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ABSTRACT

This dissertation centres on the modelling and testing of risk with the emphasis on gauging novel

issues in finance. The first chapter models the stability of financial system using prominent

systemic risk measures, and examines for various risk factors affecting financial stability including

the risky practice of shadow insurance. The collected dataset suggests that shadow insurance has

been increasingly exploited to reduce risk exposure and that entities exploiting shadow insurance

are generally riskier and more interconnected with the financial system. Using panel analysis,

I find statistical evidence that the practice of shadow insurance does affect financial stability

based on two distinct systemic risk measures. In the second chapter, I propose a new multivariate

econometric strategy for examining the spillover of volatility — the most fundamental risk measure.

The asymptotic theory of the testing strategy is established under regularity conditions. The

chapter includes an extensive simulation study to confirm the finite sample performance of the

proposed econometric strategy and an empirical study based on the new test to examine volatility

spillover between the North American and European financial markets before and after the Brexit

referendum. In the third chapter, I consolidate the comprehensive literature on Granger causality

methods, and I apply the unified methodology to examine different components of risk spillover

between international crude oil and the Chinese equity markets that are fuel intensive. This unified

analysis disentangles the complex oil-equity nexus to find that it has been nontrivially related to

various factors such as demand and supply of oil, economic growth rate, government subsidies

and the Chinese oil pricing reformation.





INTRODUCTORY REMARKS

This dissertation centres on the modelling and testing of financial risk. I derive from the central

topic three pieces of self-contained research papers — composed as the dissertation chapters —

covering different aspects of risk in finance with their economic and policy implications.

Chapter 1 focuses on modelling systemic risk and testing for its risk factors, where systemic

risk can be regarded as the risk an entity poses to the financial system. To quantify systemic risk,

I summarise the existing literature to obtain four widely used methods: the delta conditional

value-at-risk (∆CoV aR), the marginal expected shortfall (MES), the systemic expected shortfall

(SES) and the systemic risk measure (SRI SK ). I then exclude the MES because it captures largely

the market beta instead of systemic risk (see, e.g., Benoit et al., 2017). Since SES is closely related to

MES, the chapter therefore focuses on modelling the ∆CoV aR and SRI SK systemic risk proxies.

Besides, I include in the chapter various factors that could potentially affect systemic risk such

as size and interconnectedness. Additionally, I construct a shadow indicator based on the lesser

known risky practice of shadow insurance. This shadow activity deserves public attention and

scrutiny because it is exploited by leading insurance entities to increase risk exposure (see, e.g.,

Koijen and Yogo, 2016). Naturally, I construct a representative dataset covering global insurance

entities and their shadow activities. Based on the data universe, I estimate ∆CoV aR and SRI SK to

find that both measures are able to capture the well-known financial crises, with ∆CoV aR being

relatively more reactive to the period of US subprime crisis in 2008–2009 while SRI SK being more

responsive towards the period of UK Brexit in 2016. My findings highlight the distinctive features

between the two systemic risk measures. This is expected because the two measures are unique by

construction: ∆CoV aR is a function of value-at-risk whereas SRI SK is based on expected shortfall.

As a result, they capture different aspects of risk in the financial system. In testing for the factors

driving systemic risk, I use both measures for rigour. My panel analysis suggests that the shadow

indicator is one of the key determinants that increases systemic risk. This finding is robust across

both measures. The conclusion in this chapter implies that the practice of shadow insurance does

affect financial stability, and calls for new policies to regulate this risky activity.

The application of the systemic risk measures discussed in Chapter 1 is limited to cases where

risk is transmitted or spilled in a single direction. In the absence of prior information, it is appro-
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priate to first determine the direction of risk spillover. Therefore, in Chapter 2 I propose a novel

(bi)directional test for volatility spillover, where volatility spillover is defined using the notion of

Granger causality in variance. By definition, there is evidence of volatility spillover from X to Y

if any of the past variances of X is able to predict the current variance of Y . The chapter focuses

on volatility since it is the most fundamental risk measures. The new test can handle markets

consisting of multiple countries such as the North America and European Union markets. The

proposed test can be viewed as the multivariate generalisation of the univariate results in Hong

(2001). To compute the test statistic, conditional volatility has to be first estimated. Because

modelling volatility can be challenging in the higher dimension, I further provide a new nonpara-

metric specification to facilitate the estimation of volatility and hence the computation of my test

statistic. The new model can be viewed as an extension of the Constant Conditional Correlation

(CCC) model in Bollerslev (1990), where I propose to use the general infinite order autoregressive

conditional heteroskedasticity [ARCH(∞)] process to minimise the risk misspecification. In terms

of estimation, the chapter proposes consistent least-squares estimators which are free from the

complications of their likelihood-based counterparts such as convergence issue. Moreover, I

develop the asymptotic theory of the new approach. An extensive simulation study shows that the

proposed method has reasonable finite sample performance in the higher dimension. The chapter

completes with an empirical study in which I apply the new method to examine spillover relations

between the North American and European equity markets before and after the Brexit referendum.

Other practical applications of the new approach include the identification of risk transmitters

and recipients in the financial system, which could assist policymakers to shape targeted policies

to protect vulnerable risk recipients whenever necessary.

Although volatility is considered the most fundamental risk measure, the causality literature

has proposed other methods to capture different components of financial risk spillover where

each component has its own interest (see, e.g., Candelon and Tokpavi, 2016; Du and He, 2015;

Hong, 2001; Hong et al., 2009). This calls for a unification. In Chapter 3 I consolidate the extensive

literature on causality tests to show that various forms of spillover can be examined. The unified

framework allows examining spillovers in the mean, variance, risky quantiles (both positive and

negative) and distribution, where each element uncovers a unique relation. The causality-in-mean

analysis reveals return spillover, whereas the presence of variance causality can be viewed as

volatility spillover. The causality-in-risk analysis detects the existence of extreme risk spillovers

and it covers both positive and negative relations. The long-term spillover effects can be evaluated

by the causality-in-distribution examination. Because all of the analyses are based on causality

methods within the same family, inferential biases due to methodological disparities are minimised.

I apply the unified methodology to study spillover relations between international crude oil and the

Chinese oil-intensive industries. I use subsample analysis to study changes in spillover nexus after

the Chinese domestic oil reformation in 2013. My findings highlight that government intervention

may distort the spillover relations between the Chinese sectors and global oil. For instance, my

analysis suggests that the Chinese industries are not significantly affected by extreme international
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oil price movement before the reformation because domestic oil price in China is capped and

strictly regulated by its central government. Consequently, the Chinese sectors are mostly shielded

against large fluctuations in global oil price. As the Chinese markets become more exposed to

international oil after the reformation, extreme negative returns of global oil benefit most oil-

intensive sectors while positive outlook in Brent adversely affect most the industries. The findings

in this chapter encourage policymakers to be cautious when implementing similar regulations in

the future because they may distort statistical relations on an international level.





CHAPTER 1

THE CONTRIBUTION OF SHADOW

INSURANCE TO SYSTEMIC RISK*

1.1 Introduction

The main objective of this paper is to assess the contribution of shadow insurance to systemic risk

of the global financial sector. To this aim, we use a sample of 215 public insurance entities across

40 countries over the period 2004–2017. To detect shadow activities, we examine all reinsurance

agreements from the Schedule S filings. To measure interconnectedness between the insurance

and banking sectors, we analyse an additional sample of 745 traditional banks. On the basis of both

delta conditional value-at-risk (∆CoV aR) and systemic risk measure (SRI SK ), we find statistically

significant evidence that the practice of shadow insurance affects the stability of global financial

system.

In recent years, the financial stability literature has proposed a large number of systemic risk

measures. A comprehensive review is provided by Benoit et al. (2017), who distinguish measures

that study sources of systemic risk from global approaches that could support a more efficient

regulation. The prominent global measures are the ∆CoV aR of Adrian and Brunnermeier (2016),

the SRI SK of Acharya et al. (2012) and Brownlees and Engle (2017), the marginal expected shortfall

(MES) and systemic expected shortfall (SES) of Acharya et al. (2017). These measures have been

used extensively to identify determinants that drive systemic risk, with more emphasis on the

banking sector. For instance, López-Espinosa et al. (2012) use ∆CoV aR to study a sample of 54

large international banks to find that short-term wholesale funding increases systemic risk. Adrian

and Brunnermeier (2016) study the systemic relevance of all publicly listed financial entities in the

United States to find that leverage, maturity mismatch and size are the main drivers of systemic

*A research article (joint with C. Bellavite Pellegrini and G. Urga) based on the results in this chapter entitled “The
contribution of shadow insurance to systemic risk” has been published in the Journal of Financial Stability (2020), vol.
51, p. 100778/1–12. https://doi.org/10.1016/j.jfs.2020.100778.

https://doi.org/10.1016/j.jfs.2020.100778
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risk. Brownlees and Engle (2017) employ SRI SK to find that major banks such as Bear Stearns,

Fannie Mae, Freddie Mac, Lehman Brothers and Morgan Stanley play a significant role in systemic

risk contribution. Using both ∆CoV aR and SRI SK , Laeven et al. (2016) study a panel of 412 large

banks from 56 countries to find that systemic risk grows with bank size. Abedifar et al. (2017)

combine both Islamic and conventional financial entities to find that traditional banks with Islamic

windows are highly interconnected during the subprime financial crisis.

The aforementioned literature revolves around the financial sector or the banking industry,

with minimal emphasis on the insurance sector. Traditionally, insurance entities are not deemed to

be of systemic relevance to destabilise the greater financial system. Unlike banks, insurers are not

subject to a bank run and therefore do not face the potential of sudden liquidity risk. However, the

bailout of American Insurance Group (AIG) in 2008 suggests otherwise. Using MES, SRI SK and

∆CoV aR , Bierth et al. (2015) analyse the exposure and contribution of 253 international insurance

entities to systemic risk between 2000 and 2012. The authors find that interconnectedness with the

financial system increases insurers’ systemic risk exposure and highly levered entities contribute

more to systemic risk. The authors, however, do not address the role played by shadow insurance.

The risk profile of insurance entities becomes increasingly complicated when they practice

shadow insurance to move blocks of liability to affiliated reinsurers. Koijen and Yogo (2016) define

shadow insurance as “reinsurance ceded to affiliated and unauthorised reinsurer without A.M. Best

rating”. In this paper, we adopt a more stringent definition by also considering Fitch, Moody’s

and S&P ratings. In a typical shadow insurance deal, a parent insurance entity first sets up a

“captive” subsidiary, which is essentially a shell company that is often located offshore with a looser

reserve requirement. The shell entity is usually unauthorised to sell insurance to third parties,

and its primary function is to re-insure the parent company. Next, an operating entity belonging

to the company group cedes a portion of existing liability to the subsidiary. Consequently, the

insurance group can reduce its risk-based capital to underwrite more contracts. By practising

shadow insurance, a “shadow insurer” could increase its risk exposure to drive potential return. We

define shadow insurer as the ultimate parent company of an insurance group practising shadow

insurance.

Lawsky (2013) describes shadow insurance as “a little-known loophole that puts insurance

policyholders and taxpayers at greater risk”, and suggests that the practice of shadow insurance

could disrupt the stability of the entire financial system. Schwarcz (2015) conjectures that shadow

insurance could increase the interconnectedness between the insurance and banking sectors, thus

driving systemic risk. Using A.M. Best rating of insurance entities, Koijen and Yogo (2016) propose

a theoretical framework to estimate the term structure of default probabilities of a company

practising shadow insurance. Under plausible assumptions, the authors show that an entity using

shadow insurance is three and a half times more likely to default over ten years. Koijen and Yogo

(2017) document that a large portion of shadow insurance is funded through letters of credit, which

is mostly written by banks. These documentations suggest further that there is a remarkable level
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of interconnectedness between the shadow insurance business and the entire banking system,

which raises systemic concern.

In this paper, we empirically examine the contribution of shadow insurance to systemic risk of

the global financial industry. To this aim, we collect all reinsurance agreements from the National

Association of Insurance Commissioners (NAIC) Schedule S filings to identify 29 publicly listed

shadow insurers. We also document that about 2.8 cents every dollar ceded were shadow in 2004

with the amount growing substantially to 21 cents every dollar in 2017. For a global study, we

include all publicly listed insurance entities across the world as our main sample. To measure

the interconnectedness between our sample insurers and the banking industry, we employ the

principal component measure proposed by Billio et al. (2012). In particular, we compute the

interconnectedness between our main sample and the banking system by further considering all

publicly listed banks available in Datastream.

In terms of systemic risk measures, we employ the prominent global measures ∆CoV aR of

Adrian and Brunnermeier (2016) and SRI SK of Acharya et al. (2012) and Brownlees and Engle

(2017). We do not use the MES measure because it is proportional to market beta that captures only

systematic risk (Benoit et al., 2017, p. 136–137). Conversely, SRI SK is less related to beta because it

also depends on the debt and market capitalisation of an entity. Although Benoit et al. (2017) show

that the dynamics of ∆CoV aR matches value-at-risk (V aR) in the time series dimension, there is

only a weak relationship between them in the cross-sectional dimension. An entity might not be

risky individually with a low V aR , but it could be of significant systemic relevance as indicated by a

high ∆CoV aR . On the one hand, ∆CoV aR measures the V aR of the financial system, conditional

on an insurer being in distress. On the other hand, SRI SK evaluates the expected shortfall (ES) of

an insurance entity, conditional on a distressed financial system.

Both ∆CoV aR and SRI SK measures quantify the contribution of an entity to systemic risk of

the financial system. However, Benoit et al. (2013) show that ∆CoV aR and SRI SK do not provide

similar systemic rankings unless under certain strict conditions such as the correlation with the

financial system of riskier insurers is always higher than that of less risky entities. Moreover, Zhang

et al. (2015) find that ∆CoV aR is more reactive to the subprime financial crisis than other popular

measures including SRI SK . To accommodate the distinct features of the employed measures,

we analyse both the full sample period and a subsample that focuses on the period of financial

distress.

From the descriptive statistics, we find that shadow insurers are typically larger, riskier, more

interconnected with other market participants and more likely to contribute to financial instability

compared with non-shadow entities. Next, we perform panel analyses to examine the hypothesis

that the practice of shadow insurance increases systemic risk of the global financial system, after

controlling for factors such as the magnitude of shadow insurance, size of the entity and its degree

of interconnectedness with the banking system. In line with the theory and regulatory expectations,

our findings confirm the pivotal role played by size and interconnectedness in the spreading of

systemic risk. We also find that the practice of shadow insurance increases systemic risk, with
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∆CoV aR showing a stronger effect during distress period and SRI SK suggesting a more profound

long-run impact. Overall, our results suggest that shadow insurance poses non-trivial risks to the

financial system, which confirms the main hypothesis of the paper.

The remainder of this paper is organised as follows. In Section 1.2, we describe the data

and methodology used in the study. Section 1.3 presents the results of our analysis. Section 1.4

concludes.

1.2 Data, variables and methodology

In this section, we present the procedures outlining the preparation of our dataset and the detection

of shadow activities. We describe the formulation of our systemic risk measures, which serve as

the main dependent variables, and introduce the explanatory and control variables involved in the

study. Finally, we summarise all of the variables.

1.2.1 Data preparation

We select all public and active insurance entities that are available in Datastream. Next, we select

entities that are continuously listed between the first quarter of 2004 (2004Q1) and the fourth

quarter of 2017 (2017Q4), leading to a total of 56 quarters for the analysis. We focus on primary

issues and therefore we exclude secondary listings from the selection. Insurers with unavailable

share price and total asset data are omitted. Insurance entities with zero share price data are

further excluded. We also exclude entities whose daily share price does not fluctuate for more than

a quarter. With this filter, we obtain a sample of 215 insurers across 40 countries. Missing data

points of a few entities are estimated using the nearest observation. Lastly, we collect the data

in US dollar to minimise potential bias due to currency risk. In Table 1.1, we report the number

of entities by country in our main sample. Given that United States is the leading country in the

global financial industry, it is not surprising that its entities make up about a quarter of our sample.

The names and Datastream Mnemonics of the full sample are reported in the Appendix. Fig. 1.1

plots the market capitalisation of our sample. We observe that the global insurance industry was

growing steadily until the subprime mortgage crisis in 2008 that saw a sharp decline in the market

value of the sector. After the financial crisis, the industry remained stagnant for a few years, and it

began to grow gradually from 2012.

1.2.2 Shadow insurance

To detect shadow insurance, we collect current and past reinsurance agreements from the Schedule

S filings, available to us through Market Intelligence, a data provider owned by S&P Global. As

of April 2018, we have collected a total of 195,717 reinsurance contracts. In each agreement,

we observe the name of the operating entity, the name of the ultimate parent company of the
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Table 1.1 Sample composition

Country # Entities Country # Entities

Australia 4 Kenya 1
Austria 2 Korea, Republic of 7
Belgium 1 Malaysia 6
Bermuda 8 Malta 1
Brazil 1 Mexico 2
Canada 10 Morocco 2
Chile 2 Netherlands 2
Cyprus 2 New Zealand 1
Denmark 2 Norway 1
Egypt 1 Pakistan 8
Finland 1 Singapore 4
France 5 South Africa 5
Germany 9 Spain 2
Greece 1 Sri Lanka 3
Hong Kong 2 Switzerland 7
India 3 Taiwan, Province of China 9
Ireland 1 Thailand 8
Israel 8 Turkey 5
Italy 6 United Kingdom 9
Japan 2 United States 61

NOTES: The table reports the number of insurance entities by country in our international sample. Data source: Datastream.

operating entity, the name of the reinsurer and the amount of reinsurance ceded to the reinsurer.1

Moreover, we observe whether the reinsurance is authorised, whether the reinsurer is affiliated

with the ceding entity and whether it is rated.2

Fig. 1.2 summarises the growth of the reinsurance industry. We observe that reinsurance has

become increasingly popular in the insurance sector as a practice to transfer risks and liabilities

to other parties. The amount grew nearly two and a half times from about $550 billion in 2004 to

about $1300 billion in 2017. Fig. 1.3 reveals the dollar amount of shadow insurance ceded in the

industry. We observe an upward trend in the practice of shadow insurance, growing considerably

from about $15 billion in 2004 to over $250 billion in 2017. In particular, about 2.8 cents every

dollar ceded was shadow in 2004 with this figure rising significantly to 21 cents every dollar in 2017.

Overall, we observe a substantial increase in the practice that is used to artificially boost risk-based

capital buffers reported to the regulators.

Fig. 1.4 disentangles shadow insurance practised by those belonging to a public parent com-

pany from the non-public counterpart. The plot reveals that a large portion of shadow insurance

business involves entities that belong to publicly listed shadow insurers. This finding conveniently

allows us to analyse the balance sheet data of these shadow insurers using prominent global

systemic risk measures such as ∆CoV aR and SRI SK to evaluate the impact of shadow insurance

on global financial stability. In the following, we refer to publicly listed shadow insurers simply as

shadow insurers.

1Following Koijen and Yogo (2016), we define reinsurance ceded as the sum of reserve credit taken and modified
coinsurance reserve ceded.

2An authorised reinsurer is subject to the same capital requirement as the ceding entity.
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Figure 1.1 Market capitalisation. The figure displays the market capitalisation of our sample of
215 insurers over the period 2004Q1–2017Q4, in billion US dollar. Data source: Datastream.
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Figure 1.2 Total reinsurance ceded. The figure displays the growth of the reinsurance industry over
the period 2004–2017, in billion US dollar. Data source: Market Intelligence.

We identify a total of 29 shadow insurers by scrutinising every reinsurance agreement from the

Schedule S filings for the period 2004–2017.3 We report the names of these shadow entities, their

corresponding locations and the extent to which they are involved in shadow insurance in Table

1.2. Particularly, we compute the shadow index to measure how aggressive an entity participates

in shadow activity. The shadow index is computed as the ratio of total shadow insurance to the

average reserve held. A high shadow index suggests high aggressiveness as the shadow activities

3In the main analysis, we omit 7 of the 29 shadow insurers due to them being relatively new companies and lack
sufficiently long historical data. The omitted entities are Brighthouse Financial, Inc., Dai-ichi Life Holdings, Inc., FGL
Holdings, Genworth Financial, Inc., National General Holdings Corporation, Primerica, Inc. and Voya Financial Inc.
Although Voya Financial Inc. was recently listed in 2013, the entity was an operating subsidiary under ING Group. Hence,
we include ING Group as shadow insurer to obtain 23 shadow insurers in total. The magnitude of shadow insurance
practised by the omitted entities is relatively small, and we keep a significant portion of shadow insurance in the analysis.
Specifically, the omitted amount represents 6.7% of the total shadow insurance.
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Figure 1.3 Shadow insurance. The figure displays the growth of shadow insurance activity over the
period 2004–2017, in billion US dollar. Data source: Market Intelligence.

have been carried out with a low insurance reserve on average. For instance, although the dollar

amount of shadow insurance practised by MetLife, Inc. ($238,144 million) is higher than Unum

Group ($181,381 million), the latter, however, has been engaging the shadow business with higher

risk exposure. This is revealed by a shadow index of 4154 from Unum Group compared with 700

from MetLife, Inc.

1.2.3 Dependent variables: ∆CoV aR and SRI SK

The ∆CoV aR measure of Adrian and Brunnermeier (2016) makes use of the value-at-risk (V aR).

The q%-V aR is the expected maximum dollar loss within the q% confidence level. Formally, the

q%-V aR of an entity i , denoted by V aRq
i is given by:

P(Xi 6V aRq
i ) = q%, (1.1)

where Xi is the stock return of entity i . We employ historical simulation method to estimate V aRq
i .

In particular, we compute V aRq
i for a given quarter t using daily stock returns observed in that

quarter, scaled using the root-T rule. The computation is repeated for every quarter to obtain a

time-varying quarterly V aRq
i t series.

Next, CoV aR is defined as the V aR of the financial system conditional on some event C (Xi )

on entity i . Formally, CoV aRq
m|C (Xi ) is defined by the q-th quantile of the conditional probability

distribution:

P
(

Xm |C (Xi )6CoV aRq
m|C (Xi )

)
= q%, (1.2)
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Figure 1.4 Shadow insurance (public) vs shadow insurance (non-public). The figure displays the
amount of shadow insurance practised by entity belonging to a public company vs non-public
company over the period 2004–2017, in billion US dollar. Data source: Market Intelligence.

where Xm is the return of the global financial system, computed using the MSCI World Financials

Index.4 An entity’s contribution to systemic risk is measured by ∆CoV aR, namely the difference

between CoV aR conditional on the entity being in distress and CoV aR in the median state of the

entity. As far as the estimation method is concerned, we follow Adrian and Brunnermeier (2016) to

employ quantile regressions to estimate CoV aR.

The estimate of the q%-quantile of Xm given the value of Xi is given by:

X̂ q
mt |Xi t

= α̂q
i + β̂q

i Xi t , (1.3)

where α̂q
i and β̂

q
i are obtained by performing q%-quantile regression of Xmt on Xi t . From the

definition of V aR in (1.1), we have that:

V aRq
mt |Xi t

= X̂ q
mt |Xi t

. (1.4)

Using predicted value of Xi t = V aRq
i t yields the CoV aRq

i t measure. More formally, within the

quantile regression framework, the CoV aRq
i t measure is:

CoV aRq
i t =V aRq

mt |Xi t=V aRq
i t

= α̂q
i + β̂q

i V aRq
i t . (1.5)

The ∆CoV aR of entity i for a given quarter t is given by:

∆CoV aR i t =CoV aRq
i t −CoV aR50

i t = β̂q
i (V aRq

i t −V aR50
i t ). (1.6)

4Our conclusions remain unchanged if we use an alternative FTSE World Financials Index. See Appendix 1.A.2.
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Table 1.2 Shadow insurers

Shadow insurer Country Shadow Shadow
insurance index

AEGON N.V. Netherlands 68,287.88 499.647
Allianz Group Germany 1,748.39 3.125
American International Group, Inc. United States 68,460.47 204.889
AXA France 100,183.64 184.810
Brighthouse Financial, Inc. United States 2,109.62 -
Centene Corporation United States 13.64 10.056
Chubb Limited Switzerland 6.73 0.133
Cigna Corporation United States 0.45 0.018
Dai-ichi Life Holdings, Inc. Japan 8,590.69 -
FGL Holdings United States 7,720.02 -
Genworth Financial, Inc. United States 13,994.92 -
Legal & General Group Plc United Kingdom 15,154.48 60.311
Lincoln National Corporation United States 63,208.69 766.231
Manulife Financial Corporation Canada 831,154.11 5262.104
MetLife, Inc. United States 238,144.41 700.263
National General Holdings Corporation United States 0.01 -
Primerica, Inc. United States 26,166.18 -
Prudential Financial, Inc. United States 13,306.91 48.574
Prudential Plc United Kingdom 0.49 0.001
Reinsurance Group of America, United States 15,500.06 1076.965
Incorporated
SCOR SE France 113.08 4.341
Security National Financial Corporation United States 0.11 0.276
Sun Life Financial Inc. Canada 30,496.34 368.483
Swiss Re AG Switzerland 37,335.80 279.541
Tokio Marine Holdings, Inc. Japan 23.23 0.181
Torchmark Corporation United States 33,341.90 3276.872
Unum Group United States 181,380.69 4153.791
Voya Financial, Inc. United States 64,801.15 -
Zurich Insurance Group AG Switzerland 23,667.59 126.654

NOTES: The table displays the names of shadow insurers and the corresponding countries they are located. Besides, the table reports
the amount of shadow insurance practised (in million US dollar), aggregated over 2004–2017. The shadow index is the ratio of total
shadow insurance to the average quarterly reserve held. We do not report the shadow index of some entities as these entities are
subsequently dropped in the analysis due to data availability. Data source: Market Intelligence.

To simplify the notation, in the following q is always set to be 5%, so that CoV aRi t identifies the

system losses predicted on the 5%-V aR of entity i , while ∆CoV aR i t identifies the deterioration in

the system, when entity i moves from its median state to its 5% worst scenario.

The SRI SK measure of Acharya et al. (2012) and Brownlees and Engle (2017) is based on the

notion of expected shortfall (ES). Formally, the conditional ES of a system with N financial entity

at time t is defined as:

ESmt =−
N∑

i=1
wi tEt−1

[
Ri t |Rmt <C

]
, (1.7)

where C is a threshold, and it is set to be the worst 5% daily return of the global financial system

Rmt in each quarter, Ri t is entity i ’s stock return, and wi t is the weight of entity i . As in ∆CoV aR,

we use the return of MSCI World Financials Index as a proxy for Rmt . Next, the daily marginal

expected shortfall (MES) is given by the partial derivative of the system expected shortfall ESmt
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with respect to the weight of entity i :

MESi t = ∂ESmt

∂wi t
=−Et−1

[
Ri t |Rmt <C

]
. (1.8)

Subsequently, the quarterly systemic risk measure SRI SK (in dollar) is given by:

SRI SKi t = kDi t − (1−k)Wi t (1−LRMESi t ), (1.9)

where k is the prudential capital fraction, Di t is the book value of debt, Wi t is the market value

of equity, and LRMESi t stands for long-run MESi t . Following Brownlees and Engle (2017), we

set k to be 8%. We approximate LRMESi t using LRMESi t ≃ 1− exp(−18MESi t ) following the

suggestion of Acharya et al. (2012). The contribution of entity i to SRI SK is given by:

SRI SK %i t = (SRI SKi t )+∑N
i=1(SRI SKi t )+

, (1.10)

where (x)+ denotes max(x,0).

1.2.4 Explanatory variables

In this subsection, we present all explanatory variables used in this study.

Shadow indicator

To measure the impact of shadow insurance, we construct the following indicator:

Shadowi t (SIi t ,T Ri t ) =
SIi t /T Ri t if SIi t > SI0,

0 otherwise,
(1.11)

where SIi t is the amount of shadow insurance practised by entity i at time t ; and T Ri t is the total

insurance reserve entity i has at time t which serves as the scaling variable.5 A large value of

Shadowi t is an indication of high risk because it means that insurer i is heavily engaged in shadow

insurance with little reserve, at time t .6 Finally, SI0 is set to be zero as we are interested in all the

shadow insurance deals regardless of the dollar amount.

Size and interconnectedness

We include size and interconnectedness in the analysis as these regulatory metrics are often criti-

cised for being the leading factors driving systemic risk. As a proxy for size, we use the log of total

market equity for each entity divided by the log of the cross-sectional average of market equity

5Note that we observe shadow insurance and total reserve on the yearly and quarterly basis, respectively. To solve the
mixed frequency problem, we create quarterly SIi t by taking the simple average of annual shadow insurance.

6Replacing total reserve with total assets does not alter our conclusions. See Appendix 1.A.2.
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following Adrian and Brunnermeier (2016).7 The default of a large financial institution might

create a domino effect leading to the failure of other entities in the financial system. Thus, we

expect size to be positively related to systemic risk.8

To measure the interconnectedness of our sample insurers with the banking system, we use

the principal component approach proposed by Billio et al. (2012). For a given quarter, we let

σ2
i denotes the variance of entity i ’s daily return. We then denote Zi as the standardised daily

stock returns of entity i and V = Cov(Zi , Z j ) as the covariance matrix of the standardised daily

returns across a total of N financial entities.9 Next, we decompose matrix V by means of principal

component analysis to obtain eigenvalues λ1, ...,λN , and a matrix L = (Li k )i k that contains the

eigenvectors of V . The variance of the system is given by:

σ2
s =

N∑
i=1

N∑
j=1

N∑
k=1

σiσ j Li k L j kλk . (1.12)

The univariate measure (in logarithm) of an entity’s interconnectedness with the system is given

by:

PC ASi ,n = log

( n∑
k=1

σ2
i

σ2
s

L2
i kλk

∣∣∣
hn>H

)
, (1.13)

where hn = ∑n
k=1λk

/∑N
k=1λk . Following Billio et al. (2012), H is set to be 0.33. In general, the

literature agrees that a high degree of interconnectedness with the financial system increases an

entity’s systemic relevance. We therefore expect this variable to be positively related to systemic

risk.10

Insurer-specific control variables

In addition to the main explanatory variables, we include insurer-specific features as control

variables. However, some insurers do not report the control variables needed for our analysis.

Specifically, 13 entities do not report loss ratio; 11 insurers do not report total reserves; 5 entities do

not report total operating expenses; 2 insurers do not report return on assets; and 8 entities do not

report return on equity. These missing series are estimated using the cross-sectional average.

To control for entity idiosyncratic risk, we use both V aR defined in (1.1) and leverage.11 Clearly,

the former is more related to ∆CoV aR, whereas the latter is more relevant for SRI SK because

SRI SK is a function of debt and market value of equity. Indeed, our empirical analysis shows

that leverage and V aR are often redundant in the regression of ∆CoV aR and SRI SK , respectively.

Therefore, we include according V aR in the analysis of ∆CoV aR and leverage in the regression of

7Our conclusions remain unaltered if we replace total market equity with total assets. See Appendix 1.A.2.
8See, e.g., Adrian and Brunnermeier (2016), Bierth et al. (2015), Huang et al. (2012) and Laeven et al. (2016).
9We consider an additional of 745 banks worldwide available on Datastream for the computation of interconnected-

ness between our main sample and the banking system. This leads to a total of N = 960 financial entities.
10See, e.g., Billio et al. (2012), Cai et al. (2018), Drehmann and Tarashev (2013), Koijen and Yogo (2017) and Schwarcz

(2015).
11We thank an anonymous referee for this suggestion.
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SRI SK for parsimony. To proxy for leverage, we follow Acharya et al. (2017) to use the book value

of assets net book value of equity plus the market value of equity, divided by the market value of

equity.

We also include other insurer features previously studied by Bierth et al. (2015) as control

variables. We use debt maturity which is computed using long-term debt divided by total debt to

control for the financial health of an entity.12 To control for insurance portfolio quality, we include

the loss ratio. Loss ratio is computed by adding claim and loss expenses plus long term insurance

reserves, divided by premiums earned. We use market-to-book ratio as another control variable

to capture market’s perception of an entity’s value, calculated using the ratio between the market

value of equity and book value of equity. To control for manager quality, we include expense ratio

that is computed as the ratio of operating expenses to total book assets. We use other income to

control for the degree to which an insurer engages in non-traditional and non-insurance activities.

As a proxy for profitability of the insurance entity, we employ the conventional return on assets

(RoA).13

1.2.5 Descriptive statistics

Given the evidence in Zhang et al. (2015) that the extent to which ∆CoV aR and SRI SK react

to economic downturn vary, we conduct our analysis over two periods: The full sample period

and a subsample that focuses on financial distress. In particular, our subsample spans from

2006Q1 to 2011Q2, covering both the United States subprime mortgage crisis and the European

great depression. We begin from 2006 because there exists evidence suggesting that is when the

accumulation of risk leading to the subprime financial crisis started (see, e.g., Dou et al., 2014;

Garriga and Hedlund, 2020). The most notable spillover effect from this crisis is the economic

depression in Europe, with Greece being one of the hardest hit countries (Ureche-Rangau and

Burietz, 2013). From November 2009 to April 2010, the spread of Greek bonds over German ones

increased by an astonishing 451 basis points (Arghyrou and Tsoukalas, 2011). Finally, the credit

rating of Greece was downgraded by S&P to its lowest rating in 2011Q2, which marks the end of

our subsample.

Table 1.3 summarises the quarterly variables for both sample periods. Note that a low (high)

∆CoV aR (SRI SK ) estimate is the indication of systemic risk relevance. Besides, we summarise

the positive dollar term of SRI SK for ease of comparison with the literature. For the full sample

period, the mean estimate of ∆CoV aR yields -0.14 with a maximum and a minimum of 0.16

and -1.77, respectively. We observe that the average ∆CoV aR estimate is closer to its maximum

than its minimum, suggesting fat tail on the left side of the distribution. This is confirmed by a

skewness estimate of -3.29, indicating that the systemic importance of average insurers is less

significant economically than certain entities, over a certain period of time. The descriptive

12Among all observations for debt maturity, 21 are erroneous (lager than one), and we replace them with the value of
one.

13Replacing return on assets with return on equity does not alter our conclusions. See Appendix 1.A.2.
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statistics for SRI SK over the entire sample period yield similar pattern. The mean estimate of

SRI SK is $2.5 million with a positive skewness of 6.65, highlighting that on average, certain

insurance entities significantly contribute more to financial instability, at certain points in time.

During the period of financial distress, the mean estimates of ∆CoV aR (-0.17) and SRI SK ($2.7

million) are, respectively, lower and higher than their full sample counterparts. This is expected

because systemic risk measures should reflect the financial downturn, though the average SRI SK

is relatively less sensitive to the event. Overall, the descriptive statistics of the distress period show

similar pattern to those obtained under the full sample.

Table 1.3 Descriptive statistics

Mean Std. dev. Min Max Skew. Kur.

Full period (2004Q1–2017Q4)

∆CoV aR -0.1400 0.1139 -1.7713 0.1637 -3.2869 24.9535
SRI SK (in billions) 0.0025 0.0098 0.0000 0.1619 6.6536 62.2597
Shadow 0.0014 0.0098 0.0000 0.1855 9.9587 116.4354
Si ze 0.9111 0.1018 0.5558 1.1528 -0.1726 2.2689
Inter connectedness -10.5645 1.2537 -18.7689 -4.7360 -0.8222 5.9034
V aR -0.2832 0.2144 -4.0539 0.0000 -3.9369 34.1056
Lever ag e 8.3289 10.5084 1.0066 298.0079 7.4118 128.9634
Debt matur i t y 0.7885 0.3400 0.0000 1.0000 -1.5208 3.7719
Loss r ati o 159.0058 1869.8982 -1097.2800 79649.2800 34.7699 1313.3755
M ar ket to book 1.6024 1.2586 -5.9023 22.5108 3.4185 25.0726
Oper ati ng expenses 2.2513 113.7546 -0.5462 9027.2415 76.4974 5914.9003
Other i ncome 0.0155 1.4927 -0.4524 162.0860 106.6433 11550.5592
Ro A 2.5750 16.8849 -919.1300 1056.2500 24.6892 3060.3365

Distress period (2006Q1–2011Q2)

∆CoV aR -0.1725 0.1473 -1.7713 0.1564 -3.0127 18.6358
SRI SK (in billions) 0.0027 0.0113 0.0000 0.1619 6.7317 60.2114
Shadow 0.0011 0.0094 0.0000 0.1855 11.5949 158.9202
Si ze 0.9113 0.1022 0.6587 1.1497 -0.1639 2.2449
Inter connectedness -10.6507 1.3150 -18.7689 -5.5103 -1.1110 6.2675
V aR -0.3463 0.2591 -4.0539 0.0000 -3.2934 24.5015
Lever ag e 8.2505 12.4927 1.0232 298.0079 9.5724 157.1713
Debt matur i t y 0.7867 0.3440 0.0000 1.0000 -1.5130 3.7186
Loss r ati o 89.1225 123.9234 -1097.2800 1928.9600 7.6980 110.5074
M ar ket to book 1.6673 1.2767 -0.7595 13.1590 2.9601 16.5473
Oper ati ng expenses 1.1155 15.3583 -0.2476 357.5246 15.9248 268.4476
Other i ncome 0.0340 2.3570 -0.3863 162.0860 68.7305 4725.9244
Ro A 2.6214 6.9056 -55.9100 111.7700 6.7756 113.9995

NOTES: The table reports descriptive statistics of the systemic risk measures ∆CoV aR and SRI SK estimated at quarterly frequency
for a sample of 215 insurance entities worldwide. The positive dollar term of SRI SK is used. Besides, the tables reports descriptive
statistics for the set of quarterly independent variables. We report the mean, standard deviation, minimum, maximum, skewness and
kurtosis. Data source: Datastream and Market Intelligence.

To compare the response of ∆CoV aR and SRI SK , in Fig. 1.5 we plot the time evolutions for

the cross-sectional means of the two systemic risk measures. Focusing on the average of all entities

(solid lines), we observe that∆CoV aR is relatively more reactive to the distress period while SRI SK

exhibits much more resilience. For instance, ∆CoV aR displays the expected spike at the height

of the subprime crisis, while the response from SRI SK is less profound. This is consistent with

Zhang et al. (2015), who find ∆CoV aR to be the most subprime-sensitive among other measures

including SRI SK , based on a diverse group of 240 international financial institutions. We also
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notice that SRI SK is relatively more reactive to other economic events such as the UK’s Brexit

and China’s economic slowdown in 2016. This pattern is in line with Coleman et al. (2018), who

focus on a group of Canadian insurance entities. Next, we disentangle the systemic risk of shadow

insurers (dashed line) from non-shadow insurers (dotted line). We observe that the dashed line is

always lower (higher) than the dotted line for∆CoV aR (SRI SK ), implying that an entity practising

shadow insurance is, on average, more likely to destabilise the financial system. Interestingly, the

SRI SK of shadow insurers is more responsive to financial distress than that of non-shadow entities,

suggesting that the resilience feature of average SRI SK is primarily driven by those entities not

participating in the shadow banking activity.

2004 2006 2008 2010 2012 2014 2016 2018
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

All entities
Shadow entities
Non-shadow entities

(a)∆CoV aR
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All entities
Shadow entities
Non-shadow entities

(b) SRI SK

Figure 1.5 Time evolution of systemic risk. The figures plot the mean quarterly systemic risk
measures ∆CoV aR and SRI SK of all insurers (solid line), shadow insurers (dashed line) and non-
shadow insurers (dotted line), over the full sample period 2004Q1–2017Q4. The positive dollar
term of SRI SK is used.
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To understand the driving forces behind an entity’s systemic relevance, Table 1.4 summarises

several risk-related factors of our sample by periods of study and by whether it uses shadow insur-

ance. For both periods, we observe that entities engaging in shadow insurance are more systemic

relevant than their non-shadow counterparts with the shifts in SRI SK being more profound, as per

Fig. 1.5. Besides, we notice that shadow insurers are, on average, larger and more interconnected

with the financial system. They also carry higher idiosyncratic risk as shown by a lower V aR and

a higher leverage. This is consistent with Benoit et al. (2013), who show that if an entity is more

interconnected with the financial system and exhibits higher idiosyncratic risk, it should be more

systemic relevant irrespective of which of the two systemic risk measures is used. Interestingly,

the leverage of shadow insurers experiences some major upshifts during financial distress, while

that of non-shadow entities encounters a weak opposite alleviation. Because SRI SK is closely

related to leverage, this explains why, in Fig. 1.5, the SRI SK of shadow entities is relatively more

responsive to financial distress than that of non-shadow insurers.

From the descriptive statistics reported thus far, we learn that an entity using shadow insurance

is generally more systemic relevant. Without taking into account the shadow activity’s magnitude

— as measured by the shadow indicator in (1.11) — we cannot yet imply that the practice of shadow

insurance has a direct impact on systemic risk of the financial system. To have an idea about the

relation between shadow activity and systemic relevance, in Fig. 1.6 we plot the shadow indicator

and systemic risk estimates of Manulife, the most active shadow entity in our sample. We observe

that the shadow indicator co-moves with∆CoV aR during financial distress. On the other hand, the

co-movement with SRI SK appears to be stronger in the long run. Overall, the plot suggests that

shadow insurance seems to drive the risk of financial system at various points in time depending

on the employed systemic risk measures. This visual inspection is, of course, unconditional and

specific to the case of Manulife.

1.3 Empirical results

In this section, we evaluate and report the factors driving an entity’s contribution to systemic risk.

First, we report the correlation matrix of the panel variables in Table 1.5. Given the negative (posi-

tive) nature of ∆CoV aRi t (SRI SK %i t ), negative (positive) correlation implies systemic relevance.

We observe a weak but statistically significant correlation between the two systemic risk measures,

in line with the cross-sectional averages in Fig. 1.5. The shadow indicator shows the expected nega-

tive and positive pairwise relations with∆CoV aRi t and SRI SK %i t , respectively. This suggests that,

on average, the practice of shadow insurance poses unconditional risks to the financial system. The

regulatory metrics size and interconnectedness also display the expected signs of correlation with

systemic risk. Most of the control variables show statistically significant pairwise associations with

the systemic risk measures. Table 1.6 reports the correlation matrix focusing on the distress period.

We observe a strengthened absolute correlation between ∆CoV aRi t and SRI SK %i t , suggesting

that they exhibit stronger co-movement during the period of financial distress. The key metrics
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Figure 1.6 Systemic risk and shadow indicator series of Manulife. The figures plot the quarterly
shadow indicator (dashed line) and systemic risk measures ∆CoV aR and SRI SK (solid lines) of
Manulife over the full sample period 2004Q1–2017Q4. The positive dollar term of SRI SK is used.

shadow indicator, size and interconnectedness display the expected stronger correlations with

∆CoV aRi t , but weaker associations with SRI SK %i t . In particular, the decrease in correlation is

more profound for the shadow indicator. Given the increase in co-movement between ∆CoV aRi t

and SRI SK %i t during financial distress, the weaker association between the shadow variable and

SRI SK %i t can be attributed to their stronger long-run correlation, as in the case of Manulife in

Fig. 1.6.

In what follows, we specify a panel model that allows testing for the main hypothesis of the

paper that shadow insurance increases global systemic risk while properly controlling for other
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potential risk factors:

Sy stemi cRi ski t = β0 +β1 Shadowi t−1 +β2 Si zei t−1

+β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1

+αi +ηt +ϵi t ,

(1.14)

where i represents each entity and t represents each quarter; Sy stemi cRi ski t is one of the two

systemic risk measures (∆CoV aRi t and SRI SK %i t ) that quantifies entity i ’s contribution to sys-

temic risk at time t ; Shadowi t−1, Si zei t−1, Inter connectednessi t−1, and Contr ol si t−1 denote,

respectively, the shadow indicator, size, interconnectedness, and the vector of control variables of

entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. We

analyse both full sample and the distress period to investigate the behaviour of our results. We

use both least-squares (LS) and generalised method of moments (GMM) to estimate model (1.14).

The former is straightforward to implement, whereas the latter mitigates concern on possible

endogeneity of regressors. Specifically, the GMM estimation first-differences each variable so as to

eliminate any potential bias that may arise from unobserved entity-specific effects. We perform all

of the analyses with clustered standard errors at both country and time levels. Therefore, our setup

is such that the clustered standard errors allow for observations of multiple entities in a single

country to be dependent for each time period, whereas the inclusion of time dummies correct for

any potentially unobservable time-dependent effects that do not vary across entities.

Table 1.7 reports the estimates of model (1.14) using LS for both ∆CoV aRi t and SRI SK %i t

systemic risk measures. Specification (i) reports the results using ∆CoV aRi t measure for the full

sample period. In line with the theory, we find statistically significant evidence showing an entity

that is highly interconnected with the financial system contributes more to systemic risk. Besides,

size shows the expected negative coefficient and is significant at the 5% level, implying that a

larger entity tends to be more systemic relevant because it contributes more to systemic risk. We

observe that the shadow indicator is negative and statistically significant at the 5% level. This

finding suggests that the practice of shadow insurance increases systemic risk, as we hypothesised.

In particular, an increase in the shadow indicator by one standard deviation leads to a decrease of

0.11% in∆CoV aRi t (0.0098 × -0.1108), in the long run. Specification (ii) reports the analysis results

using∆CoV aRi t for the period of financial distress. Size and interconnectedness continue to play a

crucial role in driving systemic risk. The shadow indicator shows the expected negative coefficient

and is significant at the 1% level. It also displays a higher economic significance: An increase

in the shadow indicator by one standard deviation leads to a decrease of 0.22% in ∆CoV aRi t

(0.0094 × -0.2328). To test whether the impact of shadow insurance is stronger during distress

period, in the full sample analysis we add an interaction term given by the shadow indicator and a

dummy variable that takes the value of one during financial distress.14 The results are reported

in specification (iii). Indeed, we observe a negative and statistically significant coefficient for the

14We thank an anonymous referee for this suggestion.
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interaction variable, suggesting that the practice of shadow insurance has a more pronounced

economic effect during the distress period. Besides, the impact is so significant that the non-

distress period effect diminishes, as implied by the insignificant shadow indicator.

Next, we refer to specifications (iv) and (v) in Table 1.7 that report the regressions of SRI SK %i t

over the full sample and the distress periods, respectively. For both estimation periods, size is

positive and statistically significant, suggesting that a larger entity contributes more to systemic

risk. Interconnectedness also displays the expected positive sign and is significant at the 5%

level. Our shadow indicator shows the expected positive and statistically significant coefficient

for the analysis of both the full sample as well as the distress period. Particularly, a unit standard

deviation increment of the shadow indicator increases SRI SK %i t by 0.20% and 0.12% for the full

sample (0.0098 × 0.1999) and distress period (0.0094 × 0.1324), respectively. We test whether the

shadow variable has a lower impact during the distress period in specification (vi). Interestingly,

the shadow-distress interaction term displays a negative and significant coefficient, implying that

shadow insurance has relatively weaker effect on systemic risk during financial distress. From the

pairwise associations reported in Table 1.5 and Table 1.6, we note that the absolute correlation

between ∆CoV aRi t and SRI SK %i t increases during financial distress. Specifications (i)–(iii) in

Table 1.7 further suggest that shadow insurance has a higher impact on ∆CoV aRi t during the

period of distress. Therefore, the relatively weaker impact on SRI SK %i t from the shadow variable

during financial distress can be attributed to their stronger long-run association that depreciates

other subsample effects. Overall, the analysis of SRI SK %i t provides further statistical evidence

that shadow insurance poses non-trivial risks to the financial system.

Table 1.8 reports the estimates of model (1.14) via GMM for both ∆CoV aRi t and SRI SK %i t

systemic risk measures. First, we follow the conventional procedure by allowing the use of all

possible lagged values of each variable as instruments. Next, we rigorously reduce the number of

instruments as Roodman (2009) shows via simulations the potential detrimental effects on the

Hansen test given an extensive instrument collection. The author also suggests that the Hansen test

should be satisfied with a high p-value to avoid the danger of false positive. In this paper, we carry

out both Hansen and difference-in-Hansen tests, and the p-values of the two tests are well above

the usual rejection level. The former ensures the joint validity of the selected instruments, whereas

the latter assures that instrument exogeneity is satisfied. Finally, we perform the Arellano-Bond

test for second-order serial correlation AR(2) to ensure the validity of our GMM results further.

Specifications (i) and (ii) in Table 1.8 report the analysis results using ∆CoV aRi t as the de-

pendent variable for the full sample and the distress periods, respectively. For both estimation

windows, we find that the regulatory systemic metrics size and interconnectedness yield the ex-

pected negative and significant coefficients; and we observe statistically significant evidence that

shadow insurance poses systemic threat to the global financial sector. In particular, an increase in

the shadow indicator by one standard deviation decreases ∆CoV aRi t by 0.26% and 0.60% for the

full sample (0.0098 × -0.2686) and the distress period (0.0094 × -0.6361), respectively. In specifi-

cation (iii), we observe a negative and significant coefficient for the shadow-distress interaction
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Table 1.7 Regression results: LS estimation

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.1108** -0.2328*** 0.1032 0.1999*** 0.1324*** 0.2288***
(0.0466) (0.0894) (0.0842) (0.0199) (0.0206) (0.0199)

Si zei t−1 -0.0965** -0.1769** -0.0916** 0.0868*** 0.1127*** 0.0874***
(0.0451) (0.0860) (0.0450) (0.0105) (0.0249) (0.0105)

Inter connectednessi t−1 -0.0063*** -0.0108*** -0.0063*** 0.0002** 0.0003** 0.0002**
(0.0017) (0.0035) (0.0017) (0.0001) (0.0002) (0.0001)

V aRi t−1 0.3523*** 0.3731*** 0.3518***
(0.0106) (0.0150) (0.0107)

Lever ag ei t−1 0.0005*** 0.0003*** 0.0005***
(0.0000) (0.0001) (0.0000)

Debt matur i t yi t−1 0.0047** 0.0133*** 0.0047** -0.0065*** -0.0061*** -0.0065***
(0.0021) (0.0050) (0.0021) (0.0010) (0.0014) (0.0010)

Loss r ati oi t−1 0.0000 0.0000** 0.0000 0.0000*** 0.0000 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0020** 0.0033* 0.0020** -0.0006*** -0.0009*** -0.0006***
(0.0008) (0.0019) (0.0008) (0.0001) (0.0002) (0.0001)

Oper ati ng expensesi t−1 0.0003 -0.0529*** 0.0003 -0.0000 -0.0013 -0.0000
(0.0003) (0.0175) (0.0003) (0.0000) (0.0010) (0.0000)

Other i ncomei t−1 0.0132 0.0756 0.0133 0.0016 -0.0002 0.0016
(0.0147) (0.0472) (0.0146) (0.0011) (0.0024) (0.0011)

Ro Ai t−1 -0.0002 -0.0001 -0.0002 -0.0001*** -0.0001*** -0.0001***
(0.0002) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000)

Shadowi t−1 -0.5206*** -0.0704***
×1(Di str ess) (0.2003) (0.0125)

# Observations 9,319 3,642 9,319 9,319 3,642 9,319
# Entities 215 215 215 215 215 215
Adjusted R2 0.8262 0.8298 0.8268 0.8032 0.8763 0.8036

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using LS. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.

variable, suggesting that the impact shadow insurance has on the financial system is economically

more pronounced during the period of distress.

Next, specifications (iv) and (v) report the regressions of SRI SK %i t measure for the full sample

and the distress periods, respectively. For both estimation windows, size and interconnectedness

display the positive and significant coefficients as per our expectation. The coefficient of shadow is

positive and statistically significant for both the analysis of the full period and the financial distress.

In particular, a unit standard deviation increment of the shadow indicator increases SRI SK %i t

by 0.13% and 0.08% for the full sample (0.0098 × 0.1321) and distress period (0.0094 × 0.0817),

respectively. Finally, the interaction variable in specification (vi) provides marginal evidence that

shadow insurance has a more profound impact on systemic risk in the long run.
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To sum up, the regressions of ∆CoV aR and SRI SK via LS provide evidence that the shadow

indicator increases systemic risk in the distress period and the long run. For ∆CoV aR , the effect is

greater during financial distress, whereas SRI SK suggests a more pronounced long-run impact.

The main results are further supported using GMM estimation. Overall, our analyses provide

non-trivial evidence that the practice of shadow insurance affects systemic risk and confirm the

central hypothesis of the paper.

1.4 Conclusions

In this paper, we evaluated the contribution of shadow insurance to systemic risk of the global

financial sector over 2004–2017. We collected 215 international insurance entities from Datastream

that made up our main sample. To identify shadow insurance activities, we scrutinised every

reinsurance agreement from the NAIC Schedule S filings, available to us through Market Intelli-

gence. We identified 29 key shadow insurers, and we found that shadow insurance had become an

increasingly common practice to reduce regulatory capital with the ultimate goal to increase risk

exposure. We documented about 2.8 cents every dollar ceded were shadow in 2004 with the figure

growing significantly to 21 cents every dollar in 2017. We found shadow entities to be generally

riskier, larger, more interconnected with the financial system and more systemic relevant than

their non-shadow counterparts. Our panel analyses provided statistical evidence that the practice

of shadow insurance affected financial stability, with ∆CoV aR suggested a stronger impact during

distress period and SRI SK indicated a more profound long-run effect.
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Table 1.8 Regression results: GMM estimation

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.2686*** -0.6361*** -0.0015 0.1321*** 0.0817*** 0.1613***
(0.0913) (0.2269) (0.0982) (0.0508) (0.0298) (0.0387)

Si zei t−1 -0.2755*** -0.4230*** -0.2517*** 0.0483*** 0.0336*** 0.0552***
(0.0455) (0.1395) (0.0375) (0.0143) (0.0120) (0.0111)

Inter connectednessi t−1 -0.0248*** -0.0374*** -0.0243*** 0.0021*** 0.0022*** 0.0025***
(0.0054) (0.0115) (0.0049) (0.0008) (0.0006) (0.0008)

V aRi t−1 0.3080*** 0.3067*** 0.2974***
(0.0354) (0.0517) (0.0303)

Lever ag ei t−1 0.0007*** 0.0013*** 0.0006***
(0.0002) (0.0002) (0.0002)

Debt matur i t yi t−1 -0.0416** -0.0678* -0.0471*** -0.0084** -0.0131*** -0.0077**
(0.0168) (0.0355) (0.0159) (0.0037) (0.0041) (0.0036)

Loss r ati oi t−1 -0.0000 0.0006 -0.0000* 0.0000 -0.0000* 0.0000
(0.0000) (0.0008) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0421*** 0.0234* 0.0385*** -0.0033* 0.0033 -0.0024*
(0.0140) (0.0141) (0.0121) (0.0017) (0.0028) (0.0014)

Oper ati ng expensesi t−1 -0.0201*** 0.0646 -0.0193*** 0.0432 0.0325 0.0446
(0.0070) (0.1216) (0.0065) (0.0327) (0.0332) (0.0298)

Other i ncomei t−1 -0.4504 0.4478 -0.1678 -1.1212 -0.0356 -1.3696
(1.0267) (1.5413) (0.9506) (0.8913) (0.0317) (0.9212)

Ro Ai t−1 -0.0467*** -0.0415* -0.0433*** -0.0006* -0.0014 -0.0004*
(0.0158) (0.0238) (0.0135) (0.0003) (0.0015) (0.0002)

Shadowi t−1 -0.7877*** -0.1240*
×1(Di str ess) (0.2854) (0.0721)

# Observations 8,889 3,524 8,889 8,790 3,480 8,790
# Entities 215 215 215 215 215 215
# Instruments 151 75 154 152 74 154
AR(2) test 0.245 0.443 0.247 0.570 0.537 0.337
Hansen test 0.422 0.400 0.352 0.753 0.378 0.632
Diff-in-Hansen test 0.995 0.947 0.997 0.991 0.858 0.909

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using GMM. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.
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Appendix 1.A

1.A.1 Full sample

The composition of our full sample is listed in Table 1.A.1.

Table 1.A.1 Main sample

Datastream

Mnemonic

Entity Name Name

Code

Country

A:IAGX INSURANCE AUS.GROUP INS Australia
A:AMPX AMP AMP Australia
A:QBEX QBE INSURANCE GROUP QBE Australia
A:CGFX CHALLENGER CHA Australia

O:UNIQ UNIQA INSU GR AG UNI_2 Austria
O:WNST VIENNA INSURANCE GROUP A VIE Austria

B:AGS AGEAS (EX-FORTIS) AGE Belgium

U:XL XL GROUP XL Bermuda
@ACGL ARCH CAP.GP. ARC Bermuda
U:RE EVEREST RE GP. EVE Bermuda
HSX HISCOX (DI) HIS Bermuda
U:RNR RENAISSANCERE HDG. REN Bermuda
@AGII ARGO GP.INTL.HOLDINGS ARG Bermuda
U:WTM WHITE MOUNTAINS IN.GP. WHI Bermuda
K:ASIF ASIA FINANCIAL HDG. ASI Bermuda

BR:SB3 SEG AL BAHIA ON SEG Brazil

C:MFC MANULIFE FINANCIAL MAN Canada
C:GWO GREAT WEST LIFECO GRE Canada
C:SLF SUN LIFE FINL. SUN Canada
C:PWF POWER FINL. POW Canada
C:FFH FAIRFAX FINL.HDG. FAI Canada
C:POW POWER CORP.CANADA POW_1 Canada
C:IAG INDL.ALL.IN.& FINL.SVS. IND Canada
C:ELF E-L FINANCIAL E-L Canada
C:KFS KINGSWAY FINL.SVS. KIN_1 Canada
C:WED WESTAIM WES Canada

CL:CGR CONSOGRAL CON Chile
CL:PVS PREVISION PRE Chile

CP:ATL ATLANTIC INSURANCES ATL_1 Cyprus
CP:LLR LIBERTY LIFE INSURANCE LIB_1 Cyprus

DK:TOP TOPDANMARK TOP Denmark
DK:ABF ALM BRAND ALM Denmark

EG:DTI DELTA INSURANCE DEL Egypt

M:SAMA SAMPO ’A’ SAM Finland

F:MIDI AXA AXA France
F:CNP CNP ASSURANCES CNP France
F:SCO SCOR SE SCO France
F:EULE EULER HERMES GROUP EUL France
F:APR APRIL APR France

D:ALV ALLIANZ ALL Germany
D:ALVX ALLIANZ (XET) ALL_1 Germany
D:MUV2 MUENCHENER RUCK. MUE Germany
D:MUV2X MUENCHENER RUCK. (XET) MUE_1 Germany
D:HNR1 HANNOVER RUCK. HAN Germany
D:HNR1X HANNOVER RUCK. (XET) HAN_1 Germany



32 Modelling and testing systemic risk

D:NBG6 NUERNBERGER BETS. NUE Germany
D:NBG6X NUERNBERGER BETS. (XET) NUE_1 Germany
D:SGS CASH LIFE CAS Germany

G:EUPC EUROPEAN REL.GEN.INS.CR EUR Greece

K:CINS CHINA TAIPING INSURANCE HLDGS CHI Hong Kong
K:MIXN MIN XIN HOLDINGS MIN Hong Kong

IN:MAX MAX FINANCIAL SVS. MAX India
IN:RC RELIANCE CAPITAL REL India
IN:TUB TI FINANCIAL HOLDINGS TI India

EG7 FBD HOLDINGS FBD Ireland

IS:CLN CLAL INSURANCE CLA Israel
IS:DII DIRECT INSURANCE DIR Israel
IS:HAL HAREL IN.INVS.& FNSR. HAR_1 Israel
IS:MNO MENORA MIV HOLDING MEN Israel
IS:MIF MIGDAL INSURANCE MIG Israel
IS:AYL AYALON AYA Israel
IS:ZUR ZUR ZUR_1 Israel
IS:PHN PHOENIX INSURANCE 1 PHO Israel

I:G ASSICURAZIONI GENERALI ASS Italy
I:BMED BANCA MEDIOLANUM BAN Italy
I:US UNIPOLSAI UNI Italy
I:UNI UNIPOL GRUPPO FINANZIARI UNI_1 Italy
I:CASS CATTOLICA ASSICURAZIONI CAT_1 Italy
I:VAS VITTORIA ASSICURAZIONI VIT Italy

J:MSAD MS&AD INSURANCE GP.HDG. MS& Japan
J:MIHO TOKIO MARINE HOLDINGS TOK Japan

KN:JUB JUBILEE HOLDINGS JUB_1 Kenya

KO:AFM SAMSUNG FIRE & MAR.IN. SAM_1 Korea
KO:KAF DB INSURANCE DB Korea
KO:HMR HYUNDAI MARINE & FIRE IN. HYU Korea
KO:SDF HANWHA GENERAL INSURANCE HAN_3 Korea
KO:KOR KOREAN REINSURANCE KOR Korea
KO:YOF HEUNGKUK F&M.IN. HEU Korea
KO:DHF LOTTE NON-LIFE IN. LOT Korea

L:LPAC LPI CAPITAL LPI Malaysia
L:SYKT SYARIKAT TAKAFUL MAL. SYA Malaysia
L:MAAS MAA GROUP MAA Malaysia
L:BAIS MANULIFE HOLDINGS MAN_1 Malaysia
L:MNRE MNRB HOLDINGS MNR Malaysia
L:PAOZ PACIFIC & ORIENT PAC Malaysia

MT:MMS MAPFRE MIDDLESEA MAP_1 Malta

MX:GSB GENERAL SEGUROS GEN Mexico
MX:GNP GRUPO NACIONAL PROVINCIAL GRU_1 Mexico

MC:WAA WAFA ASSURANCE WAF Morocco
MC:AGM AGMA LAHLOU TAZI INTERMEDIAIRE D ASSCE. AGM Morocco

H:INGA ING GROEP ING Netherlands
H:AGN AEGON AEG Netherlands

Z:TWRZ TOWER TOW New Zealand

N:STB STOREBRAND STO Norway

PK:CUA JUBILEE LIFE INSURANCE JUB Pakistan
PK:ADI ADAMJEE INSURANCE ADA Pakistan
PK:CNI CENTURY INSURANCE CO. CEN_1 Pakistan
PK:CYA CYAN LIMITED CYA Pakistan
PK:EFL EFU LIFE ASSURANCE EFU Pakistan
PK:ILI IGI LIFE INSURANCE IGI Pakistan
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PK:IGI INTL.GENERAL INSURANCE INT Pakistan
PK:JIN JUBILLE INSURANCE JUB_2 Pakistan

T:GELA GREAT EASTERN HDG. GRE_1 Singapore
T:HBMP MEMORIES GROUP MEM Singapore
T:REIN SINGAPORE REIN. SIN Singapore
T:UOSI UNITED OVERSEAS IN. UNI_8 Singapore

R:SLMJ SANLAM SAN South Africa
R:DSYJ DISCOVERY DIS South Africa
R:LBHJ LIBERTY HOLDINGS LIB South Africa
R:MMIJ MMI HOLDINGS MMI South Africa
R:SNTJ SANTAM SAN_1 South Africa

E:MAP MAPFRE MAP Spain
E:GCO GRUPO CATALANA OCCIDENTE GRU Spain

SL:CEI AVIVA NDB INSURANCE AVI_1 Sri Lanka
SL:CIS CEYLINCO INSURANCE CEY Sri Lanka
SL:USR UNION ASSURANCE UNI_6 Sri Lanka

U:CB CHUBB CHU Switzerland
S:ZURN ZURICH INSURANCE GROUP ZUR Switzerland
S:SREN SWISS RE SWI Switzerland
S:SLHN SWISS LIFE HOLDING SWI_1 Switzerland
S:BALN BALOISE-HOLDING AG BAL Switzerland
S:HEPN HELVETIA HOLDING N HEL Switzerland
S:VAH VAUDOISE ’B’ VAU Switzerland

TW:CFC CATHAY FINL.HLDG. CAT Taiwan
TW:FUB FUBON FINL.HLDG. FUB Taiwan
TW:CNI CHINA LIFE INSURANCE CHI_1 Taiwan
TW:SHK SHIN KONG FINL.HLDG. SHI Taiwan
TW:CRC CENTRAL REIN. CEN Taiwan
TW:TFI FIRST INSURANCE FIR_1 Taiwan
TW:SIZ SHINKONG INSURANCE SHI_1 Taiwan
TW:TFM TAIWAN FIRE & MARINE IN. TAI Taiwan
TW:UIN UNION INSURANCE UNI_7 Taiwan

Q:BKIT BANGKOK INSURANCE BAN_1 Thailand
Q:CHAR CHARAN INSURANCE CHA_1 Thailand
Q:DHIP DHIPAYA INSURANCE DHI Thailand
Q:INTE INDARA INSURANCE IND_2 Thailand
Q:NAMS NAM SENG INSURANCE NAM Thailand
Q:NKIT NAVAKIJ INSURANCE NAV_1 Thailand
Q:AYIT SRI AYUDHYA CAPITAL SRI Thailand
Q:TICT THAI INSURANCE THA Thailand

TK:AND ANADOLU ANONIM TURK SIGORTA SIRKETI LTD. ANA Turkey
TK:HAY ANADOLU HAYAT EMEKLILIK ANA_1 Turkey
TK:AGA AKSIGORTA AKS Turkey
TK:GSA GUNES SIGORTA GUN Turkey
TK:RAY RAY SIGORTA RAY Turkey

PRU PRUDENTIAL PRU United Kingdom
U:AON AON CLASS A AON United Kingdom
AV. AVIVA AVI United Kingdom
LGEN LEGAL & GENERAL LEG United Kingdom
OML OLD MUTUAL OLD United Kingdom
RSA RSA INSURANCE GROUP RSA United Kingdom
STJ ST.JAMES’S PLACE ST. United Kingdom
JLT JARDINE LLOYD THOMPSON JAR United Kingdom
PGH PERSONAL GROUP HDG. PER United Kingdom

U:BRK.A BERKSHIRE HATHAWAY ’A’ BER United States
U:AIG AMERICAN INTL.GP. AME United States
U:MET METLIFE MET United States
U:MMC MARSH & MCLENNAN MAR United States
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U:TRV TRAVELERS COS. TRA United States
U:PGR PROGRESSIVE OHIO PRO United States
U:AFL AFLAC AFL United States
U:ALL ALLSTATE ALL_2 United States
U:HIG HARTFORD FINL.SVS.GP. HAR United States
U:L LOEWS LOE United States
U:CNA CNA FINANCIAL CNA United States
U:LNC LINCOLN NATIONAL LIN United States
U:MKL MARKEL MAR_1 United States
U:AJG ARTHUR J GALLAGHER ART United States
@CINF CINCINNATI FINL. CIN United States
U:Y ALLEGHANY ALL_3 United States
U:AFG AMERICAN FINL.GP.OHIO AME_1 United States
U:RGA REINSURANCE GROUP OF AM. REI United States
U:TMK TORCHMARK TOR United States
U:UNM UNUM GROUP UNU United States
U:WRB W R BERKLEY W R United States
U:BRO BROWN & BROWN BRO United States
@ERIE ERIE INDEMNITY ’A’ ERI United States
U:THG HANOVER INSURANCE GROUP HAN_2 United States
U:ORI OLD REPUBLIC INTL. OLD_1 United States
@SIGI SELECTIVE IN.GP. SEL United States
@ANAT AMER.NAT.IN. AME_2 United States
U:KMPR KEMPER KEM United States
U:MCY MERCURY GENERAL MER United States
U:PRA PROASSURANCE PRO_1 United States
U:RLI RLI RLI United States
@EMCI EMC INSURANCE GROUP EMC United States
U:FFG FBL FINL.GROUP FBL United States
U:HMN HORACE MANN EDUCATORS HOR United States
U:IHC INDEPENDENCE HOLDING IND_1 United States
U:MBI MBIA MBI United States
@NWLI NATIONAL WSTN.LF.GP.’A’ NAT United States
@NAVG NAVIGATORS GROUP NAV United States
@STFC STATE AUTO FINL. STA United States
@UFCS UNITED FIRE GROUP UNI_3 United States
U:UVE UNIVERSAL INSURANCE HDG. UNI_4 United States
@AAME ATLANTIC AMERICAN ATL United States
@BWINA BALDWIN & LYONS BAL_1 United States
U:CIA CITIZENS ’A’ CIT United States
@FNHC FEDERATED NATIONAL HDG. FED United States
@FACO FIRST ACCEP. FIR United States
@GANS GAINSCO GAI United States
@HALL HALLMARK FINL.SERVICES HAL United States
@KCLI KANSAS CITY LIFE IN. KAN United States
@KINS KINGSTONE COMPANIES KIN United States
@NSEC NATIONAL SECURITY GROUP NAT_1 United States
@PRZM PRISM TECHNOLOGIES GP. PRI United States
@UNAM UNICO AMERICAN UNI_5 United States
@UTGN UTG UTG United States
U:BRK.B BERKSHIRE HATHAWAY ’B’ BER_1 United States
@BWINB BALDWIN & LYON ’B’ BAL_2 United States
@DGICB DONEGAL GP.’B’ DON United States
U:CI CIGNA CIG United States
U:CNC CENTENE CEN_2 United States
U:PRU PRUDENTIAL FINL. PRU_1 United States
@SNFCA SCTY.NAT.FINL.’A’ SCT United States

NOTES: List of insurers included in the sample. The table reports the name of all 215 insurers included in the sample, and their

mnemonic code on Datastream. Sample period: 2004Q1–2017Q4. Data source: Datastream
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1.A.2 Robustness checks

This section presents the results of other robustness checks that are not reported in the paper.

The first robustness check involves using an alternative FTSE World Financials Index to estimate

both the systemic risk measures ∆CoV aR and SRI SK . The main regression results are reported

in Table 1.A.2. Specification (i) reports the analysis results using ∆CoV aRi t measure for the full

sample period. Similar to the original results, we find statistically significant evidence showing an

entity that is highly interconnected with the financial system contributes more to systemic risk.

Besides, size shows the expected negative coefficient and is significant at 5% level, implying a larger

entity tends to be more systemic relevant. We observe that the shadow indicator is negative and

statistically significant at the 5% level, confirming the main hypothesis of the paper. Specification

(ii) reports the analysis results using ∆CoV aRi t for the period of financial distress. Size and

interconnectedness continue to play a crucial role in driving systemic risk, although the former is

only marginally significant. The shadow indicator shows the expected negative coefficient and is

significant at the 5% level. The shadow-distress interaction variable in Specification (iii) is negative

and significant, suggesting that shadow insurance has a greater impact during financial distress.

Next, we refer to Specifications (iv) and (v) in Table 1.A.2 that report the analysis results using

SRI SK %i t as the dependent variable for the full sample and the distress period, respectively. For

both estimation windows, size is positive and statistically significant, suggesting that a larger entity

contributes more to systemic risk. Interconnectedness shows the expected positive sign, although

it is only marginally significant for the full estimation window. The shadow indicator shows the

expected positive and statistically significant coefficient for the analysis of both the full sample and

the distress period. Finally, the distress-shadow interaction in Specification (vi) shows a negative

and statistically significant coefficient, suggesting that shadow insurance has a more profound

long-run effect on systemic risk. In summary, the regulatory metrics size and interconnectedness

continue to highlight their pivotal role in the spreading of systemic risk, although with a weaker

significance level in certain cases. Instead, the coefficient of shadow is always significant at the

5% level, with ∆CoV aRi t showing a stronger impact during financial distress and SRI SK %i t

suggesting a greater long-run effect.

The second robustness check involves using total assets as the scaling variable for the shadow

indicator. The main regression results are reported in Table 1.A.3. In terms of statistical evidence,

there is virtually no difference between the results from Table 1.A.3 and those reported in the main

paper. In summary, the systemic risk metrics size and interconnectedness highlight their pivotal

roles in driving systemic risk. Moreover, the practice of shadow insurance continues to pose a

systemic threat to the financial system, with ∆CoV aRi t showing a stronger impact during distress

period and SRI SK %i t suggesting a greater long-run effect.

The third robustness check involves replacing total market equity with total assets for the com-

putation of the variable size. The main regression results are reported in Table 1.A.4. Specification

(i) reports the analysis results using ∆CoV aRi t measure for the full sample period. Similar to the
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original results, we find statistically significant evidence that interconnectedness and size drive

systemic risk. Besides, we observe that the shadow indicator is negative and statistically significant

at the 5% level. Specification (ii) reports the analysis results using ∆CoV aRi t for the period of

financial distress. Interconnectedness continues to play a crucial role in driving systemic risk. Size,

however, does not significantly affect systemic risk despite showing the expected sign. The shadow

indicator shows the expected negative coefficient and is significant at the 5% level. Specification

(iii) suggests that the shadow variable has a greater economic impact during financial distress. Next,

we refer to Specifications (iv) and (v) in Table 1.A.4 that report the analysis results using SRI SK %i t

as the dependent variable for the full sample and the distress period, respectively. For the full

sample and the distress period, size is positive and statistically significant. Interconnectedness

shows the expected positive sign and is significant at the 5% level. Besides, the shadow indicator

shows the expected positive and statistically significant coefficient for the analysis of both the

full sample as well as the distress period. Finally, the negative and significant distress-shadow

interaction variable in Specification (vi) suggests that shadow insurance has a relatively stronger

long-term effect on systemic risk. To sum up, except for the regression of ∆CoV aRi t during the

financial distress in which the coefficient of size is insignificant, there is virtually no difference

between the results from Table 1.A.3 and those reported in the main paper.

The fourth robustness check involves replacing return of assets with return of equity. The main

regression results are reported in Table 1.A.5. Specification (i) reports the analysis results using

∆CoV aRi t measure for the full sample period. Similar to the original results, we find statistically

significant evidence showing interconnectedness increases systemic risk. Besides, size shows the

expected negative coefficient and is significant at 5% level. We observe that the shadow indicator

is negative and statistically significant at the 5% level. Specification (ii) reports the analysis results

using ∆CoV aRi t for the period of financial distress. Size and interconnectedness continue to

play a crucial role in driving systemic risk, though the former is weakly significant at the 10%

level. The shadow indicator shows the expected negative coefficient and is significant at the 1%

level. We observe a negative and significant distress-shadow interaction variable in Specification

(iii), suggesting that shadow insurance has a relatively stronger impact during financial distress.

Next, we refer to Specification (iv) and (v) in Table 1.A.5 that report the analysis results using

SRI SK %i t as the dependent variable for the full sample and the distress period, respectively. For

both estimation windows, size is positive and statistically significant. Interconnectedness shows

the expected positive sign, although it is only marginally significant for the period of financial

distress. Besides, the shadow indicator shows the expected positive and statistically significant

coefficient for the analysis of both the full sample and the distress period. Finally, the distress-

shadow interaction variable in Specification (vi) suggests that shadow insurance has a more

profound long-run effect on systemic risk.

Summing up all of the robustness analyses, we find that the systemic metric size and intercon-

nectedness play a pivotal role in the spreading of systemic risk, though in a few cases, the evidence

is marginal. On the other hand, the coefficient of shadow is always significant at the 5% level, with
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∆CoV aR showing a stronger economic impact during financial distress and SRI SK suggesting

a greater long-run effect. These analyses show the persistence of shadow insurance in driving

systemic risk, and thus, confirm the central hypothesis of the paper.

Table 1.A.2 Regression results: Robustness 1

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.0888** -0.1986** 0.1052 0.1979*** 0.1317*** 0.2262***
(0.0450) (0.0846) (0.0820) (0.0198) (0.0206) (0.0200)

Si zei t−1 -0.0931** -0.1423* -0.0887** 0.0865*** 0.1134*** 0.0871***
(0.0434) (0.0820) (0.0433) (0.0105) (0.0251) (0.0106)

Inter connectednessi t−1 -0.0067*** -0.0112*** -0.0067*** 0.0002* 0.0003** 0.0002**
(0.0017) (0.0033) (0.0017) (0.0001) (0.0002) (0.0001)

V aRi t−1 0.3380*** 0.3552*** 0.3376***
(0.0103) (0.0143) (0.0104)

Lever ag ei t−1 0.0005*** 0.0004*** 0.0005***
(0.0000) (0.0001) (0.0000)

Debt matur i t yi t−1 0.0050** 0.0129*** 0.0050** -0.0065*** -0.0060*** -0.0065***
(0.0021) (0.0049) (0.0021) (0.0010) (0.0014) (0.0010)

Loss r ati oi t−1 0.0000 0.0000** 0.0000 0.0000*** 0.0000 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0020** 0.0028 0.0019** -0.0006*** -0.0009*** -0.0006***
(0.0008) (0.0019) (0.0008) (0.0001) (0.0002) (0.0001)

Oper ati ng expensesi t−1 0.0003 -0.0553*** 0.0003 -0.0000 -0.0013 -0.0000
(0.0002) (0.0172) (0.0002) (0.0000) (0.0010) (0.0000)

Other i ncomei t−1 0.0126 0.0768* 0.0127 0.0016 -0.0004 0.0016
(0.0141) (0.0465) (0.0141) (0.0011) (0.0024) (0.0011)

Ro Ai t−1 -0.0002 -0.0001 -0.0002 -0.0001*** -0.0001*** -0.0001***
(0.0002) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000)

Shadowi t−1 -0.4719** -0.0688***
×1(Di str ess) (0.1869) (0.0127)

# Observations 9,319 3,642 9,319 9,319 3,642 9,319
# Entities 215 215 215 215 215 215
Adjusted R2 0.8260 0.8297 0.8265 0.8039 0.8762 0.8042

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using LS. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.
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Table 1.A.3 Regression results: Robustness 2

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.4148** -0.9612*** 0.0392 0.3845*** 0.2630*** 0.4224***
(0.1929) (0.3529) (0.1449) (0.0440) (0.0558) (0.0452)

Si zei t−1 -0.0964** -0.1760** -0.0914** 0.0864*** 0.1125*** 0.0868***
(0.0451) (0.0856) (0.0450) (0.0105) (0.0249) (0.0105)

Inter connectednessi t−1 -0.0063*** -0.0106*** -0.0062*** 0.0002** 0.0003** 0.0002**
(0.0017) (0.0035) (0.0017) (0.0001) (0.0002) (0.0001)

V aRi t−1 0.3526*** 0.3734*** 0.3521***
(0.0106) (0.0151) (0.0107)

Lever ag ei t−1 0.0005*** 0.0003*** 0.0005***
(0.0000) (0.0001) (0.0000)

Debt matur i t yi t−1 0.0047** 0.0133*** 0.0047** -0.0065*** -0.0060*** -0.0065***
(0.0021) (0.0050) (0.0021) (0.0010) (0.0014) (0.0010)

Loss r ati oi t−1 0.0000 0.0000** 0.0000 0.0000*** 0.0000 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0020** 0.0034* 0.0019** -0.0006*** -0.0009*** -0.0006***
(0.0008) (0.0019) (0.0008) (0.0001) (0.0002) (0.0001)

Oper ati ng expensesi t−1 0.0003 -0.0527*** 0.0003 -0.0000 -0.0013 -0.0000
(0.0003) (0.0175) (0.0003) (0.0000) (0.0010) (0.0000)

Other i ncomei t−1 0.0132 0.0753 0.0132 0.0016 -0.0002 0.0016
(0.0146) (0.0469) (0.0145) (0.0011) (0.0024) (0.0011)

Ro Ai t−1 -0.0002 -0.0001 -0.0002 -0.0001*** -0.0001*** -0.0001***
(0.0002) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000)

Shadowi t−1 -1.0972*** -0.0916***
×1(Di str ess) (0.4101) (0.0187)

# Observations 9,319 3,642 9,319 9,319 3,642 9,319
# Entities 215 215 215 215 215 215
Adjusted R2 0.8264 0.8301 0.8272 0.8029 0.8761 0.8031

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using LS. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.
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Table 1.A.4 Regression results: Robustness 3

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.1034** -0.2290** 0.1121 0.1937*** 0.1266*** 0.2217***
(0.0457) (0.0901) (0.0834) (0.0194) (0.0199) (0.0195)

Si zei t−1 -0.1133*** -0.0481 -0.1110*** 0.1245*** 0.2426*** 0.1249***
(0.0366) (0.1077) (0.0364) (0.0139) (0.0442) (0.0139)

Inter connectednessi t−1 -0.0062*** -0.0103*** -0.0062*** 0.0002** 0.0004** 0.0002**
(0.0017) (0.0034) (0.0017) (0.0001) (0.0002) (0.0001)

V aRi t−1 0.3511*** 0.3712*** 0.3507***
(0.0107) (0.0150) (0.0108)

Lever ag ei t−1 0.0003*** 0.0002*** 0.0003***
(0.0000) (0.0000) (0.0000)

Debt matur i t yi t−1 0.0047** 0.0135*** 0.0047** -0.0065*** -0.0050*** -0.0065***
(0.0021) (0.0049) (0.0021) (0.0010) (0.0013) (0.0010)

Loss r ati oi t−1 0.0000* 0.0000** 0.0000* 0.0000** 0.0000 0.0000**
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0010 0.0015 0.0010 0.0002 0.0002 0.0002
(0.0008) (0.0018) (0.0008) (0.0001) (0.0002) (0.0001)

Oper ati ng expensesi t−1 0.0002 -0.0499*** 0.0002 0.0000* 0.0015 0.0000*
(0.0003) (0.0175) (0.0003) (0.0000) (0.0011) (0.0000)

Other i ncomei t−1 0.0137 0.0770 0.0138 0.0014 -0.0087** 0.0014
(0.0147) (0.0482) (0.0146) (0.0017) (0.0039) (0.0017)

Ro Ai t−1 -0.0003 -0.0002 -0.0003 -0.0000** -0.0001*** -0.0000**
(0.0002) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000)

Shadowi t−1 -0.5255*** -0.0684***
×1(Di str ess) (0.2006) (0.0124)

# Observations 9,319 3,642 9,319 9,319 3,642 9,319
# Entities 215 215 215 215 215 215
Adjusted R2 0.8262 0.8296 0.8268 0.8065 0.8825 0.8068

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using LS. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.
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Table 1.A.5 Regression results: Robustness 4

∆CoV aRi t ∆CoV aRi t ∆CoV aRi t SRI SK %i t SRI SK %i t SRI SK %i t
Full Distress Full Full Distress Full
(i) (ii) (iii) (iv) (v) (vi)

Shadowi t−1 -0.1132** -0.2386*** 0.1014 0.1982*** 0.1321*** 0.2268***
(0.0466) (0.0905) (0.0856) (0.0199) (0.0208) (0.0199)

Si zei t−1 -0.0954** -0.1515* -0.0903* 0.0828*** 0.1008*** 0.0834***
(0.0478) (0.0785) (0.0480) (0.0101) (0.0235) (0.0101)

Inter connectednessi t−1 -0.0063*** -0.0105*** -0.0062*** 0.0002** 0.0003* 0.0002**
(0.0017) (0.0034) (0.0017) (0.0001) (0.0002) (0.0001)

V aRi t−1 0.3524*** 0.3737*** 0.3519***
(0.0105) (0.0148) (0.0106)

Lever ag ei t−1 0.0005*** 0.0004*** 0.0005***
(0.0000) (0.0001) (0.0000)

Debt matur i t yi t−1 0.0046** 0.0133*** 0.0046** -0.0065*** -0.0062*** -0.0065***
(0.0021) (0.0050) (0.0021) (0.0010) (0.0014) (0.0010)

Loss r ati oi t−1 0.0000 0.0000** 0.0000 0.0000*** 0.0000 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

M ar ket to booki t−1 0.0020** 0.0032* 0.0020** -0.0005*** -0.0008*** -0.0005***
(0.0008) (0.0019) (0.0008) (0.0001) (0.0002) (0.0001)

Oper ati ng expensesi t−1 0.0003 -0.0529*** 0.0003 0.0000 -0.0012 0.0000
(0.0003) (0.0175) (0.0003) (0.0000) (0.0010) (0.0000)

Other i ncomei t−1 0.0133 0.0736 0.0134 0.0018 0.0001 0.0018
(0.0147) (0.0459) (0.0146) (0.0011) (0.0024) (0.0011)

Ro Ai t−1 -0.0000 -0.0001 -0.0000 0.0000** 0.0000 0.0000*
(0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

Shadowi t−1 -0.5220*** -0.0697***
×1(Di str ess) (0.2014) (0.0125)

# Observations 9,319 3,642 9,319 9,319 3,642 9,319
# Entities 215 215 215 215 215 215
Adjusted R2 0.8265 0.8300 0.8271 0.8033 0.8766 0.8036

NOTES: The table reports the estimates of panel model regressions of quarterly ∆CoV aR and SRI SK % systemic risk measures for a
sample of international insurance entities on shadow indicator and various control variables using LS. The model is given by:

Sy stemi cRi ski t =β0 +β1 Shadowi t−1 +β2 Si zei t−1 +β3 Inter connectednessi t−1 +ΩContr ol s
′
i t−1 +αi +ηt +ϵi t ,

where i represents each entity and t represents each time period; Sy stemi cRi ski t is one of the two systemic risk mea-
sures (∆CoV aRi t and SRI SK %i t ) that quantify the contribution of entity i to systemic risk at time t ; Shadowi t−1, Si zei t−1,
Inter connectednessi t−1, and Contr ol si t−1 are, respectively, shadow indicator, size, interconnectedness, and the vector of con-
trol variables for entity i at time t −1; αi are entity dummies; ηt are time dummies; and ϵi t is the error term. The full sample period
runs from 2004Q1 to 2017Q4, whereas the distress period runs from 2006Q1 to 2011Q2. 1(Di str ess) is a dummy variable that takes
the value of one during the distress period. Standard errors (reported in parentheses) are clustered by country and time. ***, ** and *
represents the significance level at 1%, 5% and 10%, respectively. Data source: Datastream and Market Intelligence.



CHAPTER 2

A MULTIVARIATE NONPARAMETRIC TEST

FOR VOLATILITY SPILLOVER†

2.1 Introduction

Volatility is undoubtedly one of the most informative indicators in finance as it is fundamentally

related to, among others, market liquidity risk (Garbade and Silber, 1979), the interaction between

informed and strategic traders (Admati and Pfleiderer, 1988), the rate of information flow to the

market (Ross, 1989), revealed private information (Stoll and Whaley, 1990), and the degree of

international markets links following attempts by participants to infer information from other

markets (King and Wadhwani, 1990). At the regional level, empirical evidence suggests there is

strong volatility comovement within and across asset classes (Bollerslev et al., 2018). Consequently,

a statistical tool that detects volatility spillover between markets or asset classes could provide

valuable information in hedging variance risk (Bakshi and Kapadia, 2003) as well as pricing the

volatility index (VIX) derivatives (Bardgett et al., 2019).

The academics and practitioners in macroeconomics and finance regularly concern with

testing volatility spillover between markets characterized by multiple indices in which a univariate

test is inadequate because it does not take into account covariances. The latter can play a nontrivial

role in driving spillover as shown in our Monte Carlo study. In this paper, we propose a new

econometric strategy for testing volatility spillover between two potentially multivariate financial

markets.1 We begin by generalizing the univariate hypothesis of Hong (2001) to the multivariate

setup. We follow the author to define volatility spillover using the notion of Granger (1969, 1980)

causality in variance, in that there is volatility spillover from Y2 to Y1 if any of the past variances of

†A research manuscript (joint with G. Urga) based on the results in this chapter entitled “A Multivariate Nonparametric
Test for Volatility Spillover” is under revision at Econometric Theory.

1Other risk measures are proposed in, for instance, Acharya et al. (2017); Bouhaddioui and Roy (2006); Brownlees and
Engle (2017); Candelon and Tokpavi (2016); Casarin et al. (2018); Corradi et al. (2019); Diebold and Yilmaz (2012); Forbes
and Rigobon (2002); Fry et al. (2010); Hong et al. (2009); Weller (2019).
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Y2 has predictive power over the current variance of Y1. Therefore, the terms variance causality and

volatility spillover may be used interchangeably. We derive testable statistics for our hypotheses

using normalized cross-spectra and we develop the asymptotic theory. Our test statistics possess

several appealing features. First, the computation of our test statistics is relatively simple since it

requires only the estimation of standardized residuals which are the main event variables. Unlike

most existing parameter restriction tests which estimate all series in a global model, our procedures

allow the event variables of Y1 and Y2 to be estimated separately. Second, our tests check a large

number of lag orders M as the sample size T increases. In fact, we allow (but we do not require)

M to grow with T at a proper rate to ensure power against a broad class of alternatives such as

delayed spillover effect. Third, our frequency domain kernel-based procedure allows flexible

weighting of the cross-spectrum at each lag order. We show that the conventional Granger-type

regression procedure can be viewed as a special case of our approach when the Truncated kernel is

used. Both tests assign equal weight to each lag. Instead, we propose to use downward weighting

kernels to enhance the power of our tests because empirical stylized facts suggest that market

participants discount past information and thus spillover effect is expected to decay over time.

Indeed, simulation evidence shows that our downward weighting tests can check a large number

of lags without losing significant power when compared with an equally weighted test.

The paper further proposes an optimal multivariate volatility model to facilitate estimating the

spillover test statistics in the higher dimension. The proposed structure resembles the constant

conditional correlation (CCC) specification in Bollerslev (1990). Compare with the CCC model, we

specify the elements in the diagonal matrix as general infinite order autoregressive conditional

heteroskedasticity [ARCH(∞)] processes to minimize the risk of misspecification because a mis-

specified model may yield autocorrelated squared standardized residuals (see, e.g., Li and Mak,

1994). This will in turn contaminate the resulting test statistics by invalidating its asymptotic

property. Indeed, our supplementary empirical study shows that serial correlation induced by

an inadequate ARCH may give misleading inferential result.2 In this aspect, the proposed long

ARCH(∞) process — which is sometimes referred to as a “nonparametric” approach — is more

appealing than conditional variance models with a prespecified order. Regarding model estima-

tion, we show that least-squares (LS) is feasible and we thus propose its consistent estimators. Our

method requires only about 5% of the computing time of quasi maximum likelihood estimation

(QMLE). For notational simplicity, we call our approach the NCCC-LS model, where the acronym

stands for Nonparametric-CCC-Least-Squares.

Our econometric strategy proceeds in two stages. First, we estimate the event variables by

fitting the newly proposed NCCC-LS model to the observed data. Second, we compute our kernel-

based test statistics to draw inference about volatility spillover. Throughout our econometric

strategy, we need not perform numerical integration nor optimization. An extensive Monte Carlo

study shows that our inferential strategy provides reliable finite sample inference even in the higher

2See Appendix 2.H.
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dimension up to the case of 10 series while the simulation evidence in most other papers is limited

to 2–3 series. We further provide a consistent bootstrap test whose finite sample size is found

to converge at a faster rate. We apply our inferential strategy in a timely multivariate study in

which we investigate the distortion in volatility spillover relations between the North America (NA)

market and the UK market before and after the Brexit referendum. For a broader study, we also

examine the spillover effect on the European Union (EU) market. Our main findings indicate that

after the Brexit referendum, the UK market has lost its previous influence in that volatility spillover

from UK to NA diminishes. This finding suggests that after Brexit, market participants in the NA

region have a reduced interest to follow the UK market because of the concern that it might lose

its access to the European Single Market, which is an important trading region for the NA. On the

other hand, we find that the spillover effect from EU to NA is relatively delayed before Brexit but

the nexus becomes more immediate after Brexit. This is because market participants in the NA

that previously focus on the UK market have naturally switched their attention to the European

market directly. Consequently, volatility in EU can propagate more immediately to NA, as captured

by our testing strategy.

We emphasize that the application of our inferential strategy is not limited to the macro

level financial markets. At the firm level, our statistical tool can assist policymakers to identify

volatility transmitters and recipients in the financial system and thus to shape targeted policy to

protect vulnerable volatility recipient as individual or group whenever necessary. The remainder

of this paper is organized as follows. In Section 2.2, we derive kernel-based test statistics for the

hypotheses of interest and we provide their asymptotic properties. Section 2.3 presents the NCCC-

LS volatility model and its asymptotic validity. The finite sample performance of our econometric

strategy is reported in Section 2.4 using a Monte Carlo study. In Section 2.5, we apply the proposed

inferential strategy to empirically examine volatility spillover between the North American and

European equity markets. Section 2.6 concludes. Most mathematical derivations and proofs

along with additional simulation and empirical results are relegated to the Appendices of the

paper. Throughout the paper,
d−−→ and

p−−→ denote convergences in distribution and probability,

respectively. Unless otherwise indicated, all limits are taken as the sample size T →∞.

2.2 Multivariate Granger causality in variance

In this section, we introduce the formal hypotheses for volatility spillover using Granger causality

in variance. We then construct kernel-based test statistics for the hypotheses using the quadratic

distance between two spectral densities. Finally, we provide the asymptotic properties of the

proposed tests.
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2.2.1 From univariate to multivariate Granger causality in variance

For two stationary time series Y1t and Y2t , let I1t and I2t denote the respective information set

available at time t . Further let It ≡ (I1t , I2t ) denote the combined information set. Following the

definition of Granger (1980), Y2t Granger causes Y1t with respect to It−1 if

E(Y1t |I1t−1) ̸= E(Y1t |It−1). (2.1)

Granger (1969) introduces a regression-based test for (2.1), which can be viewed as the causality in

mean hypothesis. We note that there are other definitions of Granger causality such as those based

on projections on Hilbert spaces (see, e.g., Boudjellaba et al., 1992; Comte and Lieberman, 2000).

This is not pursued.

Next, Granger et al. (1986) propose the notion of causality in variance, which is sometimes

referred to as second-order causality (see, e.g., Comte and Lieberman, 2000). Let µi t ≡ E(Yi t |It−1),

i = 1,2, the causality in variance hypotheses are given by

H0 : E
[
(Y1t −µ1t )2|I1t−1

]= E[(Y1t −µ1t )2|It−1
]
, (2.2)

HA : E
[
(Y1t −µ1t )2|I1t−1

] ̸= E[(Y1t −µ1t )2|It−1
]
. (2.3)

Under the null hypothesis, the variance of Y1t is not affected by I2t−1, we say that Y2t does not

Granger cause Y1t in variance. By construction, causality in mean has been filtered out because

the hypotheses are not affected by causal relation in the mean equation. Therefore, any remaining

causal effect is driven purely by volatility that is unaffected by mean and we follow Hong (2001) to

use this information to test for volatility spillover from Y2t to Y1t in the higher dimension.

Let us now consider two stationary vectors of time series (Y1t ,Y2t ), where for i = 1,2, Yi t =
[Yi t (1), ...,Yi t (di )]′, di ∈Z+ <∞. Let I1t and I2t denote the information set available at time t of

Y1t and Y2t , respectively. The combined information set is denoted by It ≡ (I1t , I2t ). Further let

ϵi t ≡ Yi t −E(Yi t |It−1). We suppose that the demeaned series exhibit conditional heteroskedasticity

ϵi t = (H 0
i t )1/2Ξi t , (2.4)

where H 0
i t is a (di ×di ) positive definite conditional variance-covariance matrix of ϵi t , measurable

with respect to Ii t−1. The innovation processΞi t is such that

E(Ξi t |Ii t−1) = 0 a.s., E(Ξi tΞ
′′′
i t |Ii t−1) = Id i a.s. (2.5)

Using the notion of Granger et al. (1986), Y2t Granger causes Y1t in variance with respect to It−1

if E
(
Ξ1tΞ

′
1t |I1t−1

) ̸= E(Ξ1tΞ
′
1t |It−1

)
. However, this concept is too general to be empirically testable
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considering the broad information set. Therefore, we specify the following feasible hypotheses

H1
0 :Ξ1tΞ

′
1t ⊥⊥Ξ2sΞ

′
2s , for all s < t , (2.6)

H1
A :Ξ1tΞ

′
1t ⊥̸⊥Ξ2sΞ

′
2s , for at least one s < t . (2.7)

The null hypothesis implies E
(
Ξ1tΞ

′
1t |Ξ2sΞ

′
2s

) = E(Ξ1tΞ
′
1t

)
for all s < t , that is, the inclusion of

Ξ2sΞ
′
2s does not improve the forecast ofΞ1tΞ

′
1t . See Cheung and Ng (1996) and Hong (2001) for a

similar consideration in the univariate framework. Although the history of the squared innovation

{Ξ2sΞ
′
2s , s < t } is only a subset of I2t−1, one could certainly use other information in I2t−1 to

examine Granger causality. For instance, when extreme market events are used, our approach is

related to testing systemic risk spillover (e.g., Acharya et al., 2017; Brownlees and Engle, 2017). If the

level of the innovation are used, our test can be viewed as the dependence test of Bouhaddioui and

Roy (2006) with the extension to allow for series that exhibit conditional heteroskedasticity. When

tail events are considered, our approach is related to testing for tail risk spillover (e.g., Hong et al.,

2009; Weller, 2019). The use of the squared innovations {Ξ2sΞ
′
2s , s < t } is particularly appropriate

when one is interested in the volatility comovements between two markets. We note that Corradi

et al. (2012) also consider the transmission of volatility across markets but their method requires

the estimation of daily quadratic variation using high-frequency data which may be costly in

practice.

On the other hand, the squared innovations Ξi tΞ
′′′
i t can be consistently estimated using the

squared standardized residuals based on the more readily available daily data. Let θ0
i denote

the true unknown finite-dimensional parameters of H 0
i t . Given {ϵt }T

t=1, where ϵt = (ϵ1t ,ϵ2t )′, let

θ̂i denote any
p

T -consistent estimator of θ0
i , such that Ĥ i t = H i t (θ̂i ), where Hi t is the pseudo

version of H 0
i t with initial value that is chosen arbitrarily. For notational simplicity, we further let

Ẑi t ≡ vech
[
(Ĥ i t )−1/2ϵi tϵ

′′′
i t (Ĥ i t )−1/2

]
, a column vector with d∗

i components, where d∗
i = di (di +

1)/2. The vector Ẑi t collects the squared standardized residuals and cross products of standardized

residuals at time t . The event variables of interest are the centered version of Ẑi t . We denote

ût ≡ ut (θ̂1) = Ẑ1t −vech(Id 1), v̂t ≡ vt (θ̂2) = Ẑ2t −vech(Id 2), (2.8)

where Id is an identity matrix of dimension d . When d1 = d2 = 1, ût and v̂t reduce to Hong’s (2001)

univariate event variables. Similarly, we denote by u0
t and v 0

t the pseudo version of the event

variables based on the true volatility processes H 0
1t and H 0

2t , respectively. Note that we do not

require the two event variables to have the same dimension. Essentially, our spillover test allows

the number of indices to vary for the two markets of interest.

2.2.2 Test statistic and asymptotic properties

We now derive a test statistic for H1
0 based on the notion of cross-spectrum which is coherent

within the concept of Granger (1969) causality. To see the implication ofH1
0 on the cross-spectrum
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between the event variables u0
t and v 0

t , we first note that the multivariate normalized cross-spectral

density of (u0
t , v 0

t ) is given by

f (λ) = 1

2π

∞∑
j=−∞

ρ( j )e−i jλ, λ ∈ [−π,π], i =
p
−1, (2.9)

where ρ( j ) ≡ corr(u0
t , v 0

t− j ). Note that ρ( j ) and f (λ) contain the same information about the cross-

correlation between u0
t and v 0

t− j since they are Fourier transforms of each other. We choose to use

the frequency domain f (λ) for some desirable properties below. UnderH1
0, we haveρ( j ) = 0, ∀ j > 0.

As a result, f (λ) reduces to

f 0(λ) = 1

2π

0∑
j=−∞

ρ( j )e−i jλ. (2.10)

Therefore, we can testH1
0 by quantifying the difference between the observed density f (λ) and the

null density f 0(λ) using a proper divergence measure such as the quadratic norm. Any nontrivial

deviation between f (λ) and f 0(λ) is evidence against the null hypothesis.

The true cross-spectra f (λ) and f 0(λ) are not known but they can be estimated consistently

using nonparametric methods. Empirically, return series exhibit the volatility clustering char-

acteristic as a volatile period tends to be followed by another volatile period. This is because

financial markets are generally more influenced by recent information than remote information.

Consequently, the magnitude of any economic movement, including volatility spillover, is expected

to decay over time. We thus consider the kernel estimator that allows for flexible weighting at each

lag order

f̂ (λ) = 1

2π

T−1∑
j=−T+1

k( j /M)ρ̂( j )e−i jλ, (2.11)

f̂ 0(λ) = 1

2π

0∑
j=−T+1

k( j /M)ρ̂( j )e−i jλ, (2.12)

where k(·) is a kernel function and M is a truncation point when the kernel is bounded, or a

smoothing parameter when the kernel has unbounded supports. The sample cross-correlation

matrix ρ̂( j ) is given by

ρ̂( j ) = Diag
(
Ĉuu

)−1/2Ĉuv ( j )Diag
(
Ĉv v

)−1/2, (2.13)

where Ĉuv ( j ) is the sample cross-covariance matrix that is given by

Ĉuv ( j ) =


1

T

T∑
t= j+1

ût v̂ ′
t− j , j ≥ 0,

1

T

T∑
t=− j+1

ût+ j v̂ ′
t , j < 0,

(2.14)
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and Ĉuu and Ĉv v are the sample covariance matrices of ût and v̂t , respectively. The function

Diag(·) returns a diagonal matrix consisting of the diagonal elements of the original matrix. Note

that ρ̂( j ) is a matrix of dimension (d∗
1 ×d∗

2 ).

Recently, Robbins and Fisher (2015) propose a distance measure based on the Toeplitz matrix,

though, positive definiteness of the measure cannot be guaranteed and some forms of correction

are needed. Instead, we follow Duchesne and Roy (2004) to construct our test statistic based on the

quadratic distance between f̂ (λ) and f̂ 0(λ) for tractability. The distance measure L̂2
[

f̂ (λ), f̂ 0(λ)
]

is such that L̂2
[

f̂ (λ), f̂ 0(λ)
]≥ 0, and L̂2

[
f̂ (λ), f̂ 0(λ)

]= 0 if and only if f̂ (λ) = f̂ 0(λ). Let Γ̂u and Γ̂v

denote the sample correlation matrices of ût and v̂t , respectively. We use the quadratic form

L̂2[ f̂ (λ), f̂ 0(λ)
]≡ 2π

∫
2π

vec
[

f̂ (λ)− f̂ 0(λ)
]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
f̂ (λ)− f̂ 0(λ)

]
dλ

=
T−1∑
j=1

k2( j /M)vec
[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]
, (2.15)

where f (·) denotes the complex conjugate of f (·). The equality follows from Paserval’s theorem. As

a result, numerical integration overλ is not required in terms of the computation of L̂2
[

f̂ (λ), f̂ 0(λ)
]
.

The derivation of (2.15) is provided in Appendix 2.A. Compared with Duchesne and Roy (2004),

we do not integrate over the angular frequency. We allow for the case where d1 ̸= d2. Besides, the

authors work with the unstandardized version of spectral density. As a result, their test is based on

covariances rather than correlations. We show in the analysis of Proposition 2.2.2 in Appendix 2.B

that there is a cross-covariance representation of (2.15)

L̂2[ f̂ (λ), f̂ 0(λ)
]= T−1∑

j=1
k2( j /M)vec

[
Ĉuv ( j )

]′(Ĉ−1
v v ⊗Ĉ−1

uu

)
vec

[
Ĉuv ( j )

]
. (2.16)

Despite the equivalence, we choose to construct our test statistics using the standardized spectral

density so that our measure naturally reduces to that of Hong’s (2001) when d1 = d2 = 1. The

proposed test statistic, Q1, is essentially the centered and scaled version of (2.15)

Q1 =
T

∑T−1
j=1 k2( j /M)vec

[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]−d∗
1 d∗

2 C1T (k)[
d∗

1 d∗
2 D1T (k)

]1/2
, (2.17)

where C1T (k) and D1T (k) are approximately the centering and scaling factors

C1T (k) =
T−1∑
j=1

(1− j /T )k2( j /M), (2.18)

D1T (k) = 2
T−1∑
j=1

(1− j /T )[1− ( j +1)/T ]k4( j /M). (2.19)

The constants C1T (k) and D1T (k) are readily computable given k(·) and M . Under some conditions

on k(·) and by letting M goes to infinity properly with T , we have M−1C1T (k) → ∫ ∞
0 k2(z)dz and
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M−1D1T (k) → 2
∫ ∞

0 k4(z)dz. As a result, C1T (k) and D1T (k) can be replaced, respectively, by

M
∫ ∞

0 k2(z)dz and 2M
∫ ∞

0 k4(z)dz without affecting the asymptotic properties of Q1.

We now establish the asymptotic properties of Q1. Let H̃i t denote the pseudo version of Hi t

with the true unobserved initial value. Note that H̃i t (θ0
i ) = H 0

i t , but H i t (θ0
i ) ̸= H 0

i t due to the initial

value. As a result, ũt (θ0
1) = u0

t and ṽt (θ0
2) = v 0

t , but ut (θ0
1) ̸= u0

t and v t (θ0
2) ̸= v 0

t . This discrepancy

is properly addressed in the following. To begin with, we present some regularity conditions under

the model described by (2.4)–(2.5).

Assumption 2.2.1. For i = 1,2, {Ξi t } is multivariate independent and identically distributed se-

quence with E(Ξi t ) = 0, E(Ξi tΞ
′′′
i t ) = Id i and finite eighth-order moment.

Assumption 2.2.2. For i = 1,2,
p

T (θ̂i −θ0
i ) =Op (1), θ0

i ∈Θi .

Assumption 2.2.3. For eachθi ∈Θi , i = 1,2, supθ1∈Θ1
T

∑T
t=1E||ut (θ1)−ũt (θ1)||2 =O(1), supθ2∈Θ2

T
∑T

t=1E||vt (θ2)−
ṽt (θ2)||2 =O(1).

Assumption 2.2.4. Let ∇θi and ∇2
θi

denote, respectively, the gradient and Hessian operators

w.r.t. θi . Then, supθ1∈Θ1
T −1 ∑T

t=1E||∇θ1 ũt (θ1)||2 =O(1), supθ2∈Θ2
T −1 ∑T

t=1E||∇θ2 ṽt (θ2)||2 =O(1),

supθ1∈Θ1
T −1 ∑T

t=1E||∇2
θ1

ũt (θ1)||2 =O(1), supθ2∈Θ2
T −1 ∑T

t=1E||∇2
θ2

ṽt (θ2)||2 =O(1).

Assumption 2.2.5. The kernel k :R→ [−1,1] is symmetric about 0, and is continuous at 0 and at

all points except for a finite number of points, with k(0) = 1 and
∫ ∞

0 k2(z)dz <∞.

Assumption 2.2.6. M/T → 0 as T →∞.

In Assumption 2.2.1, we do not assume any specific distribution for the innovation process

Ξ1t andΞ2t beyond the regularity moment condition. The i.i.d. condition onΞi t corresponds to

the “strong ARCH” process defined in Hafner (2008) which is frequently used for estimation and

inference in practice. Under this condition, Chan et al. (2007) derive the limiting distribution of

the value-at-risk estimate in a ARCH process while Gao and Song (2008) extend the relevant works

to cover the expected shortfall estimate. In this paper, the i.i.d. assumption ensures condition

(2.5) that E(Ξi t |Ii t−1) = 0 a.s. and E(Ξi tΞ
′′′
i t |Ii t−1) = Id i a.s., and it also reduces the complexity of

the asymptotic analysis. It appears the condition could be weakened so thatΞi t is a martingale

difference sequence at the cost of a more tedious proof but we do not pursue this possibility here.

In Assumption 2.2.2, we do not impose any estimation restriction. Specifically, we allow for anyp
T -consistent estimator θ̂i . Assumption 2.2.3 requires that the initial condition of the variance-

covariance process is asymptotically negligible. In particular, we require that the difference

between ut (θ1) and ũt (θ1) goes to zero in probability at proper speed. Note that Assumption

2.2.3 becomes redundant under our nonparametric volatility specification discussed in Section

2.3. Assumption 2.2.4 requires that the event variables are twice continuously differentiable, with

bounded derivatives. Assumption 2.2.5 is a standard regularity condition on the kernel function

k(·). Most kernels used in spectral analysis satisfy this condition (see, e.g., Andrews, 1991; Priestley,
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1981). Assumption 2.2.6 is rather weak. It allows M to be fixed, or to grow with the T but at a slower

speed. Finally, we have thus far assume that the demeaned series ϵi t is observable for ease of

exposition, but it can be replaced by any
p

T -consistent estimate without affecting the asymptotic

properties of Q1 given Assumptions 2.2.1–2.2.6.

We now state the asymptotic normality of Q1 underH1
0.

Theorem 2.2.1. Suppose Assumptions 2.2.1–2.2.6 hold under the model described by (2.4)–(2.5).

Then, Q1
d−−→ N(0,1) underH1

0.

Proof of Theorem 2.2.1. We let Ŝ ≡ T L̂2
[

f̂ (λ), f̂ 0(λ)
]
, C 0

uu ≡ E[u0
t (u0

t )′] and C 0
v v ≡ E[v 0

t (v 0
t )′], the

proof begins by defining the following pseudo statistic

S∗ = T
T−1∑
j=1

k2( j /M)vec
[
ρ̂∗( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂∗( j )

]
, (2.20)

where ρ̂∗( j ) = Diag
(
C 0

uu

)−1/2Ĉuv ( j )Diag
(
C 0

v v

)−1/2; and Γu = Diag
(
C 0

uu

)−1/2C 0
uu Diag

(
C 0

uu

)−1/2

and Γv = Diag
(
C 0

v v

)−1/2C 0
v v Diag

(
C 0

v v

)−1/2 are the true correlation matrices of true u0
t and v 0

t ,

respectively. We can decompose Q1 as

Q1 =
S∗−d∗

1 d∗
2 C1T (k)[

d∗
1 d∗

2 D1T (k)
]1/2

+ Ŝ −S∗[
d∗

1 d∗
2 D1T (k)

]1/2
. (2.21)

Then, the result of Theorem 2.2.1 follows from Propositions 2.2.1–2.2.2. �

Proposition 2.2.1. Suppose the conditions of Theorem 2.2.1 hold, we have that

S∗−d∗
1 d∗

2 C1T (k)[
d∗

1 d∗
2 D1T (k)

]1/2
d−−→ N(0,1).

Proposition 2.2.2. Suppose the conditions of Theorem 2.2.1 hold, we have that

Ŝ −S∗[
d∗

1 d∗
2 D1T (k)

]1/2

p−−→ 0.

Proof of Proposition 2.2.1. Let Ĉ 0
uv denotes the sample cross-covariance matrix in (2.14) with true

u0
t and v 0

t− j . The proof of Proposition 2.2.1 begins by defining the another pseudo statistic

S = T
T−1∑
j=1

k2( j /M)vec
[
ρ̂0( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
, (2.22)

where ρ̂0( j ) = Diag
(
C 0

uu

)−1/2Ĉ 0
uv ( j )Diag

(
C 0

v v

)−1/2. We consider a similar decomposition

S∗−d∗
1 d∗

2 C1T (k)[
d∗

1 d∗
2 D1T (k)

]1/2
= S −d∗

1 d∗
2 C1T (k)[

d∗
1 d∗

2 D1T (k)
]1/2

+ S∗−S[
d∗

1 d∗
2 D1T (k)

]1/2
. (2.23)
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The result of Proposition 2.2.1 is given by Lemmas 2.2.1 and 2.2.2. �

Lemma 2.2.1. Suppose the conditions of Theorem 2.2.1 hold, we have that

S −d∗
1 d∗

2 C1T (k)[
d∗

1 d∗
2 D1T (k)

]1/2
d−−→ N(0,1).

Lemma 2.2.2. Suppose the conditions of Theorem 2.2.1 hold, we have that

S∗−S = op (M 1/2).

We shall defer the lengthy proofs of Lemmas 2.2.1–2.2.2 and Proposition 2.2.2 to Appendix

2.B. When the Truncated kernel is used to compute Q1, our test can be viewed as the Granger

(1969)-type procedure. To see the intuition, we first note that the Truncated kernel is given by

k(z) = 1(|z| ≤ 1), where 1(·) is the indicator function. For the purpose of illustration, suppose

d1 = 1 and d2 = 2, we have the following test statistic3

Q1TR =
{

T
M∑

j=1
vec

[
ρ̂( j )

]′(
Γ̂−1

u

)
vec

[
ρ̂( j )

]−3M

}/
(6M)1/2, (2.24)

where ρ̂( j ) is a (1×3) vector and Γ̂−1
u is a (3×3) matrix. On the other hand, the Granger-type

procedure is based on the following regression

ût =φ0 +
M∑

j=1
φ j v̂t− j +wt , (2.25)

which checks whether the (1 × 3) parameter vector {φ j }M
j=1 are jointly zero. We do not have

to include in the auxiliary regression (2.25) the lagged variables of ût given Assumption 2.2.1.

There is evidence that v̂t Granger causes ût with respect to It−1 if at least one coefficient in

{φ j }M
j=1 is significantly different from zero. A typical test statistic GR for this hypothesis obtained

from, for instance, the Wald’s procedure is asymptotically χ2(3M) under H1
0 (see, e.g., Bauer

and Maynard, 2012, Theorem 1). Now, for Q1TR in (2.24), we know that under H1
0,
p

T vec
[
ρ̂( j )

]
generally converges to a three dimensional zero mean normal distribution at each lag j . Then,∑M

j=1 T vec
[
ρ̂( j )

]′(
Γ̂−1

u

)
vec

[
ρ̂( j )

]
being the M sum of the properly standardized independent χ2(3)

quantity is also asymptotically χ2(3M) underH1
0. To ensure power of the Granger regression-based

test against a large class of alternatives, we allow M to grow with the sample size T properly. Using

the well-known approximation of χ2(3M) when M is large, we obtain the asymptotic normality of

GR and
∑M

j=1 T vec
[
ρ̂( j )

]′(
Γ̂−1

u

)
vec

[
ρ̂( j )

]
. With proper transformations, we have underH1

0, Q1REG ≡
3Given the Truncated kernel function, we have C1T (k) = M [1− (1+M)/(2T )] and D1T (k) = 2M [1− (2+M)/T + (M +

1)(M +2)/(3T 2)]. Using a more stringent condition on M such that M3/2/T = o(1), we can conveniently approximate
C1T (k) and D1T (k) by M and 2M , respectively.
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(GR−3M)/(6M)1/2 d−−→ N(0,1) as well as Q1TR = {T
∑M

j=1 vec[ρ̂( j )′(Γ̂−1
u )vec[ρ̂( j )]−3M }/(6M)1/2 d−−→

N(0,1).

When M is large, both Q1REG and Q1TR may not yield a good power against the alternatives of

practical importance. Given that economic agents tend to discount past information, the effect

of volatility spillover will fade as lag order j increases. Therefore, we propose to use downward

weighting kernels such as the Bartlett, Daniell and Quadratic-Spectral kernels to increase the power

performance of our Q1 test. See Section 2.4 for more discussion and the Monte Carlo study.

To investigate the asymptotic behavior of Q1 under the alternative hypothesis, we impose a

condition on the cross-correlation ρ( j ) and a fourth order cumulant condition.

Assumption 2.2.7. The two event variables u0
t and v 0

t are jointly fourth order stationary and their

cross-correlation structure is such that ρ( j ) ̸= 0 for at least one j > 0 and

∞∑
j=1

||ρ( j )||2 <∞,
∞∑

i=1

∞∑
j=1

∞∑
l=1

|κr sr s(i , j , l )| <∞,

where κr sr s(i , j , l ) is the fourth order cumulant of the distribution of u0
r,t , v0

s,t−i , u0
r,t− j , v0

s,t−l , with

r ∈ {1, ...,d∗
1 } and s ∈ {1, ...,d∗

2 }.

The condition
∑∞

j=1 ||ρ( j )||2 <∞ implies that the dependence of u0
t on v 0

t− j decays to zero at a

proper speed. However, it still permits a pair of highly cross-dependent processes whose cross-

correlation decays to zero at a gradual hyperbolic rate. The cumulant condition is trivially satisfied

if the joint process {u0
t , v 0

t } is Gaussian which implies zero fourth-order cumulants. Fourth-order

stationary linear processes with absolutely summable coefficients and with innovations whose

fourth-order moment exists, also satisfy the cumulant condition (Hannan, 1970, p.211).

The following theorem states the consistency of Q1 under fixed alternatives.

Theorem 2.2.2. Suppose Assumptions 2.2.1–2.2.7 hold under the model described by (2.4)–(2.5).

Then
M 1/2

T
Q1

p−−→
[

2
∫ ∞

0
k4(z)dz

]−1/2 ∞∑
j=1

vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
.

Proof of Theorem 2.2.2. Recall that C1T (k) =O(M) and D1T (k) = 2M
∫ ∞

0 k4(z)dz[1+o(1)] as M →
∞ and M/T → 0, we have

M 1/2

T
Q1 =

∑T−1
j=1 k2( j /M)vec

[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]
[

2
∫ ∞

0 k4(z)dz
]1/2

[
1+o(1)

]+o(1)

= T −1Ŝ
[

2
∫ ∞

0
k4(z)dz

]−1/2[
1+o(1)

]+o(1).

Therefore, the proof of Theorem 2.2.2 is given by Lemmas 2.2.3–2.2.5. �

Lemma 2.2.3. Suppose the conditions of Theorem 2.2.2 hold, then T −1(S −S∗) = op (1).
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Lemma 2.2.4. Suppose the conditions of Theorem 2.2.2 hold, then T −1(Ŝ −S∗) = op (1).

Lemma 2.2.5. Suppose the conditions of Theorem 2.2.2 hold, then

1

T
S =

T−1∑
j=1

k2( j /M)vec
[
ρ̂0( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
p−−→

∞∑
j=1

vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
.

We shall defer the lengthy proofs of Lemmas 2.2.3–2.2.5 to Appendix 2.C. Theorem 2.2.2 implies

that Q1 goes to infinity at rate T /M 1/2 provided ||ρ( j )|| ̸= 0 for any j > 0. In the limit, negative

values of Q1 can only occur underH1
0. Therefore, Q1 is a one-sided test; upper-tailed N(0,1) critical

values should be used. Besides, the faster T grows, the quicker Q1 will approach infinity and

the test will become more powerful. In other words, Q1 has asymptotic unit power against any

linear pairwise volatility spillover. However, it should be noted that Q1 has no power against the

alternatives with zero cross-correlation for all values of j > 0, that is, ||ρ( j )|| = 0,∀ j > 0, though we

expect such highly nonlinear alternatives to be empirically rare in economics and finance.

2.2.3 Bidirectional Granger causality in variance

The proposed Q1 test is readily extendable for testing bilateral variance causality. This extension is

convenient when the direction of volatility spillover is not known a priori. We consider the multi-

variate version of Hong’s (2001) bidirectional hypothesis that neither Y2t causes Y1t in variance

with respect to (I1t , I2t−1) nor Y1t causes Y2t in variance with respect to (I1t−1, I2t ). Essentially, we

examine the following bidirectional hypotheses

H2
0 :Ξ1tΞ

′
1t ⊥⊥Ξ2sΞ

′
2s , for all s, (2.26)

H2
A :Ξ1tΞ

′
1t ⊥̸⊥Ξ2sΞ

′
2s , for at least one s. (2.27)

UnderH2
0, we have ρ( j ) = 0, ∀ j . As a result, the cross-spectrum f (λ) reduces to zero. The normal-

ized quadratic distance between the kernel-based spectral density estimator and the null spectral

density is given by

L̂2
2

[
f̂ (λ), f̂ 0(λ)

]= T−1∑
j=−T+1

k2( j /M)vec
[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]
. (2.28)

The proposed bidirectional test statistic Q2 is a centered and scaled version of L̂2
2

[
f̂ (λ), f̂ 0(λ)

]
Q2 =

T
∑T−1

j=−T+1 k2( j /M)vec
[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]−d∗
1 d∗

2 C2T (k)[
d∗

1 d∗
2 D2T (k)

]1/2
, (2.29)
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where C2T (k) and D2T (k) are the bidirectional centering and scaling factors with

C2T (k) =
T−1∑

j=−T+1
(1−| j |/T )k2( j /M), (2.30)

D2T (k) = 2
T−1∑

j=−T+1
(1−| j |/T )[1− (| j |+1)/T ]k4( j /M). (2.31)

Similar to Q1, the bidirectional test statistic Q2 converges in distribution to N(0,1) under the

bilateral null hypothesis and it has asymptotic unit power whenever ||ρ( j )|| ̸= 0 for at least one

j . Likewise, upper-tailed N(0,1) critical values should be used for Q2. The mathematical proof

involved is similar to that of Theorems 2.2.1 and 2.2.2 by considering both positive and negative lag

order j ’s, and we shall refrain from repeating the details here. In summary, when prior knowledge

about the direction of volatility spillover is not available, one may first test the bidirectional

hypothesis that neither Y2t Granger causes Y1t in variance.

2.3 Estimation

The asymptotic analysis of Q1 and Q2 multivariate tests does not add complication relative to

the univariate ones in that it explores the multivariate counterparts of algebra, calculus and

mathematical inequalities such as the Kronecker product, matrix differentiation and Cauchy-

Schwarz inequality. However, the proposed tests rely on H 0
i t which can be a complex process to

specify. The ideal specification should possess the following features. First, the structure of the

specification should facilitate its estimation considering that it may house higher dimensional

variance-covariance matrix. Second, conditions ensuring that the estimated H 0
i t is nonnegative

definite should be straightforward to impose. Third, model estimation should achieve convergence

or preferably bypass any numerical optimization routine. Finally, along with these properties,

the specified processes in the structure should minimize ARCH inadequacy. We now put forward

a structure which intersects these features in an optimal manner. We suppose that H 0
i t can be

decomposed as follows

H 0
i t = (D0

i t )1/2R0
i (D0

i t )1/2, for i = 1,2, (2.32)

where D0
i t = diag(h0

i ,1t , ...,h0
i ,di t ) is a diagonal matrix with univariate conditional variances and R0

i =
E[(D0

i t )−1/2ϵi tϵ
′′′
i t (D0

i t )−1/2] is the covariance matrix of the vector of element-wise standardized

residuals by construction. Under this structure, H 0
i t is positive semidefinite provided that the

elements in D0
i t are nonnegative and that R0

i is positive semidefinite.
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We specify D0
i t as an infinite order ARCH process. For n = 1, ..,di , we denote the n-th elements

in D0
i t and ϵi t by h0

i ,n,t and ϵi ,n,t , respectively. The ARCH(∞) representation takes the form

h0
i ,n,t =ω0

i ,n +
∞∑

j=1
a0

i ,n, j ϵ
2
i ,n,t− j . (2.33)

This general process includes Engle’s (1982) ARCH(q), Bollerslev’s (1986) generalized autoregres-

sive conditional heteroskedasticity [GARCH(p, q)], and Engle and Bollerslev’s (1986) integrated

GARCH and fractionally differenced GARCH models. We can rewrite (2.33) as an infinite order

autoregressive [AR(∞)] process

ϵ2
i ,n,t =ω0

i ,n +
∞∑

j=1
a0

i ,n, j ϵ
2
i ,n,t− j +ei ,n,t , (2.34)

where ei ,n,t ≡ ϵ2
i ,n,t −h0

i ,n,t is such that E(ei ,n,t |Ii ,n,t−1) = 0. Because the assumption of an infinite

autoregressive process is rather mild, this is sometimes referred to as a “nonparametric” approach

(see, e.g., Lewis and Reinsel, 1985). Given realization {ϵ2
i ,n,t }T

t=1, we can approximate (2.34) by a

finite order AR(p) process, where p is a function of T

ϵ2
i ,n,t =ω(p)

i ,n +
p∑

j=1
a(p)

i ,n, j ϵ
2
i ,n,t− j +e(p)

i ,n,t . (2.35)

We propose to estimate (2.35) using least-squares. Although least-squares estimation may

give larger standard errors than likelihood-based estimation, it is free from the complications of

numerical optimization and likelihood misspecification (see, e.g., Newey and Steigerwald, 1997).

Besides, it is computationally less demanding. As we show in a computational study provided

in the supplementary document, our method requires only about 5% of the computing time of

QMLE.4

For i = 1,2, we let θ̂(p)
i ≡ [(ω̂(p)

i ,1 , ...,ω̂(p)
i ,di

), (â(p)
i ,1,1, ..., â(p)

i ,di ,1), ...(â(p)
i ,1,p , ..., â(p)

i ,di ,p )]′ collects the least-

squares estimator of the vector of parametersθi ≡ [(ωi ,1, ...,ωi ,di ), (ai ,1,1, ..., ai ,di ,1), ...(ai ,1,p , ..., ai ,di ,p )]′

with true value θ0
i ≡ [(ω0

i ,1, ...,ω0
i ,di

), (a0
i ,1,1, ..., a0

i ,di ,1), ...(a0
i ,1,p , ..., a0

i ,di ,p )]′. We now provide regular-

ity conditions under which θ̂(p)
i is a consistent estimator of θ0

i .

Assumption 2.3.1. For i = 1,2, n = 1, ...di , (a) {ϵ2
i ,n,t } and {ei ,n,t } are strictly stationary and ergodic;

(b) {ei ,n,t } is strong mixing with E(e2
i ,n,t ) =Σe,i ,n and has finite fourth-order moment.

Assumption 2.3.2. The lag order p is chosen such that p = o(T 1/2/M 1/4) and p/log(T ) →∞.

As stated in Assumption 2.3.1(a), we do not consider nonstationary system in the present paper.

Assumption 2.3.1(b) requires the process {ei ,n,t } is strong mixing and has finite fourth-order mo-

ment. The former requirement is less restrictive than the martingale difference property of {ei ,n,t }

whereas the latter is of equal order to the moment condition in Assumption 2.2.1. Assumption 2.3.2

4See Appendix 2.H.
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is a standard condition on p in the long AR literature. The condition p = o(T 1/2/M 1/4) requires

that p not to grow too fast, whereas the condition p/log(T ) →∞ imposes a lower bound on the

growth rate of p. The following proposition states the consistency of θ̂(p)
i .

Proposition 2.3.1. Let the conditional variance process of model (2.4)–(2.5) be defined by (2.32)–

(2.35). Suppose Assumptions 2.3.1 and 2.3.2 hold, then

||θ̂(p)
i −θ0

i || =Op (p1/2T −1/2), for i = 1,2.

The proof of Proposition 2.3.1 is provided in Appendix 2.D. We have shown the consistency of

θ̂
(p)
i but it does not converge at the required rate of

p
T . With the current speed, we can provide

further conditions such that the spillover test is consistent but the asymptotic normality may not

hold under the null hypothesis. We therefore invoke Theorem 5.52 in van der Vaart (1998) to provide

conditions for the least-squares criterion function m(θi ,ϵ2
i ,n,t ) ≡ (ϵ2

i ,n,t −ωi ,n −∑∞
j=1 ai ,n, j ϵ

2
i ,n,t− j )2

such that θ̂(p)
i achieves the required rate of convergence.

Assumption 2.3.3. For i = 1,2, n = 1, ...di , let m(θi ,ϵ2
i ,n,t ) be any measurable function parameter-

ized by θi such that for fixed constants ∆ and α>β, and for every sufficiently small ζ> 0,

(a) sup||θi−θ0
i ||<ζE[m(θi ,ϵ2

i ,n,t )−m(θ0
i ,ϵ2

i ,n,t )] ≤−∆ζα;

(b) E
{

sup||θi−θ0
i ||<ζ |GT [m(θi ,ϵ2

i ,n,t )−m(θ0
i ,ϵ2

i ,n,t )]|}≤∆ζβ;

(c) T −1 ∑T
t=1 m(θ̂(p)

i ,ϵ2
i ,n,t ) ≥ T −1 ∑T

t=1 m(θ0
i ,ϵ2

i ,n,t )−Op (Tα/(2β−2α)),

where GT [m(θi ,ϵ2
i ,n,t )] =p

T {T −1 ∑T
t=1 m(θi ,ϵ2

i ,n,t )−E[m(θi ,ϵ2
i ,n,t )]}.

In general, m(θi ,ϵ2
i ,n,t ) can be the criterion function of any other M-estimators. See, for

instance, Antoine and Renault (2012) for a comprehensive analysis in the context of generalized

method of moments (GMM) estimation. The intuition of Assumption 2.3.3 is as follows: provided

that (a) the deterministic map E[m(θi ,ϵ2
i ,n,t )] reacts rapid enough as θi moves away from θ0

i ; (b)

the random fluctuation between T −1 ∑T
t=1 m(θi ,ϵ2

i ,n,t ) and E[m(θi ,ϵ2
i ,n,t )] is sufficiently small, then

θ̂
(p)
i has a high rate of convergence if its distance with θ0

i is properly bounded according to (c). By

setting α= 1.5 and β= 0.5, condition (c) is satisfied using the fact that the squared residuals are

bounded by Op (p/T ) =Op (T −3/4), where the equality follows from Assumption 2.3.2. The desired

convergence rate of θ̂(p)
i then follows. The following proposition states the formal result.

Proposition 2.3.2. Let the conditional variance process of model (2.4)–(2.5) be defined by (2.32)–

(2.35). Suppose Assumptions 2.3.1–2.3.3 hold with α= 1.5 and β= 0.5, then

||θ̂(p)
i −θ0

i || =Op (T −1/2), for i = 1,2.

The proof of Proposition 2.3.2 is provided in Appendix 2.E. With this speed, our test remains

valid in the limit, although negative volatilities are not precluded by θ̂
(p)
i . To adjust for this,

in the following we provide the adjusted least-squares estimator θ̂(p)a
i that ensures positive-
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semidefiniteness of D0
i t . We show that the adjusted estimator can be computed based on an

ex post estimate of θ̂(p)
i . We require the following additional conditions to hold.

Assumption 2.3.4. For i = 1,2, the true parameter vectorθ0
i lies in the parameter space [Rmin

i ,Rmax
i )

such that D0
i t is positive-semidefinite.

Assumption 2.3.5. For i = 1,2, there exists a vectorδi with nonnegative entries such that θ̂(p)
i +δi ∈

[Rmin
i ,Rmax

i ) and (θ̂(p)
i +δi )1(δi > 0) =Rmin

i 1(δi > 0).

Assumption 2.3.4 is a standard condition that restricts the true parameter such that D0
i t is

positive-semidefinite. The sufficient condition is that each element in θ0
i is nonnegative (i.e.

Rmin
i = 0, Rmax

i =∞∞∞). Assumption 2.3.5 requires the existence of a lower bound vector δi with

nonnegative entries such that θ̂(p)
i +δi yields a positive-semidefinite D0

i t . In practice, we can

replace the negative entries in θ̂
(p)
i by zeros such that they corresponds to Rmin

i , that is, δi =
−θ̂(p)

i 1(θ̂(p)
i < 0). Note that δi is simply a vector of zeros if the unadjusted estimator lies in the

desired parameter space.

Given δi , the adjusted least-squares estimators can be computed, on an ex post basis, by

θ̂
(p)a
i = θ̂(p)

i +δi . The following proposition states the consistency of θ̂(p)a
i .

Proposition 2.3.3. Let the conditional variance process of model (2.4)–(2.5) be defined by (2.32)–

(2.35). Suppose Assumptions 2.3.1–2.3.5 hold, then

||θ̂(p)a
i −θ0

i || =Op (T −1/2), for i = 1,2.

The proof of Proposition 2.3.3 is provided in Appendix 2.F. The proof uses the fact that the ex

post adjustment does not affect the asymptotic properties of θ̂(p)
i because it is only applied to the

entries that are outside of the true neighborhood of θ0
i .

To establish the asymptotic validity of (2.32)–(2.35) for our Q1 and Q2 tests, a final condition is

required for the proper convergence of R0
i .

Assumption 2.3.6. For i = 1,2, (D0
i t )−1/2ϵi t maintains the same stochastic properties asΞi t with

covariance E[(D0
i t )−1/2ϵi tϵ

′′′
i t (D0

i t )−1/2] = R0
i .

It is evident that (D0
i t )−1/2ϵi t belongs to a special case of Ξi t = (H 0

i t )−1/2ϵi t with diagonal

H 0
i t ; it is therefore natural for the former to inherit the stochastic properties of the latter but with

covariance R0
i instead of identity covariance. Then, the estimation of (2.32) proceeds in two steps.

First, we estimate (2.35) for each of the diagonal elements in D0
i t using the adjusted least-squares

estimator θ̂(p)a
i . The estimated positive-semidefinite process is denoted by D̂i t . In the second step,

R0
i is estimated using the sample covariance of D̂−1/2

i t ϵi t , which we denote by R̂i . Because R̂i is

always positive-semidefinite, this ensures that the estimated time-varying covariance matrix is

always positive-semidefinite.

The following proposition states the validity of Theorems 2.2.1 and 2.2.2 under the proposed

volatility model.
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Proposition 2.3.4. Let the conditional variance process of model (2.4)–(2.5) be defined by (2.32)–

(2.35). Suppose Assumptions 2.2.1–2.2.2, 2.2.4–2.2.6, 2.3.1–2.3.6 hold, then the results of Theorem

2.2.1 remain valid. Additionally, suppose Assumption 2.2.7 holds, then the results of Theorem 2.2.2

remain valid.

The proof of Proposition 2.3.4 is provided in Appendix 2.G. The key is to show that the second

step estimator R̂i is
p

T -consistent for R0
i . Given this result and by collecting R̂i in the estimator

vector, the results of Theorems 2.2.1 and 2.2.2 continue to hold under their respective conditions.

Note that Assumption 2.2.3 is not needed here since we do not have to specify an initial value for

our model. Besides, when the true data generating process has finite autoregressive order, we havep
T -consistent estimators regardless of Assumption 2.3.3. We provide Assumption 2.3.3 as a formal

condition to maintain the generality of our approach where we allow p to grow with T .

In summary, a multivariate volatility model is proposed to facilitate the estimation of Q1 and

Q2. The proposed specification enjoys estimation simplicity and computational efficiency. The

approach is somewhat “nonparametric” in that it imposes minimal assumption on the structure of

D0
i t . We also do not impose any parametric assumption on R0

i . A similar structure of (2.32) was

previously studied by Bollerslev (1990), which is often referred to as the CCC model. We differ from

the author by specifying elements in D0
i t using a more general volatility process and we propose to

estimate D0
i t by least-squares. We also demonstrate the consistency of our two-steps estimators.

To highlight the dissimilarity and for notational simplicity, we shall denote our approach in short

as the NCCC-LS approach, where the acronym stands for Nonparametric-CCC-Least-Squares.

2.4 Monte Carlo simulations

In this section, we investigate the finite sample performance of the proposed econometric strategy

using Monte Carlo simulations. We first consider a bivariate setup (i.e., d1 = d2 = 2), where we

conduct experiments to study the effect of covariance intensity on the finite sample size and power

of our testing strategy. Then, we study the behavior of our method with increasing dimension.

To save space, we focus here on the unidirectional test statistic Q1, and we report and discuss in

Appendix 2.H the full results based on the bidirectional statistic Q2.
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2.4.1 The bivariate case

We work with the following bivariate data generating process with persistent conditional means

and variances

Yi t =
(

Yi ,1t

Yi ,2t

)
=

(
1+mi ,1t

1+mi ,2t

)
+

(
ϵi ,1t

ϵi ,2t

)
, i = 1,2, t = 1, ...,T,

(
ϵi ,1t

ϵi ,2t

)
iid∼ N

[(
0

0

)
,

(
h0

i ,1t ri (h0
i ,1t )1/2(h0

i ,2t )1/2

ri (h0
i ,2t )1/2(h0

i ,1t )1/2 h0
i ,2t

)]
,

mi ,1t = 0.8mi ,1t−1 +ei ,1t , mi ,2t = 0.8mi ,2t−1 +ei ,2t , ei ,1t ,ei ,2t
iid∼ N(0,4),

h0
i ,1t = 0.1+0.8h0

i ,1t−1 +0.05ϵ2
i ,1t−1, h0

i ,2t = 0.1+0.8h0
i ,2t−1 +0.05ϵ2

i ,2t−1.

(2.36)

We consider the following correlation structures

NullA: r1 = r2 = 0.2, NullB: r1 = r2 = 0.5,

NullC: r1 = r2 = rt = 0.2+0.1×0.2cos[2πt/(T /4)].

Under NullA, we have a relatively moderate correlation between the conditional variances in both

Y1t and Y2t . Combination NullB increases the correlation magnitude. Under NullC, we have a

stable time-varying correlation structure that is generated by a cosine function with four periods

over sample size T . For more complex structures, the NCCC framework can always be extended by

letting R0
i evolve over time based on a parametric structure which relies on likelihood estimation

(see, e.g., Aielli, 2013; Engle, 2002). To study the power of our testing strategy, we simulate the effect

of volatility spillover by generating correlated squared innovation ϵ̃2
1, j t and ϵ̃2

2, j t using Cholesky

transformation, where for j = 1,2, ϵ̃2
1, j t = s2ϵ

2
2, j t−1 + (1− s2

2)1/2ϵ2
1, j t−1, ϵ̃2

2, j t = ϵ2
2, j t . The parameter

s2 ∈ [0,1] controls the intensity of volatility spillover from Y2t to Y1t with respect to It−1. We

consider the following parameter combinations

AlterA: r1 = r2 = 0.2, s2 = 0.35, AlterB: r1 = 0.2,r2 = 0.5, s2 = 0.35.

Both AlterA and AlterB generate equal spillover intensity (s2 = 0.35) from Y2t to Y1t with respect to

It−1. This allows examining the power of our test. We increase the covariance of the risk transmitter

Y2t under AlterB to study the role it plays in driving volatility spillover.

For each data generating process, we conduct 10000 Monte Carlo simulations with sample size

T = 1000 and 1500, which correspond to approximately four and six years of daily financial data,

respectively. For each T , we generate T +1000 observations and then we discard the first 1000

observations to reduce possible effects from the chosen starting values (h0
i ,10,h0

i ,20,mi ,10,mi ,20) =
[0.1/(1−0.05−0.8),0.1/(1−0.05−0.8),0,0]. We consider the following three downward weighting

kernel functions k(·).
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The Bartlett (BAR) kernel,

k(z) =
1−|z|, if |z| ≤ 1,

0, otherwise.

The Daniell (DAN) kernel,

k(z) = sin(πz)

πz
, z ∈R.

The Quadratic-Spectral (QS) kernel,

k(z) = 25

12π2z2

[
sin(6πz/5)

6πz/5
−cos(6πz/5)

]
, z ∈R.

For comparison with an equally weighted test, we also include the Truncated (TR) kernel. Note

that the selected kernels satisfy the requirements in Assumption 2.2.5. To assess the sensitivity

of our approach to the kernel parameter M , we consider M = 10, 20 and 30. All spillover tests are

carried out at the 5% significance level.

For each simulation, the estimation and testing procedure proceeds in steps. First, we filter

the conditional mean of Yi t using least-squares which yields
p

T -consistent residuals (White,

2001, Theorem 5.11). Then, based on the procedures described in Section 2.3 we fit the NCCC-LS

model. We select for the order of every diagonal ARCH process in the NCCC-LS structure using

the Bayesian information criteria up to the 25th order. Finally, we test for spillover by computing

Q1 and Q2. It is worth highlighting that our econometric strategy is computationally simple in

that numerical integration and optimization are not involved throughout model estimation and

spillover testing.

In addition to asymptotic critical values, we also consider a nonparametric naive bootstrap

in which we randomly re-sample the estimated residuals with replacement. As is well known,

the bootstrap procedure can often yield a more accurate finite sample size (see, e.g., Chen and

Hong, 2012a,b, 2016). We denote the bootstrap statistic using asterisk by Q∗
1 . Step (i), retain fitted

series and residuals Ŷ1t , Ŷ2t , ϵ̂1t and ϵ̂2t . Step (ii), compute Q1. Step (iii), obtain naive bootstrap

residuals ϵ̂∗1t and ϵ̂∗2t and construct bootstrap sample Y ∗
1t = Ŷ1t + ϵ̂∗1t and Y ∗

2t = Ŷ2t + ϵ̂∗2t . Step (iv),

compute the b-th statistic Q∗
1

b in the same way as we compute Q1 but with {Y ∗
1t ,Y ∗

2t }T
t=1 replacing

the original sample (Y 1,Y 2) ≡ {Y1t ,Y2t }T
t=1. Step (v), repeat steps (iii) to (iv) B times to obtain B

bootstrap test statistics {Q∗
1

b}B
b=1. Step (vi), compute bootstrap p-value by B−1 ∑B

b=11(Q∗
1

b >Q1).

We set B = 499 and we maintain 10000 simulations. In the following we give the consistency of our

bootstrap test. First, we state the following proposition.

Proposition 2.4.1. Suppose the conditions of Theorem 2.2.1 hold. Then, conditional on (Y 1,Y 2),

Q∗
1

d−−→ N(0,1).
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Proof of Proposition 2.4.1. By design, the bootstrap approach ensures that the null hypothesis

always holds in the bootstrap world since the two series (Y 1,Y 2) are re-sampled independently.

Taken together with the regularity conditions of Theorem 2.2.1, the asymptotic normality of Q∗
1

follows. �

The consistency of our bootstrap approach is given by combining the following two results.

First, under the null hypothesis, the bootstrap approach gives asymptotically correct size since Q∗
1

converges in distribution to N(0,1) given Proposition 2.4.1. Second, when the null hypothesis is

false, our bootstrap approach has asymptotic unit power. This follows from the fact that while Q∗
1

remains converging in distribution to N(0,1), Q1 converges to positive infinity in probability given

Theorem 2.2.2 and thus giving consistent bootstrap p-value.

Table 2.1 reports the empirical sizes of our volatility spillover tests under NullA, NullB and

NullC based on the NCCC-LS modeling. In general, we find that Q1 tends to over reject the null a

little but not excessively. The size improves gradually as T increases. We find the rejection rates

of Q1 to be stable across the three parameter combinations. This implies that the size of our

inferential strategy is not affected by increasing portfolio correlation and the time-varying cosine

case. As expected, our bootstrap test Q∗
1 yields a more accurate finite sample size than Q1, and

it too is robust to changing correlations. Overall, we find the proposed econometric strategy to

be reasonably sized. This result appears to hold across the kernel functions and the value of their

smoothing parameter M .

We report the empirical powers of our testing approach in Table 2.2. For Q1, we use empirical

critical values that are computed from the 10000 simulations under NullA. This gives size-adjusted

powers. In general, we find that our inferential strategy becomes more powerful as T increases.

We also find that both Q1 and Q∗
1 give rather similar power. The rejection rates of Q1 and Q∗

1

decrease in M . This is because under AlterA and AlterB, we have one-period lagged volatility

spillover. Therefore, we expect a test that focuses on recent events to give better power. Besides,

we find that the downward weighting kernels often yield better power than the TR kernel, and

they are less affected by a large M . These results confirm our expectation that, compared with an

equally weighted test, downward weighting tests alleviate the impact of choosing a relatively large

M because they discount higher order lags. Interestingly, we find that the rejection rates of Q1 and

Q∗
1 are higher under parameter combination AlterB. This implies that, other things being equal, an

increase in the correlation within the risk transmitter Y2t can drive the overall effect of volatility

spillover. This result highlights the nontrivial role covariance can play in driving spillover.

2.4.2 Higher dimensions

The finite sample performance of existing multivariate dependence tests is often demonstrated up

to the case of three series. For instance, the bivariate case is examined in Duchesne and Roy (2004),

whereas Robbins and Fisher (2015) study the relations between bivariate and trivariate processes,

that is d1 = 3, d2 = 2. By contrast, we now demonstrate the finite sample performance of our
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Table 2.1 Empirical sizes

NullA NullB NullC

T M 10 20 30 10 20 30 10 20 30

Rejection rates based on asymptotic critical values
1000 Q1BAR 7.1 6.8 6.9 7.0 6.9 6.8 7.2 6.7 6.7

Q1DAN 7.1 6.8 6.9 7.0 6.7 7.1 7.0 6.7 6.8
Q1QS 7.1 6.9 6.8 7.1 6.8 7.1 6.8 6.7 6.9
Q1TR 7.1 6.9 7.0 7.0 7.3 7.1 6.6 6.6 6.7

1500 Q1BAR 6.7 6.5 6.4 6.7 6.4 6.3 6.8 6.7 6.5
Q1DAN 6.8 6.6 6.4 6.7 6.3 6.5 6.7 6.6 6.2
Q1QS 6.8 6.5 6.3 6.6 6.4 6.5 6.8 6.5 6.3
Q1TR 6.5 6.4 6.4 6.1 6.3 6.3 6.3 6.4 6.4

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 5.3 5.6 5.4 5.3 5.5 5.1 5.3 5.5 5.5
Q∗

1DAN 5.4 5.3 5.2 5.3 5.3 5.1 5.4 5.3 5.2
Q∗

1QS 5.5 5.4 5.0 5.5 5.2 5.2 5.5 5.4 5.1

Q∗
1TR 5.0 5.0 5.2 5.0 4.9 5.1 5.1 5.1 5.1

1500 Q∗
1BAR 5.2 5.3 5.4 5.3 5.3 5.3 5.3 5.2 5.4

Q∗
1DAN 5.3 5.1 5.3 5.2 5.2 5.3 5.3 5.2 5.3

Q∗
1QS 5.2 5.2 5.3 5.3 5.3 5.2 5.3 5.2 5.3

Q∗
1TR 4.9 5.3 5.3 4.9 5.5 5.2 4.8 5.3 5.3

NOTES: The table reports empirical sizes (in %) of Q1 under NullA, NullB and NullC at the 5% significance level based
on NCCC-LS modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q∗
1DAN, Q∗

1QS, Q∗
1TR

denote the rejection rates of Q1 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN,
QS and TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter, respectively.

multivariate approach in higher dimensions, which is made feasible thanks to the proposed NCCC-

LS modeling. We focus on the case where we analyze spillover effects on a relatively large market

covering multiple countries such as the European Union. In particular, we study d1 = 3,4, ...,10

and d2 = 2. We expect our approach to perform similarly given the opposite relation or any

combinations of di with similar combination complexity.

We study the size of our inferential strategy under combination NullD, where with increasing

d1, we retain the correlation intensity ri of NullA because our bivariate simulations show stability

across combinations NullA–NullC. In spite of that, we perform a sensitivity check to find that

the performance of our approach in the higher dimensions is robust to the time-varying cosine

correlation of NullC. For power study, we maintain the covariance structure in AlterA but we reduce

the spillover intensity s2 to 0.15 to highlight the power effects as d1 increases. Given d1 > d2, we

generate spillover to each series in Y1t by repeating the influence of Y2t . This ensures that every risk

recipients in Y1t is equally affected by the spillover effect. For instance, when d1 = 4, d2 = 2, Y1,3t

and Y1,4t will be influenced by Y2,1t and Y2,2t , respectively. We denote this parameter combination
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Table 2.2 Empirical powers

AlterA AlterB

T M 10 20 30 10 20 30

Rejection rates based on empirical critical values
1000 Q1BAR 78.2 69.0 61.9 95.0 90.1 85.1

Q1DAN 74.5 62.1 53.4 93.3 85.1 78.2
Q1QS 73.1 59.8 51.7 92.7 83.8 76.6
Q1TR 51.5 38.4 32.0 76.8 61.1 51.7

1500 Q1BAR 92.1 85.4 80.0 99.4 98.0 96.7
Q1DAN 89.8 79.6 72.3 99.0 96.6 93.7
Q1QS 88.9 78.2 70.9 98.8 96.2 92.8
Q1TR 71.1 55.1 46.4 92.9 83.3 73.2

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 76.1 66.0 59.1 94.2 88.4 83.1
Q∗

1DAN 71.7 58.8 49.7 92.4 82.9 75.1
Q∗

1QS 70.3 57.0 48.2 91.6 81.4 73.7

Q∗
1TR 47.9 34.8 29.0 73.6 58.3 49.3

1500 Q∗
1BAR 91.2 83.9 78.0 99.4 98.0 96.2

Q∗
1DAN 88.4 77.9 69.1 99.0 96.2 92.8

Q∗
1QS 87.2 76.3 67.6 98.7 95.6 91.9

Q∗
1TR 67.6 52.0 42.8 92.0 80.9 72.0

NOTES: The table reports empirical powers (in %) of Q1 under AlterA and AlterB at the 5% significance level based
on NCCC-LS modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q∗
1DAN, Q∗

1QS, Q∗
1TR

denote the rejection rates of Q1 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter, respectively.

by AlterC. Because the overall performance of our test is stable across M , we only report here the

case where M = 20 to save space. The full set of results are reported in Appendix 2.H.

Table 2.3 reports the empirical sizes of our inferential approach. We find that the size of Q1

increases in dimension, but not overly excessive nor rapid. The size of Q1 generally improves and

stabilizes as T increases. The rejection rates of our bootstrap approach Q∗
1 also tend to increase in

dimension when T = 1000, but they become very stable as T approaches 1500. Table 2.4 reports

the power study. As with the bivariate study, we use empirical critical values for Q1. In general, our

approach has power despite a rather low spillover intensity s2 = 0.15. Both Q1 and Q∗
1 give similar

rejection rates, and they become more powerful as T increases. We find that the power of our tests

grows with d1. Because the number of risk recipients in Y1t increases as d1 increases, this yields a

stronger evidence of spillover and thus increase the rejection rates Q1 and Q∗
1 .
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Table 2.3 Empirical sizes

NullD

T d1 3 4 5 6 7 8 9 10

Rejection rates based on asymptotic critical values
1000 Q1BAR 7.1 7.1 7.1 7.2 7.4 7.9 7.9 7.6

Q1DAN 7.3 6.9 7.1 7.3 7.3 7.9 8.2 7.9
Q1QS 7.1 7.0 7.3 7.2 7.4 7.8 8.3 7.9
Q1TR 7.2 7.3 7.4 7.4 7.5 8.1 8.8 8.9

1500 Q1BAR 6.7 7.0 6.6 6.8 6.3 7.2 7.1 6.8
Q1DAN 6.6 6.9 6.6 6.7 6.4 7.2 7.2 7.0
Q1QS 6.7 6.9 6.6 6.7 6.4 7.2 7.1 7.1
Q1TR 6.7 6.9 7.1 7.0 7.0 6.8 7.0 7.3

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 4.8 5.5 5.5 5.2 5.5 5.2 5.3 5.8
Q∗

1DAN 4.9 5.6 5.3 5.5 5.4 5.3 5.4 5.7
Q∗

1QS 5.1 5.5 5.5 5.5 5.5 5.5 5.3 5.8

Q∗
1TR 5.1 5.8 5.7 5.3 5.7 5.7 5.7 5.6

1500 Q∗
1BAR 5.1 5.2 4.8 5.0 5.4 5.5 5.4 5.1

Q∗
1DAN 5.1 5.3 4.8 5.2 5.3 5.5 5.4 5.1

Q∗
1QS 5.2 5.2 4.8 5.2 5.4 5.5 5.4 5.1

Q∗
1TR 5.3 5.4 5.2 5.3 5.5 5.6 5.3 5.5

NOTES: The table reports empirical sizes (in %) of Q1 under NullD at the 5% significance level based on NCCC-LS
modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q∗
1DAN, Q∗

1QS, Q∗
1TR denote the

rejection rates of Q1 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN, QS and
TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel.
Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.

2.5 Empirical application

The North America (NA) has historically maintained a strong economic partnership with the UK

but Cumming and Zahra (2016) suggest that this relation is to be challenged after the UK voted to

leave the European Union on 23rd June 2016. In this section, we use the new inferential strategy to

study, before and after the Brexit referendum, the spillover relations between the North American

and the UK equity markets. We use the American S&P-500 and the Canadian S&P-TSX stock indices

for the NA market, and we use the FTSE-All index for the UK market. To examine possible Brexit

effect on the broader European market, we also study its spillover relations with the NA market.

Regarding the former, we use the European Union (EU) portfolio previously constructed by Baele

(2005): Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands and Spain, where the

market indices are taken as ATX, Bel-20, FrCAC-40, DAX-30, ISEQ-All, FTSE-MIB, AEX and IBEX-35,

respectively. It is worth highlighting that this is the first study to provide insights into the distortion
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Table 2.4 Empirical powers

AlterC

T d1 3 4 5 6 7 8 9 10

Rejection rates based on empirical critical values
1000 Q1BAR 27.6 40.8 55.2 65.5 73.9 77.1 80.9 83.0

Q1DAN 23.0 33.4 44.8 54.9 62.5 65.9 70.3 71.4
Q1QS 22.1 31.6 43.2 52.9 60.1 64.1 67.4 69.0
Q1TR 14.3 18.8 23.7 30.0 34.2 35.5 37.1 37.8

1500 Q1BAR 42.6 63.0 84.2 91.4 96.0 97.7 98.6 99.1
Q1DAN 34.1 51.9 73.2 82.4 90.7 93.6 95.0 96.8
Q1QS 33.1 49.5 70.7 80.3 88.9 92.2 93.8 95.8
Q1TR 18.8 28.1 39.2 47.8 57.2 61.9 66.3 67.8

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 23.8 36.6 52.0 62.2 70.1 74.9 78.6 80.9
Q∗

1DAN 19.6 29.6 42.1 50.9 58.1 63.3 67.2 69.8
Q∗

1QS 19.0 28.2 40.3 48.4 55.6 60.4 64.6 67.1

Q∗
1TR 12.4 15.6 21.7 26.4 30.4 32.9 35.9 37.0

1500 Q∗
1BAR 38.7 62.3 81.3 89.9 94.8 97.3 98.4 98.9

Q∗
1DAN 31.2 50.9 70.2 80.3 87.9 92.2 94.4 95.9

Q∗
1QS 29.6 48.4 67.4 77.8 86.1 90.5 93.0 94.8

Q∗
1TR 16.9 26.0 36.4 44.5 52.0 58.3 61.8 65.9

NOTES: The table reports empirical powers (in %) of Q1 under AlterC at the 5% significance level based on NCCC-LS
modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q∗
1DAN, Q∗

1QS, Q∗
1TR denote the

rejection rates of Q1 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS and TR
denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel.
Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.

of spillover relation between the North American and the European equity markets in the aftermath

of the Brexit referendum.

We sample our data centering the referendum event from 2nd January 2012 to 31st December

2019 at the daily frequency from Datastream. This gives 2087 observations. Then, we divide

the sample into two subperiods: the pre–Brexit sample (2nd January 2012 – 23rd June 2016) and

the post–Brexit sample (24th June 2016 – 31st December 2019). We collect all data in US dollar

to minimize potential bias due to currency risk. Return series are calculated by taking the first

difference of the price indices in natural logarithm.

We begin with the NA–UK study. First, we estimate our NCCC-LS conditional variance model

for both subsamples. To filter out possible mean causality, each return variable is regressed on

the remaining lagged series. With the residuals that are free from mean causality, we estimate the

NCCC-LS model. The best fitting model lag orders are selected on the basis of Bayesian information

criteria and diagnostic examinations. Regarding the pre–Brexit period, we obtain orders 9, 3 and 11

for the conditional variances of the UK, US and Canada markets, respectively. As for the post–Brexit
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sample, we obtain orders 4, 16 and 12 for the conditional variances of the UK, US and Canada

series, respectively. We carry out for the NA portfolio the Engle and Sheppard’s (2001) diagnosis to

find that we cannot reject the null of stable correlation structure at the usual significance level, with

p-values of 0.8969 and 0.1325 for the pre–Brexit and post–Brexit samples, respectively. The optimal

orders of the correlation stability test are automatically selected based on Bayesian information

criteria. This, together with a series of conventional Ljung-Box examinations reported in Table 2.5,

suggests the adequacy of our NCCC-LS modeling.

Next, we compute our bootstrap Q∗
1 tests using the Barlett kernel since simulations suggest

similar performance across the downward weighting kernels. We report the p-values in Table 2.6.

In the pre–Brexit sample, we find that the spillover effect from the NA market to the UK market

is statistically significant at the 5% level for all M ’s. This finding implies that the NA market has

a significant influence on the UK market in both the short term and the long run. In the other

direction, we find evidence of spillover effect from the UK market to the NA market at the 10%

level for all M ’s. Our findings imply feedback spillovers in the NA–UK nexus. This interdependent

relation, however, diminishes in the post–Brexit period.

Before Brexit, the feedback spillover in the NA–UK nexus can be explained by the closely

interconnected economic activities in the two regions. Since the two markets rely on each other,

the market participants in the two regions tend to follow each other closely. Therefore, an increase

in uncertainty or volatility of one market would inevitably affect the other. Interestingly, the

spillover effects between NA and UK disappear after Brexit. In other words, the NA (UK) market is

no longer significantly affected by the volatility in the UK (NA) market. After the Brexit referendum,

market participants in the UK may be discouraged to infer information from the NA market

because they are less confident about the UK’s bargaining position in the international market

especially among major players such as NA. Consequently, uncertainly in NA does not spill to

UK. In the other direction, market participants in the NA region tend to divert their focus away

from the UK because of the fear that it will lose its access to the European Single Market, which

is an important trading region for the NA. As a result, the NA is less driven by the UK and thus

uncertainty from the latter does not propagate to the former.

We now examine the NA–EU spillover relation. In the pre–Brexit sample, we obtain orders

16, 14, 12, 11, 7, 18, 9, 15, 3 and 15 for the conditional variances of the Austria, Belgium, France,

Germany, Ireland, Italy, the Netherlands, Spain, US and Canada markets, respectively. As for

the post–Brexit period, we obtain orders 11, 16, 10, 12, 9, 10, 11, 8, 9 and 10 for the conditional

variances of the Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands, Spain, US

and Canada series, respectively. As with the NA–UK study, we perform the Engle and Sheppard’s

(2001) diagnosis to find that we cannot reject the null of stable correlation structure at the usual

significance level for both subsamples and for both portfolios. Regarding the EU portfolio, we

obtain p-values of 0.5472 and 0.1183 for the pre–Brexit and post–Brexit samples, respectively. As

for the NA portfolio, we obtain p-values of 0.6592 and 0.5472 for the pre–Brexit and post–Brexit
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Table 2.5 Diagnostic tests (UK–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Pre–Brexit (2nd January 2012 – 23rd June 2016)
UK 7.155 22.093 36.494 6.177 18.319 25.026

[0.711] [0.335] [0.192] [0.800] [0.566] [0.724]
US 13.169 20.312 32.243 12.124 20.539 30.504

[0.214] [0.439] [0.356] [0.277] [0.425] [0.440]
Canada 4.224 20.656 34.183 2.911 23.436 38.206

[0.937] [0.418] [0.274] [0.983] [0.268] [0.145]
Post–Brexit (24th June 2016 – 31st December 2019)

UK 11.071 19.740 27.036 10.468 14.336 16.783
[0.352] [0.474] [0.621] [0.400] [0.813] [0.975]

US 15.436 18.869 23.736 10.546 13.020 17.188
[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]

Canada 6.779 18.437 22.004 4.432 18.823 21.513
[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

NOTES: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the null
of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively. The
values in the squared parentheses are the p-values of the tests.

samples, respectively. These examinations, along with a series of Ljung-Box diagnoses reported in

Tables 2.7 and 2.8, confirm the adequacy of our NCCC-LS model parameterizations.

Table 2.9 reports the volatility spillover test results. In the pre–Brexit period, we find that the

spillover effect from the NA market to the EU market is statistically significant at the 10% level

for M = 10,30. This finding suggests that the NA market has nontrivial influences on the broader

EU market in the short and long terms. In the opposite direction, the spillover effect from the EU

market is significant at the 10% level for M = 30. In the post–Brexit sample, the spillover effect

between the NA market and the EU market persists, with the impact from the latter occurs at a

lower M .

Before Brexit, the feedback spillover in the NA–EU nexus can be largely attributed to the

interlinked economic activities in the two regions. Therefore, uncertainty in one market would

naturally spill to the other. Interestingly, the spillover effect from the EU is somehow delayed as

the effect is not felt immediately by the NA market. One possible explanation for this finding is

that, before Brexit, market participants in the NA can access the Single market seamlessly through

the UK. Thus, they may tend to focus primarily on the UK, which results in their delayed response

to the volatility in the EU market. However, we find that the NA–EU spillover nexus becomes more

immediate after Brexit. This is because market participants that previously focus on the UK have

naturally switched their attention to the European Single Market directly. As a result, the NA reacts

more rapidly to the uncertainty in the EU market.
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Table 2.6 Spillover results (UK–NA)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.028 0.036 0.038 0.168 0.154 0.186

Q∗
−1BAR 0.088 0.058 0.054 0.729 0.677 0.774

NOTES: The table reports bootstrap p-values of the proposed spillover tests. Number of bootstraps = 499. Q∗
1BAR denotes

the one-way test for the null hypothesis of no volatility spillover from the NA market to the UK market. Q∗
−1BAR denotes

the one-way test for the null hypothesis of no volatility spillover from the UK market to the NA market. The subscript
BAR denotes the Barlett kernel. M denotes the kernel smoothing parameter.

In summary, our findings suggest that, before the Brexit referendum, participants in the NA

market pay a relatively closer attention to the UK than the EU market. Consequently, the NA is

driven more immediately by the volatility in the UK. After Brexit, the NA tends not to focus on

the UK, and it prefers to follow the EU more closely. As a result, uncertainty in the UK does not

significantly affect the NA while that in the EU has a more immediate effect on the NA.
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Table 2.7 Diagnostic tests (EU–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Pre–Brexit (2nd January 2012 – 23rd June 2016)
Austria 8.839 11.259 29.522 1.821 2.540 15.942

[0.547] [0.939] [0.490] [0.998] [1.000] [0.983]
Belgium 7.327 17.561 39.203 2.063 14.773 31.616

[0.694] [0.616] [0.121] [0.996] [0.789] [0.386]
France 7.405 18.745 38.255 5.597 16.625 27.864

[0.687] [0.538] [0.143] [0.848] [0.677] [0.578]
Germany 4.424 20.098 37.650 1.810 16.234 26.026

[0.926] [0.452] [0.159] [0.998] [0.702] [0.674]
Ireland 7.429 21.941 37.667 4.151 21.944 40.053

[0.684] [0.344] [0.158] [0.940] [0.344] [0.104]
Italy 5.208 24.126 39.677 4.861 18.723 29.314

[0.877] [0.237] [0.111] [0.900] [0.540] [0.501]
Netherlands 7.255 19.837 37.514 2.467 14.265 21.344

[0.701] [0.468] [0.163] [0.991] [0.817] [0.877]
Spain 11.198 22.854 39.655 8.825 18.703 37.979

[0.342] [0.296] [0.112] [0.549] [0.541] [0.150]
US 13.084 21.296 36.398 15.271 22.915 34.113

[0.219] [0.380] [0.195] [0.122] [0.293] [0.276]
Canada 3.926 17.647 30.166 3.113 20.511 33.009

[0.951] [0.611] [0.457] [0.979] [0.426] [0.322]

NOTES: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the null
of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively. The
values in the squared parentheses are the p-values of the tests.
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Table 2.8 Diagnostic tests (EU–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
Austria 3.371 15.052 19.516 2.601 13.909 17.353

[0.971] [0.773] [0.929] [0.989] [0.835] [0.968]
Belgium 7.672 18.799 24.333 1.892 5.901 7.232

[0.661] [0.535] [0.757] [0.997] [0.999] [1.000]
France 10.970 16.590 27.751 5.436 9.278 14.264

[0.360] [0.679] [0.584] [0.860] [0.979] [0.993]
Germany 2.087 15.826 24.130 1.233 10.628 14.429

[0.996] [0.727] [0.766] [1.000] [0.955] [0.993]
Ireland 4.952 15.662 29.053 0.465 15.670 22.324

[0.894] [0.737] [0.515] [1.000] [0.737] [0.842]
Italy 5.015 21.839 26.462 2.595 11.920 18.647

[0.890] [0.349] [0.651] [0.989] [0.919] [0.947]
Netherlands 4.078 7.539 17.054 1.409 8.056 12.786

[0.944] [0.995] [0.972] [0.999] [0.991] [0.997]
Spain 6.255 21.479 23.440 2.728 15.164 25.255

[0.793] [0.369] [0.797] [0.987] [0.767] [0.713]
US 7.289 21.190 30.560 15.012 23.508 25.919

[0.698] [0.386] [0.437] [0.132] [0.265] [0.679]
Canada 5.511 27.150 33.990 3.446 26.552 30.657

[0.855] [0.131] [0.281] [0.969] [0.148] [0.432]

NOTES: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the null
of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively. The
values in the squared parentheses are the p-values of the tests.

Table 2.9 Spillover results (EU–NA)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.046 0.124 0.070 0.078 0.128 0.182

Q∗
−1BAR 0.210 0.144 0.072 0.132 0.080 0.078

NOTES: The table reports bootstrap p-values of the proposed spillover tests. Number of bootstraps = 499. Q∗
1BAR denotes

the one-way test for the null hypothesis of no volatility spillover from the NA market to the EU market. Q∗
−1BAR denotes

the one-way test for the null hypothesis of no volatility spillover from the EU market to the NA market. The subscript
BAR denotes the Barlett kernel. M denotes the kernel smoothing parameter.
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2.6 Conclusions

In this paper, we proposed a class of asymptotic N(0,1) multivariate econometric strategy for

testing volatility spillover. The test statistics were constructed based on the quadratic distance

between a kernel-based spectral density estimator and the null spectral density. The proposed test

statistics are convenient to compute and they check a growing number of lags as the sample size

increases. The Granger regression-type method can be viewed as a special case of the proposed

procedure under the uniformly weighted Truncated kernel, but downward weighting kernels

were proposed to be in line with financial markets stylized facts and thus to improve the power

performance of the tests. To facilitate the estimation of the our test statistics, we proposed a

new NCCC-LS volatility structure that can be estimated element by element. Consistent least-

squares estimators that are computationally efficient were provided. Numerical optimization and

integration are not required throughout the proposed econometric strategy. The optimality of the

multivariate testing strategy was highlighted using Monte Carlo experiments. First, it can check a

large number of lags without losing significant power thanks to the use of downward weighting

kernel functions. Second, the testing strategy performed reasonably well in the higher dimension

up to 10 series. Furthermore, the paper provided a bootstrap version of the spillover tests whose

size was found to converge at a faster speed. Finally, the paper included a timely empirical study

in which the volatility spillover relations between the North America (NA) market and the greater

European market (both UK and EU) before and after the Brexit referendum were examined. Before

the Brexit referendum, it was found that the NA was driven more immediately by UK volatility than

EU volatility. After Brexit, it was found that volatility in the UK did not spill to NA while that in the

EU had a more immediate spillover effect on NA. This finding can be interpreted as that most NA

participants switched their attention from the UK to the EU market because of the fear that UK

might lose its access to the European Single Market.

Although our simulation study is supportive of the asymptotic theory, there are however

circumstances in which we would not recommend to use the proposed testing strategy. First, the

Hessian condition implies that the squared innovation can be twice differentiable with respect to

the parameter vector. For any variable to be differentiable, it should be continuous. Thus, if an

estimated innovation series appears to be discontinuous with jumps, we would not recommend to

use the proposed testing strategy. Second, another assumption of the theory is the existence of

the finite eighth moment of the innovation. Random vectors following the multivariate normal

distribution, t-distribution and generalised error distribution satisfy this assumption. Therefore, if

the empirical distribution of an estimated innovation sequence appears not to be “well-behaved” —

such as a distribution with unreasonably many extreme occurrences — we would not recommend

to use the proposed testing strategy. However, dataset with the discussed features might contain

valuable information about market jumps. Therefore, we propose to develop econometric tool for

market jumps and extreme events spillover in future research.
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Appendix 2.A

Derivation of (2.15). Recall that the normalized quadratic distance is given as

L̂2[ f̂ (λ), f̂ 0(λ)
]= 2π

∫
2π

vec
[

f̂ (λ)− f̂ 0(λ)
]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
f̂ (λ)− f̂ 0(λ)

]
dλ

= 2π
∫

2π
vec

[
f̂ (λ)− f̂ 0(λ)

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
f̂ (λ)− f̂ 0(λ)

]
dλ

= 2π
∫

2π
tr

{[
f̂ (λ)− f̂ 0(λ)

]′
Γ̂−1

u

[
f̂ (λ)− f̂ 0(λ)

]
Γ̂−1

v

}
dλ

= 2π
∫

2π
tr

{[
f̂ (λ)− f̂ 0(λ)

]′
Γ̂−1

u

[
f̂ (λ)− f̂ 0(λ)

]
Γ̂−1

v

}
dλ

= 2π
∫

2π
tr

{[
f̂ (λ)− f̂ 0(λ)

]′
Γ̂−1

u

[
f̂ (λ)− f̂ 0(λ)

]
Γ̂−1

v

}
dλ, (2.A.1)

where f denotes the complex conjugate of f . The second equality follows from the fact that

complex conjugate of a sum of individuals is the sum of the complex conjugate of the individuals.

The third equality follows from the matrix relation tr(A′BC D ′) = [
vec(A)

]′(D⊗B )
[
vec(C )

]
, (see, e.g.,

Harville, 1997, Theorem 16.2.2). The fourth equality follows from the interchangeability of complex

conjugation and transposition. The fifth equality follows from the fact that the complex conjugate

of real matrix is the real matrix itself. Let C (λ) ≡ [
f̂ (λ)− f̂ 0(λ)

]′
Γ̂−1

u , D(λ) ≡ [
f̂ (λ)− f̂ 0(λ)

]
Γ̂−1

v , and

put A j ≡ (2π)−1k( j /M)ρ̂( j )′Γ̂−1
u , B j ≡ (2π)−1k( j /M)ρ̂( j )Γ̂−1

v . We have C (λ) = ∑T−1
j=1 A j e−i jλ and

D(λ) =∑T−1
j=1 B j e−i jλ, for λ ∈ [−π,π] and i =p−1. We can rewrite (2.A.1) as

L̂2[ f̂ (λ), f̂ 0(λ)
]= 2π

∫
2π

tr
[

C (λ)D(λ)
]

dλ

= 2πtr
[∫

2π
C (λ)D(λ)dλ

]
= 2πtr

(
2π

T−1∑
j=1

A j B j

)

= (2π)2tr

(T−1∑
j=1

A j B j

)
,

where the second equality follows from the interchangeability of trace and integral and the third

equality follows from Parseval’s identity (see, e.g., Wiener and Masani, 1957, Theorem 3.9). Substi-
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tuting the relevant terms back into the normalized quadratic equation, we have

L̂2[ f̂ (λ), f̂ 0(λ)
]= (2π)2tr

[T−1∑
j=1

1

2π
k( j /M)ρ̂( j )′Γ̂−1

u
1

2π
k( j /M)ρ̂( j )Γ̂−1

v

]

= tr

[T−1∑
j=1

k2( j /M)ρ̂( j )′Γ̂−1
u ρ̂( j )Γ̂−1

v

]

=
T−1∑
j=1

k2( j /M)tr
{
ρ̂( j )′Γ̂−1

u ρ̂( j )Γ̂−1
v

}
=

T−1∑
j=1

k2( j /M)vec
[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]
,

where the fourth equality follows from the interchangeability of trace and summation. This

completes the derivation. �
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Appendix 2.B

Throughout Appendices 2.B–2.G, the following notations are adopted. The Euclidean norm of

vector x is denoted by ||x ||. The inner product between vector x1 and vector x2 is denoted by

〈x1, x2〉. The Frobenius norm of matrix X is denoted by ||X ||F . The notations Op and op are the

usual order in probability notations. The scalar ∆ represents a positive finite generic constant that

may differ at every occurrence.

Proof of Lemma 2.2.1. We begin by showing the covariance representation of S. Then, the asymp-

totic normality follows from Lemma 2.2 in Candelon and Tokpavi (2016) and Lemma 1 in Bouhad-

dioui and Roy (2006). Using the properties vec(AX B ) = (B ′⊗ A)vec(X ); (A ⊗B )′ = A′⊗B ′; (A′)−1 =
(A−1)′; (A ⊗B )(C ⊗D) = (AC )⊗ (B D); (ABC )−1 =C−1B−1 A−1; (A ⊗B )−1 = A−1 ⊗B−1, we write for

the correlation components of S

vec
[
ρ̂0( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′[Diag(C 0

v v )−1/2 ⊗Diag(C 0
uu )−1/2](Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′[Diag(C 0

v v )−1/2Γ−1
v

]⊗ [
Diag(C 0

uu )−1/2Γ−1
u

]
vec

[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′{(C 0

v v )−1[Diag(C 0
v v )−1/2]−1}⊗{

(C 0
uu )−1[Diag(C 0

uu )−1/2]−1}vec
[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′[(C 0

v v )−1 ⊗ (C 0
uu )−1]{[Diag(C 0

v v )−1/2]−1 ⊗ [
Diag(C 0

uu )−1/2]−1}vec
[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′[(C 0

v v )−1 ⊗ (C 0
uu )−1]{[Diag(C 0

v v )−1/2]⊗ [
Diag(C 0

uu )−1/2]}−1vec
[
ρ̂0( j )

]
= vec

[
Ĉ 0

uv ( j )
]′[(C 0

v v )−1 ⊗ (C 0
uu )−1]{[Diag(C 0

v v )−1/2]⊗ [
Diag(C 0

uu )−1/2]}−1

× [
Diag(C 0

v v )−1/2 ⊗Diag(C 0
uu )−1/2]vec

[
Ĉ 0

uv ( j )
]

= vec
[
Ĉ 0

uv ( j )
]′[(C 0

v v )−1 ⊗ (C 0
uu )−1]vec

[
Ĉ 0

uv ( j )
]
. (2.B.1)

We have

S = T
T−1∑
j=1

k2( j /M)vec
[
ρ̂0( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
= T

T−1∑
j=1

k2( j /M)vec
[
Ĉ 0

uv ( j )
]′[(C 0

v v )−1 ⊗ (C 0
uu )−1]vec

[
Ĉ 0

uv ( j )
]
. (2.B.2)

With this representation, the result of Lemma 2.2.1 follows from Lemma 2.2 in Candelon and

Tokpavi (2016), which is based on Lemma 1 in Bouhaddioui and Roy (2006). In both papers, the

asymptotic normality result is obtained under the following conditions: (i) The event variables u0
t

and v 0
t are multivariate i.i.d. sequences with finite fourth-order moment. (ii) Mutual independence

between u0
t and v 0

t− j for j > 0. In our framework, condition (i) is satisfied given Assumption 2.2.1,

and condition (ii) is satisfied under the null hypothesis, this completes the proof. �
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Proof of Lemma 2.2.2. We begin by defining the following notations. Let b1t ≡ (C 0
uu)−1/2u0

t and

b2t ≡ (C 0
v v )−1/2v 0

t . Similarly, we let b̂1t ≡ (C 0
uu)−1/2ût and b̂2t ≡ (C 0

v v )−1/2v̂t , denote the ana-

logues of b1t and b2t based on estimated event variables ût and v̂t . Then, we obtain Cb̂( j ) ≡
(C 0

uu )−1/2Ĉuv ( j )(C 0
v v )−1/2, the sample cross-covariance matrix between b̂1t and b̂2t at lag order j .

Similarly, we have Cb ( j ) ≡ (C 0
uu )−1/2Ĉ 0

uv ( j )(C 0
v v )−1/2, the sample cross-covariance matrix between

b1t and b2t at lag order j . By reasonings similar to the derivation of (2.B.1) in Lemma 2.2.1, we

write S∗ in terms of covariances

S∗ = T
T−1∑
j=1

k2( j /M)vec
[
ρ̂∗( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂∗( j )

]
= T

T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′[(C 0
v v )−1 ⊗ (C 0

uu )−1]vec
[
Ĉuv ( j )

]
. (2.B.3)

With these results and based on the proof of Candelon and Tokpavi (2016, Lemma 2.1) and Bouhad-

dioui and Roy (2006, Lemma 2), S −S∗ can be written as

S −S∗ = T
T−1∑
j=1

k2( j /M)||vec[Cb̂( j )]−vec[Cb( j )]||2

+2T
T−1∑
j=1

k2( j /M)〈vec[Cb( j )],vec[Cb̂( j )]−vec[Cb( j )]〉

=A1T +2A2T , say. (2.B.4)

We shall show that both A1T and A2T are op (M 1/2). The first term A1T can be written as

A1T = T
T−1∑
j=1

k2( j /M)

×
∣∣∣∣∣∣(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2 vec[Ĉuv ( j )]− (C 0

v v )−1/2 ⊗ (C 0
uu )−1/2 vec[Ĉ 0

uv ( j )]
∣∣∣∣∣∣2

= T
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣[(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2]{vec[Ĉuv ( j )]−vec[Ĉ 0

uv ( j )]
}∣∣∣∣∣∣2

≤ T
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2

∣∣∣∣∣∣2

F

∣∣∣∣∣∣vec[Ĉuv ( j )]−vec[Ĉ 0
uv ( j )]

∣∣∣∣∣∣2
, (2.B.5)

which we make use the property vec(AX B ) = (B ′ ⊗ A)vec(X ) and Cauchy-Schwarz inequality.

Because ||(C 0
v v )−1/2 ⊗ (C 0

uu)−1/2||2F = Op (1) by Assumption 2.2.1, it suffices to show that A11T =
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op (M 1/2), with

A11T = T
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣vec[Ĉuv ( j )]−vec[Ĉ 0

uv ( j )]
∣∣∣∣∣∣2

= T
d∗

1∑
m=1

d∗
2∑

n=1

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]2, (2.B.6)

where Ĉ m,n
uv ( j ) and Ĉ 0,m,n

uv ( j ) are the (m,n)-th elements of matrices Ĉuv ( j ) and Ĉ 0
uv ( j ), respectively.

It suffices to show that
∑T−1

j=1 k2( j /M)
[
Ĉ m,n

uv ( j ) − Ĉ 0,m,n
uv ( j )

]2 = op (M 1/2/T ). Let u0
m,t and ûm,t

denote the m-th element of u0
t and ût , respectively. Similarly, let v0

n,t and v̂n,t denote the n-th

element of v 0
t and v̂t , respectively. We have

Ĉ m,n
uv ( j )− Ĉ 0,m,n

uv ( j ) = 1

T

T∑
t= j+1

ûm,t v̂n,t− j −u0
m,t v0

n,t− j

= 1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)
v0

n,t− j +
1

T

T∑
t= j+1

u0
m,t

(
v̂n,t− j − v0

n,t− j

)
+ 1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)(
v̂n,t− j − v0

n,t− j

)
=B1T ( j )+B2T ( j )+B3T ( j ), say. (2.B.7)

It follows that

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]2 ≤∆
T−1∑
j=1

k2( j /M)
[
B2

1T ( j )+B2
2T ( j )+B2

3T ( j )
]
. (2.B.8)

Applying Cauchy-Schwarz inequality to the last term B2
3T ( j ), we have

sup
1≤ j≤T−1

B2
3T ( j ) ≤

[
1

T

T∑
t=1

(
ûm,t −u0

m,t

)2
][

1

T

T∑
t=1

(
v̂n,t − v0

n,t

)2
]

.

We shall show that T −1 ∑T
t=1

(
ûm,t − u0

m,t

)2 = Op (T −1). The proof for T −1 ∑T
t=1

(
v̂n,t − v0

n,t

)2 is

the same. Using Cauchy-Schwarz inequality and noting that ûm,t − u0
m,t = um,t (θ̂1) − u0

m,t =[
um,t (θ̂1)− ũm,t (θ̂1)

]+ [
ũm,t (θ̂1)−u0

m,t

]
, we have

1

T

T∑
t=1

[
um,t (θ̂1)−u0

m,t

]2 ≤ 2
1

T

T∑
t=1

[
um,t (θ̂1)− ũm,t (θ̂1)

]2

+2
1

T

T∑
t=1

[
ũm,t (θ̂1)−u0

m,t

]2

= 2B31T ( j )+2B32T ( j ), say. (2.B.9)
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We have B31T ( j ) =Op (T −2) by Assumption 2.2.3, it remains to show that B32T ( j ) =Op (T −1). By

the mean value theorem and Cauchy-Schwarz inequality, we have

B32T ( j ) ≤ ||θ̂1 −θ0
1||2

(
1

T

T∑
t=1

||∇θ1 ũm,t (θ̄1)||2
)
, (2.B.10)

where ∇θ1 is the gradient operator with respect to θ1 and θ̄1 lies in the segment between θ̂1 and

θ0
1. Given Assumption 2.2.2, we have ||θ̂1 −θ0

1||2 = Op (T −1). Given Assumption 2.2.4, we have

T −1 ∑T
t=1 ||∇θ1 ũm,t (θ̄1)||2 =Op (1) by Markov’s inequality. Therefore, we have B32T ( j ) =Op (T −1).

Subsequently,

T−1∑
j=1

k2( j /M)B2
3T ( j ) ≤ M sup

1≤ j≤T−1
B2

3T ( j )

[
1

M

T−1∑
j=1

k2( j /M)

]
=Op (M/T 2), (2.B.11)

where M−1 ∑T−1
j=1 k2( j /M) → ∫ ∞

0 k2(z)d z <∞ follows by Assumptions 2.2.5-2.2.6.

Next, we rewrite B1T ( j ) as

B1T ( j ) = 1

T

T∑
t= j+1

[
um,t (θ̂1)− ũm,t (θ̂1)

]
v0

n,t− j +
1

T

T∑
t= j+1

[
ũm,t (θ̂1)−u0

m,t

]
v0

n,t− j

=B11T ( j )+B12T ( j ), say. (2.B.12)

Applying Cauchy-Schwarz inequality to the first term B11T ( j ), we have

T−1∑
j=1

k2( j /M)B2
11T ( j )

≤ 1

T 2

T−1∑
j=1

k2( j /M)

{ T∑
t= j+1

[
um,t (θ̂1)− ũm,t (θ̂1)

]2
}[ T∑

t= j+1

(
v0

n,t− j

)2
]

≤ 1

T

T−1∑
j=1

k2( j /M)

{ T∑
t=1

[
um,t (θ̂1)− ũm,t (θ̂1)

]2
}[

1

T

T∑
t=1

(
v0

n,t

)2
]

=Op (M/T 2), (2.B.13)

given Assumption 2.2.3, and T −1 ∑T
t=1

(
v0

n,t

)2 =Op (1) by Markov’s inequality. Applying two-term

Taylor expansion to the second term B12T ( j ), we have

B12T ( j ) = (
θ̂1 −θ0

1

)′ 1

T

T∑
t= j+1

∇θ1 ũm,t (θ0
1)v0

n,t− j

+ 1

2

(
θ̂1 −θ0

1

)′[ 1

T

T∑
t= j+1

∇2
θ1

ũm,t (θ̄1)v0
n,t− j

](
θ̂1 −θ0

1

)
=B121T ( j )+B122T ( j ), say, (2.B.14)
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where ∇2
θ1

is the Hessian operator with respect to θ1 and θ̄1 lies in the segment between θ̂1 and θ0
1.

By Cauchy-Schwarz inequality, we obtain for the first term

T−1∑
j=1

k2( j /M)B2
121T ( j )

≤ ||θ̂1 −θ0
1||2

{T−1∑
j=1

k2( j /M)
1

T 2

[ T∑
t= j+1

||∇θ1 ũm,t (θ0
1)||v0

n,t− j

]2}
=Op (M/T 2),

given Assumption 2.2.2 and
∑T−1

j=1 k2( j /M)T −2
[∑T

t= j+1 ||∇θ1 ũm,t (θ0
1)||v0

n,t− j

]2 =Op (M/T ), which

follows from Markov’s inequality, Assumption 2.2.4 and

E

{
1

T 2

[ T∑
t= j+1

||∇θ1 ũm,t (θ0
1)||v0

n,t− j

]2}
= 1

T 2

T∑
t= j+1

E
{[
||∇θ1 ũm,t (θ0

1)||v0
n,t− j

]2}
= 1

T 2

T∑
t= j+1

E
[
||∇θ1 ũm,t (θ0

1)||2
]
E
[(

v0
n,t− j

)2
]

=O(T −1),

where the first equality follows from Assumption 2.2.1 and the second equality follows from the

independence between Ξ1tΞ
′′′
1t and Ξ2t− jΞ

′′′
2t− j under the null hypothesis. By Cauchy-Schwarz

inequality, we can write the second term B122T ( j ) as

T−1∑
j=1

k2( j /M)B2
122T ( j )

≤ 1

T 2
||θ̂1 −θ0

1||4
T−1∑
j=1

k2( j /M)

[ T∑
t= j+1

||∇2
θ1

ũm,t (θ̄1)||F v0
n,t− j

]2

≤ 1

T 2
||θ̂1 −θ0

1||4
T−1∑
j=1

k2( j /M)

[ T∑
t= j+1

||∇2
θ1

ũm,t (θ̄1)||2F
][ T∑

t= j+1
(v0

n,t− j )2
]

= ||θ̂1 −θ0
1||4

T−1∑
j=1

k2( j /M)

[
1

T

T∑
t= j+1

||∇2
θ1

ũm,t (θ̄1)||2F
][

1

T

T∑
t= j+1

(v0
n,t− j )2

]
=Op (M/T 2),

having used Assumptions 2.2.2 and 2.2.4 with Markov’s inequality. Therefore,

T−1∑
j=1

k2( j /M)B2
1T ( j ) =Op (M/T 2) = op (M 1/2/T ). (2.B.15)
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By the same reasonings, we also have

T−1∑
j=1

k2( j /M)B2
2T ( j ) =Op (M/T 2) = op (M 1/2/T ). (2.B.16)

Collecting (2.B.6), (2.B.7), (2.B.11), (2.B.15) and (2.B.16), we have A1T = op (M 1/2).

For the second term A2T in (2.B.4), we have

A2T = T
T−1∑
j=1

k2( j /M)vec[Cb( j )]′
(
vec[Cb̂( j )]−vec[Cb( j )]

)
= T

T−1∑
j=1

k2( j /M)
{

(C 0
v v )−1/2 ⊗ (C 0

uu )−1/2vec[Ĉ 0
uv ( j )]

}′[
(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2

]
×{

vec[Ĉuv ( j )]−vec[Ĉ 0
uv ( j )]

}
= T

T−1∑
j=1

k2( j /M)vec[Ĉ 0
uv ( j )]′

[
(C 0

v v )−1 ⊗ (C 0
uu )−1

]{
vec[Ĉuv ( j )]−vec[Ĉ 0

uv ( j )]
}
,

having used again the properties vec(ABC ) = (C ′⊗ A)vec(B) and (A ⊗B)(C ⊗D) = (AC )⊗ (B D).

For p = 1, ...,d∗
1 d∗

2 , let Ĉ p
uv ( j ) and Ĉ 0,p

uv ( j ) denote the p-th element of vec[Ĉuv ( j )] and vec[Ĉ 0
uv ( j )],

respectively. Similarly, we denote by Ĉ q
uv ( j ) and Ĉ 0,q

uv ( j ) the q-th element of vec[Ĉuv ( j )] and

vec[Ĉ 0
uv ( j )], respectively. Further let Gp,q denotes the (p, q)-th element of G , where G ≡ (C 0

v v )−1 ⊗
(C 0

uu )−1. Then,

A2T = T
T−1∑
j=1

k2( j /M)

{d∗
1 d∗

2∑
p=1

d∗
1 d∗

2∑
q=1

Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]
Gp,q

}

= T
d∗

1 d∗
2∑

p=1

d∗
1 d∗

2∑
q=1

Gp,q
T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]
. (2.B.17)

Because Gp,q =Op (1) by Assumption 2.2.1, it suffices to show that
∑T−1

j=1 k2( j /M)C p
uv ( j )[Ĉ q

uv ( j )−
Ĉ 0,q

uv ( j )] =Op (M/T 3/2). By Cauchy-Schwarz inequality, we can write

∣∣∣∣T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]∣∣∣∣
≤

[T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )2

]1/2{T−1∑
j=1

k2( j /M)
[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]2
}1/2

.
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We have
∑T−1

j=1 k2( j /M)[Ĉ q
uv ( j ) − Ĉ 0,q

uv ( j )]2 = Op (M/T 2) from the proof of (2.B.8) and we have∑T−1
j=1 k2( j /M)Ĉ 0,p

uv ( j )2 =Op (M/T ) by Markov’s inequality and

T−1∑
j=1

k2( j /M)E
[
Ĉ 0,p

uv ( j )2]= M

T
C 0,p

uu C 0,p
v v

(
1

M

T−1∑
j=1

(1− j /T )k2( j /M)

)
=O(M/T ), (2.B.18)

where C 0,p
uu and C 0,p

v v denote the p-th entries of vec(C 0
uu) and vec(C 0

v v ), respectively. This gives

A2T =Op (M/T 1/2) = op (M 1/2) and completes the proof. �
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Proof of Proposition 2.2.2. Recall Proposition 2.2.2 is stated as

Proposition 2.2.2. Suppose the conditions of Theorem 2.2.1 hold, we have that

Ŝ −S∗[
d∗

1 d∗
2 D1T (k)

]1/2

p−−→ 0.

Given Assumption 2.2.5 and since M →∞ as T →∞, it follows that

D1T (k) = M
∫ ∞

0
k4(z)dz[1+o(1)].

Therefore, the result of Proposition 2.2.2 can be obtained by showing that Ŝ −S∗ =Op (M/T 1/2). By

reasonings similar to the derivations of (2.B.1) and (2.B.3), we write for Ŝ

Ŝ = T
T−1∑
j=1

k2( j /M)vec
[
ρ̂( j )

]′(
Γ̂−1

v ⊗ Γ̂−1
u

)
vec

[
ρ̂( j )

]
= T

T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′(Ĉ−1
v v ⊗Ĉ−1

uu

)
vec

[
Ĉuv ( j )

]
. (2.B.19)

Then, Ŝ −S∗ is equal to

Ŝ −S∗ = T
T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′[Ĉ−1
v v ⊗Ĉ−1

uu − (C 0
v v )−1 ⊗ (C 0

uu )−1]vec
[
Ĉuv ( j )

]
= T

T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′[(Ĉv v ⊗Ĉuu )−1 − (C 0
v v ⊗C 0

uu )−1]vec
[
Ĉuv ( j )

]
.

We proceed by showing that Ĉv v ⊗Ĉuu −C 0
v v ⊗C 0

uu =Op (T −1/2). Its inverse counterpart has the

same stochastic order by the Delta method. For m = 1, ...,d∗
1 , we let Ĉ m,m

uu and C 0,m,m
uu denote

the (m,m)-th elements of matrices Ĉuu and C 0
uu , respectively. Similarly, for n = 1, ...,d∗

2 , we let

Ĉ n,n
v v and C 0,n,n

v v denote the (n,n)-th entries of matrices Ĉv v and C 0
v v , respectively. Then, we have

the [d∗
1 (n −1)+m,d∗

1 (n −1)+m]-th entry in Ĉv v ⊗ Ĉuu and C 0
v v ⊗C 0

uu be given, respectively, by

Ĉ n,n
v v Ĉ m,m

uu and C 0,n,n
v v C 0,m,m

uu . It suffices to show that Ĉ n,n
v v Ĉ m,m

uu −C 0,n,n
v v C 0,m,m

uu =Op (T −1/2). Since

Ĉ n,n
v v Ĉ m,m

uu −C 0,n,n
v v C 0,m,m

uu = (Ĉ n,n
v v −C 0,n,n

v v )C 0,m,m
uu +C 0,n,n

v v (Ĉ m,m
uu −C 0,m,m

uu )+ (Ĉ n,n
v v −C 0,n,n

v v )(Ĉ m,m
uu −

C 0,m,m
uu ) and given C 0,n,n

v v = Op (1) and C 0,m,m
uu = Op (1) by Assumption 2.2.1, we know that the

controlling terms in Ĉ n,n
v v Ĉ m,m

uu −C 0,n,n
v v C 0,m,m

uu are Ĉ m,m
uu −C 0,m,m

uu and Ĉ n,n
v v −C 0,n,n

v v . It therefore

suffices to show that Ĉ m,m
uu −C 0,m,m

uu = Op (T −1/2), the proof for Ĉ n,n
v v −C 0,n,n

v v is similar. It follows

from the triangle inequality that

|Ĉ m,m
uu −C 0,m,m

uu | ≤ |Ĉ m,m
uu − Ĉ 0,m,m

uu |+ |Ĉ 0,m,m
uu −C 0,m,m

uu |,
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where we have Ĉ 0,m,m
uu −C 0,m,m

uu = Op (T −1/2) by Chebyshev’s inequality and Assumption 2.2.1.

Applying Cauchy-Schwarz inequality to the first term, we have

Ĉ m,m
uu − Ĉ 0,m,m

uu = 1

T

T∑
t= j+1

ûm,t ûm,t −u0
m,t u0

m,t

= 2
1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)
u0

m,t +
1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)2

≤ 2

[
1

T

T∑
t= j+1

(u0
m,t )2

]1/2{ 1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)2
}1/2

+ 1

T

T∑
t= j+1

(
ûm,t −u0

m,t

)2.

We have T −1 ∑T
t= j+1

(
ûm,t −u0

m,t

)2 = Op (T −1) from the proof of (2.B.9) and T −1 ∑T
t= j+1(u0

m,t )2 =
Op (1) by Markov’s inequality and Assumption 2.2.1. It follows that Ĉ m,m

uu − Ĉ 0,m,m
uu = Op (T −1/2).

Therefore,

Ŝ −S∗ = T
T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′[Op (T −1/2)
]
vec

[
Ĉuv ( j )

]
=Op (T 1/2)

T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′vec
[
Ĉuv ( j )

]
. (2.B.20)

For the rest of the proof, it suffices to show that FT =Op (M/T ), where

FT =
T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′vec
[
Ĉuv ( j )

]
=

T−1∑
j=1

k2( j /M)vec
[
Ĉuv ( j )

]′vec
[
Ĉuv ( j )

]−vec
[
Ĉ 0

uv ( j )
]′vec

[
Ĉ 0

uv ( j )
]

+
T−1∑
j=1

k2( j /M)vec
[
Ĉ 0

uv ( j )
]′vec

[
Ĉ 0

uv ( j )
]

=F1T +F2T , say. (2.B.21)

We write for the first term F1T

F1T =
T−1∑
j=1

k2( j /M)
d∗

1∑
m=1

d∗
2∑

n=1

[
Ĉ m,n

uv ( j )2 − Ĉ 0,m,n
uv ( j )2

]

=
d∗

1∑
m=1

d∗
2∑

n=1

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )2 − Ĉ 0,m,n
uv ( j )2

]
, (2.B.22)
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where Ĉ m,n
uv ( j ) and Ĉ 0,m,n

uv ( j ) are the (m,n)-th elements of matrices Ĉuv ( j ) and Ĉ 0
uv ( j ), respectively.

It suffices to show that
∑T−1

j=1 k2( j /M)
[
Ĉ m,n

uv ( j )2 − Ĉ 0,m,n
uv ( j )2

]=Op (M/T ). We write

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )2 − Ĉ 0,m,n
uv ( j )2

]
=

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]2

+2
T−1∑
j=1

k2( j /M)Ĉ 0,m,n
uv ( j )

[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]
=F11T +2F12T , say.

We have F11T = Op (M/T 2) from the proof of (2.B.8) and we have F12T = Op (M/T 3/2) from the

proof of (2.B.17). Thus, F1T =Op (M/T ).

Next, we rewrite the second term F2T as

F2T =
T−1∑
j=1

k2( j /M)

[d∗
1 d∗

2∑
p=1

Ĉ 0,p
uv ( j )2

]
=

d∗
1 d∗

2∑
p=1

T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )2, (2.B.23)

where Ĉ 0,p
uv ( j ) is the p-th element in vec[Ĉ 0

uv ( j )], p = 1, ...,d∗
1 d∗

2 . By Markov’s inequality and

(2.B.18), we have F2T =Op (M/T ). This completes the proof. �

Appendix 2.C

Proof of Lemma 2.2.3. The proof of Lemma 2.2.3 follows largely from the proof of Lemma 2.2.2

with some modifications as we are now under the alternative hypothesis. We have T −1(S −S∗) =
T −1(A1T +2A2T ) as in (2.B.4). We shall show that T −1A1T = op (1) and T −1A2T = op (1). We begin

with A1T , we have from (2.B.5) that

T −1A1T ≤
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2

∣∣∣∣∣∣2

F

∣∣∣∣∣∣vec[Ĉuv ( j )]−vec[Ĉ 0
uv ( j )]

∣∣∣∣∣∣2
. (2.C.1)

It suffices to show that T −1A11T = op (1), where

T −1A11T =
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣vec[Ĉuv ( j )]−vec[Ĉ 0

uv ( j )]
∣∣∣∣∣∣2

=
d∗

1∑
m=1

d∗
2∑

n=1

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]2. (2.C.2)

As in (2.B.8), we have

T−1∑
j=1

k2( j /M)
[
Ĉ m,n

uv ( j )− Ĉ 0,m,n
uv ( j )

]2 ≤∆
T−1∑
j=1

k2( j /M)
[
B2

1T ( j )+B2
2T ( j )+B2

3T ( j )
]
. (2.C.3)
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It suffices to show that
∑T−1

j=1 k2( j /M)
[
B2

i T ( j )
]= op (1), for i = 1,2,3. As shown in (2.B.11), we have∑T−1

j=1 k2( j /M)B2
3T ( j ) =Op (M/T 2) = op (1) under Assumptions 2.2.1-2.2.6. Next, from (2.B.12), we

have B1T ( j ) =B11T ( j )+B12T ( j ). We know from (2.B.13) that
∑T−1

j=1 k2( j /M)B2
11T ( j ) =Op (M/T 2) =

op (1) under Assumptions 2.2.1-2.2.6. Applying Cauchy-Schwarz inequality to the second term

B12T ( j ), we have

T−1∑
j=1

k2( j /M)B2
12T ( j )

≤ 1

T 2

T−1∑
j=1

k2( j /M)

{ T∑
t= j+1

[
ũm,t (θ̂1)−u0

m,t

]2
}[ T∑

t= j+1

(
v0

n,t− j

)2
]

≤
T−1∑
j=1

k2( j /M)

{
1

T

T∑
t= j+1

[
ũm,t (θ̂1)−u0

m,t

]2
}[

1

T

T∑
t=1

(
v0

n,t

)2
]

=Op (M/T ), (2.C.4)

given
∑T−1

j=1 k2( j /M) =O(M), T −1 ∑T
t= j+1

[
ũm,t (θ̂1)−u0

m,t

]2 =Op (T −1) from (2.B.10) and T −1 ∑T
t=1

(
v0

n,t

)2 =
Op (1) by Markov’s inequality. It follows that

∑T−1
j=1 k2( j /M)B2

1T ( j ) =Op (M/T ) = op (1). By the same

reasonings, we also have
∑T−1

j=1 k2( j /M)B2
2T ( j ) = op (1). Therefore, T −1A1T = op (1).

Next, we shall show that T −1A2T = op (1). From (2.B.17), we have

T −1A2T =
d∗

1 d∗
2∑

p=1

d∗
1 d∗

2∑
q=1

Gp,q
T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]
. (2.C.5)

It suffices to show that
∑T−1

j=1 k2( j /M)Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

] = op (1). By Cauchy-Schwarz in-

equality, we have

∣∣∣∣T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )

[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]∣∣∣∣
≤

[T−1∑
j=1

k2( j /M)Ĉ 0,p
uv ( j )2

]1/2{T−1∑
j=1

k2( j /M)
[
Ĉ q

uv ( j )− Ĉ 0,q
uv ( j )

]2
}1/2

.

We have
∑T−1

j=1 k2( j /M)
[
Ĉ q

uv ( j )−Ĉ 0,q
uv ( j )

]2 = op (1) from (2.C.2) and
∑T−1

j=1 k2( j /M)Ĉ 0,p
uv ( j )2 =Op (1)

by Lemma 2.2.5 and
∑∞

j=1 ||ρ( j )||2 <∞. This completes the proof. �

Proof of Lemma 2.2.4. The proof of Lemma 2.2.4 can be readily deduced from the proofs of

Proposition 2.2.2 and Lemma 2.2.3. Based on Assumptions 2.2.1-2.2.6, we have shown that

T −1(Ŝ − S∗) = T −1Op (T 1/2)FT = Op (T −1/2)FT in (2.B.20) and (2.B.21). It suffices to show that

FT = F1T +F2T = Op (1). Using the results in (2.C.2) and (2.C.5), we have F1T = Op (1) under

the alternative hypothesis. Finally, F2T = Op (1) by Lemma 2.2.5 and
∑∞

j=1 ||ρ( j )||2 < ∞. This

completes the proof. �
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Proof of Lemma 2.2.5. First, we write

1

T
S =

T−1∑
j=1

k2( j /M)vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
+

{T−1∑
j=1

k2( j /M)vec
[
ρ̂0( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ̂0( j )

]
−

T−1∑
j=1

k2( j /M)vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]}
=G1T +G2T , say. (2.C.6)

For the first term G1T in (2.C.6), we have

G1T =
∞∑

j=1
vec

[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
+

T−1∑
j=1

(
k2( j /M)−1

)
vec

[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
−

∞∑
j=T

vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
p−−→

∞∑
j=1

vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
. (2.C.7)

The convergence follows because the first term
∑∞

j=T vec
[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]
goes to zero

as a consequence of the absolute summable condition
∑∞

j=1 ||ρ( j )||2 <∞; and the second term∑T−1
j=1

[
k2( j /M)−1

]
vec

[
ρ( j )

]′(
Γ−1

v ⊗Γ−1
u

)
vec

[
ρ( j )

]→ 0, which follows from the dominated conver-

gence theorem, limM→∞
[
k2( j /M)−1

]→ 0 and
∑∞

j=1 ||ρ( j )||2 <∞.

We now consider the second term G2T in (2.C.6). Let C 0
uv ( j ) ≡ E[u0

t (v 0
t− j )′], we have C 0

b ( j ) ≡
(C 0

uu)−1/2C 0
uv ( j )(C 0

v v )−1/2 the true cross-covariance between b1t and b2t at lag order j . As in

(2.B.4), we write G2T as

G2T =
T−1∑
j=1

k2( j /M)||vec[Cb( j )]−vec[C 0
b ( j )]||2

+2
T−1∑
j=1

k2( j /M)〈vec[C 0
b ( j )],vec[Cb( j )]−vec[C 0

b ( j )]〉

=G21T +2G22T , say. (2.C.8)

For the rest of the proof, it suffices to show that the first term G21T goes to zero in probability

because G22T can be bounded by the product of the first term and a finite constant using Cauchy-
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Schwarz inequality. Following a similar decomposition as in (2.B.5), we have

G21T ≤
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣(C 0

v v )−1/2 ⊗ (C 0
uu )−1/2

∣∣∣∣∣∣2

F

∣∣∣∣∣∣vec[Ĉ 0
uv ( j )]−vec[C 0

uv ( j )]
∣∣∣∣∣∣2

. (2.C.9)

It suffices to show that G211T = op (1), with

G211T =
T−1∑
j=1

k2( j /M)
∣∣∣∣∣∣vec[Ĉ 0

uv ( j )]−vec[C 0
uv ( j )]

∣∣∣∣∣∣2

=
d∗

1∑
m=1

d∗
2∑

n=1

T−1∑
j=1

k2( j /M)
[
Ĉ 0,m,n

uv ( j )−C 0,m,n
uv ( j )

]2, (2.C.10)

where Ĉ 0,m,n
uv ( j ) and C 0,m,n

uv ( j ) are the (m,n)-th elements of matrices Ĉ 0
uv ( j ) and C 0

uv ( j ), respec-

tively. We have sup1≤ j≤T−1 Var[Ĉ 0,m,n
uv ( j )] ≤ ∆T −1 given Assumption 2.2.7 (see, e.g., Hannan,

1970, p.209). Therefore, G21T = Op (M/T ) = op (1), where we make use of Markov’s inequality

and
∑T−1

j=1 k2( j /M) =O(M). This completes the proof. �

Appendix 2.D

Proof of Proposition 2.3.1. The desired result follows from a simple modification of the proof of

Theorem 4.1 in Dufour and Pelletier (2020). The consistency result in Dufour and Pelletier (2020) is

obtained under the following conditions: (i) The sequence {ϵ2
i ,n,t } and {ei ,n,t } are strictly stationary

and ergodic. (ii) The error term {ei ,n,t } is strong mixing with finite fourth-order moment and regular

variance. (iii) The lag order p is such that p/log(T ) →∞ and p2/T → 0. (iv) The process of interest

has an infinite vector autoregressive representation with zero mean. Given conditions (i)–(iv),

it follows from Dufour and Pelletier (2020) that ||θ̂(p)
i −θ0

i || = Op (p1/2T −1/2). In our framework,

conditions (i) and (ii) are satisfied under Assumption 2.3.1, whereas condition (iii) is implied

by Assumption 2.3.2. For condition (iv), we show in (2.34) that the process of interest has an

AR(∞) representation. Besides, it is straightforward to show that the proof in Dufour and Pelletier

(2020) holds with the addition of an intercept term by putting Y (p)
t−1 ≡ [1,ϵ2

i ,n,t−1, ...,ϵ2
i ,n,t−p ] and

Π̂(p) ≡ [ω̂(p)
i ,n , â(p)

i ,n,1, ..., â(p)
i ,n,p ]′. This completes the proof. �

Appendix 2.E

Proof of Proposition 2.3.2. Given Assumption 2.3.3 with α= 1.5 and β= 0.5, we have for i = 1,2,

||θ̂(p)
i −θ0

i || = Op (T −1/(2α−2β)) = Op (T −1/2), which follows from Theorem 5.52 in van der Vaart

(1998). This completes the proof. �
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Appendix 2.F

Proof of Proposition 2.3.3. Given θ̂(p)a
i = θ̂(p)

i +δi , we have ||θ̂(p)a
i −θ0

i || = ||θ̂(p)
i +δi −θ0

i || ≤ ||θ̂(p)
i −

θ0
i || = Op (T −1/2). The inequality follows from Assumptions 2.3.4 and 2.3.5 that the positive ele-

ments of δi , when added by θ̂(p)
i , is always less than or equal to the corresponding entries of the

true θ0
i . This completes the proof. �

Appendix 2.G

Proof of Proposition 2.3.4. For i = 1,2, recall R0
i = E[(D0

i t )−1/2ϵi tϵ
′′′
i t (D0

i t )−1/2] and R̂i = T −1 ∑T
t=1 D̂−1/2

i t ϵi tϵ
′′′
i t D̂−1/2

i t .

We shall show that R̂i −R0
i =Op (T −1/2), i = 1,2. Let R̂0

i ≡ T −1 ∑T
t=1(D0

i t )−1/2ϵi tϵ
′′′
i t (D0

i t )−1/2 denote

the analogue of R̂i based on true variance. We consider the following decomposition

R̂i −R0
i = (R̂i − R̂0

i )+ (R̂0
i −R0

i ).

By Chebyshev’s inequality and Assumption 2.3.6, we have for the second term R̂0
i −R0

i =Op (T −1/2).

It remains to show that the first term R̂i − R̂0
i =Op (T −1/2). We write

R̂i − R̂0
i = 1

T

T∑
t=1

D̂−1/2
i t ϵi tϵ

′′′
i t D̂−1/2

i t − (D0
i t )−1/2ϵi tϵ

′′′
i t (D0

i t )−1/2

= 1

T

T∑
t=1
Ψi t (θ̂(p)a

i )−Ψi t (θ0
i ), say.

LetΨm,n
i t (θ̂(p)a

i ) andΨm,n
i t (θ̂0

i ) denote the (m,n)-th entries ofΨi t (θ̂(p)a
i ) andΨi t (θ0

i ), respectively.

It suffices to show that T −1 ∑T
t=1Ψ

m,n
i t (θ̂(p)a

i )−Ψm,n
i t (θ̂0

i ) =Op (T −1/2). By the mean value theorem

and Cauchy-Schwarz inequality, we have

1

T

T∑
t=1
Ψm,n

i t (θ̂(p)a
i )−Ψm,n

i t (θ̂0
i ) = 1

T

T∑
t=1

[∇θiΨ
m,n
i t (θ̄i )

]′[
θ̂

(p)a
i − θ̂0

i

]
≤ ||θ̂(p)a

i − θ̂0
i ||

1

T

T∑
t=1

||∇θiΨ
m,n
i t (θ̄i )||,

where θ̄i lies between θ̂(p)a
i and θ̂0

i . Given Assumption 2.2.4, we have T −1 ∑T
t=1 ||∇θiΨ

m,n
i t (θ̄i )|| =

Op (1) by Markov’s inequality. Next, we have ||θ̂(p)a
i − θ̂0

i || =Op (T −1/2) from Proposition 2.3.3. This

gives R̂i − R̂0
i =Op (T −1/2) and completes the proof. �
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Appendix 2.H

2.H.1 Simulation results of Tables 2.3 and 2.4 for all M

We collect in this section the full set of simulation results for the dimensional study in Section 2.4.2

of the main paper where only the results for M = 20 are reported to save space. It is useful to recall

that the size study under NullD and the power study under AlterC are reported, respectively, in

Tables 2.3 and 2.4 of the paper.

Now, we report for M = 10,20,30, the size study under NullD in Table 2.H.1, and the power

study under AlterC in Table 2.H.2. Consistent with the paper, we report here both the results

based on asymptotic critical values (Q1) and bootstrap critical values (Q∗
1 ). In general, we find

that the size of both the Q1 and Q∗
1 to be reasonably stable across M for each of the dimension

considered. This result is consistent with the bivariate case reported in Table 2.1 of the paper. As

for the power study, we find that the rejection rates of Q1 and Q∗
1 decrease in M . This is because we

have one-period lag in volatility spillover under AlterC. Thus, a test that focuses on recent events

is expected give better power. This finding is consistent with the bivariate case reported in Table

2.2 of the paper. We also observe that the rejection rates of both Q1 and Q∗
1 increase in T and d1,

consistent with the higher dimensional results reported in Table 2.4 of the paper. This finding

appears to hold regardless of the choice M .
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2.H.2 Monte Carlo study of the bidirectional test

We report and discuss in this section the full set of simulation results for our bidirectional spillover

test based on the proposed NCCC-LS modeling. To ensure consistency and comparability, we

maintain the same experimental design and parameter combinations as those described in Section

2.4 of the paper. As per the unidirectional study, we conduct simulations based on both the asymp-

totic critical values (Q2) and bootstrap critical values (Q∗
2 ). Overall, the finite sample performance

of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1 , as will be discussed in the following.

To keep the presentation consistent, we tabulate and present the simulation results of the

bidirectional tests in the same ordering as their unidirectional counterparts. First, we report

the bivariate simulation results in Tables 2.H.3 and 2.H.4, which represents the bidirectional

counterparts of Tables 2.1 and 2.2 in the paper. Next, we report the dimensional study (for the case

of M = 20) in Tables 2.H.5 and 2.H.6, which correspond to Tables 2.3 and 2.4 in the paper. Finally,

we also report the full set of dimensional study (i.e., for M = 10,20,30) in Tables 2.H.7 and 2.H.8,

which represent the bidirectional counterparts of Tables 2.H.1 and 2.H.2 in this appendix.

We begin with the bivariate study. Table 2.H.3 reports the size performance of our bidirectional

testing strategy. We find that the size pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1

reported in Table 2.1 of the paper. In general, the size of our bidirectional approach is reasonable

and it improves as T increases. The size is also stable across the different parameter combinations

considered; the four kernel functions studied and their smoothing parameters M . Table 2.H.4

reports the power performance of our bidirectional testing approach. We can see that the power of

Q2 and Q∗
2 is slightly lower than that of Q1 and Q∗

1 reported in Table 2.2 of the paper. This minor

loss in power is expected because the bidirectional tests check both positive and negative lag order

j ’s for evidence of spillover, whereas the unidirectional tests check only the positive ones. Other

than this, the overall power pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1 .

We now turn to the simulation results of the higher dimensional study of Q2 and Q∗
2 reported

in Tables 2.H.5, 2.H.6, 2.H.7 and 2.H.8. Because the results in Tables 2.H.5 and 2.H.6 are embedded,

respectively, in Tables 2.H.7 and 2.H.8, we shall focus on discussing the latter. Table 2.H.7 reports

the size study of Q2 and Q∗
2 as the portfolio dimension increases. First, we find that the size of

Q2 and Q∗
2 increases in d1, but not overly excessive nor rapid. The size generally improves and

stabilizes as T increases. The observed trend is similar to that of the unidirectional tests reported

in Table 2.3 of the paper. We also find the size of Q2 and Q∗
2 to be stable across M for each of the

dimension studied, consistent with their unidirectional counterparts reported in Table 2.H.1.

Table 2.H.8 reports the power study of our bidirectional inferential approach as d1 increases.

We find that Q2 and Q∗
2 have power despite a rather low spillover intensity. We also find that the

power increases in d1 as the spillover evidence becomes stronger due to the increased number

of risk recipients. This power trend is consistent with that of the unidirectional tests reported in

Table 2.4 of the paper. We also find that the rejection rates of Q2 and Q∗
2 decrease in M due to the

one-period lag spillover, in line with the pattern given by Q1 and Q∗
1 in Table 2.H.2. Similar to the
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Table 2.H.3 Empirical sizes

NullA NullB NullC

T M 10 20 30 10 20 30 10 20 30

Rejection rates based on asymptotic critical values
1000 Q2BAR 7.0 6.9 6.8 7.0 6.9 6.7 7.0 7.0 6.8

Q2DAN 6.9 6.9 6.8 6.8 6.9 6.8 6.8 6.9 6.9
Q2QS 7.0 6.9 6.9 6.9 6.9 6.8 7.0 6.9 6.9
Q2TR 7.0 6.8 6.4 7.1 6.8 6.6 6.9 6.8 6.4

1500 Q2BAR 6.7 6.7 6.5 6.7 6.7 6.6 6.7 6.7 6.4
Q2DAN 6.7 6.6 6.3 6.7 6.8 6.5 6.8 6.5 6.3
Q2QS 6.7 6.5 6.3 6.8 6.8 6.3 6.8 6.6 6.4
Q2TR 6.7 6.1 6.4 6.8 6.2 6.5 6.7 6.1 6.4

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 5.4 5.4 5.4 5.3 5.4 5.4 5.3 5.3 5.4
Q∗

2DAN 5.5 5.4 5.2 5.4 5.5 5.4 5.5 5.5 5.2
Q∗

2QS 5.3 5.3 5.3 5.3 5.5 5.2 5.4 5.5 5.3

Q∗
2TR 5.5 5.1 5.3 5.5 5.3 5.4 5.5 5.3 5.3

1500 Q∗
2BAR 4.5 4.7 5.0 4.5 4.6 5.1 4.6 4.7 5.1

Q∗
2DAN 4.6 4.8 5.2 4.5 4.8 5.2 4.7 4.9 5.3

Q∗
2QS 4.6 4.8 5.2 4.6 5.0 5.1 4.6 4.8 5.2

Q∗
2TR 4.9 5.2 5.3 4.8 5.1 5.1 4.9 5.2 5.3

NOTES: The table reports empirical sizes (in %) of Q2 under NullA, NullB and NullC at the 5% significance level based
on NCCC-LS modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q∗
2DAN, Q∗

2QS, Q∗
2TR

denote the rejection rates of Q2 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN,
QS and TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter, respectively.

bivariate study reported in Table 2.H.4, we observe here some minor loss in power of Q2 and Q∗
2

compared with Q1 and Q∗
1 . This is again due to the fact that Q2 and Q∗

2 examine both positive

and negative directions for spillover evidence while Q1 and Q∗
1 check only the positive direction.

Apart from this, the overall power pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1 , and

the power generally improves as T increases.
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Table 2.H.4 Empirical powers

AlterA AlterB

T M 10 20 30 10 20 30

Rejection rates based on empirical critical values
1000 Q2BAR 61.2 52.4 45.7 84.5 76.7 69.9

Q2DAN 58.7 46.0 38.5 82.5 70.4 61.5
Q2QS 57.6 44.4 37.3 81.5 68.4 59.9
Q2TR 37.3 27.5 23.0 60.2 45.7 37.3

1500 Q2BAR 79.3 70.5 63.9 96.7 93.4 89.9
Q2DAN 76.6 64.0 55.1 95.8 89.9 82.8
Q2QS 75.4 61.9 53.2 95.3 88.6 81.3
Q2TR 53.2 40.8 33.6 81.9 67.5 57.1

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 59.4 49.9 43.8 83.7 75.9 68.3
Q∗

2DAN 56.4 43.4 36.6 81.6 68.5 59.2
Q∗

2QS 54.9 42.2 35.0 80.4 66.6 57.4

Q∗
2TR 35.1 25.0 20.8 57.5 42.4 35.1

1500 Q∗
2BAR 77.7 69.4 62.0 95.9 92.2 87.9

Q∗
2DAN 75.5 62.1 52.9 95.0 88.3 81.5

Q∗
2QS 74.1 60.3 51.2 94.6 86.9 80.0

Q∗
2TR 51.7 36.9 30.2 80.3 64.6 53.8

NOTES: The table reports empirical powers (in %) of Q2 under AlterA and AlterB at the 5% significance level based
on NCCC-LS modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q∗
2DAN, Q∗

2QS, Q∗
2TR

denote the rejection rates of Q2 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter, respectively.
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Table 2.H.5 Empirical sizes

NullD

T d1 3 4 5 6 7 8 9 10

Rejection rates based on asymptotic critical values
1000 Q2BAR 7.1 7.0 7.6 7.9 7.3 7.6 7.9 8.3

Q2DAN 7.0 7.1 7.8 8.0 7.4 8.0 8.3 8.5
Q2QS 6.9 7.1 7.8 7.9 7.3 7.9 8.3 8.5
Q2TR 6.9 7.1 7.5 8.6 8.1 8.6 8.7 9.3

1500 Q2BAR 6.3 6.4 6.6 6.8 6.9 7.5 7.4 7.3
Q2DAN 6.3 6.6 6.8 6.9 6.9 7.4 7.5 7.5
Q2QS 6.3 6.5 6.6 7.0 6.9 7.6 7.3 7.5
Q2TR 6.3 6.2 7.0 7.4 7.5 7.4 7.9 7.7

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 5.3 5.7 5.2 5.4 6.1 6.2 6.0 6.2
Q∗

2DAN 5.6 5.7 5.1 5.3 6.3 6.1 6.0 6.2
Q∗

2QS 5.5 5.6 5.3 5.3 6.2 6.1 6.0 6.2

Q∗
2TR 5.7 5.8 5.5 5.5 6.2 6.3 6.3 6.1

1500 Q∗
2BAR 4.6 5.2 4.8 4.6 5.6 5.0 5.7 5.4

Q∗
2DAN 4.9 5.3 4.8 5.1 5.5 5.1 5.8 5.2

Q∗
2QS 5.0 5.3 4.8 5.1 5.3 5.0 5.9 5.3

Q∗
2TR 4.8 5.0 5.1 5.4 5.8 5.5 5.6 5.6

NOTES: The table reports empirical sizes (in %) of Q2 under NullD at the 5% significance level based on NCCC-LS
modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q∗
2DAN, Q∗

2QS, Q∗
2TR denote the

rejection rates of Q2 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN, QS and
TR denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel.
Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.
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Table 2.H.6 Empirical powers

AlterC

T d1 3 4 5 6 7 8 9 10

Rejection rates based on empirical critical values
1000 Q2BAR 18.6 25.5 34.6 39.7 48.9 55.1 55.9 58.0

Q2DAN 16.8 21.9 28.4 32.6 41.2 45.8 46.7 48.2
Q2QS 16.5 21.2 27.3 31.3 39.6 43.9 44.3 45.3
Q2TR 11.6 14.0 17.2 18.9 22.4 24.5 24.7 25.1

1500 Q2BAR 28.5 42.9 58.0 69.0 78.5 82.7 86.1 89.4
Q2DAN 23.7 36.0 48.2 59.0 68.0 73.0 77.4 80.5
Q2QS 23.4 34.8 45.8 56.8 65.4 70.9 75.1 78.3
Q2TR 14.3 20.3 25.0 31.4 35.9 40.1 42.9 45.4

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 16.0 23.4 32.1 38.9 46.1 50.7 53.4 57.5
Q∗

2DAN 14.0 20.1 26.3 32.7 37.9 41.6 44.6 47.6
Q∗

2QS 13.8 19.0 25.1 31.2 36.1 39.7 42.5 45.3

Q∗
2TR 10.1 12.0 16.0 18.0 20.8 22.0 23.8 25.1

1500 Q∗
2BAR 23.2 38.3 56.0 66.8 75.7 80.7 85.6 87.6

Q∗
2DAN 19.7 31.7 46.7 56.4 65.6 70.7 76.7 79.1

Q∗
2QS 19.3 30.5 44.8 54.0 62.7 68.0 74.0 76.6

Q∗
2TR 13.3 17.2 24.2 29.5 34.0 38.2 41.3 43.9

NOTES: The table reports empirical powers (in %) of Q2 under AlterC at the 5% significance level based on NCCC-LS
modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q∗
2DAN, Q∗

2QS, Q∗
2TR denote the

rejection rates of Q2 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS and TR
denote, respectively, the Barlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel.
Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.
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2.H.3 GARCH misspecification

Based on a correctly specified model, in the paper we find no evidence of volatility spillover

between the UK market and the NA market after Brexit. In this section, we investigate the con-

sequence of model misspecification on testing for volatility spillover. To this purpose, we repeat

the examination of spillover between UK and NA in the post–Brexit sample with a deliberately

misspecified model.

Recall that a well specified model requires order 4 for the conditional variance of the UK series.

We first include a control study that is correctly specified. We specify a model with random order 6

for the conditional variance of the UK series. Diagnostic tests reported in Table 2.H.9 suggest that

the model is well specified. Table 2.H.10 reports the volatility spillover test results. Consistent with

the findings in the paper, we find no evidence of volatility spillover between the UK market and

the NA market. Moreover, the p-values reported in Table 2.H.10 are very similar to those reported

in the paper. This control study serves two purposes. First, it ensures that our conclusion is not

affected by the sensitivity of a correctly specified model lag order. Second, it ensures that any

changes in conclusion in the next study is likely to be driven by model misspecification.

To impose model misspecification, we now use order 1 for the variance of the UK market.

Diagnostic results reported in Table 2.H.11 suggests model misspecification. Table 2.H.12 reports

the volatility spillover test results. In contrast to the findings based on a correctly specified model,

we find that the NA market has a significant spillover effect to the UK market at all M ’s. Given the

control study, this false-positive result is likely to be induced by serial correlations in the event

variables as a result of model misspecification. In summary, the exercises in this section highlight

the importance of a correctly specified model in testing volatility spillover.

Table 2.H.9 Diagnostic tests (UK–NA, Control)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
UK 8.342 17.378 24.770 7.035 12.227 15.502

[0.595] [0.628] [0.736] [0.722] [0.908] [0.987]
US 15.436 18.869 23.736 10.546 13.020 17.188

[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]
Canada 6.779 18.437 22.004 4.432 18.823 21.513

[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

NOTES: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the null
of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively. The
values in the squared parentheses are the p-values of the tests.
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Table 2.H.10 Spillover results (UK–NA, Control)

Post–Brexit

M 10 20 30

Q∗
1BAR 0.172 0.166 0.236

Q∗
−1BAR 0.643 0.599 0.673

NOTES: The table reports bootstrap p-values of the proposed spillover tests. Number
of bootstraps = 499. Q∗

BAR denotes the one-way test for the null hypothesis of no
volatility spillover from the NA market to the UK market. Q∗

−1BAR denotes the one-
way test for the null hypothesis of no volatility spillover from the UK market to the
NA market. The subscript BAR denotes the Barlett kernel. M denotes the kernel
smoothing parameter.

Table 2.H.11 Diagnostic tests (UK–NA, Misspecified)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
UK 33.666 49.171 55.323 22.971 38.451 41.231

[0.000] [0.000] [0.003] [0.011] [0.008] [0.083]
US 15.436 18.869 23.736 10.546 13.020 17.188

[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]
Canada 6.779 18.437 22.004 4.432 18.823 21.513

[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

NOTES: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the null
of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively. The
values in the squared parentheses are the p-values of the tests.

Table 2.H.12 Spillover results (UK–NA, Misspecified)

Post–Brexit

M 10 20 30

Q∗
1BAR 0.078 0.048 0.060

Q∗
−1BAR 0.721 0.607 0.687

NOTES: The table reports bootstrap p-values of the proposed spillover tests. Number
of bootstraps = 499. Q∗

BAR denotes the one-way test for the null hypothesis of no
volatility spillover from the NA market to the UK market. Q∗

−1BAR denotes the one-
way test for the null hypothesis of no volatility spillover from the UK market to the
NA market. The subscript BAR denotes the Barlett kernel. M denotes the kernel
smoothing parameter.
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2.H.4 Computational efficiency study

In this section, we conduct a computational efficiency experiment to highlight the speed advantage

of our adjusted least-squares estimation over its likelihood counterparts. We simulate the following

simple ARCH(1) process with the standard Gaussian error

ϵt =
√

htξt , ξt
iid∼ N(0,1),

ht = 0.1+0.2ϵ2
t−1.

Next, we fit the simulated ARCH process ht using our adjusted least-squares estimation as well as

QMLE. During estimation, we measure the machine elapsed time using the Matlab tic and toc

functions. For improved accuracy, we repeat the procedure 10000 times and we compute the mean

elapsed time. We find that the average machine time required by our estimation method is about

0.0012 (machine unit) per simulation, while that required by QMLE is about 0.0266 per simulation.

In other words, our method requires only about 4.3% of the the computational time of QMLE.





CHAPTER 3

GLOBAL CRUDE OIL AND THE CHINESE

OIL-INTENSIVE SECTORS: A

COMPREHENSIVE CAUSALITY STUDY‡

3.1 Introduction

Crude oil is often described as the lifeblood of modern economies because it fuels essential eco-

nomic activities such as agricultural productions, chemical engineerings, construction operations,

industrial manufacturings, power generations and transportations. Despite advancement in the

renewable alternatives, crude oil remains the world’s most important source of energy after the

mid-1950s. China has been importing crude oil to facilitate its rapid economic growth ever since

1995. Now, China is the second largest economy in the world by gross domestic product (GDP),

and its petroleum consumption has more than tripled between 1995 (160.65 million tons) and 2017

(587.45 million tons).1 Armed with ambitious economic development plans, China’s demand for

international oil has been rising consistently over the past 15 years, as depicted in Figure 3.1. With

more than eight million barrels of daily crude oil imports in 2017, China has since then surpassed

the US to become the top crude oil importer. Therefore, it is evident that global crude oil and

the Chinese economy are closely interdependent. In particular, the oil-intensive sectors in China

directly influence the demand for, and the price of international oil, whereas a global reduction in

the supply of oil affects the Chinese industries due to increase in operational costs.

In this paper, we study Granger causal relations between global crude oil and the sectoral

stock market index returns in China. We focus on the industrial, construction, agricultural and

‡A research manuscript based on the results in this chapter entitled “Global crude oil and the Chinese oil-intensive
sectors: A comprehensive causality study” is under revision at Energy Economics.

1Data source: China Statistical Yearbook. Besides, petroleum is a general term consisting of crude oil and its processed
products.
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Figure 3.1 Crude oil imports. This figure plots the crude oil imports in China (solid line) and in the
US (dashed line) over the 2005–2019 period, in million barrels per day. Data source: Datastream
and EIA.

transportation (ICAT) sectors which collectively accounts for more than 80% of China’s petroleum

consumption in 2017.2 We make use of daily observations over the 2005–2019 period, which allows

studying the changes in causal linkages after key economic and political events such as the US

subprime mortgage financial crisis in 2008 and the Chinese reformation of domestic refined oil

pricing mechanism in 2013. We combine a set of Granger causality inferential procedures that

is based on the cross-correlation function (CCF) approach to analyse the oil-ICAT nexus. Our

bidirectional methodology uncovers causal relations in the mean, variance, risky quantiles and

distribution between the markets of interest. To the best of our knowledge, this is the first study

that unifies the extensive CCF-based causality tests proposed over the past two decades.

This paper offers several contributions to the literature. First, we investigate causal relations

between global crude oil and the Chinese industries that are oil intensive. This is in stark contrast

to most existing studies, which analyse the Chinese market at the broader sectoral or aggregate

level. The ICAT sectors deserve particular attention as they consume most of the oil in China to

fuel the country’s modern and advanced economy. For instance, the agricultural industry depends

on oil-driven machineries that are capable of accelerating food production such as automated

harvesters and tractors to feed the population. The industrial sector relies on crude oil to power

cities and to manufacture essential everyday products that includes electronic devices, textiles,

and medicines. The construction of skyscrapers that shape major cities speeds up with the ability

to mass produce high-strength materials such as steel, which is an oil-consuming process. Finally,

most of the transportation modes connecting goods, people, places and services are powered by

oil. Compared with papers that focus on the composite market index, we provide a more in-depth

and focused examination by featuring the top oil-intensive sectors individually. Besides, we offer

2Data source: China Statistical Yearbook.
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a set of conclusions that is, relatively speaking, more definite than studies using firm-level data

since the reactions can vary for firms within the same sector.

Second, we consolidate the extensive literature on CCF-based inferential procedures and we

show that various forms of causality can be examined. Under this unified framework, we provide a

comprehensive analysis covering the mean, variance, risky quantiles (both positive and negative)

and distribution, where each element reveals a unique economic relation. The causality-in-mean

analysis investigates return predictability, whereas the presence of variance causality can be viewed

as volatility spillover. The causality-in-risk test examines the existence of extreme risk spillovers

and it covers both positive and negative relations. This is convenient given that crude oil and

stock markets might be negatively correlated (see e.g., Du and He, 2015; Mollick and Assefa, 2013).

Finally, the long-term causal linkages are analysed using the causality-in-distribution test. Because

all of our analyses are based on the CCF approach, we minimise potential inferential biases due to

methodological disparities. Compared with a handful of papers that focus on crude oil’s impact on

the Chinese markets, we do not presume any dependence directions in the oil-ICAT nexus and our

approach allows for potential feedback effects.

Third, we make use of our sample length to investigate possible changes in causal relations

after the 2008 US financial crisis and the 2013 refined oil pricing mechanism reform in China. The

former is well known for affecting the global economies including crude oil (see, e.g., Broadstock

et al., 2012; Xu et al., 2019), whereas the latter is a relatively new event that is of great significance

to the Chinese economy. Although a few papers consider the effects of oil reform (see, e.g., Bouri

et al., 2017; Peng et al., 2018; Xiao et al., 2018), neither of them focuses on the ICAT industries.

Traditionally, the price of domestic oil in China is capped and strictly regulated by its central

government. Consequently, the world oil price has a limited influence on the oil-intensive sectors

in China. On 27 March 2013, the Chinese government launched a major reformation of its domestic

refined oil pricing mechanism to greatly relax its control over local oil price. Generally regarded as

the major milestone in the transformation to a market-oriented pricing of retail oil, this reform

discourages the government from setting a ceiling price for domestic oil so long as international

oil price stays under USD 130 per barrel. This has nontrivial impact to the Chinese markets,

particularly the ICAT sectors as they become more exposed to global oil price movement.

In summary, we complement a growing literature on the oil-stock nexus by providing novel

perspectives from the industries in China that are oil intensive. We combine a series of inferential

tests to thoroughly examine the oil-ICAT nexus while taking into consideration the effects of China’s

oil reform. The remainder of this paper is organised as follows. Section 3.2 reviews the existing

literature. We introduce the unified causality methodology in Section 3.3. Section 3.4 describes

our dataset. Empirical findings are reported and discussed in Section 3.5. Section 3.6 concludes.
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3.2 Literature review

In this section, we review and summarise existing studies on the relations between global crude

oil and the Chinese markets. Note that we only provide a very brief overview of the literature’s

conclusions as the main purpose of this review is to highlight the breadth of the related literature.

We emphasise that each study is highly detailed, adopting differing econometric strategies, with

different datasets spanning over different time periods, among others. For a survey on other

countries including the US, we refer the readers to see, e.g., Broadstock et al. (2016, Table 1).

Using structural vector autoregression (SVAR) model together with the Baba-Engle-Kraft-

Kroner (BEKK) specification, Broadstock and Filis (2014) find that crude oil affects the two largest

economies (China and US) in the world, though the Chinese market is more resilient to the

impact than its US counterpart. Based on extreme value analysis, Chen and Lv (2015) document

positive dependence between international oil and the Chinese stock market. Ding et al. (2016)

study positive Granger causality between global crude oil and the major stock indices over 1996–

2012 to find that the causal relations between the Shanghai composite index and the West Texas

Intermediate (WTI) oil varies across quantiles. Based on a set of monthly data spanning from 1994

to 2014, Zhu et al. (2016) study if crude oil affects the broader industries in China using quantile

regression. The authors find that the dependence on oil varies across sectors and quantiles. Based

on asset pricing models, Broadstock et al. (2016) focus on firm-level data covering the 2005–2013

period to find that 89.2% of the Chinese listed entities respond to oil return.

Using daily data from 2005 to 2015, Bouri et al. (2017) find that the oil reform in 2013 strengthens

the mean but weakens the variance relations between global oil and the broader Chinese markets.

Based on the SVAR framework and monthly data from 2005 to 2015, Ding et al. (2017) document

that international crude oil affects the investor sentiments in China. Using monthly data from 1996

to 2015, Wei and Guo (2017) find that the link between crude oil and the Chinese aggregate market

changes after major events such as a financial crisis. Based on crude oil volatility index and the

vector autoregression (VAR) methodology, Luo and Qin (2017) confirm that oil price uncertainty

impacts the broader stock markets in China over 2007–2015. Using a similar set of data, Xiao

et al. (2018) find that crude oil volatility has negative impacts on the wider Chinese stock markets

under the quantile regression framework. Kirkulak-Uludag and Safarzadeh (2018) focus on the

organization of the petroleum exporting countries (OPEC) oil data spanning from 2004 to 2014

and the generalized autoregressive conditional heteroskedasticity (GARCH) methodology to find

evidence of volatility spillover between crude oil and the broader markets in China. By combining

variational model decomposition method, copula functions and systemic risk measure, Li and Wei

(2018) document positive risk spillover effects from global oil to the Shanghai composite market

index over 2000–2017.

Using daily data from 2005 to 2017 and the CCF method, Peng et al. (2018) investigate the

spillover effects from crude oil to 529 Chinese firms. The authors find that most of the firms react

to extreme oil return with a stronger magnitude after the oil reform in 2013. Based on intraday
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data from 2006 to 2015 and realised measures, Luo and Ji (2018) evidence volatility spillover

from international oil to major agricultural products in China. Zhang et al. (2018) focus on the

broader commodity markets to find that they, too, are affected by crude oil based on autoregressive

jump intensity (ARJI) model and data from 2005 to 2016. Using daily data from 2007 to 2017 and

the VAR-BEKK framework, Yun and Yoon (2019) evidence mean and variance spillover between

international oil and the stock return of major airlines in Korea and China.

Based on nonlinear autoregressive distributed lags (NARDL) model and weekly data over 2001–

2016, Wen et al. (2019) find that crude oil can affect the broader Chinese stock indices through

nonlinear channel. Using frequency-based methodology and daily data from 2000 to 2018, Wang

and Wang (2019) find that the impact of crude oil volatility on the markets in China varies across

sectors and time periods. Based on quantile regression framework and daily data over 2011–2018,

Xiao et al. (2019) find that the crude oil volatility index affects the implied volatility indicator of

the aggregate Chinese market. Using intraday data from 2007 to 2016 and directional realised

measures, Xu et al. (2019) evidence volatility spillover between crude oil and the composite stock

index in China.

Much of the literature focuses on the links between crude oil and the Chinese composite stock

index or the broader markets. Some papers study moment relations such as the mean and/or

volatility, whereas some authors consider quantile linkages such as extreme returns. Conclusions

have been drawn based on various methods including the CCF, copula, GARCH, quantile regression

and VAR, among others. Certain studies implicitly assume one-way nexus that crude oil affects

the Chinese markets while some papers restrict their analysis to positive correlations. Besides,

dependence measures such as the copulas do not distinguish the direction of impact. In this paper,

we focus on the Granger causality relations between global crude oil and the Chinese oil-intensive

sectors. We study the industrial, construction, agricultural and transportation sectors, which are

the major oil-consuming industries in China. We offer a comprehensive bidirectional study that

covers seven perspectives in the oil-ICAT nexus: the mean, variance, distribution, downside risk,

upside risk, down-to-up risk and up-to-down risk. All of our analyses and conclusions are based

on a standard family of CCF-based causality tests, which minimise biases that may arise from

differing frameworks.

3.3 Methodology

We combine the extensive Granger causality tests developed in Hong (2001), Hong et al. (2009),

Du and He (2015) and Candelon and Tokpavi (2016), all of which are based on the CCF of a pair of

event variables. This unified methodological framework allows testing for causal relations in the

mean, variance, extreme risks (both positive and negative) and distribution between global crude

oil and the oil-intensive sectoral returns in China. First, we suppose that the return series can be
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described as follows 
Yt =µt +εt ,

εt =
√

htξt ,

{ξt } ∼ i.i.d.(0,1) with CDF F (·)
(3.1)

where µt and ht are, respectively, the conditional mean and variance of Yt ; εt denotes the innova-

tion term; and {ξt } is the standardised innovation sequence that is independent and identically

distributed with cumulative distribution function F (·).

We specify µt as an order p autoregressive process with day dummies to control for possible

day-of-the-week effects, where the Monday, ..., Thursday day dummies are denoted, respectively, by

d1, ..., d4. The resulting process is denoted by ARX(p). We consider GARCH(1,1) for the conditional

variance ht because it is widely regarded as the workhorse model (Lee and Hansen, 1994). Although

the GARCH(1,1) is able to outperform more sophisticated models in most occasions, Hansen and

Lunde (2005) find that in certain cases it is inferior to a model that can accommodate leverage

effect. Therefore, we further consider two asymmetric specifications as competing models: the

Exponential GARCH(1,1) and the Glosten-Jagannathan-Runkle GARCH(1,1), which are denoted in

short by EGARCH(1,1) and GJR-GARCH(1,1), respectively. Regarding the innovation distribution

F (·), we consider both the generalised error distribution (GED) and the Hansen (1994) skewed-t

distribution, which are known for capturing well the empirical features of returns series such

as heavy tails (see. e.g., Bouri et al., 2016; Du and He, 2015). The best-fitting specification is

selected on the basis of Schwartz-Bayesian Information Criteria (SBIC) and a range of diagnostic

examinations.

Given a pair of realised returns {Y1,t ,Y2,t }T
t=1 of size T , we let {Ẑ1,t , Ẑ2,t } collect the possibly n-

variate estimated event variables derived from the realised returns. Depending on the hypothesis

of interest, we derive different event variables from the realised samples. For each set of event

variables, the CCF-based Granger causality testing procedure is based on their sample cross-

covariance matrix that is given by

Ĉ ( j ) =
{

T −1 ∑T
t=1+ j (Ẑ1,t − Π̂1)(Ẑ2,t− j − Π̂2)′, 0 ≤ j ≤ T −1,

T −1 ∑T
t=1− j (Ẑ1,t+ j − Π̂1)(Ẑ2,t − Π̂2)′, 1−T ≤ j < 0,

(3.2)

where Π̂i = T −1 ∑T
t=1 Ẑi ,t , i = 1,2. Then, the sample CCF between {Ẑ1,t } and {Ẑ2,t } is given by

R̂( j ) = diag(Σ̂1)−1/2Ĉ ( j )diag(Σ̂2)−1/2, (3.3)

where Σ̂1 and Σ̂2 are the sample covariance matrices of {Ẑ1,t } and {Ẑ2,t }, respectively; and diag(X )

denotes the matrix containing the diagonal elements of X . Intuitively speaking, the CCF in (3.3)

captures the causal relation from {Y2,t } to {Y1,t } in the form of cross-correlation between their

corresponding derived event variables {Ẑ2,t } and {Ẑ1,t }. If {Y2,t } does not Granger cause {Y1,t }, the

cross-correlation between their derived quantities naturally reduces to zero since {Y2,t } has no



3.3 Methodology 107

explanatory power for {Y1,t }. The properly weighted and standardised test statistic for the generic

Granger causality from {Y2,t } to {Y1,t } is given by

Q̂(Y2,t −→ Y1,t ) =
T

∑T−1
j=1 k2( j /M)vec[R̂( j )]′(Γ̂−1

2 ⊗ Γ̂−1
1 )vec[R̂( j )]−n2CT (M)

[n2DT (M)]1/2
, (3.4)

where k(·) is a kernel function with smoothing parameter M ; Γ̂1 and Γ̂2 are the sample correlation

matrices of {Ẑ1,t } and {Ẑ2,t }, respectively; n is the dimension of the event variables; and CT (M) and

DT (M) are given by

CT (M) =
T−1∑
j=1

(1− j /T )k2( j /M), (3.5)

DT (M) = 2
T−1∑
j=1

(1− j /T )(1− ( j +1)/T )k4( j /M). (3.6)

Under standard regularity conditions, Q̂(Y2,t −→ Y1,t ) converges in distribution to N(0,1) under the

null hypothesis that {Y2,t } does not Granger cause {Y1,t }. Because Q̂(Y2,t −→ Y1,t ) diverges to positive

infinity under the alternative hypothesis, upper-tailed critical values are used.

To test the null hypothesis that {Y2,t } does not Granger cause {Y1,t } in variance, we follow Hong

(2001) to set the event variables Ẑ1,t and Ẑ2,t as the estimated univariate squared standardised

residuals ξ̂2
1,t and ξ̂2

2,t , respectively. For causality-in-mean analysis, the event variables are set to

be the standardised residuals. Intuitively speaking, the cross-correlation between the properly

normalised return series in the first (second) moment contain information about Granger causality

in the mean (variance). The causality-in-risk test of Hong et al. (2009) begins by defining the value-

at-risk (VaR) which is given by V̂t (α) = µ̂t +
√

ĥt ẑ(α), where µ̂t and ĥt are the estimated conditional

mean and variance, respectively; and ẑ(α) is the support value at risk level α of the estimated

distribution F̂ (·) that satisfies F̂ [ẑ(α)] =α. To test the null that {Y2,t } does not Granger cause {Y1,t }

in downside risk, we set the event variables as Ẑ1,t =1[Y1,t < V̂1,t (α)] and Ẑ2,t =1[Y2,t < V̂2,t (α)].

To test for up-to-up risk causality, we set Ẑ1,t =1[Y1,t > V̂1,t (1−α)] and Ẑ2,t =1[Y2,t > V̂2,t (1−α)].

The intuition is that if {Y2,t } Granger cause {Y1,t } in the upside (downside) risk, the cross-correlation

between their upside (downside) risky quantiles would be nontrivial. In a similar vein, we can

study negative risk causality effects by using the inversed relations. For down-to-up risk causality,

we follow Du and He (2015) to set Ẑ1,t = 1[Y1,t > V̂1,t (1 −α)] and Ẑ2,t = 1[Y2,t < V̂2,t (α)]; for

up-to-down risk causality, we set Ẑ1,t = 1[Y1,t < V̂1,t (α)] and Ẑ2,t = 1[Y2,t > V̂2,t (1−α)]. In our

analyses, we consider risk level α = 1% which equals to studying the 99%-VaR — the typical

regulatory reporting requirement. Besides, the 99%-VaR is also widely used in empirical study.

For instance, Dias (2013) focuses on the same level to study the role of market capitalisation

in the estimation of financial risk. Finally, the causality-in-distribution test of Candelon and

Tokpavi (2016) considers a set A = {α1, ...,αn+1} of n+1 risk levels covering the distribution support

of F̂ (·). For i = 1,2, the event variable Ẑi ,t is a n-dimensional column vector, where its s-th
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element is given by Ẑi ,t ,s = 1[V̂i ,t (αs) ≤ Yi ,t < V̂i ,t (αs+1)], s = 1, ...,n. Given that distribution tails

are studied by the causality-in-risk tests, we now cover the centre of the distribution by setting

A = {20%,40%,60%,80%}, which examines long-run causality according to Candelon and Tokpavi

(2016). It is worth highlighting that the causality-in-distribution test also acts as a filter that

captures any remaining causal links including nonlinear relations.

Because the Chinese stock market closes before the price of global crude oil is marked and

off-market trading is not a common practice in China, instantaneous causal effects from the

Chinese market to crude oil should be studied. More precisely, international data providers such as

Datastream mark the daily Brent oil price at 4:30pm [Greenwich Mean Time (GMT) + 00:00] during

the winter season and at 3:30pm (GMT + 01:00) during the summer season, whereas the equity

markets in mainland China close at 3:00pm (GMT + 08:00) with strict restriction on off-market

trading. Hence, it is natural to study instantaneous Granger causality from the oil-intensive sectors

in China to global crude oil. This is achieved by considering lag 0 in the CCF in (3.4)

Q̂(Y2,t =⇒ Y1,t ) =
T

∑T−2
j=0 k2( j /M)vec[R̂( j )]′(Γ̂−1

2 ⊗ Γ̂−1
1 )vec[R̂( j )]−n2CT (M)

[n2DT (M)]1/2
. (3.7)

The instantaneous Granger causality test statistic Q̂(Y2,t =⇒ Y1,t ) has the same asymptotic properties

as Q̂(Y2,t −→ Y1,t ). Therefore, inferences for both causality directions can be drawn based on

the same limiting critical value. Throughout our empirical analysis, we use the Daniell kernel

k(x) = sin(πx)/πx because it enjoys optimal power under appropriate conditions as shown in

Hong (1996); we set the truncation parameter M = ⌈1.5T 0.3⌉ following Candelon and Tokpavi

(2016).

3.4 Data

We analyse Granger causality between global crude oil and the Chinese oil-intensive sectors using

daily observations from January 2005 to December 2019. We focus on the agricultural, construction,

industrial and transportation sectoral indices published by the Shenzhen stock exchange, which

is the larger of the two equity markets in China (the other being the Shanghai stock exchange)

by number of listed companies and by trading volume. Besides, the fact that the Shenzhen stock

exchange publishes all the indices that are required by this study is not surprising because Shanghai

is a financial hub whereas Shenzhen is well-known for its industrialised entrepreneurial companies.

Indeed, the major composition of the Shanghai stock exchange is financial companies whereas

that of the Shenzhen stock exchange is industrial manufacturing companies. Regarding crude oil,

we use daily Brent spot price for its global representativeness since it is the benchmark for more

than two-thirds of all international crude oil contracts. It is therefore not a surprise that Brent

is often the first choice when studying international crude oil in the literature. For instance, it

is used as the main proxy for global oil in Bouri (2015); Bouri et al. (2016); Chen and Lv (2015);
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Peng et al. (2018). To account for the effect of inflation, we deflate the nominal crude oil price and

equity indices by the monthly consumer price index (CPI) in the US and China, respectively. The

American CPI is reported by the Bureau of Labor Statistics, whereas the Chinese CPI is provided

by the Organisation for Economic Co-operation and Development. All data are obtained through

Datastream. Return series are calculated by taking the first difference of the inflation adjusted

price indices in natural logarithm. For notational simplicity, we denote by COt , AGt , CONt , I N D t

and T RPt the return series of crude oil, agricultural, construction, industrial and transportation

indices, respectively.

Considering possible structural change in causal links and the fact that information spillover

between international markets is not constant over time, we divide our sample by two key events:

the US subprime financial crisis in 2008 and the Chinese oil reform in 2013. Particularly, we select

15 September 2008 and 27 March 2013, which correspond to, respectively, the day Lehman Brothers

filed for Chapter 11 protection and the date China launched its major domestic refined oil pricing

mechanism reformation. First, we truncate our full sample by one year before and after the two

key dates to yield three subsamples. Then, we increase the length of each subsample with the

guidance from unit root and stationarity examinations to minimise the loss of information.3 Our

first subsample runs from 3 January 2005 to 10 October 2007, covering the pre-crisis period. The

second subsample spans from 7 October 2008 to 17 May 2012, consisting of the post-crisis period.

The third subsample runs from 28 March 2013 to 31 December 2019, which reflects the effects of

China’s domestic oil pricing reform. Overall, our setup allows the study of possible changes in the

market linkages after each key event.

Table 3.1 summarises the daily return series of Brent crude oil and the ICAT sectors in China.

Before the oil reform, all variables exhibit positive mean returns; in the post-reform period, COt ,

CONt and I N D t yield negative mean return. On average, the Chinese ICAT industries and COt

display larger unconditional variance after the financial crisis, and the volatility reduces after the

oil reform. All series exhibit negative skewness and heavy tails except for COt which becomes

positively skewed after the oil reform. Not surprisingly, the Jarque and Bera (1980) (JB) test statistics

suggest that all return variables are not normally distributed. We reject the null hypothesis of a unit

root for all series at every standard significance level using the Augmented Dickey and Fuller (1979)

(ADF) and Phillips and Perron (1988) (PP) tests. Additionally, the Kwiatkowski et al. (1992) (KPSS)

test suggests that all return variables are stationary for each subsample. The optimal number of

lagged difference terms for the ADF test and the optimal autocovariance lag order for the PP and

KPSS tests are independently selected based on SBIC up to order ⌈T 0.5⌉.

3.5 Results

In this section, we report the model estimates and causality analysis results for each subperiods.

All specifications are estimated using Kevin Sheppard’s Matlab MFE Toolbox.

3We thank an anonymous referee for this suggestion.



110 Unifying and testing causality-based risk measures

Table 3.1 Descriptive statistics

Mean Std. Skew. Kur. JB ADF PP KPSS T

Pre-crisis (3 January 2005 – 10 October 2007)
COt 0.08 1.88 -0.07 3.37 4.73* -27.91*** -27.95*** 0.07 723
AGt 0.15 2.04 -0.58 5.16 180.96*** -25.24*** -25.27*** 0.11 723
CONt 0.24 2.25 -0.62 5.50 234.81*** -24.78*** -24.81*** 0.04 723
I N D t 0.18 1.87 -0.60 5.81 281.89*** -25.40*** -25.43*** 0.06 723
T RPt 0.15 1.87 -0.75 7.12 581.01*** -26.10*** -26.14*** 0.06 723

Post-crisis (7 October 2008 – 17 May 2012)
COt 0.02 2.49 0.00 10.41 2159.00*** -31.69*** -31.73*** 0.12 943
AGt 0.06 2.12 -0.33 3.99 55.70*** -28.64*** -28.67*** 0.03 943
CONt 0.11 2.15 -0.58 5.03 213.57*** -27.90*** -27.93*** 0.04 943
I N D t 0.04 1.96 -0.39 4.84 156.87*** -28.62*** -28.65*** 0.04 943
T RPt 0.00 1.77 -0.79 5.57 357.97*** -30.75*** -30.79*** 0.05 943

Post-reform (28 March 2013 – 31 December 2019)
COt -0.03 2.00 0.32 5.94 664.04*** -41.00*** -41.02*** 0.07 1764
AGt 0.04 1.86 -0.73 6.66 1140.93*** -39.12*** -39.14*** 0.06 1764
CONt -0.02 1.78 -0.92 6.68 1246.37*** -38.18*** -38.20*** 0.06 1764
I N D t -0.00 1.72 -1.01 7.68 1910.78*** -38.61*** -38.63*** 0.07 1764
T RPt 0.01 1.90 -1.11 8.40 2508.84*** -38.21*** -38.23*** 0.06 1764

NOTES: This table reports the descriptive statistics for all variables. COt represents global crude oil daily return. AGt ,
CONt , I N Dt and T RPt are, respectively, the daily agricultural, construction, industrial and transportation sectoral
returns in China. Std., Skew., and Kur. are standard deviation, skewness and kurtosis, respectively. JB is the Jarque and
Bera (1980) test statistic for normality under the null hypothesis. ADF and PP are, respectively, the Augmented Dickey
and Fuller (1979) and Phillips and Perron (1988) test statistics; both assess the null hypothesis of a unit root. KPSS is
the Kwiatkowski et al. (1992) test statistic for stationarity under the null hypothesis. The optimal number of lagged
difference terms for the ADF test and the optimal number of autocovariance lags for the PP and KPSS tests are selected
(up to ⌈T 0.5⌉) based on SBIC. The significance levels of all statistical tests are abbreviated with asterisks: ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively. T denotes the number of observations.

3.5.1 Model estimates

Table 3.2 reports the model estimations and diagnostic analyses for the pre-crisis sample. Regard-

ing mean equations, the parsimonious ARX(1) is suggested for all return series. Except for AGt and

CONt , the constant terms of all other return variables are significant. As expected, the estimated

autoregressive coefficients for all equations are statistically significant and are smaller than one in

absolute value. The latter outcome suggests that the mean stationarity condition is satisfied. We

observe that most of the day dummies are significant, which highlight the importance to control

for the day-of-the-week effects.

The suggested model for the variance equation of COt and AGt is GJR-GARCH(1,1), whereas

that of CONt , I N D t and T RPt is GARCH(1,1). All of the estimated parameters are significant at

the 1% level and satisfy the requirement for a stationary variance process. Besides, the selected
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models capture well the volatility clustering property of return series as suggested by a relatively

large GARCH coefficient that ranges from 0.706 to 0.978. We observe a positive estimate for

the asymmetric term in the variance equation for COt , implying that past negative news have

higher impact on the current variance of Brent crude than positive ones. This is known as the

leverage effect. Interestingly, the opposite relation is found for AGt , though this phenomenon is

not uncommon in the agricultural sector (see, e.g., Silvennoinen and Thorp, 2016; Zhang et al.,

2018). In terms of probability densities, the skewed-t distribution is suggested for all variables

with reasonable parameter estimates. For instance, the degree of freedom coefficient η is larger

than 4, which implies excess kurtosis. The estimated skewness parameter λ yields negative values,

suggesting asymmetric distribution that has a longer left tail. These parameter estimates are

consistent with the stylised fact that most financial returns are negatively skewed and exhibit heavy

tails.

We report a range of diagnostic test statistics at the bottom panel in Table 3.2 that plays a pivotal

role to the reliability of our subsequent causality study. We compute the Ljung and Box (1978) test

statistic on the standardised residuals (LB) and the squared standardised residuals (LB2) to find

that for both innovation series, we cannot reject the null hypothesis of no autocorrelation up to the

15th lag order, which is approximately the largest order of the causality tests. This diagnostic result

suggests that our mean and variance equations successfully capture the serial dependence in the

first and second moments of all return variables. The former outcome is important for the causality-

in-mean study, whereas the latter result is essential for the variance causality analysis. We carry

out the Kupiec (1995) (Ku) test to ensure that the fitted density functions adequately describe the

empirical distribution of the return series. Under the null hypothesis, we have that the estimated

probability of occurrence within a distribution range (x%, y%) is equal to the theoretical frequency.

We find that we cannot reject the null at the lower (0%,1%) and upper tails (99%,100%), and at

the centre (20%,80%) of the estimated densities. The former result is essential for the extreme

risk causality analysis, whereas the latter outcome is important for the causality-in-distribution

study. To further demonstrate that our distributional modellings are appropriate and adequate, we

perform the Pearson Chi-squared (χ2) examination as an independent misspecification diagnosis.4

The Pearson Chi-squared test checks the null hypothesis of a correctly specified distribution, and

the test accounts for the entire distributional support. We find that we cannot reject the test at

the usual significance level for each series. This double validation provides further statistical

justifications for our distributional modellings.

Table 3.3 reports the model estimations and diagnostic tests for the post-crisis period. The

ARX(1) process is selected for the mean equation of AGt , CONt and T RPt , whereas COt and I N D t

are adequately described by ARX(7) and ARX(4), respectively. For brevity and to save space, only

the first order coefficient is reported. Consistent with the pre-crisis sample, we observe that most

of the right hand side variables are statistically significant. Regarding variance equations, the

4We thank an anonymous referee for this comment.
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EGARCH(1,1) is suggested for COt while AGt requires the higher order GJR-GARCH(3,3). The

GARCH(1,1) is selected for all other variables. The estimated negative asymmetric term in the

GJR-GARCH modelling of AGt is consistent with the pre-crisis sample. Similarly, the leverage effect

in COt is also consistent with the pre-crisis period, as implied by a negative asymmetric parameter

estimate in the EGARCH model. The first order GARCH coefficient for AGt has a low estimate

because the dynamic is largely captured by the third order coefficient with an estimate of 0.632.

For all return variables, the skewed-t distribution provides a better fit with parameter estimates

that reflect heavy tails and negative skewness, consistent with the pre-crisis sample. Diagnostic

test results confirm the adequacy of our model parametrisations.

Table 3.4 reports the model estimates and diagnoses for the post-reform sample. The ARX(1)

mean equation is selected for COt and AGt , whereas the ARX(8), ARX(4) and ARX(6) are suggested

for, respectively, CONt , I N D t and T RPt . The EGARCH(1,1) with GED is suggested for COt while

the EGARCH(1,1) with skewed-t distribution is selected for T RPt . The GARCH(1,1) with skewed-t

distribution is fitted to all other return series. We observe leverage effect for T RPt , where the effect

also persists in COt . The estimated GED shape parameter γ of COt lies between one and two,

suggesting excess kurtosis. This is consistent with all other subperiods. The stylised features of

the remaining variables such as volatility clusters, heavy tails and negative skewness are also well

captured by the suggested models. Diagnostic results further support the selected specifications.

To sum up, our model parametrisations capture many stylised features of the data in the mean,

variance, extreme quantiles and the distribution. Most of the estimated parameters are reasonable

and significant. A series of diagnostic analyses suggest that the selected models are adequately

specified, which are essential to the reliability of our subsequent causality study.

3.5.2 Causality results

Given the model estimates, we conveniently compute the event variables for each Granger causality

hypothesis. Then, we compute the corresponding test statistics using the closed-form expressions

given by (3.4) and (3.7). Inferences are drawn based on the asymptotic upper-tailed critical values

of N(0,1) distribution at the standard significance levels. We report the causality analysis results

for all subperiods in Table 3.5. The test statistics are not reported because they do not add to our

conclusions. Instead, we report the statistical significance of each causality analysis.

We begin with the pre-crisis sample that spans from 3 January 2005 to 10 October 2007. We

observe that the Chinese ICAT sectors Granger cause global crude oil in the mean, and the results

are statistically significant at the 1% level. We note that the variance causality test of Hong (2001) is

based on analysis that is not affected by causal relation from the mean equation. Hence, for the

testing of variance causality, we pre-filter any relations in mean by including the lagged causing

term (instantaneous version for ICAT causing terms) when estimating the mean equation of the

caused term. Our modellings are then re-examined using the LB and LB2 tests to ensure adequacy.

We observe significant bidirectional causality in variance between the ICAT sectors and crude oil.
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Table 3.2 Model estimations and diagnostics

COt AGt CONt I N D t T RPt

ARX ARX ARX ARX ARX
GJR-GARCH GJR-GARCH GARCH GARCH GARCH

Pre-crisis (3 January 2005 – 10 October 2007)

Mean equation
Constant 0.335*** 0.027 0.004 0.123*** 0.059***
AR(1) -0.039*** 0.054*** 0.071*** 0.044*** 0.020***
d1 -0.570*** 0.350*** 0.658*** 0.437*** 0.411***
d2 -0.282*** 0.207*** 0.199*** 0.083** 0.118***
d3 -0.421*** 0.091* 0.348*** -0.054 0.045
d4 0.007 -0.064 -0.098* -0.208*** -0.116***

Variance equation
Constant 0.032*** 0.163*** 0.736*** 0.065*** 0.089***
ARCH(1) 0.000*** 0.162*** 0.156*** 0.069*** 0.084***
Asymmetric term 0.022*** -0.111***
GARCH(1) 0.978*** 0.870*** 0.706*** 0.918*** 0.897***
GED γ

Skewed-t η 23.507 5.230*** 5.503*** 4.532*** 4.261***
Skewed-t λ -0.078*** -0.180*** -0.128*** -0.101*** -0.085***

Diagnostics
LB(10) 5.18 4.36 3.19 6.10 11.19
LB(15) 8.06 8.36 4.42 11.37 18.85
LB2(10) 7.93 6.27 6.86 5.21 3.51
LB2(15) 18.21 15.31 10.02 9.81 4.94
Ku(0,1%) 0.77 0.22 0.01 0.41 0.97
Ku(20%,80%) 1.11 0.16 0.16 1.11 0.22
Ku(99%,100%) 0.77 0.77 0.77 0.77 1.73
Pearson χ2 2.25 1.75 1.54 3.33 3.13

NOTES: This table reports the model estimations and diagnostic analyses for all variables. COt represents global crude
oil daily return. AGt , CONt , I N Dt and T RPt are, respectively, the daily agricultural, construction, industrial and
transportation sectoral returns in China. di is the day dummy, i = 1,2,3,4. γ is the shape parameter of the GED. η and λ
are, respectively, the degree of freedom and skewness parameters of the skewed-t distribution. LB(M) and LB2(M) are
the Ljung and Box (1978) test statistics for the null of no serial correlation (up to lag M) on the standardised and squared
standardised residuals, respectively. Ku(x%, y%) is the Kupiec (1995) test statistic for correct proportion of return
occurrence within the distribution range (x%, y%) under the null hypothesis. The Pearson χ2 test statistic checks the
null hypothesis of a correctly specified distribution. The significance levels of all model estimates and diagnostic tests
are abbreviated with asterisks: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

The downside risk of CONt , I N D t and T RPt causes the downside risk of COt , whereas the upside

risk of T RPt and COt affects each other. Interestingly, the downside risk of CONt , I N D t and T RPt

also causes the upside risk of COt . There is no evidence of up-to-down risk spillover between the
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Table 3.3 Model estimations and diagnostics

COt AGt CONt I N D t T RPt

ARX ARX ARX ARX ARX
EGARCH GJR-GARCH GARCH GARCH GARCH

Post-crisis (7 October 2008 – 17 May 2012)

Mean equation
Constant 0.198*** 0.442*** 0.200*** 0.223*** 0.186***
AR(1) -0.025*** 0.072*** 0.092*** 0.069*** 0.001
d1 -0.230*** -0.569*** -0.225*** -0.398*** -0.382***
d2 0.018 -0.329*** -0.044 -0.063* -0.065**
d3 -0.086* -0.535*** -0.197*** -0.319*** -0.276***
d4 -0.439*** -0.484*** -0.051 -0.120*** -0.192***

Variance equation
Constant 0.011*** 0.551*** 0.148*** 0.117*** 0.079***
ARCH(1) 0.085*** 0.149*** 0.088*** 0.063*** 0.060***
Asymmetric term -0.024*** -0.034***
GARCH(1) 0.993*** 0.000*** 0.878*** 0.902*** 0.913***
GED γ

Skewed-t η 7.569*** 17.991 9.542 7.890** 5.971***
Skewed-t λ -0.046*** -0.141*** -0.179*** -0.148*** -0.247***

Diagnostics
LB(10) 10.02 7.03 9.25 9.88 15.58
LB(15) 11.84 10.11 15.49 19.89 20.25
LB2(10) 6.33 9.13 7.58 11.48 11.53
LB2(15) 9.04 15.97 21.85 16.64 15.68
Ku(0,1%) 0.21 0.27 1.28 0.04 0.27
Ku(20%,80%) 0.06 0.24 0.00 0.01 0.00
Ku(99%,100%) 0.66 0.04 1.40 0.66 0.66
Pearson χ2 3.87 3.44 6.52 2.65 3.70

NOTES: This table reports the model estimations and diagnostic analyses for all variables. COt represents global
crude oil daily return. AGt , CONt , I N Dt and T RPt are, respectively, the daily agricultural, construction, industrial
and transportation sectoral returns in China. Higher order coefficients for the mean and variance equations are not
shown for brevity. di is the day dummy, i = 1,2,3,4. γ is the shape parameter of the GED. η and λ are, respectively, the
degree of freedom and skewness parameters of the skewed-t distribution. LB(M) and LB2(M) are the Ljung and Box
(1978) test statistics for the null of no serial correlation (up to lag M) on the standardised and squared standardised
residuals, respectively. Ku(x%, y%) is the Kupiec (1995) test statistic for correct proportion of return occurrence within
the distribution range (x%, y%) under the null hypothesis. The Pearson χ2 test statistic checks the null hypothesis of a
correctly specified distribution. The significance levels of all model estimates and diagnostic tests are abbreviated with
asterisks: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

ICAT industries and international oil. We observe feedback causality between the distribution of

global crude oil and the ICAT sectors.
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Table 3.4 Model estimations and diagnostics

COt AGt CONt I N D t T RPt

ARX ARX ARX ARX ARX
EGARCH GARCH GARCH GARCH EGARCH

Post-reform (28 March 2013 – 31 December 2019)

Mean equation
Constant 0.071*** -0.044*** 0.055*** 0.026*** 0.092***
AR(1) 0.022*** 0.068*** 0.090*** 0.082*** 0.091***
d1 0.052** -0.141*** -0.307*** -0.260*** -0.265***
d2 -0.119*** 0.052*** -0.132*** -0.049*** -0.126***
d3 -0.223*** 0.206*** -0.024* 0.054*** -0.138***
d4 -0.223*** 0.284*** 0.111*** 0.116*** 0.123***

Variance equation
Constant 0.006*** 0.029*** 0.038*** 0.026*** 0.026***
ARCH(1) 0.064*** 0.084*** 0.069*** 0.067*** 0.170***
Asymmetric term -0.054*** -0.003***
GARCH(1) 0.998*** 0.916*** 0.922*** 0.926*** 0.988***
GED γ 1.271***
Skewed-t η 4.397*** 4.493*** 4.731*** 4.341***
Skewed-t λ -0.112*** -0.154*** -0.155*** -0.164***

Diagnostics
LB(10) 10.84 6.08 4.82 10.47 15.19
LB(15) 17.32 12.61 6.28 15.34 19.77
LB2(10) 3.40 9.81 7.66 9.38 9.10
LB2(15) 6.29 14.16 9.53 11.59 12.28
Ku(0,1%) 0.14 1.05 0.64 1.55 0.64
Ku(20%,80%) 1.00 0.03 0.18 0.01 0.99
Ku(99%,100%) 0.40 2.00 2.00 2.00 1.31
Pearson χ2 0.53 0.15 0.38 4.02 1.29

NOTES: This table reports the model estimations and diagnostic analyses for all variables. COt represents global
crude oil daily return. AGt , CONt , I N Dt and T RPt are, respectively, the daily agricultural, construction, industrial
and transportation sectoral returns in China. Higher order coefficients for the mean and variance equations are not
shown for brevity. di is the day dummy, i = 1,2,3,4. γ is the shape parameter of the GED. η and λ are, respectively, the
degree of freedom and skewness parameters of the skewed-t distribution. LB(M) and LB2(M) are the Ljung and Box
(1978) test statistics for the null of no serial correlation (up to lag M) on the standardised and squared standardised
residuals, respectively. Ku(x%, y%) is the Kupiec (1995) test statistic for correct proportion of return occurrence within
the distribution range (x%, y%) under the null hypothesis. The Pearson χ2 test statistic checks the null hypothesis of a
correctly specified distribution. The significance levels of all model estimates and diagnostic tests are abbreviated with
asterisks: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

During the 2005–2007 period, the Chinese economy was developing at a rapid rate with an

average annual GDP growth of 12.8%.5 The strong economic growth drove the consumption of oil,

5Data Source: World Bank.
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Table 3.5 Causality results

Mean Variance Risk Risk Risk Risk Distribution
D-to-D U-to-U D-to-U U-to-D

Pre-crisis (3 January 2005 – 10 October 2007)
Q̂(COt −→ AGt ) *** ***
Q̂(COt −→CONt ) *** ***
Q̂(COt −→ I N D t ) *** ***
Q̂(COt −→ T RPt ) *** *** ***
Q̂(AGt =⇒COt ) *** *** ***
Q̂(CONt =⇒COt ) *** *** *** *** ***
Q̂(I N D t =⇒COt ) *** *** *** *** ***
Q̂(T RPt =⇒COt ) *** *** *** *** *** ***

Post-crisis (7 October 2008 – 17 May 2012)
Q̂(COt −→ AGt ) *** *** * ***
Q̂(COt −→CONt ) *** ***
Q̂(COt −→ I N D t ) *** ***
Q̂(COt −→ T RPt ) * *** ***
Q̂(AGt =⇒COt ) *** *** *** ***
Q̂(CONt =⇒COt ) *** *** ***
Q̂(I N D t =⇒COt ) *** *** ***
Q̂(T RPt =⇒COt ) *** *** ***

Post-reform (28 March 2013 – 31 December 2019)
Q̂(COt −→ AGt ) *** * ** ** ***
Q̂(COt −→CONt ) *** *** * ***
Q̂(COt −→ I N D t ) *** ** ***
Q̂(COt −→ T RPt ) * *** *** *** ***
Q̂(AGt =⇒COt ) * *** ***
Q̂(CONt =⇒COt ) *** ***
Q̂(I N D t =⇒COt ) *** ***
Q̂(T RPt =⇒COt ) *** * ***

NOTES: This table reports the causality analysis results. COt represents global crude oil daily return. AGt , CONt ,
I N Dt and T RPt are, respectively, the daily agricultural, construction, industrial and transportation sectoral returns
in China. Q̂(Yt −→ Xt ) is the Granger causality test that examines the null hypothesis that {Xt } does not cause {Yt }.
Q̂(Yt =⇒ Xt ) is the instantaneous Granger causality test that examine the null hypothesis that {Xt } does not cause {Yt }
contemporaneously. D-to-D, U-to-U, D-to-U and U-to-D denote, respectively, down-to-down, up-to-up, down-to-up
and up-to-down risk causality. The significance levels of all tests are abbreviated with asterisks: ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% level, respectively. For brevity, only the statistical significance of the test
results are reported.

especially in the oil-intensive sectors. This explains the ICAT industries’ influence in the mean of

international crude oil. Our finding agrees with He et al. (2010), who find that major economic

activity affects global oil. Next, we find evidence of bidirectional volatility spillover between crude

oil and the ICAT sectors. Because the ICAT industries and international crude oil depend heavily
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on each other, an increase in uncertainty of one market would inevitably affect the other. We

find downside risk spillover from the majority of the oil-intensive sectors (construction, industrial

and transportation) to crude oil. An extreme negative return in a particular industry could be a

signal of low demand for the sector’s finished products. This reduces energy consumption and

oil import, which in turn drive down international oil price. Our finding agrees with Du and He

(2015) based on aggregate US data. Interestingly, the downside risk of the construction, industrial

and transportation sectors also Granger causes the upside risk of crude oil. This phenomenon

is largely driven by government intervention. In 2007, China suffered from high inflation as a

result of the overheated domestic economic growth and the price increase in imported food (Giles,

2008). This had adverse impact on the major sectors in the economy. To reduce inflation and

prevent social instability, the central government reduced oil tariffs and even offered subsidy

for oil consumption. Lin and Jiang (2011) estimate that in 2007 alone, the oil subsidy in China

amounted to CNY 189.03 billions, which is approximately equivalent to USD 24.87 billions at the

average exchange rate of 7.6 CNY/USD in that year. This intervention — which cost nearly 0.8%

of the country’s economy — had aided to reduce prices of domestic goods but inevitably drove

up international oil price according to the analysis by Balke et al. (2015). In terms of upside risk

spillover, the only causal linkage exists between crude oil and the transportation sector, where the

relation is bidirectional. In other words, the positive outlook in the oil and transportation market

benefited each other. This is due to the rapid growth in China that stimulated the movement of

people and goods. Together with a strong GDP growth, in two years time from 2005 to 2007, China

expanded its highway by 7.13% and its aviation route by 18.78%.6 This ambitious expansion drove

oil consumption and pushed for more crude oil import, which in turn increased the outlook of

international oil. In the opposite direction, one might expect a positive outlook in international

crude oil to adversely affect the oil-consuming transportation sector. On the contrary, we observe

that the positive outlook in crude oil to have positively influenced the transportation industry.

This positive effect can be explained by the heavy government fuel subsidy during this period as

documented by Lin and Jiang (2011). In other words, the transportation sector in China enjoyed

low cost government subsidised oil to support its expansion despite the rise in international oil

price. Finally, our causality-in-distribution test results suggest long-run links between global oil

and the ICAT industries. This finding is consistent with China’s growing long-term demand for

international oil in Figure 3.1. From the perspective of econometrics, the existence of causality in

any order of moment or quantile implies the more general causality in distribution, which is also

reflected in our findings.

We now consider the post-crisis sample over the 7 October 2008 – 17 May 2012 period. Similar

to the pre-crisis results, the ICAT sectors in China Granger cause crude oil in the mean. Besides,

the bidirectional volatility spillover and long-run causality in the oil-ICAT nexus persist. There is

marginal evidence that COt influences T RPt in the mean, and that the upside risk of COt causes

6Data Source: China Statistical Yearbook.
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the downside risk of AGt . Regarding up-to-up risk causality, we have bidirectional effect between

COt and AGt . No down-to-down and down-to-up risk causality is found.

Despite the subprime crisis that affected most of the western economies, the Chinese GDP

continued to grow at an average of 9.81% annually from 2008 to 2011.7 The strong persistence

of economic activities provides explanation as to why the ICAT industries in China continued to

Granger cause global crude oil in mean. Besides, China’s demand for international oil continued

to rise while other major economies such as the United States reduced its oil imports during the

same period. This explains the continuation of bidirectional volatility spillover effects between

global crude oil and the ICAT sectors. We find that the upside risk of global crude oil plays a key

role in pushing the agricultural index upwards. As crude oil becomes more expensive, there is

increasing demand for alternative energy sources such as biofuel which is derived from agricultural

commodity. Kristoufek et al. (2012) find that the connection between biofuel and the agricultural

products becomes more profound after the 2008 global food insecurity. This coincides with our

findings and provides explanation for the driving forces behind the agricultural sector in China.

Indeed, we learn from the Chinese Statistical Yearbook that from 2008 to 2010, the farmland area

allocated for corn — the primary ingredient for ethanol biofuel — had increased by 12.90%, whereas

the area allocated for its main staple rice had only increased by 2.55%. In the opposite direction,

we find upside risk spillover from the Chinese agricultural sector to the global crude oil. For two

years in a row from 2009 to 2010, the Chinese agricultural sector was badly hit by severe drought

and flood that affected more than 16 million hectares of its farm land.8 This inevitably increases

food prices and the upside risk of the agricultural industry in China. Consequently, the Chinese

government had to rely on food import to feed the country. This naturally drove international

energy consumption and global oil price. Our finding is consistent with Silvennoinen and Thorp

(2016), who find that the global food and energy markets were especially integrated between 2008

and 2010 where the price levels of food and oil were high. Finally, the long-term relation between

global crude oil and the ICAT industries is confirmed by our causality-in-distribution analyses.

We now discuss causality results for the post-reform sample from 28 March 2013 to 31 De-

cember 2019. Unlike previous periods, the mean causality effect from the ICAT sectors in China

to crude oil is virtually nonexistent. We find marginal evidence that COt causes T RPt in the

mean. The bidirectional volatility spillover and long-run causality in the oil-ICAT nexus persist. We

observe with marginal evidence downside risk spillover from COt to AGt and upside risk spillover

from T RPt to COt . The upside risk spillover from COt to AGt persists. In terms of inverse risk

spillover, the downside risk of COt significantly causes the upside risk of CONt , I N D t and T RPt ,

whereas the upside risk of COt causes the downside risk of AGt , CONt and T RPt .

Between 2014 and 2019, China’s economy grew by an annual average of 6.85%, which saw a

significant slowdown compared with its peak GDP growth of 14.23% in 2007.9 As a result, the

7Data Source: World Bank.
8Data Source: China Statistical Yearbook.
9Data Source: World Bank.
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ICAT industries were unable to maintain the previous positive outlook and productivity, causing

their explanatory power for the mean return of crude oil to fade during this period. Compared

with the period where the GDP growth peaked, the weakened evidence of upside risk spillover

from the transportation sector to crude oil is another indication of the economic slowdown.

Although the ICAT sectors were slowing down, their dependence on international oil is however

not zero. Therefore, uncertainty in one market still had nontrivial effects on the other. This provides

explanation for the persistence of bidirectional volatility spillover and long-term causality in the

oil-ICAT nexus. It is worth highlighting that China’s demand for international oil was still on the

rise despite the economic slowdown, which can be attributed to its plan of establishing a strategic

national oil reserve (Zhou and Yep, 2019). The upside risk spillover from international oil to the

agricultural sector persist as China continued to invest in renewable energy such as the biofuel.

Indeed, the farmland area allocated for corn in China has been growing consistently since 2010

according to the Chinese Statistical Yearbook. Because a growing portion of farmland has been

allocated for corn to make biofuel, a sharp decrease in the price of international crude oil would

incur losses on this renewable industry since the price of biofuel are no longer competitive. This

is why we observe marginal evidence of negative risk spillover from international crude oil to

the agricultural sector. Interestingly, the negative outlook in the global oil market had a positive

impact on the construction, industrial and transportation sectors. On several occasions between

2014 and 2016, international crude oil suffers from oversupply due to geopolitical rivalries and

the invention of hydraulic fracking technology. This decreased oil price but increased the profit of

most oil-consuming industries as they benefited from cheaper oil. On the other hand, most ICAT

sectors were negatively affected when the global oil price was high due to increase in operational

costs. This explains why the positive outlook in crude oil adversely affected most of the ICAT

industries.

3.5.3 Implications for investors and policymakers

There are several implications that we can draw from the findings in this study that can contribute

to future policymaking and investment management. First, we observe that the extreme impact

from international crude oil on the Chinese ICAT sectors became more apparent after the major

domestic oil pricing reformation in 2013. As the market-oriented pricing mechanism with minimal

government intervention was introduced, the ICAT industries became, to a greater extent, exposed

to international crude oil movement and the price risk that accompanied. This also provides

explanation for the marginal influence of global oil on the mean of T RPt . By the same rationale,

it is worth mentioning that China introduced a preliminary oil pricing reform in 2009 that is of

smaller scale than the 2013 counterpart. This posed nontrivial impact to certain local oil-intensive

sectors. For instance, we observe marginal evidence that, for the 7 October 2008 – 17 March 2012

sample, global oil affected the transportation industry in the mean, and the positive outlook in oil

began to adversely affect the agricultural sector. These findings shall advise policymakers to be
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cautious in the future when implementing similar reformations because they may distort statistical

relations on an international level.

Second, our study in the 3 January 2005 – 10 October 2007 sample reveals heavy oil subsidy by

the Chinese government to deal with its overheated economy. From the perspective of policymak-

ing, this had aided to reduce the prices of domestic goods but that came at a cost of nearly 0.8% of

the country’s economy. Besides, the government subsidy may be miss-used by some companies to

increase their own private profit, which does not necessary help to ease the overheated economy.

Moreover, as shown in Balke et al. (2015), such heavy oil subsidy is detrimental to the rest of the

world because it drives international oil price. Thus, oil subsidy should be implemented with

care and should only be used in extreme situations. Indeed, knowing that such policy is only a

short-term alleviation, the Chinese government subsequently reduced to a great extent its fuel

subsidy after 2008, as depicted in Lin and Ouyang (2014, Figure 2). This is a crucial step because

according to our analysis, there exists significant long-term linkages between the ICAT sectors and

international crude oil. Thus, our findings agree with the decision implemented by the Chinese

policymakers and shall advise them to continue investing in long-term visions and solutions.

Finally, our findings suggest strong evidence of volatility spillover between the ICAT sectors

and international crude oil. This should be viewed a healthy economic relation between the

ICAT and oil markets because it implies that the market participants have been following each

other closely due to the interdependent relation. As a result, uncertainty in one market would

naturally propagate to the other market. For participants in the ICAT and oil markets, our analysis

emphasises the importance of using hedging instruments to minimise investment losses that

could arise from uncertainty in the opposite markets. For instance, the managing directors of

international oil drilling companies are advised to invest in crude oil futures contracts should

they wish to hedge against uncertainty in fuel price which could be a result of the volatile demand

from the oil-intensive ICAT sectors. By taking short positions in the crude oil futures contracts,

the directors are entitled to sell the companies’ oil at a predetermined price in the future to avoid

severe losses should fuel demand becomes uncertain. By the same reasonings, the farmland

owners in China are advised to short corn futures should they wish to hedge against uncertainty in

corn price which could be a result of volatile fuel price.

3.6 Conclusions

The paper analysed Granger causality between global crude oil and the sectoral equity index

returns in China from 2005 to 2019. We unified the extensive Granger causality tests proposed

over the past two decades that are based on the cross-correlation function approach to study

causal relations in the mean, variance, risky quantiles and distribution. The paper focused on the

industrial, construction, agricultural and transportation (ICAT) sectors as they are the country’s

primary oil consumers. Various stylised features in the data were captured by our modellings

which were properly examined to ensure adequacy.
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Main findings can be summarised as follows. First, volatility spillover and long-term depen-

dence in the oil-ICAT nexus were confirmed throughout the sample by the causality-in-variance

analysis and causality-in-distribution analysis, respectively. As for mean causality, results showed

that the oil-intensive sectors in China affected international crude oil before 2013 when the coun-

try’s economy was growing at a rapid rate; the effects faded after the economic growth slowed

down. In terms of downside risk causality, extreme losses in the construction, industrial and

transportation sectors negatively influenced international oil in the pre-crisis sample. No relation

was found after the financial crisis. As for upside risk spillover, crude oil and the transportation

industry affect each other in the pre-crisis sample partly due to the ambitious aviation route

expansion. After 2008, the upside risk causality between the agricultural sector and international

oil strengthened, which could be attributed to the global food insecurity. Regarding negative risk

causality, the downside risk of the construction, industrial and transportation sectors caused the

upside risk of international oil before 2009, which could be attributed to heavy government oil

subsidy. After the major Chinese domestic refined oil pricing mechanism reform in 2013, it was

found that the downside risk of global oil benefited most of the oil-intensive sectors and that the

upside risk of international oil negatively influenced most ICAT industries. Overall, our analyses

disentangled the complex oil-ICAT nexus to find that it had been nontrivially related to various

factors such as demand and supply of oil, economic growth rate, government subsidies and local

oil pricing reformation.

Market participants especially investors and policymakers may find the results of this paper

useful. In particular, policymakers are advised to be cautious when implementing similar oil

reformations in the future as they may distort statistical relations on an international level. Besides,

policymakers are advised to invest in long-term solutions when dealing with an overheated econ-

omy because of the documented long-term relation between global oil and the ICAT industries.

Finally, due to the persistent volatility spillover in the oil-ICAT nexus, investors are advised to use

financial instruments such as futures contracts to hedge against uncertainty from the opposite

markets.





CONCLUSIVE REMARKS AND FUTURE

WORKS

This dissertation centred on the modelling and testing of risk with the emphasis on gauging novel

issues in finance. Chapter 1 modelled the stability of financial system using prominent systemic

risk measures, and tested for various risk factors affecting financial stability including the risky

practice of shadow insurance. In Chapter 2, I proposed a new multivariate econometric strategy

for examining the spillover of volatility — the most fundamental risk measure — and I applied

it to study the North American and European financial markets. Chapter 3 consolidated the

comprehensive literature on Granger causality methods, and applied the unified methodology to

examine different components of risk spillover between international crude oil and the Chinese

equity markets that are fuel intensive. In what follows I highlight the contributions and implications

that we can draw from the results in this dissertation — covering the aspects of econometric

methodology, finance, and policymaking — and I provide some discussions regarding future

developments.

Methodological implications

This dissertation has several methodological implications and contributions. Chapter 1 compared

and contrasted existing systemic risk measures to find that the delta conditional value-at-risk

(∆CoV aR) and systemic risk measure (SRI SK ) were the more suitable methods in terms of cap-

turing financial system risk since the marginal expected shortfall (MES) method captured largely

the systematic risk. Next, based on a representative data universe of 215 insurance entities, the

chapter provided a close empirical examination on ∆CoV aR and SRI SK to find that the extent to

which the two measures react to financial distress varies. For instance, ∆CoV aR was more reactive

to the US subprime crisis whereas the response from SRI SK was less profound. I conjectured

that the difference was due to the distinct ways the two measures were constructed. For instance,

although they are classed as systemic risk measures,∆CoV aR is a function of value-at-risk whereas

SRI SK is based on expected shortfall. Hence, the results in this chapter call for cautious future
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implementations of the methods and whenever possible, the chapter suggests that both measures

should be used for a rigour empirical analysis.

The application of systemic risk measures is limited to cases where the transmission or spillover

of risk is unidirectional, therefore I proposed in Chapter 2 a new (bi)directional econometric

method to examine volatility spillover — the most fundamental risk measure — between two

potentially multivariate time series, where volatility spillover was defined using the notion of

Granger causality in variance. The chapter further proposed a new nonparametric specification to

facilitate the estimation of volatility and hence the computation of the test statistic. In terms of

estimation, I proposed consistent least-squares estimators which are computationally efficient

and are free from convergence issue. I developed the asymptotic theory of the new approach.

Throughout the proposed econometric strategy, numerical integration and optimisation are not

involved. An extensive simulation study showed that the proposed method performed reasonably

well even in the higher dimension. Overall, the chapter contributes to the financial econometrics

literature by providing a new and convenient inferential methodology for volatility spillover.

While volatility is considered the most fundamental risk measure, the causality literature had

proposed other methods to capture different components of risk spillover. Chapter 3 unified the

extensive literature on causality methods and demonstrated how various forms of spillover can be

examined. This unified methodology can examine spillovers in the mean, variance, risky quantiles

(both positive and negative) and distribution, where each element reveals a unique relation. The

causality-in-mean analysis uncovers return spillover, whereas the presence of variance causality

can be viewed as volatility spillover. The causality-in-risk analysis detects the existence of extreme

risk spillovers and it covers both positive and negative relations. The long-term spillover effects can

be evaluated by the causality-in-distribution examination. This unified methodology minimises

inferential biases because all of the analyses are based on causality methods within the same family.

Besides, the finite sample performance of this univariate methodology based on asymptotic critical

values is generally reliable as reported in the mainstream literature. In summary, the chapter

provides academics, investors, market participants and policymakers with a unified methodology

to examine various components of risk spillover.

Implications in finance and policymaking

This dissertation has profound implications in finance and policymaking. In Chapter 1, I extracted

the lesser-known shadow insurance dataset from the data universe of about 200,000 reinsurance

agreements to find that the practice of shadow insurance had grew nearly 17 times from $15 billion

in 2004 to over $250 billion in 2017. Second, I documented that about 2.8 cents every dollar ceded

was shadow in 2004 and this figure had grew to 21 cents every dollar in 2017. Third, the chapter

tabulated the key entities practising shadow insurance — the shadow insurers — by the dollar

amount of shadow insurance and by a shadow index quantifying the aggressiveness of the practice.

Fourth, I documented that shadow insurers are typically larger, riskier, more interconnected with
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other market participants and more likely to contribute to financial instability. Naturally, the

chapter hypothesised that the practice of shadow insurance affects financial stability. Finally,

I tested the hypothesis using panel analysis and found statistical significant evidence that the

practice of shadow insurance had indeed contributed to the spreading of systemic risk. Overall,

these results have direct implications in the shadow banking and financial stability literature and

call for new policies to regulate the risky practice of shadow insurance.

In Chapter 2, I proposed an econometric testing strategy that has practical applications in

finance. The chapter included a timely empirical study in which I applied the new inferential

strategy to examine, before and after the Brexit referendum, the spillover relations between the

North American (NA) and the UK financial markets. To examine possible Brexit effect on the

European Union (EU) market, I also studied its spillover relations with the NA market. Before the

Brexit referendum, it was found that the NA was driven more immediately by UK volatility than EU

volatility. After Brexit, it was found that volatility in the UK did not spill to NA while that in the EU

had a more immediate spillover effect on NA as most NA participants switched their attention from

the UK to the EU market because of the fear that UK might lose its access to the European Single

Market. These findings have direct implications in the financial market literature by providing

statistical evidence suggesting that the participants in key international financial markets have

a reduced interest to follow the UK market after Brexit. In terms of policymaking, the chapter

encourages UK policymakers to develop new policies aiming to bolster the confidence of overseas

investors in the UK market as the starting step to retain the market’s global influence. I shall

emphasise that the applications of the proposed inferential strategy is not limited to the macro

level financial markets. At the firm level, the proposed statistical tool can assist policymakers to

identify volatility transmitters and recipients in the financial system and thus to shape targeted

policy to protect vulnerable volatility recipient as individual or group whenever necessary.

In Chapter 3, I unified a series of Granger causality methodology that has practical applications

in finance. I applied the unified methodology to study risk spillovers between international crude

oil and the oil-intensive equity markets in China. The Chinese market is worth studying for a few

reasons. First, I documented that since 2017, China had surpassed the US to become the top crude

oil importer in the world with more than eight million barrels of crude oil imports per day. Second,

the Chinese market had experienced a major government intervention. On 27 March 2013, the

Chinese government launched a major reformation of its domestic refined oil pricing mechanism

to greatly relax its control over local oil price. Generally regarded as the major milestone in the

transformation to a market-oriented pricing of retail oil, this reform discourages the government

from setting a ceiling price for domestic oil so long as international oil price stays under $130

per barrel. My analysis suggested that, before the oil reform, the Chinese industries were not

significantly affected by extreme international oil price movement. This was because domestic

oil price in China was capped and strictly regulated by its central government. Consequently, the

global oil price had a limited influence on the Chinese sectors. After the oil reform, I found that

extreme negative returns of global oil benefit most oil-intensive sectors while positive outlook in
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Brent adversely affect most the industries. These findings were driven by the fact that the Chinese

markets had naturally become more exposed to international oil after the reformation. Therefore,

an extreme negative (positive) outlook in global oil directly reduced (increased) the operational

costs of the Chinese sectors. Hence, the findings in this chapter encourage policymakers to be

cautious when implementing similar reformations in the future because they may distort statistical

relations on an international level.

Further developments

Based on the results in this dissertation, several future works can be suggested. First, the inferential

strategy that I put forward in Chapter 2 can be readily applied to the shadow insurance data that I

collected in Chapter 1. Compared with the analysis in Chapter 1 which focuses on the effect from

the mean, using the statistical tool from Chapter 2 the new study can focus on the effect from

the volatility. Using the collected data, I can first form a vector containing key shadow insurers

which can represent the shadow insurance sector. Since I documented in Chapter 1 that most of

the shadow insurers are public entities, I can conveniently download their daily stock prices which

are the main input of the methodology in Chapter 2. Because a large portion of shadow insurance

is funded through the banking system, I formulate the following hypothesis.

Hypothesis 1. There is volatility spillover from the shadow insurance sector to the banking or

financial sector.

Besides, it is important to check the relation between the shadow and the non-shadow sectors.

Hypothesis 2. There is volatility spillover from the shadow insurance sector to the non-shadow

insurance sector.

As documented in Figure 1.5, the risk of shadow insurance is time varying. Hence, I propose to

examine the possible time-varying spillover effects using rolling window method so long as I keep

a rolling window of about four years of daily data, which is suggested by the Monte Carlo study in

Chapter 2. Given the evidence in Figure 1.5, I formulate a further hypothesis.

Hypothesis 3. The spillover effect from the shadow insurance sector is the most significant in the

run-up to the subprime crisis.

Addressing these hypotheses can make up a small but interesting research paper in the shadow

banking literature.

Second, I can apply the set of Granger causality methods that I unified in Chapter 3 to study

another set of commodity data. Because the unified methodology is able to detect possible negative

causal relations, I can propose a thorough study to examine the nexus between international gold

market and the leading global financial markets since it is often hypothesised that gold and equity

are negative related. For instance, Basher and Sadorsky (2016) find that gold could be effective in
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terms of hedging stock prices in the emerging markets. This research idea can form a small but

interesting research paper in the commodity and financial market literature. Along the same line, I

would like to note that the autoregressive conditional heteroskedasticity in mean (ARCH-in-mean)

model is often recommended for commodity data given its relevance to the theory of storage.

For instance, Bernard et al. (2015) find that on several occasions, the ARCH-in-mean model gives

better forecast performances with respect to several other workhorse models based on oil futures

data. Therefore, the ARCH-in-mean model is very much worth exploring in future works especially

when it comes to forecast-based analysis of commodity futures data.

Third, I can put forward a new measure for financial market jump spillover which complements

the volatility spillover approach in Chapter 2. To study financial jumps, I shall assume that asset

prices (in logarithms) follow the conventional continuous jump-diffusion process(
dp A,s

dpB ,s

)
=

(
µA,s

µB ,s

)
ds +

(
σA A,s σAB ,s

σB A,s σBB ,s

)(
dWA,s

dWB ,s

)
+

(
κA A,s κAB ,s

κB A,s κBB ,s

)(
dJ A,s

dJB ,s

)
,

where (µA,s ,µB ,s) are predictable drift processes; (WA,s ,WB ,s) are standard Brownian motions;

(σA A,s ,σAB ,s ,σB A,s ,σBB ,s) follow a multivariate càdlàg process; (J A,s , JB ,s) are Poisson processes

with possibly time-varying intensity; (κA A,s ,κAB ,s ,κB A,s ,κBB ,s , ) describe the sizes of jumps at time

s.

It is natural to decompose the quadratic variation process 〈·, ·〉t of a given asset price, say p A ,

over the time interval (t −1, t ) into the part due to the discontinuous jump component p(d)
A and

the part due to the continuous diffusive component p(c)
A . In particular, 〈p A , p A〉t ≡ At = VA,t +

D A,t , where VA,t = 〈p(c)
A , p(c)

A 〉t =
∫ t

t−1σ
2
A,sds +∫ t

t−1σ
2
AB ,sds is the integrated variance over the time

interval (t −1, t ) and D A,t = 〈p(d)
A , p(d)

A 〉t =∑J A,t

s=J A,t−1
κ2

A A,s +
∑JB ,t

s=JB ,t−1
κ2

AB ,s corresponds to the jump

contribution to the quadratic variation. Similarly, we have 〈pB , pB 〉t ≡ Bt =VB ,t+DB ,t , where VB ,t =
〈p(c)

B , p(c)
B 〉t =

∫ t
t−1σ

2
B ,sds +∫ t

t−1σ
2
B A,sds and DB ,t = 〈p(d)

B , p(d)
B 〉t =∑J A,t

s=J A,t−1
κ2

B A,s +
∑JB ,t

s=JB ,t−1
κ2

BB ,s . It

is easy to appreciate from the above setup that At is not affected by DB ,τ for any τ≤ t , denoted by

B ̸D−−→ A, if and only if

(i) κAB ,s = κB A,s = 0 almost surely;

(ii) κAB ,s and κB A,s are independent; and

(iii) J A,s and JB ,s are independent.

If any of the above conditions fail to hold, then At remains dependent upon DB ,τ, even after

conditioning on its own past values. We have jump spillover from asset B to asset A. To quantify the

effect of jump spillover, I can propose to quantify the extent to which and (i)-(iii) are violated using

proper dependence measures. By studying the limiting distribution of the proposed measures,

I can put forward inferential procedures for the null hypothesis that (i)-(iii) hold (i.e., no jump

spillover). This can form a research paper with methodological contribution.
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