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THE EFFECTS OF RANDOM AND SEASONAL ENVIRONMENTAL
FLUCTUATIONS ON OPTIMAL HARVESTING AND STOCKING

ALEXANDRU HENING, KY QUAN TRAN, AND SERGIU C. UNGUREANU

Abstract. We analyze the harvesting and stocking of a population that is affected by ran-
dom and seasonal environmental fluctuations. The main novelty comes from having three
layers of environmental fluctuations. The first layer is due to the environment switching
at random times between different environmental states. This is similar to having sudden
environmental changes or catastrophes. The second layer is due to seasonal variation, where
there is a significant change in the dynamics between seasons. Finally, the third layer is due
to the constant presence of environmental stochasticity—between the seasonal or random
regime switches, the species is affected by fluctuations which can be modelled by white noise.
This framework is more realistic because it can capture both significant random and deter-
ministic environmental shifts as well as small and frequent fluctuations in abiotic factors.
Our framework also allows for the price or cost of harvesting to change deterministically
and stochastically, something that is more realistic from an economic point of view.

The combined effects of seasonal and random fluctuations make it impossible to find the
optimal harvesting-stocking strategy analytically. We get around this roadblock by devel-
oping rigorous numerical approximations and proving that they converge to the optimal
harvesting-stocking strategy. We apply our methods to multiple population models and ex-
plore how prices, or costs, and environmental fluctuations influence the optimal harvesting-
stocking strategy. We show that in many situations the optimal way of harvesting and
stocking is not of threshold type.
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1. Introduction

A fundamental problem in conservation ecology is finding the optimal strategy for har-

vesting a species. This problem is important because excessive harvesting can drive species

extinct while under-harvesting ensures the loss of valuable resources. If one assumes that the

dynamics and harvesting happen in continuous time, there has been significant progress in

finding the optimal harvesting strategies which maximize the total discounted or asymptotic

harvest yield—see the work by Abakuks & Prajneshu (1981), Lungu & Øksendal (1997),

Alvarez E. & Shepp (1998), Hening, Nguyen, Ungureanu & Wong (2019), Alvarez E & Hen-

ing (2020), Cohen et al. (2021). These studies have shown that in a very general setting

the optimal strategy is of threshold or bang-bang type: there exists a threshold w > 0 such

that whenever the population is under the threshold there is no harvesting while when the

population is above the threshold one harvests at the maximal (possibly infinite) rate. In

this paper we look at whether this result is true in more general and realistic models.

The mathematical framework we will use is the one of stochastic differential equations with

switching (SSDE). A SSDE has a discrete component that keeps track of the environment,

and which changes at random times. In a fixed environmental state the system is modelled

by a stochastic differential equation. This way one can capture the more realistic behaviour

of two types of environmental fluctuations:

• major environmental shifts (daily or seasonal changes, catastrophes),

• abiotic fluctuations within each environment.

We focus on the most natural setting, when the switching rates are constant. In this case,

the process spends an exponentially distributed time in each environmental state and then
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switches to a different state. Environmental switches have been shown to fundamentally

alter the fate of ecological communities by reversing competitive exclusion into coexistence

or having other unexpected results (Hening & Strickler 2019, Hening & Nguyen 2020, Benäım

& Lobry 2016, Bourquin 2021, Hening et al. 2021). We explore how switching impacts the

harvesting and stocking of a species.

Even though the general properties for SSDE have been studied thoroughly (Yin & Zhu

2009, Zhu & Yin 2009, Nguyen et al. 2017), there are few results regarding the persistence

or harvesting of ecological systems modelled by SSDE (Song et al. 2011, Tran & Yin 2015,

2017, Bao & Shao 2016, Song & Zhu 2016, Hening & Li 2020). We fill this gap by providing

an analysis complemented by an in depth look at some specific illuminating examples. In

particular, we look at the logistic equation which has been used extensively in fisheries and

other harvesting settings (Clark 2010, Alvarez E. & Shepp 1998).

The SSDE framework is generalized even further by including deterministic seasonal varia-

tion, which will make the various coefficients depend explicitly on time in a periodic fashion.

There are few studies which look at the interaction of harvesting and seasonal variability.

Some focus on very specific models or look only at the purely deterministic setting (Cromer

1988, Fan & Wang 1998, Brauer & Sànchez 2003, Xu et al. 2005, Braverman & Mamdani

2008, Bohner & Streipert 2016). The current paper provides important generalizations to

these previous results as we can analyze a very wide range of models.

In addition to modelling the ecological dynamics, one also has to have a robust way of

modelling the economics. The price of the harvested species can depend on the population

size, the state of the environment and also explicitly on time. Our framework also includes

a realistic cost that is incurred through stocking or harvesting. This cost is due to fees

associated with harvesting-stocking policies, state constraints, certain taxes, or incentives

that the manager must follow or can receive.

The price and cost functions depend on time both directly, and indirectly through the

population state and the environment switching state. Economically, the indirect time de-

pendence is important since it captures the growth-delayed-return trade-off, which is a typical

feature of harvesting models. The direct time dependence adds another important layer of

realism, since it can accommodate exogenous price changes. These can come from varying

commodity prices (external supply and demand shocks), and varying costs of inputs of pro-

duction.

The harvested quantity can indirectly change the price in the market by affecting the total

supply. Because our price and cost functions depend directly on the harvested quantities,

we can accommodate for this endogenous effect on the total supply. The numerical methods

can simulate the price changes with a suitable choice of price and cost functions. Because

the market side is not modeled explicitly, this can only be done ad hoc, for each particular

application. A discussion of the importance of market variables in fisheries management can

be found in Sylvia (1994), Pooley (1987), Asche et al. (2015).

The main novelties of our work are the following:
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(1) We formulate the harvesting-stocking problem for a species that is influenced by three

types of environmental fluctuations: the first due to major regime shifts, the second

due to constant abiotic changes, and the third due to seasonality.

(2) The price for harvesting or stocking is realistic and depends on the population size

as well as the state of the environment. Furthermore, stocking and harvesting incur

a cost as well.

(3) We develop rigorous numerical approximation schemes based on the Markov chain

approximation method.

(4) We discover interesting new phenomena by analyzing in depth some important ex-

amples.

The rest of the paper is organized as follows. In Section 2 we describe our model and the

main results. In Section 3 we discuss several extensions of the proposed model. Particular

examples are explored using the newly developed numerical schemes in Section 4. The

discussion of our results is in Section 5. Finally, all the technical proofs appear in the

appendices.

2. Model and Results

Assume we have a probability space (Ω,F ,P) satisfying the usual conditions. Denote by

X(t) the size of the population at time t ≥ 0. For a natural population, without harvesting

or stocking, the dynamics is given by

(2.1) dX(t) = b
(
X(t), α(t)

)
dt+ σ

(
X(t), α(t)

)
dw(t),

where w(·) is a standard Brownian motion, α(t) is an irreducible continuous-time Markov

chain taking values in M = {1, . . . ,m0}, and b, σ : R+ × M → R are smooth enough

functions. Furthermore, we assume that the Brownian motion w(·) and the Markov chain

α(·) are independent and denote by qij the transition rates of α(t). This means that

(2.2)
P{α(t+ ∆) = j | α(t) = i,X(s), α(s), s ≤ t} = qij∆ + o(∆), if i 6= j.

P{α(t+ ∆) = i | α(t) = i,X(s), α(s), s ≤ t} = 1 + qii∆ + o(∆),

where qii := −
∑

j 6=i qij. As usual, we assume that b(0, α) = σ(0, α) = 0 since if the popula-

tion goes extinct, it should not be able to get resurrected without external intervention (like

a repopulation/stocking event). If X(t0) = 0 for some t0 ≥ 0, then X(t) = 0 for any t ≥ t0.

Thus, X(t) ∈ R+ for any t ≥ 0.

Biological interpretation: If at time t the state of the environment is α(t) = k the

dynamics is governed by the SDE

dX(t) = b
(
X(t), k

)
dt+ σ

(
X(t), k

)
dw(t)

with nonlinear drift term µ(x, k) and diffusion term σ(x, k). However, the environment can

switch to a different state j with the transition rate qkj. In the small time ∆ the probability

of transition to state j is approximately qkj∆.
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Note that since the transition matrix Q = (qij)m0×m0 is independent of the population of

the species, the jump times of α(t) will be exponentially distributed and independent of the

process X.

Let U(t) be the harvesting-stocking rate of the population. This means that in the small

time-interval (t, t+ ∆t) one harvests U(t)∆t if U(t) > 0 and one stocks U(t)∆t if U(t) < 0.

The dynamics of the population X(t) that includes harvesting and stocking becomes

(2.3) X(t) = x+

t∫
0

(
b(X(s), α(s))− U(s)

)
ds+

t∫
0

σ
(
X(s), α(s)

)
dw(s).

In order to have a well defined system we also need to impose some initial conditions:

(2.4) X(0) = x ∈ R+, α(0) = α ∈M.

Note that max{U(t), 0} and max{−U(t), 0} are the magnitudes of the harvesting and the

stocking rate, respectively. We suppose that U(t) takes values in a compact subset U ⊂ R
and 0 ∈ U . This means that the maximal harvesting and stocking rates are bounded and

that one can always choose to not interfere with the population, that is, pick U(t) = 0 at

certain times t ≥ 0.

Let Ax,α denote the collection of all admissible controls with initial value (x, α) ∈ R+×M.

The collection Ax,α of admissible controls is defined to contain the elements U(·) such that

• U(t) is F(t)-adapted,

• U(t) ∈ U for any t ≥ 0,

• X(t) ≥ 0 for any t ≥ 0.

Let P : R+ ×M→ [0,∞) be the price of the species per unit. The price depends on the

population size and the environmental state. The accumulated income can be written as∫ ∞
0

e−δsP
(
X(s), α(s)

)
· U(s)ds,

where δ > 0 is the time discount rate. In addition, we also suppose that the harvesting-

stocking is costly, something that is described by the cost function C : R+×M×U → [0,∞).

Thus, for a control strategy U(·) ∈ Ax,α, we define the performance function as

(2.5) J
(
x, α, U(·)

)
:= Ex,α

∫ ∞
0

e−δs
[
P (X(s), α(s)) · U(s)− C

(
X(s), α(s), U(s)

)]
ds,

where Ex,α denotes the expectation with respect to the probability law when the process

(X(t), α(t)) starts with initial condition (x, α). The goal is to maximize J(x, α, U(·)) and

find an optimal strategy U∗(·) such that

(2.6) J
(
x, α, U∗(·)

)
= V (x, α) := sup

U(·)∈Ax,α
J
(
x, α, U(·)

)
.

For notational simplicity, we collect the price function P (·) and the cost function C(·) into

the price-cost function p : R+ ×M×U → R given by

p(x, α, u) = P (x, α) · u− C
(
x, α, u

)
.
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As a result, the performance function can be written as

(2.7) J(x, α, U(·)) = Ex,α
∫ ∞

0

e−δsp
(
X(s), α(s), U(s)

)
ds.

The following standing assumptions are made throughout the paper.

Assumption 2.1. (a) The functions b(·, α) and σ(·, α) are locally Lipschitz continuous

for each α ∈ M. Moreover, for any initial condition (x, α) ∈ R+ ×M, the uncon-

trolled system (2.1) has a unique global solution.

(b) The function p(·, α, ·) is bounded and continuous for each α ∈M.

Remark 2.2. We recall that in recent papers by Hening, Tran, Phan & Yin (2019), Hening

& Tran (2020) the authors assume that the stocking price is higher than the harvesting

price. In the current paper, however, the stocking and harvesting have the same price which

is a function of the current population size and the environmental regime. We take into

account the control cost by introducing the price-cost function p(·). As a result our setting

is more general than those considered by Hening, Tran, Phan & Yin (2019), Hening &

Tran (2020). The cost function C(·) allows us to take into account taxes, state constraints,

and incentives for sustainability that arise in practical settings. We will discuss several

extensions and related formulations in Section 3. In the first extension, we look at the setting

where harvesting in a short time dt looks like U(t)X(t)dt, and U(t) lives in a compact set

including 0—note that the harvesting rate in time can be unbounded in this setting. In the

second extension, we look at the setting where the price is time-dependent, uncertain and

its evolution is described by a stochastic differential equation. In the third extension, we

consider the combined effects of random and seasonal (periodic) environmental fluctuations.

A common approach in treating stochastic control problems is to characterize the value

function as a viscosity solution of a Hamilton-Jacobi-Bellman equation. Formally, the asso-

ciated equation of the underlying problem is given by

(2.8)
max
u∈U

[
V ′(x, α)

(
b(x, α)− u

)
+

1

2
σ2(x, α)V ′′(x, α)

+
m0∑
k=1

qαkV (x, k) + p(x, α, u)− δV (x, α)

]
= 0,

for (x, α) ∈ R+×M. One can try to adopt this approach by following the techniques used by

Zhu (2011). However, as pointed out by Zhu (2011), under regime switching the associated

Hamilton-Jacobi-Bellman equation is complicated and a closed-form solution is virtually

impossible to obtain. Therefore, in order to treat the underlying formulation and extensions

in Section 3, we will approximate the original problem by a sequence of discrete-time optimal

control problems of approximating Markov chains.

Remark 2.3. Although our work is motivated by the presence of a Markovian switching en-

vironment, the numerical schemes we developed can also be used to solve harvesting problems

for diffusion models without switching. In particular, one can simply take M = {1} and put

q11 = 0.



OPTIMAL HARVESTING AND STOCKING 7

2.1. Numerical Scheme.

We provide a numerical approach to gain information about the value function and the opti-

mal harvesting-stocking strategy. Using the Markov chain approximation method developed

by Kushner (1990) and Kushner & Dupuis (1992), we construct a controlled Markov chain

in discrete time that approximates the controlled stochastic processes. As pointed out by

Kushner & Dupuis (1992) a probabilistic approach using the Markov chain approximation

method for controlled diffusions has some important advantages. First, the Markov chain

approximation method allows one to use physical insights derived from the dynamics of the

controlled diffusion in obtaining a suitable approximation scheme. Second, the Markov chain

approximation method does not require significant regularity of the controlled processes (2.3)

nor does it rely on the uniqueness properties of the associated HJB equation (2.8).

Let h > 0 be a discretization parameter. Define Sh := {kh : k ∈ Z≥0} and let {(Xh
n , α

h
n) :

n ∈ Z≥0} be a discrete-time controlled Markov chain with state space Sh ×M. At each

discrete-time step n, the magnitude of the harvesting-stocking component Uh
n must be spec-

ified. Let Uh = {Uh
n} be a sequence of controls. We denote by qh ((x, k), (y, l)|u) the

transition probability from state (x, k) to another state (y, l) under the control u. Denote

Fhn = σ{Xh
m, α

h
m, U

h
m,m ≤ n}.

The sequence Uh is said to be admissible if it satisfies the following conditions:

(a) Uh
n is σ{Xh

0 , . . . , X
h
n , α

h
0 , . . . , α

h
n, U

h
0 , . . . , U

h
n−1} − adapted and Uh

n ∈ U for each n;

(b) For any (x, k) ∈ Sh ×M, we have

P
{(
Xh
n+1, α

h
n+1

)
= (x, k)|Fhn

}
= P

{(
Xh
n+1, α

h
n+1

)
= (x, k)|Xh

n , α
h
n, U

h
n

}
= qh

(
(Xh

n , α
h
n), (x, k)|Uh

n

)
;

(c) Xh
n ∈ Sh for all n ∈ Z≥0.

The class of all admissible control sequences Uh for initial state (x, α) will be denoted by

Ahx,α.

For each (x, α, u) ∈ Sh×M×U , we define a family of interpolation intervals ∆th(x, α, u).

The values of ∆th(x, α, u) will be specified later. Then we define

th0 = 0, ∆thm = ∆th(Xh
m, α

h
m, U

h
m), thn =

n−1∑
m=0

∆thm.

For (x, α) ∈ Sh ×M and Uh ∈ Ahx,α, the performance function and the value function for

the controlled Markov chain is defined as

(2.9) Jh(x, α, Uh) = E
∞∑
m=0

e−δt
h
mp(Xh

m, α
h
m, U

h
m)∆thm, V h(x, α) = sup

Uh∈Ahx,α
Jh(x, α, Uh).

The corresponding dynamic programming equation for the discrete approximation is given

by

V h(x, α) = max
u∈U

[
e−δ∆t

h(x,α,u)
∑

(y,β)∈Sh×M

V h(y, β)qh
(
(x, α), (y, β)|u

)
+ p(x, α, u)∆th(x, α, u)

]
.
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We will construct the transition probabilities and interpolation intervals such that the

Markov chain
{

(Xh
n , α

h
n)
}

approximates the process {(X(·), α(·)} well, in the sense that they

are locally consistent. Then the similarity between (2.7) and (2.9) suggests that the val-

ues V h(x, α) and V (x, α) will be close for small h, and this will turn out to be the case.

Solving the optimal harvesting problem for the chain
{

(Xh
n , α

h
n)
}

, we obtain an approximat-

ing optimal value and an approximating optimal strategy for the continuous-time process(
X(·), α(·)

)
. The main convergence result is given below.

Theorem 2.4. Suppose Assumptions 2.1 holds. Then for any (x, α) ∈ R+×M, V h(x, α)→
V (x, α) as h→ 0. Thus, for sufficiently small h, a near-optimal harvesting-stocking strategy

of the controlled Markov chain {(Xh
n , α

h
n)} is also a near-optimal harvesting-stocking policy

of
(
X(·), α(·)

)
.

Remark 2.5. From a control theoretic point of view, an admissible control U(·) ∈ Ax,α
is called ε-optimal with respect to (x, α) if J(x, α, U(·)) ≥ V (x, α) − ε. A family of

admissible controls Uε(·) ∈ Ax,α parameterized by ε > 0 is called near-optimal with respect

to (x, α) if J(x, α, Uε(·)) ≥ V (x, α) − ψ(ε) for sufficiently small ε, where ψ(·) is a function

of ε satisfying ψ(ε) → 0 as ε → 0. The ε-optimal controls and near-optimal controls for

the chain {(Xh
n , α

h
n)} can be defined similarly. By virtue of Theorem 2.4 (see also Theorem

C.5), as h approaches 0, a near-optimal harvesting-stocking strategy of the controlled Markov

chain {(Xh
n , α

h
n)} will provide a near-optimal harvesting-strategy for

(
X(·), α(·)

)
. As a result,

the original problem can be reduced to solving for a near-optimal harvesting-stocking policy

of the Markov chain {(Xh
n , α

h
n)}.

3. Extensions

3.1. Variable effort harvesting-stocking strategies.

In this subsection, we analyze an extension of our framework for which the harvesting-

stocking rates are not forced to be bounded as in (2.3)—see Alvarez & Shepp (1998, Section

3) and work by I. Kharroubi (2019). This allows us to take into account not only the impact

of the harvesting-stocking effort, but also the abundance of the species itself. It is natural to

assume that the harvesting or stocking rate is proportional to the population size (Hening,

Nguyen, Ungureanu & Wong 2019). These types of harvesting strategies, where a constant

fraction of the population is harvested, are called constant effort harvesting strategies and

are widely used in modeling fisheries. We suppose that U is a compact subset of R and that

0 ∈ U . Our harvesting-stocking strategy will be such that in the small time dt we harvest

or stock the amount U(t)X(t) dt where U(t) ∈ U . We call these strategies variable effort

harvesting-stocking strategies. The dynamics that includes stocking and harvesting is given

by
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(3.1)

X(t) = x+

t∫
0

(
b(X(s), α(s))− U(s)X(s)

)
ds+

t∫
0

σ
(
X(s), α(s)

)
dw(s), α(0) = α ∈M.

Let Ax,α denote the collection of all admissible controls with initial value (x, α) ∈ R+×M,

where a strategy U(·) will be in Ax,α if U(t) is F(t)-adapted, U(t) ∈ U for any t ≥ 0, and

X(t) ≥ 0 for any t ≥ 0. The corresponding performance function and value function are

given by

p(x, α, u) = P (x, α) · x · u− C
(
x, α, u

)
,

J(x, α, U(·)) : = Ex,α
∫ ∞

0

e−δsp
(
X(s), α(s), U(s)

)
ds,

V (x, α) = sup
U(·)∈Ax,α

J
(
x, α, U(·)

)
.

Compared with the stocking-harvesting model (2.3), in this setting, one can harvest with

higher rates when X(t) is large, while we can only stock at lower rates when X(t) is small.

It is also clear that the stocking rate when X(t) = 0 is U(t)X(t) = 0 so that V (0, α) = 0 for

any α ∈M. This implies that one cannot restock a species once it is extinct.

3.1.1. Constructing the approximation scheme. We use the same method as in the preceding

section to construct a discrete-time controlled Markov chain {(Xh
n , α

h
n) : n ∈ Z≥0} with

state space Sh ×M = {kh : k ∈ Z≥0} ×M. At each step n, we need to specify a control

Uh
n ∈ U . We need to define transition probabilities qh((x, k), (y, l)|u) and interpolation

intervals ∆th(x, α, u) so that the controlled Markov chain {(Xh
n , α

h
n)} is locally consistent

with respect to the controlled diffusion (3.1). For (x, α, u) ∈ Sh ×M×U and the family of

the interpolation intervals ∆th(x, α, u), we define

th0 = 0, ∆thm = ∆th(Xh
m, α

h
m, U

h
m), thn =

n−1∑
m=0

∆thm.

For (x, α) ∈ Sh×M, the class Ahx,α of all admissible control sequences Uh for initial state

(x, α) can be defined as before. Then the performance function for the controlled Markov

chain is defined as

J
h
(x, α, Uh) = E

∞∑
m=0

e−δt
h
mp(Xh

m, α
h
m, U

h
m)∆thm.

The value function of the controlled Markov chain is

V
h
(x, α) = sup

Uh∈Ahx,α
J
h
(x, α, Uh).

The convergence result given in Theorem 2.4 is also valid in this case, if V
h
(x, α) and V (x, α)

are substituted for V h(x, α) and V (x, α), respectively.
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3.2. Uncertain price functions.

Since the harvesting-stocking problem we investigate is on an infinite time horizon, it is

natural to look at prices that can change in time. In this section we consider a more realistic

scenario with time dependent price functions (Alvarez & Koskela 2007, I. Kharroubi 2019).

Working with the population model given by (2.3), we suppose that the per-unit price-cost

function is p0(x, α, u) + Φ(t) for (t, x, α, u) ∈ R2
+ ×M × U , where p0(·) is a deterministic

function and Φ(·) satisfies the following stochastic differential equation

(3.2) dΦ(t) = b0

(
Φ(t), α(t)

)
dt+ σ0

(
Φ(t), α(t)

)
dw0(t), Φ(0) = φ ∈ R+.

We assume that w0(·) is a standard Brownian motion in R which is independent of the

Brownian motion w(·) that drives the dynamics of the species. We also suppose that b0(·, α)

and σ0(·, α) are locally Lipschitz continuous function for each α ∈ M and are such that

(3.2) has a unique solution Φ(·), with Φ(t) ≥ 0, t ≥ 0 and sup
t≥0

E|Φ(t)| < ∞. We note that

the price depends on the current population size, the environmental regime, time (through

(3.2)), and is also influenced by randomness. Note that if σ0(x, α) ≡ 0, Φ(·) is simply time

dependent and no longer uncertain. In this setting the performance and the value functions

are given by

Ĵ(x, α, U(·)) : = Ex,α
∫ ∞

0

e−δs
(
p0(X(s), α(s), U(s)) + Φ(s)

)
U(s)ds,

V̂ (x, α) = sup
U(·)∈Ax,α

Ĵ
(
x, α, U(·)

)
.

(3.3)

3.2.1. Constructing the approximation scheme. In order to treat the uncertain price function

given by (3.2), we combine
(
X(·), α(·)

)
and Φ(·) into one controlled process

(
Φ(·), X(·), α(·)

)
with initial condition (Φ(0), x, α) = (φ, x, α). The set of admissible strategies Ax,α is defined

as in Section 2 and does not depend on Φ(0). With the price function above, the performance

function becomes

Ĵ
(
φ, x, α, U(·)

)
:= Eφ,x,α

∫ ∞
0

e−δs
(
p0(X(s), α(s), U(s)) + Φ(s)

)
U(s)ds,

where Eφ,x,α denotes the expectation with respect to the probability law when the process

(Φ(t), X(t), α(t)) starts with initial condition (φ, x, α) and the value function is

V̂ (φ, x, α) = sup
U(·)∈Ax,α

Ĵ
(
φ, x, α, U(·)

)
.

To approximate the controlled process
(
Φ(·), X(·), α(·)

)
, we construct a discrete-time con-

trolled Markov chain
{

(Φh
n, X

h
n , α

h
n) : n ∈ Z≥0

}
with state space Ŝh ×M, where

Ŝh :=
{

(k1h, k2h)′ ∈ R2 : ki ∈ Z≥0

}
.

Note that we add {Φh
n} to approximate the evolution of the price component Φ(·). There-

fore, the computations are more involved than those in the preceding settings. At each

step n, we need to specify a control Uh
n ∈ U . We need to define transition probabili-

ties qh
(
(φ, x, k), (ψ, y, l)|u

)
and interpolation intervals ∆th(φ, x, k, u) so that the controlled
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Markov chain
{

(Φh
n, X

h
n , α

h
n)
}

is locally consistent with respect to the controlled diffusion

(2.3) and (3.2).

For (φ, x, α) ∈ Ŝh ×M, the class Ahx,α of all admissible control sequences Uh for initial

state (φ, x, α) can be defined as before. Then the performance function for the controlled

Markov chain is defined as

Ĵh(φ, x, α, Uh) = Eφ,x,α
∞∑
m=0

e−δt
h
m
(
p0(Xh

m, α
h
m, U

h
m) + Φh

n

)
Uh
m∆thm.

The value function of the controlled Markov chain is

V̂ h(φ, x, α) = sup
Uh∈Ax,α

Ĵh(φ, x, α, Uh).

As a natural analogue to Theorem 2.4 we get the following convergence result.

Theorem 3.1. Suppose Assumption 2.1 holds, b0(·, α) and σ0(·, α) are locally Lipschitz

continuous function for any fixed α ∈ M, and that (3.2) has a unique solution Φ(·) for

which Φ(t) ≥ 0 and sup
t≥0

E|Φ(t)| <∞. Then for any (x, α) ∈ R+×M and φ = Φ(0) one has

V̂ h(φ, x, α)→ V̂ (φ, x, α)

as h→ 0. Furthermore, for sufficiently small h, a near-optimal harvesting-stocking strategy

of the controlled Markov chain
{

(Φh
n, X

h
n , α

h
n)
}

is also a near-optimal harvesting-stocking

policy of
(
Φ(·), X(·), α(·)

)
.

3.3. The combined effects of seasonality and Markovian switching.

In this section, we focus on another extension of (2.3) in which the population model is

periodic. This is very natural if one considers that seasonal effects are periodic and strongly

influence the dynamics of species.

There have been multiple papers treating periodic environments in ecology (Cushing 1977,

1980, Henson & Cushing 1997, Rinaldi et al. 1993). Some of these have shown how periodic

forcing can create interesting new phenomena. In White & Hastings (2020) the authors

present a synthesis on the important role of seasonality in ecology. They explain how our

knowledge on seasonal dynamics is limited both empirically and theoretically. Few studies

have looked at the joint effects of periodic and random fluctuations. The current section is

a first step in the direction of finding the optimal harvesting-stocking strategies when both

random and seasonal effects are taken into account.

If we include seasonality the dynamics is given by

(3.4) X(t) = x+

t∫
0

(
b(s,X(s), α(s))− U(s)

)
ds+

t∫
0

σ
(
s,X(s), α(s)

)
dw(s),

where b(·, x, α), σ(·, x, α) are periodic with period T > 0. We also suppose that the price-cost

function p(t, x, α, u) is periodic with period T for each (x, α, u). The performance function
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becomes

(3.5) J̃(x, α, U(·)) := Ex,α
∫ ∞

0

e−δsp
(
s,X(s), α(s), U(s)

)
ds,

and the value function is defined in the standard way. Since the functions b(·), σ(·), and p(·)
are time-dependent and the time horizon of the control problem is infinite, the approach we

used for the previous formulations no longer works. In order to treat this case, we introduce

a deterministic function Γ(·) to capture the time and convert it into the interval [0, T ).

Thus, we will study the total expected discounted value starting from any time γ ∈ [0, T ).

Specifically, we consider a generalization of (3.4)–(3.5) given by

X(t) = x+

t∫
γ

(
b(Γ(s), X(s), α(s))− U(s)

)
ds+

t∫
γ

σ(Γ(s), X(s), α(s))dw(s),

Γ(t) = t−mT, where m ∈ Z≥0 such that t ∈ [mT,mT + T ).

(3.6)

We consider the combined process
(
Γ(·), X(·), α(·)

)
. The performance function and the

value function are given by

J̃(γ, x, α, U(·)) : = Eγ,x,α
∫ ∞
γ

e−δsp
(
Γ(s), X(s), α(s), U(s)

)
ds,

Ṽ (γ, x, α) = sup
U(·)∈Aγ,x,α

J̃
(
γ, x, α, U(·)

)
,

(3.7)

where Eγ,x,α denotes the expectation with respect to the probability law of the process(
Γ(t), X(t), α(t)

)
having initial conditions

(
Γ(γ), X(γ), α(γ)

)
= (γ, x, α).

3.3.1. Constructing the approximation scheme. In this case, we need to use two positive

parameters h1 and h2, where T is a multiple of h1. Let h = (h1, h2). We construct a

discrete-time controlled Markov chain
{

(Γhn, X
h
n , α

h
n) : n ∈ Z≥0

}
with state space S̃h ×M,

where

S̃h :=
{

(γ, x) = (k1h1, k2h2)′ ∈ R2 : ki ∈ Z≥0, k1 ≤ T/h1

}
.

Note that we add {Γhn} to approximate the time Γ(·). At each step n, we need to specify

a control Uh
n ∈ U . We need to define transition probabilities qh

(
(γ, x, k), (λ, y, l)|u

)
and

interpolation intervals ∆t(γ, x, k, u) so that the controlled Markov chain
{

(Γhn, X
h
n , α

h
n)
}

is

locally consistent with respect to the controlled diffusion (3.6).

For (γ, x, α) ∈ S̃h ×M, the class Ahγ,x,α of all admissible control sequences Uh for initial

state (γ, x, α) can be defined as before. Then the performance function for the controlled

Markov chain is defined as

J̃h(γ, x, α, Uh) = E
∞∑
m=0

e−δt
h
mp(Γhn, X

h
m, α

h
m, U

h
m)∆thm.

The value function of the controlled Markov chain is

Ṽ h(γ, x, α) = sup
Uh∈Aγ,x,α

J̃h(γ, x, α, Uh).
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It should be noted from the periodicity of the problem that for any (γ, x, α) ∈ [0, T )×R+×M
one has

Ṽ (γ, x, α) = e−δT Ṽ (γ + T, x, α), Ṽ h(γ, x, α) = e−δT Ṽ h(γ + T, x, α).

This property will allow us to work with the compact time interval [0, T ] instead of the entire

infinite horizon [0,∞). The convergence result is given below.

Theorem 3.2. Suppose the following assumptions hold:

(1) The functions b(·, ·, α) and σ(·, ·, α) are locally Lipschitz continuous for each α ∈M.

(2) For any initial condition (γ, x, α) ∈ [0, T )× R+ ×M, the uncontrolled system (3.4)

has a unique global solution.

(3) The price p(·, ·, α, ·) is bounded and continuous for all α ∈M.

(4) For each (x, α) ∈ R+ ×M and u ∈ U , the functions b(·, x, α), σ(·, x, α), p(·, x, α, u)

are periodic with period T > 0.

Then for any (γ, x, α) ∈ [0, T )× R+ ×M, we have

Ṽ h(γ, x, α)→ Ṽ (γ, x, α)

as h→ 0. Furthermore, for sufficiently small h, a near-optimal harvesting-stocking strategy

of the controlled Markov chain
{

(Γhn, X
h
n , α

h
n)
}

is also a near-optimal harvesting-stocking

policy of
(
Γ(·), X(·), α(·)

)
.

4. Numerical Examples

We explore some numerical examples, using various models and assumptions. Throughout

this section, we suppose the time discount rate is δ = 0.02. Let B ∈ (0,∞) be an upper bound

introduced for computational purposes. If not specified, we will take B = 4 in our examples.

We assume that the environment only switches between two states, so M = {1, 2}. We

exhibit various price-cost formulations to explore for features, and possibly new phenomena,

in the various considered models.

4.1. Introducing switching in a Verhulst-Pearl system.

A model that is extensively used in biology is the Verhulst-Pearl one. The dynamics that

includes switching is given by

dX(t) = X(t)
(
µ(α(t))− κ(α(t))X(t)

)
dt+ σ

(
α(t)

)
X(t)dw(t).

Here µ(α) is the growth rate in environment α, κ(α) is the intraspecific competition rate

in environment α, and σ2(α) is the variance of the per-capita environmental fluctuations.

Suppose there are m0 environmental states in environment α(·). One can fix an environment

α and look at the dynamics of the population in that environment

dXα(t) = Xα(t)
(
µ(α)− κ(α)Xα(t)

)
dt+ σ(α)Xα(t)dw(t).
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The stochastic growth rate of the species (Chesson & Ellner 1989, Chesson 2000, Schreiber

et al. 2011, Hening & Nguyen 2018) in environment α is given by

r(α) = µ(α)− σ2(α)

2
.

Following Evans et al. (2015), this stochastic growth rate completely determines the long term

behavior of the population in each fixed environment. If r(α) > 0 we get the convergence

to a unique stationary distribution on (0,∞). If r(α) < 0 the population goes extinct in

environment α and with probability 1 we have

lim
t→∞

lnXα(t)

t
= r(α) < 0.

If r(α) = 0, by Evans et al. (2015) the population process is null recurrent in environment

α. This means the population does not go extinct but also does not converge to a stationary

distribution; it keeps fluctuating between large and small values. Let (ν1, . . . , νm0) be the

stationary distribution of the Markov chain α(t). If

r =

m0∑
k=1

νk

(
µ(k)− σ2(k)

2

)
> 0,

we get by Hening & Li (2020) that the population converges, if there is switching, to a

stationary distribution.

We consider a Verhulst population model with µ(α) = 4−α, κ(α) = 2, σ(α) = 1, (x, α) ∈
R+ × {1, 2}. As a result the stochastic growth rate in environment α is

r(α) = (4− α)− 1

2
,

which implies r(1) > 0 and r(2) > 0, so if the environment would be fixed to either of the

α values, the species would converge to a unique stationary distribution on R+. Suppose

that the generator Q of the Markov chain α(·) is given by q11 = −0.1, q12 = 0.1, q21 = 0.1,

q22 = −0.1. This implies that the stationary distribution of α(t) is (ν1, ν2) = (0.5, 0.5).

Henceforth, let the set of controls be U = {u : u = k/500, k ∈ Z,−1000 ≤ k ≤ 1500} where

unspecified.

In a first experiment, we compare this model to a baseline model, where µ(α) = 2.5,

which is in between the two values for the switching environments. To isolate the effect of

switching, in our first example we keep the price and cost functions simple: P (x, α) = 1 and

C(x, α, u) = 0.

We have presented the formulation theoretically in Section 2, and we describe a detailed

procedure in Section 2.1 and Appendix A. In the following numerical formulations, we will

apply similar procedures, described in the same sections. For an admissible strategy U(·) we

have

J
(
x, α, U(·)

)
= E

∫ ∞
0

e−δsp
(
X(s), α(s), U(s)

)
ds.

Based on the algorithm constructed above and in the Appendixes, we carry out the com-

putation by using the methods in Kushner & Dupuis (1992). We take the initial control
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U0(x, α) ≡ 0 and set the initial values V h
0 (x, α) ≡ 0. We outline how to find the sequence

of values of V h
n (·) as follows. At each level x = h, 2h, . . . , B, α ∈ M, and control u ∈ U , we

compute

V h
n+1(x, α |u) = e−δ∆t

h(x,α,u)
∑

(y,β)∈Sh×M

V h
n (y, β)qh

(
(x, α), (y, β)|u

)
+ p(x, α, u)∆th(x, α, u).

Working with the compact set state space [0, B], we use reflection if x = B; that is, V h
n (B +

h, β) = V h
n (B, β) for any β ∈ M. Then we choose the control Uh

n+1(x, α) and record an

improved value V h
n+1(x, α) by

Uh
n+1(x, α) = argmaxu∈UV

h
n+1(x, α |u), V h

n+1(x, α) = V h
n+1(x, α |Uh

n+1(x, α)).

The iterations stop as soon as the increment V h
n+1(·) − V h

n (·) reaches some tolerance level.

We set the error tolerance to be 10−8.
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Figure 1. Value function (left) and optimal harvesting-stocking rate (right)
for a model with switching affecting µ(α) = 4 − α, compared with a baseline
model with no switching and µ(α) = 2.5.

The numerical result is shown in Figure 1. The value function in the left panel is increasing

in both the switching and the baseline models, as expected. Moreover, it is concave, which

implies that the marginal value of one small unit of population decreases. This is expected

because population growth becomes less favourable as the population size increases—a result

of intra-species competition.

Because the transition probability rates were chosen to be small, the value function of the

baseline model is in-between the value functions for the two α states of the switching model.

When the transition probability rates increase, that will not always be the case, because the

value function in one state is determined, in part, by the value function in the other state.
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Another expected result is that the optimal harvesting rate in the second panel of Figure 1

is bang-bang—it switches between extremes at a certain population threshold. This should

be the case, because the cost of harvesting-stocking is 0, and therefore independent of the

value. This was shown theoretically for a model without switching in Hening, Nguyen,

Ungureanu & Wong (2019). In the second panel, we also see that the optimal stocking-

harvesting transition happens at a lower population level in the growth-unfavorable state

α = 2, when compared with the intermediate growth baseline and the growth-favorable

state α = 1. Intuitively, lower growth prospects imply optimal extraction should start at a

lower population level.

Numerical experiments where σ(α) and κ(α) are also allowed to depend on α show results

with similar features, so we omit them for brevity.

4.2. Analysis of the effect of the control cost.

We expect to find all or nothing harvesting-stocking when the cost is not convex in the rate,

even when there is environmental switching. Using the same set-up as above, but now with

a convex cost function C(x, α, u) = u2/2, we find that the optimal control is not bang-bang

anymore (Figure 2). Further numerical experiments (Figures 9, 10, Appendix D) support the

following conjecture, which says that, with cost functions that are not convex, the optimal

strategies are bang-bang, with thresholds that may depend on the states α.

Conjecture 4.1. Suppose we have one species that evolves according to (2.3) and suppose

Assumption 2.1 holds, the price P only varies with the environment, the cost does not depend

on the population size, C(x, α, u) = C(α, u) and the cost is not convex in the harvesting rate

u. Furthermore, assume that in the absence of harvesting the species persists, i.e.,

λ(µ0) =

m0∑
k=1

νk

(
µ(k)− σ2(k)

2

)
> 0.

One can construct the optimal harvesting strategy U∗ as follows. There exists a threshold

0 ≤ u∗(k) ≤ ∞ for the population such that, if X(0−) = x, then

(4.1) U∗(t) =

{
inf U , if t > 0, α(t) = k, X(t) < u∗(k),

sup U , if t > 0, α(t) = k, X(t) ≥ u∗(k).

From the right panel of Figure 2, we note that the growth favorable state, α = 1, is more

conducive to expensive harvesting and stocking, which is intuitive and expected. The value

functions are again concave and increasing in population, as expected. This will be common

across all numerical examples considered. Henceforth we may omit the value function from

figures.

4.3. Large and small transition rates with switching.

In the left panel of Figure 2, the apparent overlap between the value function of the baseline

model and the switching model in the state α = 1 is coincidental. Numerical experiments

show that increasing the switching probability rates pulls the value function graphs for

α = 1, 2 toward each other. If the switching rates were very small, the green baseline
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Figure 2. Value function (left) and optimal harvesting-stocking rate (right)
for a model with switching affecting µ(α) = 4−α, and convex cost C(x, α, u) =
u2/2, compared with a baseline model with no switching, µ(α) = 2.5, and the
same cost function.

value function would be sandwiched between the red and blue value functions. As the

switching rates become large, the value functions of the two switching states will overlap

in the limit.1 Figure 3 shows this process for the same specification as above, when q12 =

q21 ∈ {0, 0.01, 0.1, 1, 10,∞}. The following remark confirms the numerical experiments that

suggest convergence.

Remark 4.2. If we divide the switching rates by ε and let ε ↓ 0 we have a slow-fast dynamics

where the switching happens on a much shorter time scale. One can show that the dynamics

without harvesting (2.1) will converge (Hening & Li 2020) to

(4.2) dξ̄(t) = b̄(ξ̄(t))dt+ σ̄(ξ(t))dw(t),

where

(4.3) b̄(x) =

m0∑
k=1

b(k)νk.

and

(4.4) σ̄ =

√√√√ m0∑
k=1

σ2(k)νk.

1The value function in a switching state is influenced by the value function in the other state, since there
is a probability of transition.
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Figure 3. The left and right panels show the same value function graph, but
on different vertical scales. The model is discussed in Sections 4.2, 4.3. The
green solid curves in both panels corresponds to a model without switching
and µ = 2.5, or to a model with µ = 4−α and infinitely large switching rates.
The blue long-dashed curves in the left panel show models with no switching
and µ = 3, µ = 2 respectively, or equivalently a model with µ = 4 − α and
infinitely slow switching rates. The red dashed curves in the left panel are for
a model with µ = 4−α and q12 = q21 = 0.01. The black dotted curves in both
panels correspond to the same model, but q12 = q21 = 0.1. The teal dot-dashed
curves in the right panel correspond to q12 = q21 = 1, and the orange dashed
curves in the right panel to q12 = q21 = 10.

Here (ν1, . . . , νm0) is the stationary distribution of the Markov chain α(t). We conjecture

that the optimal stocking-harvesting strategies U ε,∗ of the system (2.3) converge as ε ↓ 0 to

the optimal harvesting-stocking strategy Ū∗ of the system

(4.5) X̄(t) = x+

t∫
0

(
b̄(X̄(s), α(s))− Ū(s)

)
ds+

t∫
0

σ(X̄(s), α(s))dw(s).

Further numerical experiments, which we omit, show that if the switching rates are such

that they favour one state over the other in the stationary distribution, the value function

of a simplified system with only the favoured state will be closer to the value function



OPTIMAL HARVESTING AND STOCKING 19

with switching, than the value function of a simplified system with only the unfavoured

state. That is because the environment is mostly in the favored state, and its conditions are

therefore more relevant to the valuation.

4.4. Switching in the cost and price functions.

We have shown how the dependence of the cost function on the harvesting rate determines

whether harvesting is bang-bang. It turns out that non-trivial price functions may also

smooth out the optimal harvesting rate. We have looked at three typical functional forms

for a per-unit price-cost function p(x, α, u) = p0(u), two of which can capture monopolistic

competition, i.e., imperfect competition. The first is a simple constant price function, p0(u) =

p, p > 0, which is appropriate when the market influence of the extraction operation is low.

The second has a piecewise linear decreasing form given by

(4.6) p0(u) =


p, κ1 − κ2u ≥ p,

(κ1 − κ2u), 0 < κ1 − κ2u < p,

0, else.

The third has a constant price elasticity of demand form, and is given by

(4.7) p0(u) =

{
p, κ1|κ2 + u|1/ε ≥ p,

κ1|κ2 + u|1/ε, 0 ≤ κ1|κ2 + u|1/ε < p.

The functions represent instantaneous market demand, and obey common sense assumptions.

In particular, the price decreases as the supplied quantity increases, and the price is always

positive. Both forms are typical choices in modeling market behavior. The economic model

implied by the price dependence is the following: the instantaneous harvested rate u is

a quantity placed in a common market, where the total supplied by all sources is what

determines the instantaneous common final price u, and hence the returns.

The constants κ1, κ2 are positive. They capture, among other things, the contribution to

total harvested quantities from different sources. In the third formulation, ε is negative and

represents the price elasticity. The constant p is added to account for unbounded negative

flow rates (e.g., unrealistically large stocking events) in the economic demand model. Large

negative values of u could make the overall market supply negative—something evidently

not possible—so we ignore such events for practical applications. That is, we want to keep

prices below p in our examples.

Figure 4 shows, as an example, the harvesting strategy corresponding to two price func-

tions, also known as demand functions, based on the functional forms discussed. The left

panel corresponds to linear demand, p(u) = 1−u/4, and the right panel to p(u) = (1+u/3)−1.

The second form is for a good with unit elasticity.2 The constants were chosen so that price

will not be negative in the harvesting range, but are otherwise arbitrary. Different choices

2The (price) elasticity of a demand function is a measure of the responsiveness of the quantity demanded
to price changes, measured in an unit free manner, defined as ε = du

dp ·
p
u , and widely used in economics.

ε = −1 is defined as “unit elasticity.”
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of slopes and elasticity values lead to similar qualitative conclusions—with no cost, when

up(u) is concave, we have a harvesting strategy that is continuous in the population level.
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Figure 4. The left and right panels show the optimal harvesting functions
for the model in Section 4.2, for two price functions, p(u) = 1 − u/4 on the
left, and p(u) = (1 + u/3)−1 on the right. There is no dependency on α here,
and µ = 2.5. The other parameters are as before.

4.5. Interlude with intuition and conjecture.

In the previous examples, the interpretation of the control value was “population units

extracted per unit of time.” Based on marginal cost-benefit analysis and intuition, we sus-

pect that a consequence of such a cost formulation, together with others that ensure that

the value functions is increasing and concave, is that the optimal harvesting strategies are

monotonically increasing in the population level (see also Figures 1, 2 and 4).

Our intuition is as follows: Let’s take for granted that the value function is increasing and

concave in the population variable. Consider the cost-benefit of seeding an extra unit of pop-

ulation, or harvesting one less. If the population increases, the sale value of one future unit

of population is the same, but future growth is less favourable at higher population levels,

because of intra-species competition. Taking into account both, we can say that we have a

decreasing marginal benefit of having an extra unit of population, as population increases.

We can also see it in the concave shape of the value function. Its rate of increase per unit

of population decreases as population increases. Moreover, with constant effort harvesting

strategies—that is, cost dependent on the absolute value of stocking or harvesting—marginal

cost per unit does not depend on the population level. The difference between marginal ben-

efit and marginal cost is also monotonic decreasing, which means the net marginal benefit of

one unit of population is decreasing in the population. This implies that marginally increas-

ing the population level would make stocking less favourable or harvesting more favourable,

so we have a monotonic increasing harvesting strategy.

We have not found a way to restrict our general model to provide a clear conjecture

statement, mainly because our model only allows for finite rates of harvesting and stocking—

which we consider more realistic. However, there are many suggestive results in the literature

that are supportive of our thinking, if we relax this assumption and allow possibly infinite
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stocking-harvesting rates. Song et al. (2011) show in Theorem 4.4 that the value function

is continuous for a model similar to our baseline model, with switching. Alvarez E. &

Shepp (1998), Alvarez (2000), working with a Verhulst-Pearl model and a general diffusion

model respectively, with no switching, constant price-cost p, and a possibly infinite rate of

harvesting, show that the value function is continuous and increasing. Hening, Tran, Phan

& Yin (2019), working with a multi-dimensional population system with harvesting and

stocking, no switching, state-dependent price-cost p, and a possibly infinite rate of harvesting,

show in Proposition 2.5 that the value function is increasing and Lipschitz continuous. It

can be easily shown that Proposition 2.5 from Hening, Tran, Phan & Yin (2019) can be

generalised to a model with switching.

4.6. Variable effort harvesting examples.

Monotonic strategies are evidently simpler to interpret, to implement, and to parametrize.

But we want to know what happens to a model if control is borne differently. What if the

cost depends on the intensity of extraction, rather than on the extracted quantity itself?

Numerical experiments, e.g., the one in Figure 5, show that the optimal harvesting strategy

may not be monotonic in such cases; for example when the cost of control applies to the

fractional harvesting or seeding time rate. That is because the cost incurred through harvest-

ing or seeding per unit of population, per unit of time, can now decrease as the population

increases—even with an increasing cost function! With a possibly decreasing marginal cost

of extraction, we may have a non-monotonic net marginal benefit.

This makes the v-shape in the right panel possible. If the population stock is very low,

while growth is favourable, the cost per unit seeded is not favourable at all. As the population

grows, seeding costs per unit go down, so the optimal strategy reflects that. After further

increases, costs stay low, but growth prospects diminish as well. Hence optimal control

slowly shifts from seeding to extraction. The adaptation of our general model for such a

type of control was described in Section 4.6. The discussion of the numerical method is

detailed in Appendix A.2.

4.7. Stochastic pricing examples.

A realistic model of population management may want to take into account that the value of

the resource varies over time. We have already considered price dependence on gross quantity

extracted. But price can also change over time because of external factors. For example,

usually economists model the price of a commodity as a stochastic variable (Osborne 1959,

Miltersen 2003). If this variability is large enough, we would like to understand what effects

it has on our optimal population management strategy. The following is not the standard

model of price stochasticity used in finance, but it is convenient for our set-up.

Consider the price-cost function

p(t, x, α, u) = (p0(α, u) + Φ(t))u− C(t, x, α, u), (x, α) ∈ R+ ×M, t ∈ R+,
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Figure 5. The left and right panels show the value function and optimal
harvesting rate for a model with variable effort harvesting, and switching that
affects the population growth rate. µ(α) = 2− α/2, κ(α) = 1/2, and the cost
function is u2. The other parameters are as in Section 4.1. For simplicity, we
show only the value function and the harvesting strategy for α = 1. The other
state has similar values and controls.

where p0(·) = 1, and C(t, x, α, u) = u2/2. If we ignore random perturbations, the evolution

of Φ(·) is given by

dΦ(t) = Φ(t)
(
0.4− Φ(t)

)
dt, Φ(0) ∈ [0, 0.4).

It can be seen that Φ(t) ∈ (0, 0.4) for any t ≥ 0 and Φ(t)→ 0.4 as t→∞. Now we suppose

that the evolution of Φ(t) is subject to a white noise w0(·) and is given by

dΦ(t) = Φ(t)
(
0.4− Φ(t)

)
dt+ 0.5Φ(t)

(
0.4− Φ(t)

)
dw0(t).

We also have Φ(t) ∈ [0, 0.4) with probability one.
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Figure 6. Harvesting rate in regime α = 1, 3D plot on the left, contour plot
on the right. Stochastic price given by p0(α, u) + Φ(t), cost by C(u) = u2/2,
and the other parameters as in the baseline model. Discussion in Section 4.7.
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The harvesting policies for the two regimes share the same shape, so Figure 6 shows the

harvesting rate as a function of population size x and the observation of the price Φ(·), for

one of the regimes, α = 1, for brevity. The value function has the usual properties, and we

omit its graph. It is increasing and concave in population for all price cross-sections in the

range. Moreover, fixing the population variable, we see that higher prices are more conducive

to both harvesting and seeding, as expected.

4.8. Seasonal and periodic variability.

Finally, in this subsection, we consider applications of our method to models with periodic

parameters. Here, periodicity can be thought of as representing seasonal changes in the

environment. In this example, we consider a simple adaptation of the Verhulst model, where

growth is additively affected by a sine wave. There is little justification for this functional

form, except to point out that our sine wave would be one of the two likely lowest order

terms in the Fourier expansion of any periodic dependency we may conceive.

Suppose b(t, x, α) = x (4− α + sin(2πt)− 2x), σ(t, x, α) = x, P (t, x, α, u) = 1, and

C(t, x, α, u) = u2/2, where (t, x, α, u) ∈ R2
+ × {1, 2} × U . To help with numerical esti-

mation, we reduce the population range, the control range and the sampling density. Now

U = {u : u = k/20, k ∈ Z,−20 ≤ k ≤ 40}. The time step h1 is T/4000. The other param-

eters are as before. Note that b(·, x, α), σ(·, x, α), and p(·, x, α, u) are periodic with period

T = 1.
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Figure 7. Harvesting rate in regime α = 1, 3D plot on the left, contour
plot on the right. This corresponds to an adapted Verhulst model, with drift
affected by a sine wave, b(t, x, a) = x(4 − α − sin(2πt) − 2x), σ(t, x, α) = x,
constant pricing and quadratic cost, C(u) = u2/2. Discussion in subsection
4.8.

Figure 7 shows the estimation results for the harvesting rate as a function of population

size x and the time t. As we can see the periodicity of the growth rate is apparent in the

graphs. It is interesting that the maximal and minimal effects on the harvesting rate do not
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match the maximum and minimum of the sine wave at t = 1/4 and t = 3/4. Not only is the

effect of harvesting out of phase with the sine wave, the effects on harvesting and stocking

seem to be out of phase with each other. At this point, we are not sure if this observation is

an artefact of the limited sampling in the numerical estimation, or a robust result. We omit

the value function and the harvesting regime for α = 2 for brevity.
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Figure 8. Harvesting rate in regime α = 1, 3D plot on the left, contour
plot on the right. The parameters correspond to the baseline Verhulst model,
b(t, x, a) = x(4 − α − 2x), σ(t, x, α) = x, price is constant, and the quadratic
cost is affected by a sine wave, C(t, u) = (1 + sin(2πt))u2/2. h1 = T/16000,
and U ∈ [−1,−1]. Discussion in subsection 4.8.

Seasonality can affect other parameters as well. In the following example, we have season-

ality affecting costs, but not the growth of the population. Figure 8 shows what are intuitive

results. Harvesting when the cost is high is low, and vice-versa. Again, we omit the value

function and the harvesting regime for α = 2 for brevity.

5. Discussion

The objective of this paper was to develop a theoretically sound grounding for numerical

methods, that would allow us to analyze realistic, complex, stochastic population models.

Furthermore, we wanted to use these methods to explore the effects of adding features or

extensions to classic models like Verhulst-Pearl, Gompertz and Nisbet. Among the extensions

of interest that we explored are Markovian environmental switching, periodicity, and non-

trivial harvesting and stocking cost and price dependencies. These are very important in

any realistic model of population management.

We showed that the optimal harvesting and stocking strategy is not always of bang-bang

type—that is, all or nothing. The crucial factor seems to be whether the dependence of

the cost function is convex in the harvested time rate or not. A similar observation applies

to price dependency. Regarding environmental switching, we determined that, in the limit

of switching rates favouring one state versus another, the value function and harvesting
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rate converge as expected to the ones of the favoured state. Moreover, in the limit of

fast switching, the value function and harvesting rate converge to the one representing an

“average environment,” as is expected from the slow-fast dynamics analysis of stochastic

systems without harvesting (Yin & Zhu 2009, Hening & Li 2020, Du et al. 2021).

In general, we have monotonicity of the value function in the population size, but also of the

harvesting rate. The harvesting rate is increasing in the population size, which is intuitively

expected, as a higher population should be more suitable for harvesting, everything else

being equal. However, this observation breaks down when the cost of harvesting depends on

the proportion harvested from the available population per unit of time, as in the so-called

variable effort strategies.

Seasonal variation in the model parameters also has implications that are expected or

intuitive. The maximum harvesting or stocking values correspond to times of maximal

fertility.3 In the slow interval of the season, both harvesting and stocking are reduced.

Allowing the harvesting strategy to depend on a stochastic price variable leads to a variable

strategy where harvesting is favoured by high prices, and stocking is favoured by low prices,

as expected.

Overall, we think that proper numerical techniques are essential to test model validity by

numerical experiments, especially when the complexity of the model does not favour finding

explicit solutions. Moreover, such numerical methods are good at finding points of interest

in parameter space, and for formulating conjectures.
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are the same at all points in time, and have the same harvested value.
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Appendix A. Transition Probabilities

A.1. The formulation from Section 2.

We first look at the details we need for the setting from Section 2. With the notation defined

in Section 2.1, let (x, α, u) ∈ Sh ×M × U and denote by Eh,ux,α,n, Covh,ux,α,n the conditional

expectation and covariance given by

{Xh
m, α

h
m, U

h
m,m ≤ n,Xh

n = x, αhn = α, Uh
n = u},

respectively. Define ∆Xh
n = Xh

n+1 − Xh
n . Our objective in this subsection is to define

transition probabilities qh((x, k), (y, l)|u) so that the controlled Markov chain {(Xh
n , α

h
n)} is

locally consistent with respect to the controlled diffusion (2.3). By this we mean that the

following conditions hold:

(A.1)

Eh,ux,k,n∆Xh
n = (b(x, k)− u)∆th(x, k, u) + o(∆th(x, k, u)),

Varh,ux,k,n∆Xh
n = σ2(x, k, u)∆th(x, k, u) + o(∆th(x, k, u)),

Ph,ux,k,n(αhn+1 = l) = qkl∆t
h(x, k, u) + o(∆th(x, k, u)) for l 6= k,

Ph,ux,k,n(αhn+1 = k) = 1 + qkk∆t
h(x, k, u) + o(∆th(x, k, u)),

sup
n, ω
|∆Xh

n | → 0 as h→ 0.

Using the procedure developed by Kushner (1990), for (x, α) ∈ Sh×M and u ∈ U , we define

(A.2)

Qh(x, k, u) = σ2(x, k) + h|b(x, k)− u| − h2qkk + h,

qh ((x, k), (x+ h, k)|u) =
σ2(x, k)/2 +

(
b(x, k)− u

)+
h

Qh(x, k, u)
,

qh ((x, k), (x− h, k)|u) =
σ2(x, k)/2 + (b(x, k)− u)− h

Qh(x, k, u)
,

qh ((x, k), (x, l)|u) =
h2qkl

Qh(x, k, u)
for k 6= l,

qh ((x, k), (x, k)|u) =
h

Qh(x, k, u)
, ∆th(x, k, u) =

h2

Qh(x, k, u)
,

where for a real number r, r+ = max{r, 0}, r− = −min{0, r}. Set qh ((x, k), (y, l)|u) = 0

for all unlisted values of (y, l) ∈ Sh ×M. Note that supx,k,u ∆th(x, k, u) → 0 as h → 0.

Using the above transition probabilities, we can check that the locally consistent conditions

of {(Xh
n , α

h
n)} are satisfied.

Lemma A.1. The Markov chain {(Xh
n , α

h
n)} with transition probabilities {qh(·)} defined in

(A.2) satisfies the local consistence in (A.1).
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A.2. Variable effort harvesting-stocking strategies.

For (x, α, u) ∈ Sh × M × U , let Eh,ux,α,n, Covh,ux,α,n denote the conditional expectation and

covariance given by

{Xh
m, α

h
m, U

h
m,m ≤ n,Xh

n = x, αhn = α, Uh
n = u},

respectively. Define ∆Xh
n = Xh

n+1 − Xh
n . In order to approximate the process (X(·), α(·))

given in (3.1), the controlled Markov chain {(Xh
n , α

h
n)}must be locally consistent with respect

to (X(·), α(·)) in the sense that the following conditions hold

(A.3)

Eh,ux,k,n∆Xh
n = (b(x, k)− ux)∆th(x, k, u) + o(∆th(x, k, u)),

Varh,ux,k,n∆Xh
n = σ2(x, k, u)∆th(x, k, u) + o(∆th(x, k, u)),

Ph,ux,k,n(αhn+1 = l) = qkl∆t
h(x, k, u) + o(∆th(x, k, u)) for l 6= k,

Ph,ux,k,n(αhn+1 = k) = 1 + qkk∆t
h(x, k, u) + o(∆th(x, k, u)),

sup
n, ω
|∆Xh

n | → 0 as h→ 0.

To this end, we define the transition probabilities qh((x, k), (y, l)|u) as follows. For (x, k) ∈
Sh ×M and u ∈ U , let

(A.4)

Qh(x, k, u) = σ2(x, k) + h|b(x, k)− ux| − h2qkk + h,

qh ((x, k), (x+ h, k)|u) =
σ2(x, k)/2 +

(
b(x, k)− ux)+h

Qh(x, k, u)
,

qh ((x, k), (x− h, k)|u) =
σ2(x, k)/2 + (b(x, k)− ux)− h

Qh(x, k, u)
,

qh ((x, k), (x, l)|u) =
h2qkl

Qh(x, k, u)
for k 6= l,

qh ((x, k), (x, k)|u) =
h

Qh(x, k, u)
, ∆th(x, k, u) =

h2

Qh(x, k, u)
.

Set qh ((x, k), (y, l)|u) = 0 for all unlisted values of (y, l) ∈ Sh ×M.

A.3. Uncertain price functions.

Let (φ, x, α, u) ∈ Ŝh ×M×U and denote by Eh,uφ,x,α,n, Covh,uφ,x,α,n the conditional expectation

and covariance given by

{Φh
m, X

h
m, α

h
m, U

h
m,m ≤ n,Φh

n = φ,Xh
n = x, αhn = α, Uh

n = u},

respectively. Define ∆Xh
n = Xh

n+1 − Xh
n and ∆Φh

n = Φh
n+1 − Φh

n. In order to approximate

(Φ(·), X(·), α(·)) given by (2.3)-and-(3.2), the controlled Markov chain {(Φh
n, X

h
n , α

h
n)} must
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be locally consistent with respect to (Φ(·), X(·), α(·)) in the sense that the following condi-

tions hold:

(A.5)

Eh,uφ,x,k,n∆Xh
n = (b(x, k)− u)∆th(φ, x, k, u) + o(∆th(φ, x, k, u)),

Varh,uφ,x,k,n∆Xh
n = σ2(x, k, u)∆th(φ, x, k, u) + o(∆th(φ, x, k, u)),

Eh,uφ,x,k,n∆Φh
n = b0(x, k)∆th(φ, x, k, u) + o(∆th(φ, x, k, u)),

Varh,uφ,x,k,n∆Φh
n = σ2

0(x, k)∆th(φ, x, k, u) + o(∆th(φ, x, k, u)),

Ph,uφ,x,k,n(αhn+1 = l) = qkl∆t
h(φ, x, k, u) + o(∆th(φ, x, k, u)) for l 6= k,

Ph,uφ,x,k,n(αhn+1 = k) = 1 + qkk∆t
h(φ, x, k, u) + o(∆th(φ, x, k, u)),

sup
n, ω

(
|∆Xh

n |+ |∆Φh
n|
)
→ 0 as h→ 0.

To this end, we define the transition probabilities qh((φ, x, k), (ψ, y, l)|u) as follows. For

(φ, x, k) ∈ Ŝh ×M and u ∈ U , let

(A.6)

Qh(φ, x, k, u) = σ2(x, k) + h|b(x, k)− u|+ σ2
0(x, k) + h|b0(x, k)| − h2qkk + h,

qh ((φ, x, k), (φ, x+ h, k)|u) =
σ2(x, k)/2 +

(
b(x, k)− u

)+
h

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ, x− h, k)|u) =
σ2(x, k)/2 + (b(x, k)− u)− h

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ, x, l)|u) =
h2qkl

Qh(φ, x, k, u)
for k 6= l,

qh ((φ, x, k), (φ, x, k)|u) =
h

Qh(φ, x, k, u)
, ∆th(φ, x, k, u) =

h2

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ+ h, x, k)|u) =
σ2

0(x, k)/2 + hb+
0 (x, k)

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ− h, x, k)|u) =
σ2

0(x, k)/2 + hb−0 (x, k)

Qh(φ, x, k, u)
.

Set qh ((φ, x, k), (ψ, y, l)|u) = 0 for all unlisted values of (ψ, y, l) ∈ Ŝh ×M.

A.4. The combined effects of seasonality and Markovian switching.

Recall that S̃h := {(γ, x) = (k1h1, k2h2)′ ∈ R2 : ki ∈ Z≥0, k1 ≤ T/h1}. Let (γ, x, α, u) ∈
S̃h ×M× U and denote by Eh,uγ,x,α,n, Covh,uγ,x,α,n the conditional expectation and covariance

given by

{Γhm, Xh
m, α

h
m, U

h
m,m ≤ n,Γhn = γ,Xh

n = x, αhn = α, Uh
n = u},

respectively. Define ∆Xh
n = Xh

n+1 − Xh
n and ∆Γhn = Γhn+1 − Γhn. In order to approximate

(Γ(·), X(·), α(·)) given by (3.4), the controlled Markov chain {(Γhn, Xh
n , α

h
n)} must be locally
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consistent with respect to (Γ(·), X(·), α(·)) in the sense that the following conditions hold:

(A.7)

Eh,uγ,x,k,n∆Xh
n = (b(γ, x, k)− u)∆th(γ, x, k, u) + o(∆th(γ, x, k, u)),

Varh,uγ,x,k,n∆Xh
n = σ2(γ, x, k, u)∆th(γ, x, k, u) + o(∆th(γ, x, k, u)),

∆Γhn = ∆th(γ, x, k, u), if γ + ∆th(φ, x, k, u) < T,

∆Γhn = γ + ∆th(γ, x, k, u)− T if γ + ∆th(γ, x, k, u) ≥ T,

Ph,uγ,x,k,n(αhn+1 = l) = qkl∆t
h(γ, x, k, u) + o(∆th(γ, x, k, u)) for l 6= k,

Ph,uγ,x,k,n(αhn+1 = k) = 1 + qkk∆t
h(γ, x, k, u) + o(∆th(γ, x, k, u)),

sup
n, ω

(
|∆Xh

n |+ ∆Γhn
)
→ 0 as h→ 0.

To this end, we define the transition probabilities qh((γ, x, k), (λ, y, l)|u) as follows. Let

(γ, x, k) ∈ S̃h×M and u ∈ U . If γ+h1 = T , γ+h1 in the following definition is understood

as 0. Let

(A.8)

∆th(γ, x, k, u) = h1,

qh ((γ, x, k), (γ + h1, x+ h2, k)|u) =

(
σ2(γ, x, k)/2 +

(
b(γ, x, k)− u

)+
h2

)
h1

h2
2

,

qh ((γ, x, k), (γ + h1, x− h2, k)|u) =

(
σ2(γ, x, k)/2 +

(
b(γ, x, k)− u

)−
h2

)
h1

h2
2

,

qh
(
(γ, x, k), (γ + h1, x, l)|u

)
= h1qkl, for l 6= k,

qh
(
(γ, x, k), (γ + h1, x, k)|u

)
= 1− qh

(
(γ, x, k), (γ + h1, x+ h2, k)|u

)
−qh

(
(γ, x, k), (γ + h1, x− h2, k)|u

)
−
∑
l 6=k

qh
(
(γ, x, k), (γ + h1, x, l)|u

)
.

Set qh ((γ, x, k), (λ, y, l)|u) = 0 for all unlisted values of (λ, y, l) ∈ S̃h ×M.

Appendix B. Continuous–time interpolation

We will present the convergence analysis for the formulation in Section 2. The other for-

mulas can be handled in a similar way. Our procedure and methods are similar to those

in Kushner (1990), Kushner & Dupuis (1992), Song et al. (2006). The convergence result

is based on a continuous-time interpolation of the controlled Markov chain, which will be

constructed to be piecewise constant on the time interval [thn, t
h
n+1), n ≥ 0. To this end, we de-

fine nh(t) = max{n : thn ≤ t}, t ≥ 0. The piecewise constant interpolation of {(Xh
n , α

h
n, U

h
n )},

denoted by
(
Xh(t), αh(t), Uh(t)

)
is naturally defined as

(B.1) Xh(t) = Xh
nh(t), αh(t) = αhnh(t), Uh(t) = Uh

nh(t), t ≥ 0.
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Define Fh(t) = σ{Xh(s), αh(s), Uh(s) : s ≤ t} = Fh
nh(t)

. Also define

Mh(0) = 0, Mh(t) =

nh(t)−1∑
m=0

(∆Xh
m − Ehm∆Xm) for t ≥ 0.

It is obvious that

(B.2) Xh(t) = x+

nh(t)−1∑
m=0

Ehm∆Xh
m +Mh(t).

Recall that ∆thm = h2/Qh(X
h
m, α

h
m, U

h
m). It follows that

(B.3)

nh(t)−1∑
m=0

Ehm∆Xh
m =

nh(t)−1∑
m=0

[
b(Xh

m, α
h
m) + Uh

m

]
∆thm

=

∫ t

0

[
b(Xh(s), αh(s)) + Uh(s)

]
ds−

∫ t

th
nh(t)

[
b(Xh(s), αh(s)) + Uh(s)

]
ds

=

∫ t

0

[
b(Xh(s), αh(s)) + Uh(s)

]
ds+ εh1(t),

with {εh1(·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh1(t)| = 0 for any 0 < T0 <∞.

For simplicity, we suppose that inf
(x,k)

1/|σ(x, k)| > 0 (if this is not the case, we can use the

trick from (Kushner & Dupuis 1992, p.288-289)). Define wh(·) by

(B.4) wh(t) =

nh(t)−1∑
m=0

[
1/σ(Xh

m, α
h
m)
]
(∆Xh

m − Ehm∆Xh
m).

Then we can write

(B.5) Mh(t) =

∫ t

0

σ(Xh(s), αh(s))dwh(s) + εh2(t),

with {εh2(·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh2(t)| = 0 for any 0 < T0 <∞.

Using (B.3) and (B.5), we can write (B.2) as

(B.6) Xh(t) = x+

∫ t

0

[
b(Xh(s), αh(s)) + Uh(s)

]
ds+

∫ t

0

σ(Xh(s), αh(s))dwh(s) + εh(t),

where εh(·) is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh(t)| = 0 for any 0 < T0 <∞.

The performance function from (2.9) can be rewritten as

(B.7) Jh(x, α, Uh(·)) = E
∫ ∞

0

e−δsp
(
Xh(s), αh(s), Uh(s)

)
ds.
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Appendix C. Convergence

The convergence of the algorithms is established via the weak convergence method. To

proceed, let D[0,∞) denote the space of functions that are right continuous and have left-

hand limits endowed with the Skorokhod topology. All the weak analysis will be on this

space or its k-fold products Dk[0,∞) for appropriate k. We follow (Kushner & Dupuis 1992,

Section 4.6) in order to introduce relaxed control representations, which we need in order to

prove the weak convergence.

Definition C.1. Let B(U × [0,∞)) be the σ-algebra of Borel subsets of U × [0,∞). An

admissible relaxed control, which we will call a relaxed control, m(·) is a measure on B(U ×
[0,∞)) such that

m(U × [0, t]) = t for all t ≥ 0.

Given a relaxed control m(·), there is a probability measure mt(·) defined on the σ-algebra

B(U) such that m(dudt) = mt(du)dt. Let R(U× [0,∞)) denote the set of all relaxed controls

on U × [0,∞).

With the given probability space, we say that m(·) is an admissible relaxed (stochastic)

control if (i) for each fixed t ≥ 0, m(t, ·) is a random variable taking values in R(U × [0,∞)),

and for each fixed ω, m(·, ω) is a deterministic relaxed control; (ii) the function defined by

m(A× [0, t]) is F(t)-adapted for any A ∈ B(U). As a result, with probability one, there is a

measure mt(·, ω) on the Borel σ-algebra B(U) such that m(dcdt) = mt(dc)dt.

Remark C.2. For a sequence of controls Uh = {Uh
n : n ∈ Z≥0}, we define a sequence

of relaxed control equivalence as follows. First, we set mh
t (du) = δUh(t)(du) for t ≥ 0,

where δUh(t)(·) is the probability measure concentrated at Uh(t). Then mh(·) is defined by

mh(dudt) = mt(du)dt; that is,

mh(B × [0, t]) =

∫ t

0

(∫
B

δUh(s)(du)
)
ds, B ∈ B(U) and t ≥ 0.

Recall that R(U × [0,∞)) is the space of all relaxed controls on U × [0,∞). Then R(U ×
[0,∞)) can be metrized using the Prokhorov metric in the usual way as in (Kushner & Dupuis

1992, pages 263–264). With the Prokhorov metric, R(U × [0,∞)) is a compact space. It

follows that any sequence of relaxed controls has a convergent subsequence. Moreover, a

sequence (ηn)n∈N with ηn ∈ R(U × [0,∞)) converges to η ∈ R(U × [0,∞)) if and only if for

any continuous functions with compact support Ψ(·) on U × [0,∞) one has∫
U×[0,∞)

Ψ(u, s)ηn(du, ds)→
∫
U×[0,∞)

Ψ(u, s)η(du, ds)

as n → ∞. Note that for a sequence of ordinary controls Uh = {Uh
n : n ∈ Z≥0}, the

associated relaxed control mh(dcdt) belongs to R(U × [0,∞)). Note also that the limits of

the “relaxed control representations” of the ordinary controls might not be ordinary controls,

but only relaxed controls.
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With the notion of relaxed control given above, we can write (B.6) and (B.7) as

(C.1)

Xh(t) = x+

∫ t

0

[
b(Xh(s), αh(s)) + U(s)

]
mh
s (du)ds+

∫ t

0

σ(Xh(s), αh(s))dwh(s) + εh(t),

(C.2) Jh(x, α,mh(·)) = E
∫ ∞

0

e−δsp
(
Xh(s), αh(s), u

)
mh
s (du)ds.

The value function defined in (2.6) can be rewritten as

V (x, α) = sup{J(x, α,m(·)) : m(·) is an admissible relaxed control},

where

J(x, α,m(·)) := Ex,α
∫ ∞

0

e−δsp
(
X(s), α(s), u

)
ms(du)ds.

Lemma C.3. The process {αh(·)} converges weakly to α(·), which is a Markov chain with

generator Q = (qkl).

Proof. The proof is similar to that of (Yin et al. 2003, Theorem 3.1) and is therefore omitted.

�

Theorem C.4. Suppose Assumption 2.1 holds. Let the chain {(Xh
n , α

h
n)} be constructed

using the transition probabilities defined in (A.2),
(
Xh(·), αh(·), wh(·)

)
be the continuous-

time interpolation defined in (B.1) and (B.4), {Uh
n} be an admissible strategy and mh(·) be

the relaxed control representation of {Uh
n}. Then the following assertions hold.

(a) The family of processes Hh(·) =
(
Xh(·), αh(·),mh(·), wh(·)

)
is tight. As a result, it

has a weakly convergent subsequence with limit H(·) =
(
X(·), α(·),m(·), w(·)

)
.

(b) Let F(t) be the σ-algebra generated by
{
H(s) : s ≤ t

}
. Then w(·) is a standard F(t)

adapted Brownian motion, m(·) is an admissible control, and

(C.3) X(t) = x+

∫ t

0

[b(X(s), α(s)) + u]ms(du)ds+

∫ t

0

σ(X(s), α(s))dw(s), t ≥ 0.

Proof. (a) We use the tightness criteria in (Kushner 1984, p. 47). Specifically, a sufficient

condition for tightness of a sequence of processes ζh(·) with paths in Dk[0,∞) is that for any

T0, ρ ∈ (0,∞),

Eht
∣∣ζh(t+ s)− ζh(t)

∣∣2 ≤ Eht γ(h, ρ) for all s ∈ [0, ρ], t ≤ T0,

lim
ρ→0

lim sup
h→0

Eγ(h, ρ) = 0.

The tightness of {αh(·)} is obvious by the preceding lemma. The process {mh(·)} is tight

since its range space is compact. It is standard to show the tightness of {wh(·)} and {Xh(·)} –

see Song et al. (2006) for details. As a result, a subsequence ofHh(·) =
(
Xh(·), αh(·),mh(·), wh(·)

)
converges weakly to the limit H(·) =

(
X(·), α(·),m(·), w(·)

)
.

(b) For the rest of the proof, we assume the probability space is chosen as required by

Skorokhod representation. Thus, with a slight abuse of notation, we assume that Hh(·)
converges to the limit H(·) with probability one via Skorokhod representation.
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To characterize w(·), let k̃, j̃ be arbitrary positive integers. Pick t > 0, ρ > 0 and {tk : k ≤
k̃} such that tk ≤ t ≤ t+ρ for each k. Let φj(·) be real-valued continuous functions that are

compactly supported on U × [0,∞) for any j ≤ j̃. Define (φj,m)t :=
∫ t

0

∫
U φj(u, s)m(duds).

Let Ψ(·) be a real-valued and continuous function of its arguments with compact support.

By the definition of wh(·) in (B.4), wh(·) is an Fh(t)-martingale. Thus, we have

(C.4) EΨ
(
Xh(tk), α

h(tk), w
h(tk), (φj,m

h)tk , j ≤ j̃, k ≤ k̃
)[
wh(t+ ρ)− wh(t)

]
= 0,

and

(C.5)

EΨ
(
Xh(tk), α

h(tk), w
h(tk), (φj,m

h)tk , j ≤ j̃, k ≤ k̃
)[(

wh(t+ρ)
)2−

(
wh(t)

)2−ρ− εh(ρ)
]

= 0.

By using the Skorokhod representation and the dominated convergence theorem, letting

h→ 0 in (C.4), we obtain

(C.6) EΨ
(
X(tk), α(tk), w(tk), (φj,m)tk , j ≤ j̃, k ≤ k̃

)[
w(t+ ρ)− w(t)

]
= 0.

Since w(·) has continuous paths with probability one, (C.6) implies that w(·) is a continuous

F(·)-martingale. Moreover, (C.5) gives us that

(C.7) EΨ
(
X(tk), α(tk), w(tk), (φj,m)tk , j ≤ j̃, k ≤ k̃

)[(
w(t+ ρ)

)2 −
(
w(t)

)2 − ρ
]

= 0.

Thus, the quadratic variation of w(t) is t, which implies that w(·) is a standard F(t) adapted

Brownian motion.

By the convergence with probability one via Skorokhod representation, we have

E
∣∣∣∣∫ t

0

∫
U

[
b(Xh(s), αh(s)) + u

]
mh
s (du)ds−

∫ t

0

∫
U

[b(X(s), α(s)) + u]mh
s (du)ds

∣∣∣∣→ 0

uniformly in t as h→ 0.

Also, by the weak convergence of {mh(·)}, for any bounded and continuous function φ(·)
with compact support, (φ,mh)∞ → (φ,m)∞; see also Remark C.2. The weak convergence

and the Skorokhod representation imply that∫ t

0

∫
U

[
b(X(s), α(s)) + u

]
mh
s (du)ds−

∫ t

0

∫
U

[
b(X(s), α(s)) + u

]
ms(du)ds→ 0

uniformly in t on any bounded interval with probability one.

For each positive constant ρ and process ν(·), define the piecewise constant process νρ(·)
by νρ(t) = ν(kρ) for t ∈ [kρ, kρ+ ρ), k ∈ Z≥0. Then, by the tightness of (Xh(·), αh(·)), (C.1)

can be rewritten as

Xh(t) = x+

∫ t

0

∫
U

[
b(Xh(s), αh(s)) + u

]
mh
s (du)ds+

∫ t

0

σ(Xh,ρ(s), αh,ρ(s))dwh(s) + εh,ρ(t),

where lim
ρ→0

lim sup
h→0

E|εh,ρ(t)| = 0. Noting that the processes Xh,ρ(·) and αh,ρ(·) take constant

values on the intervals [nρ, nρ+ ρ), we have∫ t

0

σ(Xh,ρ(s), αh,ρ(s))dwh(s)→
∫ t

0

σ(Xρ(s), αρ(s))dw(s) as h→ 0.
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The integrals above are well defined with probability one since they can be written as finite

sums. Combining the last results, we have

X(t) = x+

∫ t

0

∫
U

[
b(X(s), α(s)) + u

]
ms(du)ds+

∫ t

0

σ(Xρ(s), αρ(t))dw(s) + ερ(t),

where lim
ρ→0

E|ερ(t)| = 0. Taking the limit as ρ→ 0 finishes the proof. �

Theorem C.5. Suppose Assumption 2.1 holds. Let V h(x, α) and V (x, α) be the value func-

tions defined in (2.6) and (2.9). Then V h(x, α)→ V (x, α) as h→ 0.

Proof. The proof is motivated by that of Theorem 7 in Song et al. (2006). Let Uh(·) be an

admissible strategy for the chain {(Xh
n , α

h
n)} and mh(·) be the corresponding relaxed control

representation. Without loss of generality (passing to an additional subsequence if needed),

we assume that
(
Xh(·), αh(·), wh(·),mh(·)

)
converges weakly to

(
X(·), α(·), w(·),m(·)

)
. We

show that as h→ 0 we have

(C.8) Jh(x, α, Uh(·))→ J(x, α,m(·)).

From (C.2) one has

(C.9) Jh(x, α, Uh(·)) = E
∫ ∞

0

e−δsp
(
Xh(s), αh(s), u

)
mh
s (du)ds.

By the weak convergence and the Skorokhod representation, as h→ 0,

Jh(x, α, Uh(·))→ E
∫ ∞

0

e−δsp
(
X(s), α(s), u)

)
ms(du)ds.

This yields that Jh(x, α, Uh(·))→ J(x, α,m(·)) as h→ 0.

Next, we prove that

(C.10) lim sup
h→0

V h(x, α) ≤ V (x, α).

For any small positive constant ε, let Ũh(·) be an ε-optimal harvesting strategy for the chain

{(Xh
n , α

h
n)}; that is,

V h(x, α) = sup
Uh(·)

Jh(x, α, Uh(·)) ≤ Jh(x, α, Ũh(·)) + ε.

Choose a subsequence {h̃} of {h} such that

(C.11) lim sup
h→0

V h(x, α) = lim
h̃→0

V h̃(x, α) ≤ lim sup
h̃→0

J h̃(x, α, Ũ h̃(·)) + ε.

Let m̃h̃(·) be the relaxed control representation of Ũ h̃(·). Without loss of generality (passing

to an additional subsequence if needed), we may assume that
(
X h̃(·), αh̃(·), wh̃(·),mh̃(·)

)
converges weakly to

(
X(·), α(·), w(·),m(·)

)
. It follows from our claim in the beginning of the

proof that

(C.12) lim
h̃→0

J h̃(x, α, Ũ h̃(·)) = lim
h̃→0

J h̃(x, α, m̃h̃(·)) = J(x, α,m(·)) ≤ V (x, α),

where J(x, α,m(·)) ≤ V (x, α) by the definition of V (x, α). Since ε is arbitrarily small, (C.10)

follows from (C.11) and (C.12).
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To prove the reverse inequality lim inf
h

V h(x, α) ≥ V (x, α), for any small positive constant

ε, we choose a particular ε-optimal strategy m(·) for (2.3)-(2.4) such that the approximation

can be applied to the chain {(Xh
n , α

h
n)} and the associated cost compared with V h(x, α). By

the chattering lemma (see for instance (Kushner 1990, Theorem 3.1)), for any given ε > 0,

there is a constant λ > 0 and an ordinary control U
ε
(·) for (2.3)-(2.4) with the following

properties:

(a) U
ε
(·) takes only finitely many values (denoted by Uε the set of all such values);

(b) U
ε
(·) is constant on the intervals [kλ, kλ+ λ) for k ∈ Z≥0;

(c) with mε(·) denoting the relaxed control representation of U
ε
(·), we have that

(X
ε
(·), αε(·), wε(·),mε(·)) converges weakly to (X(·), α(·), w(·),m(·)) as ε→ 0;

(d) J(x, α,mε(·)) ≥ V (x, α)− ε.
For ε > 0 and the corresponding λ in the chattering lemma, consider an optimal control

problem for (2.3) subject to (2.4), but where the controls are constants over the interval

[kλ, kλ + λ) for k ∈ Z≥0 and take values in Uε (the set of control values of U
ε
(·)). This

corresponds to controlling the discrete-time Markov process that is obtained by sampling

X(·) and α(·) at times kλ for k ∈ Z≥0. Let Û ε(·) denote the ε-optimal control, m̂ε(·) denote

the relaxed control representation, and let X̂ε(·) denote the associated state process. Since

m̂ε(·) is ε-optimal in the chosen class of controls, we have

J(x, α, m̂ε(·)) ≥ J(x, α,mε(·))− ε ≥ V (x, α)− 2ε.

We next approximate Û ε(·) by a suitable function of w(·) and α(·). Using the same method

as in Song et al. (2006), we can approximate Û ε(·) by the ordinary control U ε,θ(·) with the

corresponding relaxed control mε,θ(·) and the state process Xε,θ(·) such that

mε,θ(·)→ m̂ε(·)

as θ → 0 and

J(x, α,mε,θ(·)) ≥ J(x, α, m̂ε(·))− ε ≥ V (x, α)− 3ε.

Then a sequence of ordinary controls {Uh

n} for the chain {(Xh(·), αh(·))} can be constructed

with the relaxed control representation {mh
n} such that as h→ 0, the (Xh(·), αh(·),mh(·), wh(·))

converges weakly to (Xε,θ(·), α(·),mε,θ(·), w(·)). By the optimality of V h(x, α) and the weak

convergence above, we have as h→ 0,

V h(x, α) ≥ J(x, α,mh(·))→ J(x, α,mε,θ(·)).

It follows that V h(x, α) ≥ V (x, α) − 4ε for sufficiently small h. Since any subsequence of

Hh(·) has a subsequence that converges weakly and ε is arbitrary, we have lim inf
h

V h(x, α) ≥
V (x, α). The conclusion follows. �

Appendix D. Numerical Experiments

D.1. Varying the cost dependency.

We want to see what effect different specifications of the cost function have on the shape

of the optimal harvesting rate, and in particular whether it is bang-bang. We suspect that
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the convexity of the cost function leads to bang-bang (all or nothing) optimal harvesting.

In Figure 9, we have as an example a cost functions of the form C(u) =
√
|u|). The rest

of the parameters are kept the same as in Subsection 4.1. This example has concave costs,

but there is a point of convexity at 0. Experiments with other partly concave cost functions

show a similar pattern. Piecewise linear costs like C(u) = |u|, or C(u) = ln(1 + |u|), lead

to optimal controls that are step functions. However, when we use a purely concave cost

function, like C(u) = ln(1 + u/3), seen in Figure 10, we again obtain bang-bang optimal

control. Further experiments confirm the observation.
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Figure 9. Value function (left) and optimal harvesting-stocking rate (right)
for a model with switching affecting µ(α) = 4−α, and a cost function C(u) =√
|u|. Other parameters described in Subsection 4.1.
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Figure 10. Value function (left) and optimal harvesting-stocking rate (right)
for a model with switching affecting µ(α) = 4−α, and a cost function C(u) =
ln(1 + u/3). Other parameters described in Subsection 4.1.
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D.2. The Gompertz model of population growth.

In this example, the dynamics of the population size without harvesting is given by a Gom-

pertz model (Winsor 1932, Zeide 1993) of the form

dX(t) =
[
b(X(t), α(t))− U(t)X(t)

]
dt+ σ(X(t), α(t))dw(t),

where

b(x, α) = (4− α)x ln
2

x
, σ(x, α) = x,

U = {u : u = k/500, k ∈ Z,−1000 ≤ k ≤ 1500}, (x, α) ∈ R+ × {1, 2}.

The generator Q of the Markov chain α(·) is given by

q11 = −0.1, q12 = 0.1, q21 = 0.1, q22 = −0.1.
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Figure 11. Value function (left) and optimal harvesting-stocking rate (right)
for a Gompertz model with absolute harvesting, with switching affectin
b(x, α) = (4 − α)x ln 2

x
, constant price P (·) = 1, and a cost function

C(·) = u2/2. Other parameters described in Subsection 4.1.

Figure 11 shows the value function and the optimal stocking-harvesting rate as a func-

tion of population size X(t) and the environmental state α. In the Gompertz model, the

deterministic rate of growth near extinction goes to ∞, unlike in the logistic model where

it is linear. Comparing these results with the ones in Figure 2, we can also see that low

population values in the Gompertz model are much less unfavorable, both in terms of future

value and in terms of the benefit of extraction.

D.3. The Nisbet-Gurney model of population growth.

In this model, the evolution of the population size without harvesting is given by a switched

Nisbet-Gurney model; thus,

dX(t) =
[
b(X(t), α(t))− U(t)

]
dt+ σ(X(t), α(t))dw(t),

where

b(x, α) = (4− α)xe−x − x, σ(x, α) = x,

U = {u : u = k/500, k ∈ Z,−1000 ≤ k ≤ 1500}, (x, α) ∈ R+ × {1, 2}.
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The generator Q of the Markov chain α(·) is given by

q11 = −0.1, q12 = 0.1, q21 = 0.1, q22 = −0.1.
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Figure 12. Value function (left) and optimal harvesting-stocking rate (right)
for a Nisbet-Gurney model with absolute harvesting, with switching affecting
the growth rate b(x, α) = (4−α)xe−x− x, constant price P (·) = 1, and a cost
function C(·) = u2/2. Other parameters described in Subsection 4.1.

Figure 12 shows a numerical estimation of this model. The value function has the usual

features, being increasing and concave. The harvesting rate is monotonic, which is not a

surprise considering the cost choice and our discussion in Section 4.6. Again, the control in

state α = 1 shows higher harvesting and seeding, which is consistent with this state being

more favourable for growth.
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