

City, University of London Institutional Repository

Citation: Frankl, P. G., Hamlet, D., Littlewood, B. & Strigini, L. (1997). Choosing a testing

method to deliver reliability. PROCEEDINGS OF THE 1997 INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, pp. 68-78. ISSN 0270-5257

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/269/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Choosing a Testing Method to Deliver Reliability�

Phyllis Frankly

CIS Dept.

Polytechnic Univ.

6 Metrotech Center

Brooklyn, NY 11201

USA

phyllis@morph.poly.edu

Dick Hamlet

Dept. of CS

Portland State Univ.

PO Box 751

Portland, OR 97207

USA

hamlet@cs.pdx.edu

Bev Littlewood

Lorenzo Strigini z

Centre for Software Reliability

City University

Northampton Square

London EC1V OHB

UK

fb.littlewood,striginig@csr.city.ac.uk.

ABSTRACT

Testing methods are compared in a model where pro-
gram failures are detected and the software changed to
eliminate them. The question considered is whether it
is better to use tests that seek out failures (\debug test-
ing") or to simulate usage and �nd failures along the
way (\operational testing"). \Better" is measured by
the delivered reliability obtained after all test failures
have been eliminated. This comparison extends previ-
ous work, where the measure was the probability of de-
tecting a failure. The theoretical treatment of the paper
is probabilistic and analytical. Revealing special cases
are exhibited in which each kind of testing is superior.

Keywords

Reliability, debugging, statistical testing theory

INTRODUCTION { RELIABILITY VS. DE-

BUGGING

There are two main goals in testing software. Firstly,
it can be seen as a means of achieving reliability: here
the objective is to probe the software for bugs so that
these can be removed and thus improve its reliability.
Alternatively, testing can be seen as a means of gaining
con�dence that the software is su�ciently reliable for
its intended purpose, i.e., evaluating reliability.

We begin by taking the point of view of a developer who
tests to �nd and correct bugs and improve the delivered
software. A systematic testing method includes a crite-

�This work was carried out in part during visits of Hamlet and
Frankl to the Centre for Software Reliability, with support from
EPSRC visiting fellowship grants GR/K68134 and GR/L00445.

ySupported in part by NSF grant CCR-9206910.
zLittlewood and Strigini were funded in part by the European

Commission via the ESPRIT Long Term Research Project 20072
\DeVa".
Copyright c
 1997 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroomuse is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

rion for selecting test cases and a criterion for deciding
when to stop testing. Most common approaches to sys-
tematic testing are directed at �nding as many bugs as
possible, by either sampling all situations likely to pro-
duce failures (e.g., methods informed by code coverage
or speci�cation coverage criteria), or concentrating on
those that are considered most likely (e.g., stress test-
ing or boundary testing methods). The choice among
such testing methods is a matter of hypotheses about
the likely types and distributions of bugs, at the point
in the software development process when testing is ap-
plied. We shall call all these approaches, collectively,
\debug testing."

A completely di�erent approach is \operational test-
ing," where the software is subjected to the same statis-
tical distribution of inputs that is expected in operation.
Instead of actively looking for failures, the tester in this
case waits for failures to surface spontaneously, so to
speak. In comparing the relative advantages of opera-
tional testing and debug testing, important points are:

� Debug testing may be more e�ective at �nding bugs
(provided the intuitions that drive it are realistic),
but if it uncovers many failures that occur with neg-
ligible rates during actual operation, it will waste
test and repair e�orts without appreciably improv-
ing the software. Operational testing, on the other
hand, will naturally tend to uncover earlier those
failures that are most likely in actual operation,
thus directing e�orts at �xing the most important
bugs.

� The fault-�nding e�ectiveness of a debug testing
method hinges on whether the tester's assumptions
about bugs represent reality; for operational testing
to deliver on its promise of better use of resources,
it is required that the testing pro�le is actually rep-
resentative of operational use.

� Operational testing is also attractive because it of-
fers a basis for reliability assessment, so that the
developer can have not only the assurance of having
tried to improve the software, but also an estimate
of the reliability actually achieved.

1

International Conference on Software Engineering, 1997 2

Previous comparisons of the e�ectiveness of testing tech-
niques have used the failure-�nding probability, the
probability that a testset will detect at least one fail-

ure, as a measure of e�ectiveness. This measure was
used in simulations comparing \partition-testing" tech-
niques to random testing by Duran and Ntafos [8], and
Hamlet and Taylor [12]; in analytical treatments by
Weyuker and Jeng [14], and Chen and Yu [4]; in analyt-
ical comparisons of various testing techniques by Frankl
and Weyuker [10]; and in experimental comparisons by
Frankl and Weiss [9], and Mathur and Wong [20]. The
expected number of failures during test has also been
used as a measure of e�ectiveness [10, 5].

Failure-�nding probability may be a good measure for
evaluating test data adequacy criteria (stopping crite-
ria). The best stopping criterion may be the one that is
most likely to detect at least one failure, for then when
it detects nothing, the tester has the most con�dence
that nothing has been missed. However, failure-�nding
probability sheds little light on how the detection and
elimination of failures during the testing process a�ects
the delivered reliability. Di�erent failures may make
vastly di�erent contributions to the (un)reliability of
the program. Thus, testing with a technique that read-
ily detects \small" faults, may result in a less reliable
program than would testing with a technique that less
readily detects some \large" faults. (Examples of this
situation in which failure-�nding probability and better
reliability do not go together are given in the section on
Multiple Failure Regions, Debugging with Subdomains,
below.)

This paper studies testing e�ectiveness based on the re-
liability of a program after it is tested. This measure
is used to compare debug testing to operational testing,
exploring circumstances under which each technique is
likely to yield superior reliability.

The Debugger's Intuition

There is a deeply rooted belief among program testers
and debuggers that the process of probing software for
bugs is a cost-e�ective way of achieving su�cient re-
liability. That is, employing testing methods that are
designed to expose failures is believed to be a better al-
ternative than simulating normal operation and letting
the failures appear. Indeed, the latter method is used by
only a small minority of industrial organisations. This
paper examines the validity of that belief. (Detailed
de�nitions of \debug testing" and \operational testing"
are given in sections below.)

The validity of testers' trust in debug testing is not an
academic question. Software whose reliability must be
high could be tested in a number of di�erent ways, and
because testing is expensive and time-consuming, de-
velopers and regulatory agencies would like to choose

among alternatives, not use them all. Thus if debug
testing is not e�ective, it should not be used at all. In
particular, there is a currently popular position that can
be paraphrased as follows:

Reliable software can best be developed using
formalmethods. When properly applied, these
methods eliminate at the source failures nor-
mally exposed at the unit and subsystem levels
by debug testing. Therefore, unit debug test-
ing should be reduced in favour of additional
system-level random testing.

In the \cleanroom" development methodology [6], to
give an extreme example, it is considered essential that
debug testing not be used at all, particularly by those
doing the development. Experienced developers, say of

ight-control software, are profoundly disturbed by the
suggestion that they abandon debug testing. As an indi-
cation of the depth of traditional testers' reaction to this
position, Beizer [2] has attacked cleanroom as \lead[ing]
to false con�dence."

Attempts to support or refute beliefs about debug test-
ing have been inconclusive:

Empirical studies. Case studies comparing software
development methods are di�cult to conduct. At-
tempts to establish a correlation between the de-
gree of debug testing (usually measured by some
structural \coverage" of unit tests) and the result-
ing reliability in the �eld are at best preliminary
[7, 13, 18, 9, 15]. On the other side, case studies
using formalmethods development show great vari-
ation, both in the care with which the method is
de�ned and applied and in the results [11]. Neither
side has any real claim to establishing its case.

Analysis of \partition testing." A number of care-
ful theoretical studies have compared random test-
ing with debug (\partition") testing [8, 12, 14, 19,
4, 5]. The original motivation for these studies was
a belief that random testing might be a real alter-
native to partition testing for �nding failures. How-
ever, no such conclusive result was obtained. Al-
though random testing is a surprisingly good com-
petitor for partition testing, it is seldom better,
and scenarios can be constructed (although their
frequency of occurrence in practice is unknown) in
which partition testing is much better at failure ex-
posure. Thus our question remains.

In this paper we take a new analytical approach to com-
paring debug testing with operational testing. This ap-
proach was devised to study theoretically the question

International Conference on Software Engineering, 1997 3

of delivered reliability, without prejudice to the outcome
of comparisons. In most cases, we had no idea what the
results would be until they were obtained from analysis
of the models.

Analytical Approach

We believe that analytic, probabilistic methods are the
best tools for studying software reliability. Basing an
important choice on intuition, without much supporting
evidence, is clearly dangerous. Analytical studies help
by giving clear representations of the competing intu-
itive beliefs and of their actual implications, and also
by indicating which empirical measurements could pro-
vide indirect evidence that, in a particular project and
phase of development, a certain test method is best.
We consider the situation in which software fails un-
der test, then is changed so that the failure no longer
occurs. We compare testing methods according to the
probability that the corrected software will subsequently
fail in operation (that is, the delivered software reliabil-

ity). This measure is expressed as a random variable,
and we mainly focus on its expected value, although the
distribution is also of interest.

A simple programmodel is used; this simpli�es the anal-
ysis, and focuses attention on the question of reliability.
The testing-failure-�x process must also be abstracted
and simpli�ed for analysis. We believe that the notion
of a software \fault" is central to this abstraction, and
that a meaningful, formal treatment of \faults" is not
available. Instead, we introduce the notion of a \failure
region" of the input space, a set of failure points that is
eliminated by a program change.

For our simple abstractions, we compare operational
testing to debug testing, and present revealing special
cases in which each technique yields better reliability
after some failures are eliminated. For a single fail-
ure region, the results are similar to those obtained by
analysing the probability of �nding a failure. But for
multiple failure regions new phenomena are captured.
For example, for some programs the testing technique
that best �nds failures may not lead to the best relia-
bility, because it �nds trivial problems with little oper-
ational impact.

TERMINOLOGY AND ASSUMPTIONS

In formal work, it is important to have precise de�ni-
tions and to explicitly state assumptions. In this pre-
liminary work, these must be particularly simple.

Tests and Failures

A test is a single value of program input, which enables
a single execution of the program. A testset is a �nite
collection of tests. These de�nitions implicitly assume
a simple programming context: a program with a pure-
function semantics. The program is given a single input,
it computes a single result and terminates. The result

on another input in no way depends on prior calcula-
tions. (And hence in particular, if an input is repeated,
the result is always the same.) Although many pro-
grams do not behave in this manner, the relevant issues
about reliability arise for pure-function programs.

This simple program model abstracts reality, but it is
more general than it may appear. Real programs may
have complex input tuples, and produce complex out-
puts. But we can imagine coding each tuple into a sin-
gle value, so that the simpli�cation to one input value is
not a transgression in principle. Some interactive pro-
grams, programs that read and write permanent data,
and real-time programs, do not �t the pure-function
model. However, it is possible to treat these more com-
plex programs as if they used testsets of independent
inputs, at the cost of some arti�ciality. For example, an
interactive or real-time program can be thought of as
having arti�cial testsets whose members (single tests)
are sequences of the real input elements, starting from
some standard \reset" state. Each such sequence is one
abstract input in the pure-function model.

Each program has a speci�cation that is an input-output
relation. That is, the speci�cation S is a set of or-
dered input-output pairs describing allowed behaviour.
A program P meets its speci�cation for input x i�: if
x 2 dom(S) then on input x, P produces output y
such that (x; y) 2 S. (When x 62 dom(S), that is,
when an input does not occur as any �rst element in
the speci�cation, the program may do anything, even
fail to terminate, yet still meet the speci�cation.) S
de�nes the input domain as well as behaviour on that
domain. Many real speci�cations can be recursively ex-
tended to be everywhere de�ned, by adding required
\ERROR" responses; but some, notably involving un-
bounded searches with uncertain outcome, cannot.

A program P with speci�cation S fails on input x i�
P does not meet S at x. When a program fails, the
event is called a failure, and the input responsible is a
failure point. The program's failure set is the collection
of all failure points. Hence a program that meets its
speci�cation has an empty failure set. The opposite of
fails is succeeds; the opposite of a failure is a success;
the complement of the failure set is the success set.

So-called \Faults"

Program testing methods are often designed to �nd
\faults." But it is a strong, unjusti�ed assumption that
\a fault" is an objective characteristic of a program.
Although fault is an IEEE standard term for \bug" (or
\defect," or \error"), this idea is not precise, and is dif-
�cult to make precise. The IEEE glossary states that
a fault is the part of a source program that causes a
failure. However appealing and necessary this intuitive
idea may be, it has proved extremely di�cult to for-

International Conference on Software Engineering, 1997 4

mally de�ne. The di�culty is that \faults" have no
unique characterisation. In practice, software fails for
some testset, and is changed so that it succeeds on that
testset.

The (not necessarily true) assumption is made that
the change does not introduce any new failures. The
\fault" is then de�ned by the \�x," and is characterised,
e.g., \wrong expression in an assignment" by what was
changed. But the change is by no means unique. Lit-
erally an in�nity of other changes would have produced
the same e�ect.

Some �xes do appear to be unique and easily localised
(e.g., a wrong operand { perhaps a typo { in an expres-
sion). But \faults of omission" are common, and for
these it is di�cult for even reasonable programmers to
agree on a �x. In addition, two changes that both �x a
given set of failure points may di�er in the remainder of
their e�ects on program behaviour. The complications
of a \partial �x" that removes fewer failure points than
it might have done, and a \least �x" that is in some
textual way minimal for the e�ect it has, are extremely
di�cult to capture.

So \the fault" is not a precise idea.

On the other hand, \failure" is well de�ned, and so is
a change in failure behaviour resulting from a program
change. Most of what we need to say can be phrased in
these terms, as follows:

A program change may alter the failure set;
that is, the changed program's failure set will
in general be di�erent from that of the original
program. A change is a �x for a collection of
failure points F (the change �xes F) if it is
conservative in the sense that (1) the failure set
of the changed program no longer includes any
member of F ; (2) the failure set of the changed
program is a subset of the original failure set.

Thus a �x for a set of failure points F may eliminate
failure points outside F , but it may not introduce new
failures.

In these terms, the closest we can come to speaking of a
\fault" is to talk of a failure region, a collection of failure
inputs that some change �xes exactly. Every change
that does not introduce new failure points of course has
such a region (if no more than the empty one). It is
tempting to begin thinking of such a �x as the basis for
de�ning \fault," but this would not satisfy the intuition
behind the IEEE de�nition. One can hardly say that an
elaborate change tailored to some failure region bears
any relation to a mistake made by a programmer; nor
does the failure region indicate or constrain a �x that
might remove it.

One should try to avoid the term \fault" in discussing
testing and the dependability of software. Thus one
should say, \testing exposed a failure," not, \testing
found a fault." One should say, \source change A led
to a failure set strictly contained in that resulting from
change B," not, \A �xed more faults than B" (much
less, \B didn't �x the bug, but A did"). Suppose a �x
is found for a certain collection of failure points B1, and
another �x for other points B2, which seem unrelated.
However, a clever programmer then �nds a completely
di�erent �x for B1 [B2 (and there is always such a
�x, whatever arguments it causes among programmers).
One should describe the situation in that neutral way,
saying nothing about which are the \real bug(s)."

With the usual assumption that each failure is due to
one well de�ned \fault" in the program source, the
process of testing and �xing a program appears to
be a�ected by only two sources of uncertainty: which
\faults" the testers will �nd and how e�ective their at-
tempted �xes will be (perfect �xes are usually assumed).
Our viewpoint recognizes three sources of uncertainty:
which failure points will be found, which �xes the testers
will try (hence which failure regions they expect to re-
move), and how e�ective the �xes will be (which failure
regions will actually be removed). The modelling in this
paper uses the conventional assumption that all testers
will react to a given observed failure with the same,
successful �x. We wish to show how wide a spectrum
of situations is possible, even under this restrictive as-
sumption. However, we think that in many situations
of interest, especially with highly reliable programs, this
restrictive assumption is unrealistic, as the failure set
may be determined by rare, complex patterns of pro-
gram behaviour.

Operational Testing

To de�ne operational testing requires two main con-
cepts: the operational pro�le that determines the like-
lihood of selection of the di�erent points of the input
domain, and an allocation of labels \�" and \�" (for
failure and success) to the points.

The operational pro�le is a probability distribution Q
over the input domain D, i.e., to each point is allo-
cated a probability of selection, and these probabili-
ties sum to one over the points of the domain. That
is, Q : D ! [0; 1]; and

P
t2D Q(t) = 1: Operational

testing1 then proceeds by independently selecting points
from the input domain with these probabilities. In
many applications, a point-by-point operational pro�le

1Operational testing is sometimes called random testing, but
this term is wider and could be used for statistical testing from
any distribution, rather than one, as is intended here, that re
ects
operational use. Indeed, random testing is often taken to mean
uniform random testing, where all points in the input domain are
equally likely to be selected.

International Conference on Software Engineering, 1997 5

is far too detailed to obtain, and even a crude approxi-
mation requires considerable developer e�ort [17]. How-
ever, for our theoretical treatment, the pro�le Q is a
central concept.

Informally, the operational pro�le can be thought of as
characterising the nature of the use to which the pro-
gram is put, and will in general be determined by the
system(s) (including people) that interact with the soft-
ware. In itself it does not tell us about the reliability of
the software. We need in addition that all points in the
input domain have associated with them either a label
� (to indicate that such a point, when selected, results
in a failure), or � (for success). De�ne the indicator
variable

�(t) =

�
1 if t has label �
0 if t has label �

:

Then the failure probability for a test point drawn ran-
domly from the operational pro�le is

� =
X
t2D

Q(t)�(t):

Of course, in practice we do not know what the la-
bellings of the points in the input domain are: if we did,
we could simply �x things without any testing! Thus es-
timation of � will have to be statistical, and come from
the results of a testset randomly selected from the op-
erational pro�le. One simple approach would use the
proportion of failures within such a sample of tests as
an estimate of �.

The reliability of the program is then the probability
of it surviving N executions on inputs drawn from the
operational pro�le:

R(N) = (1� �)N :

The probability of failure on a randomly selected in-
put, and thus the reliability of a program, is determined
partly by the probabilities of selection of the di�erent
points in the input domain (the operational pro�le), and
partly by the way in which these points are labelled �
and �. Operational testing only takes account of the
operational pro�le in the selection of tests. Debug test-
ing, on the other hand, seems to take account of the
labeling also: it seems implicit that testers have knowl-
edge (or at least believe they have) of which points in
the input space are more likely to have � labels, and
give such points a greater chance of being selected than
they would have in operational testing (with the points
that are believed to be more likely to be � points having
correspondingly smaller chances of selection).

There is a subtle interplay between the two contribu-
tions to (un)reliability, and how the two testing ap-
proaches treat them. Consider a single point in the
input domain, xi, with probability of selection in op-
eration pi. The operational tester says \I don't know
anything about the chance that xi will have label �, so
I will select it with probability pi; that way, if it has
a label �, I at least have a chance of detecting it that
is proportional to its contribution to the unreliability
of the program." The debug tester says \I don't know
anything about the operational pro�le (or if I do I don't
care!), but I do have a good intuition about which points
are likely to cause failure, and xi is one of them, so I
will select it with high probability and thus have a good
chance of improving the reliability."

\Debug" Testing

Whereas the operational tester focuses attention on de-
veloping an input pro�le that closely approximates the
distribution that the software will encounter in the �eld,
the debug tester seeks to develop a distribution that will
be likely to �nd the points labelled \�". A perfect de-
bug testing strategy would assign probability zero to all
points labelled \�". In practice, debug testers develop
distributions based on heuristics that they hope will give
high probabilities to failure points. Many such heuris-
tics divide the program's input domain into (possibly
overlapping) regions called subdomains and require that
at least Ti test cases be drawn from the ith subdomain,
for some Ti � 1.

In a number of practical testing methods, the sub-
domains are based on analysis of the speci�cation
(speci�cation-based). The primary such method is func-
tional testing, in which a number of program \func-
tions" are identi�ed (roughly, things the software should
do), and the subdomains are de�ned as those inputs that
result in its doing each thing. A second important col-
lection of debug-testing methods are program-based, or
structural, or clear-box methods. The archetype struc-
tural testing method is \statement testing," in which
the subdomains correspond to the execution of indi-
vidual program statements, and a test point placed in
each and every subdomain forces every program state-
ment to have been executed. These statement-testing
subdomains therefore overlap (as do the subdomains of
most structural testing methods and of many functional
methods).

Subdomains may be used either 1) as a means of evalu-
ating whether enough testing has been done, or 2) the
basis for test selection. In case 1, testers select test cases
by some independent means, such as use of a di�erent
subdomain testing strategy, random testing according
to some well-de�ned input distribution, or \haphazard"
selection (random testing in which the input distribu-
tion is di�cult to characterise precisely). They then

International Conference on Software Engineering, 1997 6

check whether the requisite number of points has been
selected from each subdomain and, if not, select addi-
tional test cases. In case 2, testers systematically look
for test points that lie in the subdomains. They may
give preference to certain types of points, such as those
close to the boundary of a subdomain, or those that
for some other reason are believed to be more \failure-
prone."

Clear-box testing techniques are usually more amenable
to the �rst approach, whereas functional testing tech-
niques are usually more amenable to the second ap-
proach. For clear-box methods, particularly the more
abstruse, it is not easy to force test points to fall in the
de�ned subdomains. However, since automatic tools
exist to measure structural coverage and report de�-
ciencies by subdomain, the tester can obtain a list of
untested subdomains and �nd test points in the missed
structural subdomains. In contrast, for functional meth-
ods it is usually relatively easy to identify the subdo-
mains and select test cases from them, but harder to
check which test requirements are covered by an arbi-
trary test case.

We consider two models of debug testing, which roughly
correspond to the two ways debug-testing techniques
are used. The �rst model, which we call debug test-

ing without subdomains, describes the case in which a
tester aims to select � points, without considering sub-
domains. The probability distribution is de�ned on the
entire input domain and the tester selects inputs inde-
pendently until some stopping criterion is satis�ed. If
the stopping criterion is that some pre-determined num-
ber T of test cases has been selected, then debug test-
ing without subdomains di�ers from operational testing
only in the input pro�le used, which the tester hopes
will produce more frequent failures during testing. This
�rst model captures only part of the �rst way of using
subdomains, in that it does not require test points in
each subdomain as a stopping criterion. In the second
model, debug testing with subdomains, which models the
second method of using debug testing, there is a proba-
bility distribution on each subdomain and the tester in-
dependently selects Ti test cases from each subdomain
i.

DEBUGGING VS. OPERATIONAL TESTING

Exercising a program, whether in test or in operational
use, involves selecting a succession of inputs to be pre-
sented for execution. The selection mechanism distin-
guishes between di�erent types of test and of use.

The Analytical Context

Reliability in the technical sense is characterised by the
failure probability when inputs are selected according
to the operational pro�le. Failure points will be en-
countered at random, and there is a certain probability

that the program will fail in use. If a testset is selected
by sampling according to the operational pro�le, then
direct estimates of the failure probability may be ob-
tained. If a testset is selected in any other way, then the
probability of encountering a failure region bears no nec-
essary relation to the failure probability in operational
use. But there is still a probability that the program
will fail under test, which we call the \detection rate."
In debug testing one tries to arrange that the detection
rate is high. It is the \debuggers' intuition" that the
way to achieve reliability is through clever testing with
high detection rates.

Reliability improves under either testing scheme when
failures are found, the software is successfully changed,
and the operational failure probability decreases.

The precise question we wish to study is the following:

Under which conditions (on the program, and
the testing method) will debug testing deliver
better reliability than operational testing?

Certainly conditions exist favouring each alternative. If
many debug tests fail and the corresponding �xes sub-
stantially decrease the overall failure probability, then
debug testing may be superior to operational testing in
which fewer tests fail. However, it might happen instead
that many �xes from debug testing increase reliability
in operation less than a few from operational testing.

The case of ultra-reliability is of particular interest.
When the failure set has a very small chance of be-
ing encountered in operation [16, 3], only debug test-
ing has any signi�cant chance of inducing failures and
thus allowing the removal of failure regions. However,
it may still happen that debug tests encounter only fail-
ure points whose probability in the operational pro�le
is so low that �xes are worthless. Furthermore, even
if debug testing does achieve ultra-reliability, it can-
not demonstrate that ultra-reliability has been achieved;
only an infeasible amount of operational testing can
demonstrate that.

Recall that a failure region is a collection of failure in-
puts that some change �xes exactly. In the examples
that follow, we assume that all testers, upon observing
a test failure, choose �xes that eliminate exactly the
same failure region, irrespective of which test method
they are using. We can thus talk of failure regions as
characteristics of the program { as people usually talk
about \faults" being characteristics of the program {
rather than of the �xing process. This is a useful simpli-
�cation in this initial analysis, although it is unrealistic:
a debugger may use information about how a failed test
was chosen in order to �gure out how to �x the prob-
lem, and such \cues" may be bene�cial or misleading

International Conference on Software Engineering, 1997 7

depending on both the test method and the failure set
of the program. We also assume that failure regions are
disjoint, and all test failures are detected (that is, there
is a perfect oracle). So, each test failure deterministi-
cally causes one failure region to be removed. Note that
we are not considering the cost of removing a failure re-
gion; in practice, this may depend on the testing method
that was used to detect the failure and on the phase of
the development cycle in which the failure occurred.

The failure rate of a failure region is the probability that
an element of that region will be selected when one in-
put is selected according to the operational distribution.
The detection rate of a failure region is the probability
that an element of that region will be selected when one
input is selected during debug testing. These are the
probabilities that the program will fail because of this

particular region under the operational pro�le and the
debug pro�le, respectively.

We will study the expected value of the program failure
probability as a random variable �, after a testset of
size T tests has been applied. The simplest form of
comparison assumes that equal e�ort is spent on both
testing methods, and that the e�ort is measured by T .

Although these examples only scratch the surface of the
analysis possible in our models, we believe that they
show the formalism to be reasonable and useful, and
they provide insight into the process of testing to achieve
reliability.

Single Failure Region, Debug Testing without

Subdomains

Consider a program with failure probability q and only
one failure region F . (Thus F 's failure rate for opera-
tional testing is q as well.) Initially, we take debug test-
ing as being conducted according to some overall test
pro�le V . That is, tests are selected just as in opera-
tional testing, but with a di�erent pro�le. The detection
rate is thus a constant given by

d =
X
t2F

V (t): (1)

After a testset of size T has been tried, what is the
distribution of the failure probability � of the �nal de-
bugged program? Under the assumptions above, � will
be 0 if the test encountered the region (which is then
eliminated by the �x), and still q otherwise. Thus for
debug testing:

P (� = 0) = 1� (1 � d)T (2)

P (� = q) = (1� d)T (3)

E(�) = 0 � P (� = 0) + q � P (� = q) (4)

= q(1� d)T : (5)

With operational testing:

P (� = 0) = 1� (1� q)T (6)

P (� = q) = (1� q)T (7)

E(�) = q(1� q)T : (8)

So we get the obvious result that debug testing is supe-
rior i� d > q.

Single Failure Region, Debug Testing with Sub-

domains

Let the input domain be divided into subdomains
D1; D2; : : : ; Dn. Ti test cases are selected independently
from each Di according to test pro�le Vi on subdomain
Di; 1 � i � n: The single failure region F may be
spread across the subdomains in an arbitrary way. Let
di be the debug detection rate2 for subdomain Di:

di =
X

t2F\Di

Vi(t); (9)

Then

P (� = 0) = 1�
nY
i=1

(1� di)Ti (10)

and

E(�) = q

nY
i=1

(1� di)Ti : (11)

For comparison with operational testing, equation (8)
can be compared with (11) by taking T =

Pn
i=1 Ti.

Here E(�) depends on the extent to which the sub-
domains \concentrate" the failure points. In compar-
ing the probability of detecting at least one failure us-
ing random testing and partition testing, Weyuker and
Jeng [14] and Hamlet and Taylor [12] observed this con-
centration e�ect. In the case of a single failure region,
we are considering almost the same question that they
did. Weyuker has noted that failure detection probabil-
ity may not be the right parameter to study, and here
we go beyond it to study the delivered reliability. Ex-
plicit use of failure region(s) makes our model capable
of analysing more complex situations.

Several straightforward special cases explore failure con-
centration:

� At one extreme, suppose that for some i, subdo-
main Di � F . Then di = 1, and consequently
E(�) = 0, so debug testing is superior for any
0 < q < 1.

2The somewhat peculiar use of a superscript anticipates a dif-
ferent usage for subscripts to follow.

International Conference on Software Engineering, 1997 8

� At the other extreme, the failure region might be
uniformly \spread out" over all the subdomains
weighted by their pro�les and test counts, in the
sense that the chance �d of �nding a failure in each
subdomain is the same. Then the results of the
previous section apply, with d = �d in equation (5).

By considering the failure region F to be a strict sub-
set of a single subdomain, it is possible to capture two
intuitively appealing special cases, one in which debug
testing is superior, the other in which operational test-
ing is superior. Suppose that F � Dk for some k, but
some points of subdomain Dk are not failure points:
Dk 6� F ; and that no possibly overlapping subdomain
touches F : F \ Di = ;; i 6= k: Further suppose that
within Dk the two testing techniques (on average) are
equally likely to encounter F . That is,

dk =

P
t2F Q(t)P
t2Dk

Q(t)
: (12)

Finally, take the debug testing points as equally spread
among subdomains, so since there are n subdomains,
and T test points for comparison with operational test-
ing, Tk = T=n.

The intuitive situation in which debug testing should
be superior is the one in which operational testing is
relatively neglectful of Dk, that is, T

P
t2Dk

Q(t)� Tk,
or substituting Tk = T=n;

X
t2Dk

Q(t)�
1

n
: (13)

Under these assumptions, the expected value of failure
probability for debug testing is:

q

nY
i=1

(1� di)Ti = q(1 � dk)Tk (14)

= q(1 �

P
t2F Q(t)P
t2Dk

Q(t)
)T=n (15)

> q(1 �

P
t2F Q(t)

1=n
)T=n (16)

� q(1 � T
X
t2F

Q(t)) (17)

� q(1 � q)T ; (18)

where the last term is the expected value of the failure
probability for operational testing. (The approxima-
tions in (17) and (18) require that dk and q are small,
using (1 + x)y � 1 + yx for small x.)

To paraphrase, we have captured the situation where a
subdomain includes the only failure region, and under
plausible assumptions debug testing is more likely to

lead to the best reliability. Intuitively, the subdomain
Dk is chosen to be \failure prone," and is relatively ne-
glected by operational testing relative to debug testing.

A similar analysis yields the opposite result when many
operational tests fall in Dk: If there are many other
subdomains, debug testing \wastes" most of its tests
on them (still assuming that Tk = T=n). That opera-
tional sampling of Dk is much greater than its debug
sampling is expressed as T

P
t2Dk

Q(t)� Tk, or substi-
tuting Tk = T=n;

X
t2Dk

Q(t)�
1

n
: (19)

Then using (19) instead of (13) in equation (16) above
reverses the inequality and gives that operational testing
is superior to debug testing.

Although these two cases are intuitively obvious, and
can be obtained using the failure-detection measure of
[14], they demonstrate that our model is useful, and in
the section on Multiple Failure Regions, Debugging with
Subdomains below they will be combined to demon-
strate that good failure detection does not imply the
best reliability.

Multiple Failure Regions, Debugging without

Subdomains

Suppose a program contains m non-overlapping failure
regions fF1; F2; :::; Fmg; with failure rates q1; q2; :::; qm
and detection rates d1; d2; :::; dm. Then its expected fail-
ure probability after T tests is

E(�) =
mX
i=1

qi(1� di)
T (20)

for debug testing, and

E(�) =
mX
i=1

qi(1� qi)
T (21)

for operational testing, since the failure probability of
the debugged program is the sum of the failure rates of
the undetected failure regions.

If, for instance, di � qi for i = 1; :::;m, debug testing is
superior to operational testing. This seems natural, as
the hypothesis means that debug testing performs bet-
ter than operational testing on each failure region. This
belief is probably the usual basis of the \debuggers' in-
tuition." However, it is a very strong assumption. If it
is false, the main factor a�ecting the delivered reliabil-
ity is the relationship between the failure rates and the
detection rates.

We can analyse the e�ect of this factor in isolation by
assuming that, for each randomly chosen test case, de-
bug testing has the same probability of �nding a failure

International Conference on Software Engineering, 1997 9

region as operational testing, i.e.,
P

di =
P

qi. In the
simplest case that all the failure regions have the same
failure rate q, operational testing is superior, because to
minimise

q

mX
i=1

(1� di)
T ; (22)

under the condition that
P

di = mq; requires di = q:
More generally, we have proved that an optimal debug
method under the condition

P
di = K would be one

that made the quantities (1�di)T proportional to the qi
values. The planned number of tests thus a�ects which
test method is to be preferred.

Multiple Failure Regions, Debugging with Sub-

domains

The m failure regions Fi may be arbitrarily spread
across the n subdomains Di. The detection rates are
now:

dij =
X

t2Fj\Di

Vi(t): (23)

As in the case of a single failure region, there are some
straightforward observations:

� The detection of a particular failure region Fj is
guaranteed if there is a subdomain Di that is com-
pletely contained in Fj. More generally, the prob-
ability of detecting Fj is high if for some i, the
probability of selecting an element of Fj fromDi is
high.

� However, in contrast to the analysis of opera-
tional testing and to debug testing without subdo-
mains there is some interesting non-independence
between di�erent failure regions. A simple illus-
tration of this dependence arises when there are
two failure regions contained within the same sub-
domain (and no other subdomains that intersect
either failure region.) In subdomain testing with
one test case per subdomain, at most one of these
failure regions can be detected.

� If a high-failure-rate failure region is spread out
across several big subdomains, it may be hard to
detect. If, moreover, these subdomains have mod-
erately high concentrations of small (low-failure-
rate) failure regions, it will be fairly easy to detect a
lot of those. This is the debugger's nightmare: de-
tection and removal of many minor problems, while
failing to detect the serious problems.

The two special cases described above for a single fail-
ure region in which debug testing (resp. operational
testing) is superior when the failure region lies within
a subdomain, can occur simultaneously with multiple
failure regions. It is possible to use this situation to

construct a special case with the properties that: (a)
Debug testing is much more likely to �nd a failure, but
(b) Operational testing is superior in reducing the fail-
ure probability under our assumption that all detected
failure regions are removed.

Two disjoint subdomains su�ce to construct this exam-
ple: D1 strictly containing F1 for which debug testing is
more likely to �nd a failure and D2 strictly containing
F2 in which operational testing is better. Assuming D1

� F1, D2 � F2 implies d2
1
= d1

2
= 0. To account for

operational testing being better on F1 than on F2, let
q2 � q � q1. Debug testing is made much better than
operational testing at �nding F1 by setting d

1

1
� q; and

taking d2
2
� q makes operational testing better at �nd-

ing F2, because it places most of its T test points in
D2. Take T1 = T2 = T=2. We have thus a scenario
in which debug testing looks { on a test-by test basis
{ intuitively better than operational testing. Consider
the following di�erent measures of the relative worth of
the two testing regimes:

1. The probability of �nding a failure with debug test-
ing is about

1� (1� d1
1
)T=2(1� q)T=2; (24)

while with operational testing it is

1� (1� q)T : (25)

So since d1
1
� q; debug testing is much better at

�nding a failure.

2. However, if we look at the failure probability deliv-
ered after �xing the failure regions uncovered, the
situation is di�erent. For operational testing,

E(�) = q1(1� q1)
T + q2(1� q2)

T : (26)

Let us consider small values of T , such that the
�rst summand is much smaller than the second one.
Then, for operational testing:

E(�) � q(1� q)T : (27)

On the other hand, debug testing will likely result
in F1 being �xed, but F2 will be �xed with lower
probability than in operational testing. For debug
testing,

E(�) = q1(1� d1
1
)T=2 + q2(1� q2)

T=2 (28)

� q(1� q)T=2: (29)

Comparing (27) and (29), operational testing re-
sults in much better delivered reliability of the soft-
ware.

International Conference on Software Engineering, 1997 10

This construction straightforwardly captures the intu-
itive situation in which debug testing �nds the \wrong"
bugs, from the standpoint of better delivered reliability.

We have also been able to construct an example of the
opposite case, in which operational testing is better at
detecting failures, yet debug testing yields better relia-
bility. However, the intuitive situation is more subtle,
and the advantage for debug testing only marginal:

Consider m subdomains, each with a strictly
contained failure region Fi. Assume that de-
bug testing is very good at detecting one fail-
ure region F1; which has a high failure rate,
but debug testing is unlikely to detect many
other failure regions, with smaller failure rates.
(That is, d1

1
� q1; but dii � 0; i 6= 1:) Then,

operational testing may be better at producing
a failure early, because debug testing wastes
most test cases on those subdomains where it
has negligible probability of causing a failure.
Yet, if debug testing does reveal a failure, it
will cause the most important failure region,
F1, to be removed: hence debug testing yields
better delivered reliability.

We omit the formulas for lack of space, but
the following is a typical numerical example:
m = 20 subdomains and failure regions, qi =
10�4; i 6= 1; and q1 = 10�3; d1

1
= 0:05; with

a test run of 400 tests. Operational testing is
more likely to detect a failure (by 0.0025 to
0.0023), yet debug testing has a better E(�)
(by 0.64 to 0.69).

This example is quite unlike the previous one favoring
operational testing, in that it appears contrived, yet
does not produce a substantial di�erence between the
methods. Of course, our failure to discover a satisfy-
ing, simple example does not mean one does not exist,
but we believe that the debug tester is more likely to be
misled by considering failure-�nding probability, than is
the operational tester.

These cases illustrate the extra complexity of the situa-
tions that can be analysed using failure regions and the
expected value of the delivered reliability.

SUMMARY AND FUTURE WORK

We have considered the question of whether low oper-
ational failure probability (and hence better reliability)
may be better obtained by looking for failures (debug
testing), or by sampling from expected usage (opera-
tional testing). The testing models we considered can
be analysed in two ways, with and without identifying
subdomains for debug testing. This paper generalises
and extends the \random vs. partition" studies that

followed from the work of Duran and Ntafos [8]. We
have analysed a number of special cases, showing that
the theory can capture and inform our intuition about
the strengths and weaknesses of the two testing schemes.

The debug tester always has the potential advantage
that by adjusting the test pro�le and subdomain de�ni-
tions, the behaviour of debug methods might improve.
While operational testers have no such freedom, they
do have the advantage that the operational pro�le, and
operational testing, de�ne the desired result. Studies
like this one can thus be viewed as advice to the debug
tester, on how to choose a test pro�le that will yield su-
perior reliability. If the debug tester has good intuition
about which points are likely to be failure points and,
moreover, about which of these failure points are likely
to belong to large failure regions, such insight can be
used to devise testing strategies that yield much lower
expected failure probability than that yielded by oper-
ational testing. If the tester lacks such intuition or is
unable to map that intuition into an appropriate input
distribution, then operational testing may be indicated.

Trusting the debuggers' own judgement about their
abilities would be inappropriate (see e.g., the experi-
ments by Basili and Green [1]). But it is possible to
compare the e�ectiveness of their testing pro�les with
that of operational pro�les. A limited investment in
such measurement would be, for any large development
organisation, a cost-e�ective step towards better quan-
titative decision-making.

In particular, our analysis has shown:

� There are obvious cases in which debug testing
is superior (roughly, because its detection rates
are greater than the failure probability). Simi-
larly, operational testing can be obviously superior
(roughly, because detection rates in many subdo-
mains are smaller than the failure probability, so
debug tests there are wasted). These examples
show that the theory corresponds with intuition in
limiting cases.

� Debug testers should be aware of the potential
confusion between detecting failures and achiev-
ing reliability, a confusion that occurs when testing
�nds only unimportant failures. \Unimportant" of
course refers to the weighting of the operation pro-
�le, which may well be unknown. But there is usu-
ally some intuition about the frequency with which
a problem might arise in use, and if the debug tech-
nique being used consistently turns up such prob-
lems, it may be counterproductive to use it.

It is sensible to expect that di�erent testing methods
will prove optimal for di�erent organisations, di�erent

International Conference on Software Engineering, 1997 11

software projects and di�erent stages in a project. So,
research cannot o�er decision makers a best testing
method for all situations. What it can do is to o�er
better criteria for informing the choice of a method in a
decision maker's speci�c situation.

No mathematical analysis, without the support of em-
pirical knowledge, is su�cient for decision making. For
comparing testing methods, the direct experimental ap-
proach of measuring the costs and achieved reliability
levels on parallel testing campaigns with di�erent meth-
ods can be prohibitively expensive. The analytic ap-
proach we have used in this paper deals with one aspect
of the problem, i.e., with the e�ectiveness of running a
certain number of test cases. Directions for future an-
alytical research include relaxing the assumptions un-
derlying our model, such as the assumption of disjoint
failure regions, and incorporating a more realistic mea-
sure of test case cost.

Our analysis of the e�ectiveness of tests improves the
possibilities of rational decision-making because it de-
scribes e�ectiveness in terms of other meaningful mea-
sures. Even for decisions that are based on intuitive
judgement, it can
ag { and thus avoid { illogical de-
cisions, by showing non-obvious implications of the de-
cision maker's premises. In addition, it can free the
decision maker from total dependence on judgement,
because some of the measures it involves can be more
easily measured or estimated than the reliability im-
provement that is really of interest.

REFERENCES

[1] V. Basili and S. Green. Software process evolution
at the sel. IEEE Software, pages 58{66, 1994.

[2] B. Beizer. The cleanroom process model: a critical
examination. In Proceedings 13th Annual Paci�c

Northwest Software Quality Conference, pages 148{
173, Portland, OR, 1995.

[3] R. W. Butler and G. B. Finelli. The infeasibility of
quantifying the reliability of life-critical real-time
software. IEEE Trans. on Soft. Eng., pages 3{12,
1993.

[4] T.Y. Chen and Y.T. Yu. On the relationship
between partition and random testing. IEEE

Trans. on Soft. Eng., 20(12):977{980, December
1994.

[5] T.Y. Chen and Y.T. Yu. On the expected number
of failures detected by subdomain testing and ran-
dom testing. IEEE Trans. on Soft. Eng., 22(2):109{
119, February 1996.

[6] R. H. Cobb and H. D. Mills. Engineering software
under statistical quality control. IEEE Software,
pages 44{54, November 1990.

[7] S. R. Dalal, J. R. Horgan, and J. R. Kettenring. Re-
liable software and communication: software qual-
ity, reliability, and safety. In 15th ICSE, pages 425{
435, Baltimore, MD, 1993.

[8] J. Duran and S. Ntafos. An evaluation of random
testing. IEEE Trans. on Soft. Eng., 10:438{444,
1984.

[9] P. Frankl and S. Weiss. An experimental compari-
son of the e�ectiveness of branch testing and data

ow testing. IEEE Trans. on Soft. Eng., 19(8):774{
787, August 1993.

[10] P. Frankl and E. J. Weyuker. Provable im-
provements on branch testing. IEEE Trans. on

Soft. Eng., 19(10):962{975, oct 1993.

[11] S. Gerhart, D. Craigen, and T. Ralston. Observa-
tions on industrial practice using formal methods.
In 15th International Conference on Software En-

gineering, pages 24{33, Baltimore, MD, 1993.

[12] D. Hamlet and R. Taylor. Partition testing does
not inspire con�dence. IEEE Trans. on Soft. Eng.,
16:1402{1411, 1990.

[13] J. Horgan, S. London, and M. Lyu. Achieving soft-
ware quality with testing coverage. IEEE Com-

puter, 27:60{69, 1994.

[14] B. Jeng and E. J. Weyuker. Analyzing partition
testing strategies. IEEE Trans. on Soft. Eng.,
17:703{711, 1991.

[15] L. Lauterbach and W. Randall. Experimental eval-
uation of six test techniques. In COMPASS `89,
pages 36{41, Gaithersburg, MD, 1989.

[16] B. Littlewood and L. Strigini. Validation of
ultra-high dependability for software-based sys-
tems. Communications of the ACM, 36(11):69{80,
1993.

[17] J. D. Musa. Operational pro�les in software-
reliability engineering. IEEE Software, pages 14{
32, 1993.

[18] P. Piwowarski, M. Ohba, , and J. Caruso. Coverage
measurement experience during function test. In
15th ICSE, pages 287{301, Baltimore, MD, 1993.

[19] M. Z. Tsoukalas, J. W. Duran, and S. C. Ntafos.
On some reliability estimation problems in random
and partition testing. IEEE Trans. on Soft. Eng.,
19:687{697, July 1993.

[20] W. E. Wong, J. R. Horgan, S. London, and
A. Mathur. E�ect of test set size and block cover-
age on the fault detection e�ectiveness. Technical
Report SERC-TR-153-P, SERC, 1994.

