifetime is to prolong as much as possible and the
useful materials are recycled, implementing an advance green computing and e-waste
management infrastructure.

3.1.2. The Ledger

The registered assets are represented as a collection of key-value pairs, with state
changes recorded as transactions on the ledger. The chain code and the permissions define
these assets and the transaction instructions for modifying them. The involved members
interact with the network’s ledger using this chain code in the form of smart contracts
(i.e., through new smart contracts that add new business logic or invoking transactions of
early contracts). All the members are identified and authorized with specific access rights.
Access control lists may also be deployed for additional permission layers.
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Figure 1. The CE-IoT emulated scenario.

The chain incorporates the following two main components: (i) the blockchain log
that maintains the immutable sequenced record of transactions in blocks, and (ii) the state
database that stores the current state of the blockchain. The log helps in tracking each asset’s
provenance (e.g., when and where it was created, where it was moved to, etc.), while the
database assists the participating stakeholders to figure out the current state of an asset.

However, in several business models, the related assets information may be considered
confidential for an organization or raise privacy issues. Thus, private channels can be
utilized, where restricted messaging paths are enabled that provide privacy for specific
attribute subsets and restrict access to unauthorized parties.

Adding a new transaction for a block requires the following three sequential opera-
tions: (i) the verification of the current chain, (ii) appending and signing the new data, and
(iii) creating the new hash. Therefore, two node types are supported in the network in an
attempt to increase efficiency and scalability. The peer nodes are liable for the execution and
verification of the transactions. They can process many records simultaneously. On the
other hand, the ordering nodes order and propagate transactions. They are also responsible
for the creation of a single true record of transactions.

3.1.3. Actuators Roles

For the CE cooperative business model, we consider the following three main actuator
types: asset operators, entrusted auditors, and regulators. “Operators” are the current
owners of a CE asset and can update its LCA properties in the ledger. They can exchange
these assets, changing the ownership accordingly. “Auditors” are authorized by an asset’s
operator in order to validate its state. They can also be entitled in order to update the assets’
status. Auditors foster trust between the current owner and prospective asset operators
and certify that the assets abide to the regulator’s CE policies. The “Regulator”, on the
other hand, represents the authority that is responsible for establishing the governing rules.
They can intervene in the operator interactions and enforce specific sustainability goals.

Thereafter, smart contracts can be used to control who is approved to do what. The
following four contract types are defined for these purposes:

1. The “Asset Registry Contract” is owned by the regulator and maintains the contract
addresses for assets, operators, and auditors.

2. The “Asset State Contract” is owned by the asset’s operator and contains the related
LCA properties.
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3. The “Asset Audit Agreement Contract” is also owned by the operator and specifies
the allowed actions for updating the Asset State Contract.

4. The “List of Asset Agreements Contract” can be owned either by operators or auditors
and contains the access agreements and their state (i.e., active or expired).

The actuator roles and the administration of their interaction via smart contracts are
detailed in [9]. The relevant contract-based model is depicted in Figure 2.

Figure 2. Smart contract-based data model.

3.1.4. Implementation

Every participating organization has its own “wallet” with its blockchain accounts.
Normally for the CE-IoT blockchain, each organization will possess a single “account”. The
account is managed by the organization’s master agent, which gathers information from
its underlying field agents and adds the performed actions to the chain. These recorded
actions have the form of valid blockchain “transactions”, which are signed by the master
agent using the organization’s private key. Normally, the operator registers sequential
usage patterns for an asset, which can be then verified by auditors (see Figure 3).

Figure 3. Multiple sequential asset operators.
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For the implementation of the blockchain, we utilize a lightweight version of Ethereum
in Java [8]. It deploys the AES128 cipher in CTR mode for symmetric cryptography, the ECC
cipher for asymmetric cryptography (public/private key), and the hash function SHA256
(block hashing) via the ECDSA signature scheme [8]. The smart contracts are written on
Solidity—a Turing-complete programming language that is suitable for modelling the
contract’s complex logic [58].

The ledger’s blocks are modeled in a JavaScript Object Notation (JSON) format [59].
For example, the following piece of code publishes a new transaction that sets/updates the
LCA properties for an asset:

publishstream key1 ‘{“json”:{
“component”:”C1, switch”,
“location”:”CABLENET-room1”, “condition”:”maintenance”,
“availability”:”working”}}’

The transaction resembles the event for the asset C1 (a switch), which is working in
room1 but now it needs maintenance. As mentioned above, the effort for performing these
contracts has been kept low. On a typical machine (i.e., i7 CPU at 2.1 GHz and 8 GB RAM)
it takes around 10–50 ms to execute 1000 contracts.

The overall solution is portrayed in Figure 4.

Figure 4. The CE-IoT framework.

Initially, the deployed field agents are deployed in the system and monitor the status
of the installed CE assets. Relevant messages in a JSON format are transmitted in the
correlated master agent, which collects all the information for this organization. The
master agent also facilitates the communication with the blockchain via the execution
of the aforementioned smart contracts. The agents are implemented in the Java Agent
Development Framework (JADE) [60], the smart contracts in Solidity, and the blockchain
in Ethereum [8]. Then, green-miners can also perform ML computations by executing
additional smart contracts that implement an extended version of the original DanKu
protocol [61] (see Section 3). The use of machine learning in blockchains is following the
principles of the OpenMined initiative (https://www.openmined.org/, accessed on 23 July
2021) and the overall CE-IoT solution is in accordance with the HYPERLEGER guidelines.

3.2. Federated Learning with Green-Miners

As it was mentioned in the introductory section, the multi-participatory environ-
ment of CE can include SMEs that cannot perform the computationally intensive ML

https://www.openmined.org/
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algorithms [11]. Thus, we exploit the already deployed CE-IoT mechanisms in order to
distribute the ML computations to blockchain miners. A federated learning setting is
formed that is inspired by the open-source community for safe AI—OpenMined.

A main issue regarding the federated learning is how one can validate that the re-
quested actions (miner’s effort) have been performed and the outcome is valid (proof-of-
work). For example, how can we know that a malicious entity does not just send to us
bogus data in order to manipulate our ML system or get paid without actually executing
the requested contract?

3.2.1. DanKu Protocol

The DanKu protocol [61] resolves this issue and allows the participating entities to
solicit ML models for a reward in a trustless manner. We apply this approach in order
to support the federated learning functionality of the CE-IoT ecosystem. The protocol is
composed of five phases. At first, the asset operator (i.e., the organizations MA) constructs
a contract that contains the hashed data groups of the sensed events along with the training
dataset. The miners obtain the contract, train the model, and send the computed solution.
Then, the operator reveals a testing dataset and the submitted models are evaluated. The
best solution is rewarded and the related miner is paid. If there is no best solution, the
operator is refunded. Figure 5 depicts the five phases of the DanKu protocol for ensuring
that a contract has been performed successfully.

The DanKu protocol is formed as a smart contract in the chain. The core CE-IoT
chain is permissioned; thus, participation is restricted and controlled by the regulator.
Nevertheless, we could maintain a public CE-IoT chain in parallel with the core one and
enable various miners to use the system.

When an organization applies the CE-IoT policies and starts collecting the ML datasets,
the data volume is low as well as the resource demands for executing its federated contracts.
As the data volume increases, the miners’ effort is also increased, and the ML outcomes
are becoming more and more accurate and fruitful for the beneficiary. In the Ethereum
economic scale [61], it is estimated that performing a transaction with 1 KB–11 MB of ML
data with DanKu, it would cost around 6 Mwei–275 Ether, respectively. The amount in
euro is around EUR 6500–480,000 (based on 2021 currency), which makes the utilization of
the pure protocol inefficient.

3.2.2. CE-IoT Extensions of the Pure DanKu Protocol

Although the DanKu protocol defines the main function of performing ML operations
in the blockchain, there are several obstacles that have to be resolved before its adoption on a
wide scale [61]. First of all, it has a very high cost to upload even a small to medium dataset.
To overcome this, we propose a method, called “time-wise ML data offloading contracts”.
Therefore, the issuer (operator) will have to deploy a pair of contracts when he/she wants
to disclose a dataset (either the training or the evaluation ones). The first contract includes
information on how to access the dataset externally and the second one denotes how the
miner or the evaluator can submit your contribution (run the relevant functionality of the
DanKu protocol). Thus, in the first contract, the operator includes a unique identifier—
dataset ID (DID), an external link to the dataset (and not the data itself), its hash value, and
the data size. The miner or the evaluator downloads the dataset and performs the related
tasks. The results would be communicated to the second contract, which shares the same
DID. The overall process could be performed either manually by the miner or automatically
by a relevant agent. Additionally, the issuer has the obligation to maintain the dataset
active for a specified period (e.g., one year). Thus, apart from the verifying nodes that will
validate the contracts in a timely manner, an auditor would have the possibility to validate
the legitimacy of the recorded transaction, while the blockchain size and the ML costs are
kept low. Moreover, the issuer is in control of his/her data, can know who has accessed it,
and can revoke it wherever it is needed (after this defined period).
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Figure 5. The DanKu protocol.
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In the pure protocol, the data are recorded in the blockchain, making it impossible
to erase it. Our strategy deviates from the ordinary public blockchains’ functionality,
where every piece of information must be maintained. On the other hand, the private
CE-IoT blockchain would keep only the result of the ML-related contracts along with some
information concerning the external link to the dataset and its hash value. Nevertheless,
this strategy is sufficient for the examined domain, providing all the above-mentioned
benefits. Concerning the overall economic cost, SMEs can further receive donations by the
CE-IoT users and green-computing initiatives to continue optimizing their operation.

Data privacy and confidentiality constitute other significant drawbacks of DanKu.
Except from our strategy to not include the raw data in the blockchain, under the
CE-IoT methodology, we are considering that the data owner would have performed
anonymization/pseudo-anonymization techniques [62] prior to the inclusion of the data in
our ecosystem.

As mentioned before, the CE-IoT blockchain is permissioned. Therefore, the identities
of the involved entities are verified and authorized. To surmount some flaws of DanKu
regarding malicious issuers or miners [61], we give the opportunity to auditors to assess
the legitimacy of these two groups and report the results back to the regulator, who can
then take relevant actions (i.e., exclude participants that misbehave).

3.3. Evaluation of the Email Service and the Involved Equipment

As a case study, we evaluate the email service of the cloud services platform and the
involved infrastructure components. We apply ML algorithms for feature selection on
the edge monitoring devices and diagnosis at the backend. More specifically, we apply a
reinforcement learning method based on the Fido ML lightweight library.

At runtime, sensory equipment monitors the ambient temperature of the room where
a specific component is installed, as well as the component’s temperature, CPU utilization,
RAM consumption, and the recorded system failures. Analysis can reveal the operating
patterns that cause failures, and thus enhance the predicting capabilities of the tool.

As training data, we also utilize the Enron email dataset that contains around 1.32 GB
data of 500,000 emails generated by 150 employees of the Enron Corporation in a period
of four years [63]. The ground truth captures main and general events for email hosting
businesses [12], such as the daily service usage, peak working or holiday periods, etc. These
results give insights regarding the ordinary operation of the potential customer and affect
the decision-making process regarding the components’ maintenance activities. Moreover,
the organization can promote green computing policies and favor the service usage during
less active periods (i.e., transmit public announcements or perform e-mail advertising and
transmitting high volumes of messages).

3.4. Validation

To assess the overall results of our proposal, we have to validate (i) the effectiveness
of the provided CE-related functionality, and (ii) the results of federated learning.

Concerning the effectiveness of our approach and the benefits for the CE ecosystem,
a radar graph is produced on a spider map for CE applications [64]. The spider map
evaluates the following five CE properties of: (i) disassembly, (ii) maintenance, (iii) remake,
(iv) recycle, and (v) future proof. Four levels are defined for each property based on the
effectiveness of the overall solution—the outer the map center, the better. The suggested
CE-IoT system can greatly prolong the working life of CE assets, improving the mainte-
nance aspects. The federated learning aspects are foreseeing potential breakdowns of the
equipment and enable adaptable operations and policies. In general, the CE assets that are
examined in the ICT domain use modular components that support forward/backward
compatibility and can be easily disassembled, and their materials can be separated during
recycling. The CE-IoT system supports the monitoring of these components throughout
the CE cycle. The radar analysis is depicted in the following Figure 6.
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Figure 6. The CE-IoT spider map.

Concerning the ML part, we are corelating the results with similar studies that are
processing the same data. The Enron email dataset, which was used in the evaluation
Section 3.3, has been analyzed in [63]. There, the researchers process the data with anomaly
detection algorithms in order to detect anomalies in the ordinary operation, such as peak
working times. When such algorithms are used with the same parameters, the proposed
federated learning process outputs similar outcomes.

4. Discussion and Future Work
4.1. Federated ML for CE

A main criticism on cryptocurrencies is the fact that the various users around the
globe install specialized equipment for optimizing the mining operations, with a cost of
huge energy usage. Just recently, Elon Musk, the CEO of Tesla and a mover of the cryp-
tocurrencies, was provoked by the Anonymous hacking group for his actions, including,
among others, the ecological footprint of the promoted technology [65]. Therefore, the
integration of green computing with blockchaining establishes a new economic perspective.
The miners utilize their computational resources and contribute to the CE organizations’
efficiency, enhancing their green computing/networking capabilities.

As in similar studies [66], in this paper, we simulated the interactions of the motivating
CE scenario of Section 3.1.1 and applied the federated learning aspects in optimizing the
Cablenet’s email service, as detailed in Section 3.3. In general, several studies are identifying
the feasibility of integrating ML operations in a blockchain, but the result is inefficient
for most applications due to the high costs [61]. One of our main contributions are the
extensions of the DanKu protocol and the feasibility of deploying the time-wise offloading
strategy. According to our knowledge, this is the first system that efficiently uses federated
learning in blockchain for the CE domain.

With our approach, we store the main information for a transaction along with links
to the raw data. Validation is performed within a specified time-window, both from
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validation nodes and auditors, and after that period, only the evidence concerning the
history of the performed transactions is remained. Of course, our solution deviates from
the pure blockchain concept, where every piece of information must be recorded in the
chain. Nevertheless, this is still adequate for the examined application and enables the
green-mining features.

4.2. Future Work

Security and privacy are always significant properties that must be continuously
audited and revisited in digitalized systems. Concrete policies must be established from
the regulator perspective in an attempt to protect legitimate activity and constrain potential
misbehaviors or malicious participants.

Another novel perspective that could emerge on future applications is cyber insur-
ance [67,68]. Insuring information systems is a risk-controlling procedure for organizations.
The insurance company collects information about an organization’s system and calcu-
lates risk-related parameters, such as the time to failure or the possibility to violate a
service-level agreement (SLA). Based on these data, the contract price is defined. In our
previous work, we had implemented a relevant framework for the continuous insurance
of information systems [68]. The recorded LCA properties of the core CE-IoT blockchain
could feed relevant solutions with fruitful data for every currently deployed digital asset
in the organization’s setting.

Finally, one of the federated learning visions constitutes the implementation of self-
improving AI systems [61]. Therefore, the smart agents of the CE-IoT could upload the ML
data in the blockchain, receive the best model, and configure some system operations accord-
ingly. This functionality could be performed seamlessly and automatically by the deployed
multi-agent system, which would continuously improve its green-computing characteristics.

5. Conclusions

The integration of the IoT to CE business models impel eco-friendly initiatives and
brings new opportunities for economic development into the foreground. In this article,
we present the potential toward the green operation of blockchains in an actual data-driven
CE-IoT setting. Blockchains monitor and verify the status of each evaluated asset (e.g., com-
puters, smart devices, etc.). The core CE-IoT blockchain acts as a distributed ledger of these
assets, facilitating the asset owners to exchange these elements along the CE loop. Apart
from recycling, the proposed solution prolongs the working lifetime of the electronic assets,
improves e-waste management, and enhances the economic function of the involved orga-
nizations. Upon our advancement in federated learning with blockchain, the ML improves
the performance of the green computing operations on the monitoring devices. Moreover,
the computationally intensive ML functionality for the enhanced green computing services
can be distributed in a federated learning environment. Thus, green-miners earn money
while the involved businesses reduce their investment costs and meliorate their operation.
Nonetheless, security and privacy issues should be further examined, as the ML data could
contain confidential or personal data. Thus, related protection mechanisms and strategies
could be considered in future extensions of this work. Additionally, the enhancement of
cyber insurance solutions and the implementation of self-improving AI systems are two
other interesting perspectives that should be further examined.
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