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ABSTRACT 

Demand for public transport in cities has been and is projected to increase, putting existing 

transport networks under increasing strain. It is therefore important to investigate different 

means of managing public transport demand and one of such means is through the price 

mechanism; policy makers need to know how demand might respond to changes in fares. 

This thesis begins by first exploring the presence of and the causes for asymmetric price 

elasticities of demand using transport demand data from London Underground and 

employing regression methods. This research finds that public transport demand is more 

sensitive to fare increases than to decreases; this is majorly due to loss aversion, at least on 

the intensive margin of demand. But how does public transport demand respond to a nominal 

decrease in fares? This thesis next analyse the effect of a change in the fare structure for bus 

journeys in London on different demand measures using a regression discontinuity design, 

following Transport for London‘s implementation of a new bus price policy in September 

2016. The analyses show that the policy significantly increased the number of bus trips by 

5% and follow-up journeys by 8%. Passenger numbers increased by 4%. The results show 

that the increase in demand was not only driven by new customers, but also by more 

intensive demand by existing customers. Price manipulations affect the cost functions of both 

the transport provider and passengers. This thesis finally proposes an alternative and less 

costly measure of managing public transport demand. Nudging passengers to behave in 

certain ways through the creation of a salient social norm has the potential to be a cost-

effective mechanism to manage transport demand. Transport for London implemented in 

2017 an experiment on one of its busiest metro train platforms. Using Difference-in-

Differences method and different sets of assumptions about what the counterfactual change in 

waiting and delay times would have been in the absence of the intervention, this thesis 

analyses the effect of such intervention on dwell time and, by extension, the capacity to 

manage demand.  
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CHAPTER 1 

Introduction 

1.1 Prelude 

Transport is not normally the end objective of a rational consumer, but aids the consumption 

of other activities such as family visits, work trips, shopping trips etc. The rational economic 

man, as postulated in classical economics, is always opting to maximise utility (McFadden et 

al., 1999; Simon, 1978) such that his demand for transport is derived from the utility he 

expects to enjoy from engaging in other economic activities. Transport providers can 

therefore influence utility maximisation through their pricing policies which may have some 

effects on the generalised costs of travel. Rational passengers generally base their mode and 

route choice on many factors of which fare is considered to be the most important 

(Takahashi, 2017). Transport is a key factor in any modern economy and its cost-effective 

management and supply are crucial if the ever-growing demand is to be met and development 

sustained (Duarte et al., 2010). It is an integral part of our everyday lives; we travel to work, 

school, for business, for pleasure etc., the exchange of goods and services; both in peace and 

war times, have made transportation very important. Transport economics as a subset of 

economics studies the diverse and multiple variables that enter into the demand and supply 

functions of the movement of people from one origin to another destination.  

Whether supply precedes demand or vice versa is subject to debate, but what is beyond 

debate is that the demand for transportation has increased over the centuries making it 

important for economies to find smarter, cost effective and sustainable ways of managing it. 

Since the 1990s the rail market has exhibited strong growth (ATOC, 2013; RDG, 2016). A 

collaborative report by Infrastructure UK and the National Infrastructure Commission finds 

that passenger demand – if unconstrained by supply limitations – would increase between 
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84% and 110% between 2015 and 2040 (Preston, 2018). Network Rail (2013) predicts an 

increase in demand of 58% for non-London commuting and 115% for London commuting 

between 2011 and 2043. Preston (2018) provides evidence that a generational shift is 

occurring among ‗millennials‘ who favour public transport over car ownership and predicts a 

capacity crunch. Increases in demand will inevitably impact on the reliability of any transport 

network (Melo et al., 2011; Barron et al., 2013) and increase transport costs. This is reflected 

in the performance of many transport providers, e.g., declining punctuality in London and the 

South East counties (RDG, 2016). How can transport networks cope with these increases in 

demand in the face of capacity constraints?  

The traditional methods of managing public transport demand are by hard or soft means. 

Hard means include capital infrastructural investments to increase capacity, while soft means 

have to do with non-capital ways of managing demand, like price manipulation, information 

dissemination and campaigns (see Offiaeli and Yaman, 2021). Price manipulation is 

essentially the use of different price mechanisms to control the demand for public transport. It 

can be deduced from many extant literature that when transport fares increase the demand for 

public transport decreases (Balcombe et al., 2004a; Bresson et al., 2003a; Gordon and 

Willson, 1984; Holmgren, 2007; McLeod et al., 1991). What is rare in literature is the 

analysis of the response of public transport demand to an actual decrease in price, because 

such occasions are scarce in practice. Most literature use inflation indexed prices to model the 

response of public transport demand to a decrease in price, but that ignores the importance of 

salience in consumer behaviour given that price changes impact on suppliers and passengers 

alike, depending on the direction of the change.  

To begin, an empirical investigation of the existence of asymmetry in the response of demand 

to price increases and decreases is presented, using transport demand data. This finding is 

usually attributed to psychological phenomena such as loss aversion or to the different pace 
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with which price changes become known to potential buyers. The first dissertation chapter 

analyses the presence of and the causes for asymmetric price elasticities of demand for the 

London Underground. Studying public transport demand offers unique advantages: the 

service cannot be stored and must be consumed at the point of purchase, and the consumption 

of public transport cannot be preponed or postponed. During the period studied some nominal 

fares on the network have increased while others have decreased, offering a unique 

opportunity to observe price elasticities for both cases. Comparing changes in price 

elasticities after a price decrease to changes after a price increase, it is evident that demand is 

more sensitive to price increases than to decreases (by 0.7 to 0.9 percentage points), in 

addition, there is evidence that loss aversion contributed to this asymmetry at least on the 

intensive margin of transport demand. 

Next, an analysis of the impact of a nominal decrease in ticket fares on transport demand is 

presented. Conventional economics postulates that when prices drop individuals demand 

more of the commodity, but would this hold true in the case of transport demand? In a bid to 

control demand public transport providers may want to know if a price policy would have an 

impact on both or either the extensive and/or the intensive margin(s) of demand. Fare 

reductions in public transport is not the norm, but this research utilises a rare situation in 

public transportation to analyse the effect of a change in the fare structure for bus journeys in 

London on different demand measures using a regression discontinuity design. The research 

utilises data obtained from Transport for London following the implementation of a new bus 

price policy in September 2016, in which a follow-up journey made within the hour of first 

paying for a journey became free. Drawing on millions of individual paid and unpaid 

journeys, the effect of this price policy on the number of paid bus journeys, follow-up 

journeys and bus passenger numbers is estimated. The results suggest that the policy 

significantly increased the number of bus trips by 5% and follow-up journeys by 8%. 
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Passenger numbers increased by 4%. There is also clear evidence that the increase in demand 

was not only driven by new customers, but also by more intensive demand by existing 

customers. 

Fares could be used to manage public transport demand, but fare manipulations have some 

effects on the generalised cost functions of both the public transport provider and users. 

Using fares to control demand impacts positively or negatively on both the transport provider 

and passengers depending on the direction of change, this thesis therefore proposes an 

alternative measure of managing transport demand. Social norm is presented as an alternative 

and a cost-effective measure of managing transport demand when enacted and implemented 

appropriately. It is widely accepted that norms are important in influencing human behaviour 

(Sherif, 1936; Cialdini et al., 1991; Merton, 1957; Coleman, 1990). Society and norms are 

ancient concepts, the rudiments of what constitutes a society have inter-generationally 

remained the same, but societal acceptability of norms and indeed values are temporally 

dynamic. For a norm to be considered as ‗social‘ it must be acceptable to and shared by other 

members of the society (Elster, 1989). Using a statistical technique widely employed in 

econometrics, this thesis quantifies the effects of nudging passengers to behave in a certain 

way through the creation of a salient social norm. Transport for London (TfL) implemented 

in the second half of 2017 an experiment on one of its busiest metro train platforms. The 

platform surface was painted to highlight the exact location of the train doors once it comes 

to a full stop and to direct passengers to wait in parts of the platform that would not obstruct 

passengers from alighting from the train and leaving the platform. Using Difference-in-

Differences method the thesis estimates the effects of this intervention on platform waiting 

and delay times, using different sets of assumptions about what the counterfactual change in 

waiting and delay times would have been in the absence of the intervention. The analyses 

suggest that the intervention has reduced train waiting times by up to 6.6% indicating the 
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efficacy of using well implemented social norms to control transport demand. This reduction 

came about mainly through reducing delay times of trains once they are delayed. The 

reductions tend to occur during peak traffic hours. The implied cost-savings amount to a 

return of £6 per £1 investment. 

1.2 Research Aims 

The crux of this thesis is to analyse the response of transport demand to changes in transport 

fares, as well as propose an alternative, cost-effective and less intrusive measure of managing 

transport demand; no less than by empirical investigation. This has some important academic 

and policy implications. It presents researchers with a template to build on the effects on 

public transport demand when prices change, especially in the downward direction. Future 

research work on public transport price decreases could now benefit from this empirical study 

where actual prices decreased and the effects on demand articulated thereby reducing the 

reliance on real price decreases. It also has important policy implications for transport 

providers as they may need to estimate the effects of a proposed fare or revenue policy on the 

level of demand. Another important implication of this thesis is that public transport 

providers could adopt the findings and recommendations by sponsoring cheaper alternative 

ways of managing demand in the face of capacity constraint and increasing demand.  In 

summary, the aims of this thesis are; 

 To provide empirical evidence of the existence of asymmetry in the relationship 

between price and demand. 

 To analyse the response of public transport to a nominal decrease in price. How does 

public transport respond to a salient decrease in price?  



10 | P a g e  
 

 And then to analyse the effectiveness of social norms as a cost effective and efficient 

alternative measure of managing public transport demand. Is the creation of a social 

norm effective in managing public transport demand?   

This thesis sets out by initially analysing the presence of asymmetry in the response of 

demand to prices changes using transport demand data. Policy makers should be aware that 

demand might not respond equally to fare rises and reductions. The next step is to examine 

the efficacy of the price mechanism in controlling public transport demand by particularly 

looking at the response of public transport demand to a nominal decrease in fares, as fare 

rises is considered normal in public transportation. This is important for all the reasons 

highlighted above; no less than that the success of a price policy depends largely on how 

demand responds. This thesis finally presents and proposes a less intrusive alternative to price 

mechanism as a means of controlling demand, using empirical evidence. But first, a review of 

the extant literature is presented in chapter two.  
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CHAPTER 2 

Literature Review 

2.1 Prelude 

This thesis is closely related to two strands of literature. Behavioural economics and the 

literature on social norms have analysed the effectiveness of relatively cheap and non-

intrusive measures to affect behavioural changes resulting in socially desirable outcomes. In 

public transport a traveller is typically initially faced with the decision of whether or not to 

make a trip (trip generation or production), then they have to decide where to travel to (trip 

distribution), which is followed by the mode and route choice decision, all subject to a budget 

constraint of time and money costs, completing a fully priced typical Origin – Destination 

(O-D) matrix. Like other normal goods the demand for public transport is inversely related to 

fares normally included in the calculation of the generalised cost (Chen et al., 2011; Nunns 

and Denne, 2016; Rodrigue et al., 2016). Unlike normal goods public transport demand has 

the opposite relationship with income; the higher the personal income of a passenger and the 

lower the demand for public transport because people would rather drive than use public 

transport as personal income rises. Therefore any attempt at the inducement or curtailment of 

public transport demand must be geared towards the demand driving variables. These include 

service levels, socio economic factors, fares, quality of service, trip purpose, travel of travel, 

journey time, amongst others (Chen et al., 2011; Currie and Delbosc, 2011; Paulley et al., 

2006a), with varying effects on an individual‘s demand function (see Nijkamp and Pepping, 

1998; Bonnel and Chausse, 2000; Bresson et al., 2003; Canavan et al., 2018). Demand is 

frequently found to react differently to price increases than to price decreases; this is known 

as price asymmetry and is usually attributed to psychological factors. 
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2.2 Evidence of price asymmetry 

Textbook models of consumer demand assume that consumers make decisions considering 

price levels. However, the observation of price stickiness in the downward direction suggests 

asymmetric consumer responses to positive and negative price changes. Marshall (1920) 

remarked that demand functions may be irreversible as demand does not necessarily revert to 

‗original‘ levels when prices reduce to previous levels. Price asymmetry has been tested for 

in the fields of economics, psychology and marketing (Bidwell et al., 1995; Farrell, 1952; 

Gately, 1992; Heidhues and Kőszegi, 2008; Kalyanaram and Winer, 1995; Mazumdar et al., 

2005; Winer, 1986), as well as in agriculture and banking (see also: Chen et al., 2004; 

Hannan and Berger, 1991; Neumark and Sharpe, 1992; Panagiotou and Stavrakoudis, 2015; 

Pick et al., 1990; Ward, 1982).  

One important reason for asymmetric price elasticities is the existence of a reference price. 

Consumers have memory and price expectations in that they can remember prices in the past 

(Kalyanaram and Winer, 1995; Muth, 1961) which then form their portfolio of reference 

prices; any increases or decreases in commodity prices would be compared to the reference 

prices which then results in a new demand function. Another reason is the existence of lags 

which enter into the price transmission process (Kitamura, 1990). Using household data from 

Great Britain, Cornelsen et al. (2018) show evidence of asymmetric consumer behaviour and 

loss aversion. Bonnet and Villas-Boas (2016) find that customers in the French coffee market 

react differently to positive and negative price changes; demand for coffee is less elastic to 

price increases than to price decreases. For Canada Noel (2009) concludes that gasoline 

prices tend to react more quickly to crude oil increase than to decreases. Borenstein et al. 

(1997) test and confirm that gasoline prices respond asymmetrically to increases and 

decreases in crude oil prices. Energy demand responds more quickly to price increases than 

to price decreases (Gately and Huntington, 2002).  
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In public transport, the only study that we are aware of that looks at the asymmetric response 

of transport demand to changes in price is by Chen et al. (2011). Utilising monthly commuter 

rail trip and fares data from New Jersey Transit from January 1996 to February 2009 for 

journeys to and from New York City, Chen et al. (2011) conclude that increases in gasoline 

prices lead to an increase in public transport demand, while decreases in gasoline prices do 

not lead to a significant decrease in transit demand. On the other hand, an increase in transit 

fares results in a reduction in demand while reduction in fare has no significant effect on 

demand. However, they consider real prices of transport, and price decreases occur only 

through inflation rather than a nominal reduction. Do commuters really respond to real price 

reductions which are very gradual and not salient in reality? The psychological reaction to a 

very gradual change in prices over an extended period would be very different to a sudden 

and discontinuous one. As such, reactions to a price increase and decrease are unlikely to be 

comparable. This thesis differs from any existing work on asymmetry because the data 

presents nominal reduction in fare prices which allows for a unique and rare empirical 

quantification of the response of demand to a reduction in public transport fares.  

2.3 Effects of fare changes on public transport demand 

The demand for public transport is a derived demand, which is generally driven by variables 

such as; service levels, socio economic factors, fares, quality of service, trip purpose, time of 

travel, journey time, income, amongst others (Chen et al., 2011; Currie and Delbosc, 2011; 

Paulley et al., 2006a), with varying effects on an individual‘s demand function (see Nijkamp 

and Pepping, 1998; Bonnel and Chausse, 2000; Bresson et al., 2003; Canavan et al., 2018). 

These variables however, should not be considered in isolation from each other as their 

effects on public demand functions can be complex and intertwined (Balcombe et al., 2004b; 

Paulley et al., 2006a). For instance, like other normal goods the demand for transport is 

inversely related to fares. Unlike other normal goods transport demand is assumed to have the 
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opposite relationship with income; personal higher income is generally associated with 

increased mobility, leading to increase in the number of trips made by all modes of 

transportation (Dargay and Hanly, 2002; Goodwin et al., 2004). However, it is likely that 

higher incomes increase the possibility of owning a car and access to a car is assumed to 

result in decline in public transport trips. Therefore care must be taken in drawing such 

conclusions as there are many background factors that should enter into the income-demand 

function and the empirical evidence is not clear cut (Balcombe et al., 2004b; Holmgren, 

2013). Furthermore evidence presented in Dargay and Hanly (2002) is in agreement 

regarding the long run negative sign of income elasticity, suggesting bus transport to be an 

inferior good.  

This thesis concentrates on the effects of fare changes on public transport demand because 

the manipulation of fares is fundamental to the operation of public transport. The effects of a 

fare increase or decrease are usually measured in elasticities. As noted earlier, the response to 

a fare increase may not be equal and opposite to the response to a fare decrease. Fare 

elasticities are dynamic and may be affected by the magnitude of the fare change. They vary 

over time (peak or off peak), across journey purpose and periods (short, medium, or long 

runs), as well as across modes and locations (Dargay and Hanly, 2002; Paulley et al., 2006a). 

Monthly information on the different factors that influence public transport ridership, like 

fuel prices, unemployment rates, population and traditional bus fares, were used by Guzman 

et al., (2020) to estimate the effects of a nominal fare increase in Colombia‘s Bogotá. They 

find that the elasticity‘s absolute value decreases from − 0.565 (1 week) to − 0.408 after a 

month and that low-income users, as expected, are more sensitive to fare changes. 

In estimating the response of transit demand to fare changes Nijkamp and Pepping (1998) 

compare 12 studies from 4 European countries (Finland, the Netherlands, Norway and the 

United Kingdom). They conclude that the range of elasticity values is quite wide, from as low 
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as −0.15 in the UK study to as high as −0.8 in one of the studies for the Netherlands. Anciaes 

et al., (2019) show that manipulating price structures by reducing the complexity would lead 

to a substantial reduction in demand (11% to 45%, depending on route segment). By contrast, 

increasing complexity by adding new flexible or advance tickets (valid on the services 

immediately before or after the chosen service) would increase demand by anything from 4% 

to 15%. In the same vein Sharaby and Shiftan, (2012) use data from Israel‘s city of Haifa‘s 

new fare policy to evaluate travel behaviour. Haifa‘s new and integrated fare policy changed 

the historically complex per-boarding system to a simple five-zone fare system with free 

transfers, reducing fares for many passengers thereby making it very similar to London‘s Bus 

Hopper policy. They show a significant increase in single ticket sales of up to 25% over the 

first year following the launch of the reform, while the survey they carried out points to an 

increase of 7.7% in passenger trips and 18.6% in boarding numbers. It should be stated 

Haifa's public transportation system is 81% by bus; 17% by sherut, privately owned, fixed-

route, communal transport services; and 2% by Israel rail, with a population of about  

1million (Sharaby and Shiftan, 2012). Unlike London with multiple modes of transportation 

and a population that trumps Haifa‘s by a mile.  

Variation in elasticity also depends on location. People who live in urbanised and high 

population density areas tend to rely more on public transport while those in low populated 

areas depend more on their cars and therefore have higher fare elasticities. The effects of fare 

changes on competing modes depend on the transport network integration; the greater the 

interchange ability the lower the fare elasticity. Aside from ticket fares other pricing methods 

such as congestion charges, parking charges and emission charges could also be implemented 

to encourage public transport ridership. Chen et al., (2011) use trip and fares data for travel 

between and New Jersey and New York to conclude that a rise in transit fares leads to a 

decrease in demand while a drop in fares has no significant effect on demand. We note that 
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they consider only real prices from which they calculated price decreases using inflation 

index rather nominal or actual price changes.  

Brechan (2017) performs an analysis of the results from 15 projects involving price reduction 

and 9 projects involving increased service frequency on some transit corridors in Norway. 

The results show that both price reduction and increased service frequency generated public 

transport demand, in particular, the average effect for the price reduction projects is reported 

to be 30%. Again, all the route and fare trials included in this meta-analysis took place in 

smaller cities (population<150,000), where the public transit system consists of almost 

exclusively buses, which probably accounts for the magnitude of the elasticity obtained. But 

our research differ from Brechan (2017) in that our data is set in London where passengers 

have a choice of alternative modes in a highly integrated transport system. The ease with 

which passengers could switch modes means that there are available substitutes which would 

have some effects on individual choice and behaviour, making our research significantly 

different. Prices are generally sticky in the downward direction and particularly so in public 

transport. Our data set is unique and presents an appropriate setting to explore the responses 

of demand to an actual decrease in price rather than an inflation indexed decrease used in 

most, if not all, existing literature.   

2.4 Public transport demand elasticity: an overview 

Elasticities are widely used in public transport delivery including the prediction of ridership 

and revenue effects of changes in any of the variables in the demand or supply functions 

(e.g., transit fares, service level, road tolls, parking fees, infrastructural changes.) The 

elasticity of demand for public transport to changes in fares varies among networks, but there 

is consensus in the literature on the direction of the effects (Balcombe et al., 2004a; Bresson 

et al., 2003a; Gordon and Willson, 1984; Holmgren, 2007; McLeod et al., 1991).  In general 
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the short run elasticity of transport demand to changes in fares range from -0.25 to -0.8 while 

the long run elasticities are normally much larger and differ between networks (Abrate et al., 

2009; Dargay and Hanly, 2002; Paulley et al., 2006b). One rule of thumb states that for every 

3% fare increase there is a corresponding reduction in transit ridership by 1% (Litman, 2017), 

but many other factors interplay in the fares-demand function. Matas (2004) examined the 

long-term impact of the introduction of a travel card scheme in a transport network using 

aggregate demand functions. The results conclude that passengers are highly responsive not 

just to fare changes but to other quality variables too, which is consistent with Balcombe et 

al. (2004). Paulley et al. (2006) report that bus-fare elasticities are around -0.4 in the short run 

and -1.0 in the long run. Gillen (1994) report that car owners have a greater elasticity (-0.41) 

than people who depend on public transport (-0.10), and work trips are less elastic than 

shopping or leisure trips. Lythgoe and Wardman (2002) find fare elasticities to depend on the 

direction of travel; elasticities were found to be lower for passengers travelling into the city 

than for those travelling outwards. Dunkerley et al. (2018) provide evidence on bus fare and 

journey time elasticities as well as recommendations on the values to be used in subsequent 

demand forecasting, appraisal and policymaking.  There are reported differences between rail 

and bus elasticities depending on the method used. Rail transit fare elasticities tend to be 

relatively low in more advanced cities, probably a function of city transport priorities and 

policies, level of transport, environmental integration, as well as average income. Canavan et 

al. (2018) find negative fare elasticities in the range of -0.25 and -0.4 in the long run for miles 

travelled and number of trips, while the long run income elasticity is found to be positive for 

both miles travelled and number of trips. On the other hand, positive long run elasticities 

between 0.47 and 0.56 are reported for both passenger kilometres and passenger journey 

models. It should be stated that the study only used a proxy for metro fares estimated through 
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dividing annual revenue from fares by the annual number of passengers, not nominal fare 

increases or decreases.  

2.5 Hard and soft means of managing platform demand 

If the final outcome of a change in price on public transport demand is dependent on both 

economic and psychological factors, it then presents the case for investigating other cheaper 

and non-intrusive measures of effecting a desired change in demand through influencing a 

change in human behaviour. These measures include interventions such as communication 

campaigns, pricing and other techniques that support and encourage behavioural change in a 

certain direction (Brög et al., 2009; Cairns et al., 2008; Taylor, 2007; Avineri and Goodwin, 

2010; Bamberg et al., 2011). Managing congestion and capacity through the control of train 

platform dwell time is now receiving increased attention among researchers and operators 

(Avineri, 2011). Platform dwell time is an important variable that changes service level and 

reliability, so its extension or inconsistency can be detrimental to a network‘s capacity and 

ability to provide reliable service (Thoreau et al., 2016; Barron, 2016). It is the time a train 

remains on the platform while boarding and alighting takes place safely, this could be 

influenced or enhanced through hard and, or soft measures. 

Hard measures represent heavy investments which include capital expenditure on structural 

adjustments like platform expansion, installation of platform edge doors (PEDs), station 

restructuring, line re-signalling and procurement of new rolling stock. Given train and 

platform infrastructure, the amount of boarding and alighting passengers, and in-train 

occupancy have been shown to explain 70% or more of dwell time variation (Lin and Wilson, 

1992; Puong, 2000; Rashidi, Ranjitkar, and Hadas, 2014). Examining passenger movement in 

a laboratory setting, Fujiyama et al. (2014) find that adjusting train width and platform step 

height improved boarding and alighting. This hard measure is a useful consideration in the 
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construction of new metro stations or procurement of new rolling stock but would be a very 

expensive investment for an existing network to retrofit platforms or adjust train doors. 

Karekla and Tyler (2012) analysed the Victoria line in London to determine the possibility of 

reducing dwell time by making specific changes to train system hardware which entails both 

trains and platform. Using data from London Underground and on-site observation they 

conclude that adjusting the width of train doors and platform step height are most effective in 

reducing dwell time, like the conclusion arrived at by Thoreau et al. (2016). Again, this is an 

expensive hard measure especially for an existing network. It would cost London 

Underground approximately £1.5m per platform to adjust the height (Karekla and Tyler, 

2012).  

Turning to soft measures, these can be very cost effective and as efficient in controlling dwell 

time. These measures include non-intrusive interventions such as communication campaigns, 

pricing and other techniques that support and encourage behavioural change in a certain 

direction. (Brög et al., 2009; Cairns et al., 2008; Taylor, 2007; Avineri and Goodwin, 2010; 

Bamberg et al., 2011). Pricing to control demand and therefore platform dwell time is 

effective (Douglas et al., 2011; Liu and Charles, 2013; Currie and Delbosc, 2011; Qu et al., 

2018). But it comes at a cost to the transport consumer, and it may encourage modal switch to 

less energy efficient modes. Increasing or decreasing the level of service provision (supply of 

transport) is a major variable in managing platform dwell time. Subject to line or network 

capacity, running more or less service helps in managing demand and dwell time in high 

frequency networks. 

Platform communication systems can also encourage passengers to pass along platforms to 

get on less crowded carriages of an arriving train (Olaverri-Monreal et al. 2018; Moncrieff, 

2015), but can become counter intuitive as they may encourage ‗bunching up‘ of passengers 
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around the doors of the supposedly emptier carriage. In a field experiment carried out at 

Schiphol Airport station in Amsterdam, van den Heuvel (2016) finds that adjusting train 

stopping positions decreased dwell time by 30 seconds during the peak, however Oliveira et 

al. (2019) opine that the method does not help with crowd control and is only effective in 

facilitating the boarding of less busy train carriages. 

Another major variable in the dwell time management equation is passenger behaviour 

(Oliveira et al., 2019; Barron, 2016; De Ana Rodriguez et al., 2016; Harris, 2006; 

Wiggenraad, 2001). It is widely accepted that norms are important in influencing human 

behavior (Sherif, 1936; Cialdini et al., 1991; Merton, 1957; Coleman, 1990). Norms can be 

private or social. For a norm to be considered ―social‖, it must be acceptable to and shared by 

the other members of the society. Its sustainability is a function of both the approval and 

disapproval of the members of the society (Elster, 1989). The distinguishing feature of a 

social norm is that it does not benefit any one individual but (parts of) society, and the 

punishment for non-conformity cannot be enforced legally but through social sanctions 

imposed by others. Private norms on the other hand result in self-imposed sanctions by 

individuals such as the feelings of embarrassment, shame, and guilt when they do not 

conform (Sugden, 1987; Elster, 1988 & 1989; Coleman, 1990; Young, 2008; Garnett, 2009). 

Both private or personal and social norms influence how passengers behave in public spaces. 

It has been argued that social norms yield pareto-efficient scenarios (Coleman, 1990; Ullman-

Margalit, 1977) and are quite efficient and effective in the equitable regulation of social 

welfare (Akerlof, 1976; Bicchieri et al., 2018; Nolan, 2015). In a situation where a norm 

leads to a pareto-inefficient situation it is expected to disappear with time. This is the case 

with most, if not all gender, race, or sexual orientation bias norms (Bicchieri et al., 2018).  
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Perhaps the closest interventions to the Transport for London experiment are platform 

communications and markings encouraging passengers to pass along the platform or not to 

hold train doors. Seriani and Fernandez (2015) evaluate some interventions, including a keep-

out zone on platforms. While simulation results suggest a potential to reduce dwell times by 

50%, their laboratory experiments found no effect of the keep-out zone, most likely due to 

observed non-compliance by passengers waiting on the platform. This thesis is thus one of 

the few which seeks to analyse the implementation of such soft interventions and its impact 

on dwell times. To the best of our knowledge it is the only one which does so in a real-world 

setting rather than in computer simulations or laboratory experiments.  

 

 

 

 

 

 

 

  

 

 

 



22 | P a g e  
 

CHAPTER 3 

Is the Price Elasticity of Demand Asymmetric? Evidence from Public 

Transport Demand
*
 

Firat Yaman
1
, Kingsley Offiaeli

2
 

3.1 Prelude 

As noted earlier, the demand for many products is frequently found to react differently in 

magnitude to price increases than it does for price decreases, as well as the importance of this 

phenomenon to public transport policy makers. This finding is often rationalised in terms of 

loss aversion as customers may perceive a price increase as a loss and a price decrease as a 

gain. If customers are loss averse as explained in Kahneman and Tversky (1979), then they 

will react more strongly to a price increase than they do to an equivalent price decrease. An 

alternative explanation is the lag in information dissemination or diffusion. Price changes 

might be immediately known to frequent buyers but not to those who do not buy a good but 

would buy it if they had knowledge of the new price. Therefore, the response of demand can 

depend on the timely dissemination of the appropriate information (Cason, 1994).  

The literature on asymmetric price elasticities faces several obstacles in identifying, let alone 

interpreting, these elasticities. Studies based on demand for goods (e.g., sold in supermarkets) 

cannot distinguish between the purchase and the consumption of a good. Suppose customers 

buy more of a good when it is under price promotion and stock it. After the promotion ends 

demand does not revert to its initial level since customers have stocked up on it. This appears 

as an asymmetric response, but consumption of the good might not be affected at all. Since 

                                                             
*
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services cannot be stocked demand for services is not subject to such a misinterpretation due 

to storing and stockage. Furthermore, price changes occur rarely in isolation and are often 

disguised as or bundled with other promotions such as bundling of goods, or offering a free 

product (―buy 1, get 2‖, see Ahmetoglu et al. (2014)). Finally, it is not clear whether the past 

price of the good in question serves as the reference price. Indeed, the literature has also 

considered a competitor‘s price (Hardie et al., 1993), a price index (Dossche et al., 2010), or a 

‗usual‘ price (Ahrens et al., 2017) as reference price and found support for asymmetric 

responses for all of those.  

Transport offers more compelling reasons to be analysed when looking for asymmetries in 

price elasticities. The purchase of many services can be delayed. Think of a haircut. A person 

might have an optimal point of time to have their hair cut but might be willing to prepone or 

postpone to take advantage of a promotion. They will, however, need to get a haircut 

eventually. These considerations again confound an accurate quantification of how sensitive 

demand really is to prices. Public transport offers a promising laboratory to study the 

relationship between demand and prices for those reasons: it is almost always consumed at 

the point of purchase, and it leaves very little to no room to be postponed due to price 

considerations. On the London Underground there are no price promotions, and since 

transport is rarely consumed for its own sake, the choice is rarely about whether to travel or 

not, but rather by which mode and perhaps what time of the day.
1
 For the same reason we do 

not need to take into account phenomena such as brand loyalty and related reactions (e.g., a 

feeling of ‗betrayal‘ when prices increase). Transport for London is a public monopoly and as 

such there is no competitor and there are no sales campaigns comparable to the marketing of 

a for-profit good. Any demand reactions to fare changes are therefore very likely to be pure 

price effects. 

                                                             
1
 Passengers can choose to travel during off-peak hours and pay a lower fare. 
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Transport is a key sector to any economy and as such of interest per se. The movements of 

goods and people are essential to the workings of an economy. The demand for transport thus 

grows with increasing population, employment, and trade. Transport will also play a key role 

in the global effort to combat climate change. Transport authorities in many economies now 

pledge and indeed implement policies to encourage the use of public transport wherever 

possible, as well as encourage private modes powered by renewable energy. Many transport 

users make their mode and route choice based on several factors, but perhaps most 

importantly based on their costs (Takahashi, 2017). It is therefore vital for policy makers and 

public transport authorities to understand how their price policies affect demand and the 

choice of travel mode.  

A seldom opportunity is exploited in which the demand for public transport is observed both 

after nominal price increases – which are frequently observed – and an episode of nominal 

price decreases – a very rare occurrence. In 2016 Transport for London (TfL) decreased the 

fares of some journey types by rezoning the area which resulted in passengers paying actual 

cheaper nominal fares. This chapter is unique apart in that we estimate and analyse the 

asymmetry in the response of demand to changes in nominal fares using data from actual fare 

reductions from the world‘s oldest metro. Our identification relies on estimating how price 

elasticities have changed for journeys which were affected by this rezoning, compared to how 

they have changed for journeys which were not affected.  

The results suggest that demand both in terms of journeys and passengers reacts 

asymmetrically between fare increases and fare decreases. The estimates of the difference 

between price-increase and price-decrease elasticities range from 0.18 to 1.00 percentage 

points. Further light could be shed on the underlying reasons for these asymmetries by 

looking at different measures of demand (journeys, passengers, and frequent passengers). 
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While not conclusive, the results suggest that at least some of this asymmetry is attributable 

to loss aversion. 

3.2 Background and institutional features 

London Underground is the oldest network in the world. The network consists of 17 different 

lines connecting 270 stations and extends to 250 miles of track making it the 7
th
 largest (in 

served passengers) and 3
rd

 longest (in kilometres of track) network in the world. In 2017 the 

network served about 4 million passenger journeys per day (Offiaeli and Yaman, 2021). 

The network is managed and operated by Transport for London which revises their fares at 

the beginning of a year. It is divided into different zones, with zone 1 being the most central, 

and zone 9 the outermost zone. Most stations on the network fall into exactly one of the 

zones, but some stations fall on the boundary between two zones. The fare that a customer 

pays depends on the zones of the origin and the destination, the time of travel, and on several 

other features such as group travel and discounts. If the origin and/or destination station is a 

boundary zone, then the cheapest fare is applied to the customer. For example, a journey from 

a station on the boundary between zones 2 and 3 to a station in zone 1 will be treated as a 

journey between zones 1 and 2 rather than a journey between zones 1 and 3, as the former is 

cheaper. This is an important feature for our identification of asymmetries in price 

elasticities.  

TfL typically revises their fares at the beginning of the year. All fares increased by £0.10 on 

January 2
nd

, 2015. In the following year, the full peak fare for travel from a zone 1 station to a 

zone 1 or zone 2 station (and vice versa) increased from £2.30 to £2.40. At the same time, 

seven stations in East London were rezoned. These stations had previously been in zone 3 but 

became boundary stations (zone 2/3) after the rezoning, effectively reducing the travel fare 

between them and a zone 1 station from £3.30 to £2.90. Figure 3.1 illustrates the re-zoning 
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and lists the re-zoned stations. In November 2016, the decision was taken to freeze fares on 

the London Underground for the next four years.  

Figure 3.1: Stations and zones before and after the rezoning 
1
 

 

The most common form of payment is pay as you go (PAYG). TfL issues their own PAYG 

travelcard (Oyster) which accounted for 85% of all bus and rail journeys within London in 

                                                             
1 Before rezoning in 2016, stations under Rezoned were in zone 3 (upper panel). After rezoning, they became 

boundary stations on the boundary between zones 2 and 3 (lower panel). Adjacent stations are stations which 

directly connect to one of the rezoned stations. 
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2013 (TfL, 2014). PAYG has been extended to contactless payment by bank card and mobile 

devices in 2014, and contactless payment has accounted for 40% of all PAYG payments in 

2017. For both Oyster and contactless payments, the fare is automatically calculated based on 

the stations where the passenger enters and exits, and daily caps are automatically applied.  

3.3 The Data 

The data are from TfL‘s ODX database which records information on origin, destination, 

time, and payment information of each journey undertaken on the TfL network since mid-

2014. TfL kindly consented to extract the number of peak period journeys and passengers 

(more on this below) distinguished by origin station, destination station, and day.
1
 We only 

consider pay-as-you-go journeys. We aggregate origin and destination stations to fall under 

one of the following categories: Zone 1, zone 2, zone 3, zone 4, boundary zone 2/3, boundary 

zone 3/4, and stations which were rezoned in 2016. Finally, we also identify stations which 

are adjacent to the rezoned stations both in the inbound direction (A2) as well as in the 

outbound direction (A3), resulting in nine categories. We refer to any combination of distinct 

origin and destination categories as a journey type. Our data thus has 81 journey types. We 

consider only journeys made during peak hours which were subject to the full fare (without 

discounts). 

To illustrate, the left part of figure 3.2 displays the natural log of journeys undertaken from 

zone 3 to zone 1 stations during peak times and subject to the full fare from June 2014 to July 

2016. The figure displays some regularities. Most data points fall into the band between 11 

and 12, or 60,000 and 160,000 journeys. Demand drops both before the Christmas period and 

during school holidays and picks up again shortly after New Year‘s Day and in late summer. 

                                                             
1
 We are indebted to Graeme Fairnie and Vasiliki Bampi, both TfL, for their help and patience. 
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There are also occasional outliers, mostly in the downward direction, which are typically 

driven by problems on the network, industrial action, or other events.  

Figure 3.2: Log of daily demand during peak times and at full fare from zone 3 to zone 1. 

Left: all observations. Right: after removing troughs and outliers. 

 

A distinction between a journey, which is any trip undertaken on the Underground, is made 

from passengers. A passenger might engage more than once on a journey type on the same 

day. In that case we would register only one passenger, but several journeys for this journey 

type.  It should be noted that only separate payments sources are identified (the card from 

which payment was taken) rather than passengers per se, so that passenger numbers will be 

measured with some error (e.g., two people using the same debit card to travel, or the same 

person using two separate cards to travel, on the same day). 

As fare changes become effective on the 2
nd

 of January of each year, our identification of 

price elasticities will be driven by changes in demand which occur between years, in a local 

time window around the first day that a new fare schedule becomes effective. We first drop 

demand observations which fall between the 20
th

 of December and the 9
th
 of January. We 

also eliminate observations which fall into the school holiday season by keeping only 

observations which are up to 85 days away from the 2
nd

 of January in either direction. We 

refer to such an 85-day period on either side of the New Year as a period (e.g., the 85 days 

9
.5

1
0

1
0

.5
1
1

1
1

.5

ln
d
e
m

a
n
d

02-01-2015 02-01-2016

Journeys from zone 3 to zone 1 stations

1
1

.2
5

1
1

.3
1
1

.3
5

1
1

.4
1
1

.4
5

1
1

.5

ln
d
e
m

a
n
d

02-01-2015 02-01-2016

Journeys from zone 3 to zone 1 stations



29 | P a g e  
 

before the 2.1.2015 are period 1, the 85 days after the 2.1.2015 are period 2, etc.). Finally, we 

eliminate any remaining outliers by dropping those demand observations which are more than 

two standard deviations away from their cell average, where cells are defined by period, and 

journey type. The data after applying all those filters can be seen on the right part of figure 2.  

We complement the TfL data with weekly petrol price information (price paid at pump 

station) from the UK Department for Business, Energy, and Industrial Strategy. 

3.4 Model specification and estimation 

This research work looks at three different measures of demand: Journeys, passengers, and 

frequent passengers. Journeys of a journey type are the number of journeys made for that 

journey type during peak hours during a day (week). Passengers of a journey type are distinct 

passengers who make a journey of this journey type during peak hours during a day (week). 

Frequent passengers for a journey type are distinct passengers who travel at least 10 times 

both during the period before and after the fare changes. We also look at two different time 

aggregates: daily, and weekly. For example, weekly passenger data between zone 1 and zone 

3 would be the number of distinct passengers who travelled between these two zones during a 

week. Using the above samples will allow us to differentiate between the intensive and 

extensive margins of demand changes, and therefore inform on the underlying reasons for 

asymmetric price elasticities. As we show below, journey demand reacts more strongly to 

price increases than price decreases. A behavioural explanation would be the presence of loss 

aversion provided that loss aversion at an individual level translates to loss aversion in 

aggregate demand. Customers perceive a strong loss of value when fares increase and reduce 

their demand. The value gain experienced by a fare decrease is not as strong as the 

corresponding loss and therefore demand does not increase as much. This is the loss aversion 

hypothesis.  
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An alternative explanation is that while fare increases are common knowledge among all who 

use public transport, fare decreases might not be known by some who do not use public 

transport but would use it if they had knowledge of the actual fares. This effect might even be 

more important in our case, as fare decreases come about through a re-zoning of certain 

stations, and the fare implications might not be immediately clear to some potential 

passengers. This is the asymmetric information hypothesis.  

A third possibility might be that the travel mode choice set might change after a fare increase, 

e.g., someone might buy a car, and even if fares revert to their initial level, the person might 

not find it worthwhile to use public transport. However, this argument cuts both ways, and 

seems unlikely to be an important determinant of short-run demand for public transport. The 

frequent passenger sample eliminates the asymmetric information channel. Since the sample 

only contains passengers who travelled at least 10 times both under the old and the new fare 

regime, we assume that these passengers were fully aware of the fares. Any change in 

demand among this sample is thus on the intensive margin, and we attribute asymmetric 

responses to price changes to loss aversion. As a test of loss aversion, this is our preferred 

sample. Distinguishing between journeys and passengers also informs about the margin of 

adjustment and underlying reasons for asymmetry, though perhaps not as cleanly as the 

frequent passenger sample. Suppose the demand in terms of journeys (D), passengers (N), 

and average number of journeys per passenger (d), is given by: 

                 

                 

                 

Where P is the fare, and the subscripts denote journey type j and time t. Since           , 

the demand elasticity in terms of journeys could be decomposed as:          
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If the number of passengers is fully inelastic (    ), then all adjustment must happen on 

the intensive margin, and the information asymmetry channel can be ruled out as all 

passengers would be exposed to the fares before and after fare revision. If, however, journey 

elasticity can be fully explained by the passenger elasticity, then all the adjustment happens 

on the extensive margin, and we cannot know to which extent the loss aversion and 

information asymmetry factors contribute.  

The analysis based on daily demand is complemented by an analysis based on weekly 

demand, as daily data can lead to misleading classifications of journeys and passengers. 

Consider the example in figure 3.3. Both persons A and B travel every day before the fare 

increase. The daily data thus counts two journeys, and two passengers, every day. After the 

fare increase, A travels on odd, and B on even days of the week, and the daily journey data 

counts one journey, and one passenger every day. It seems that the entire adjustment 

happened at the extensive margin. But this is not true when we consider the whole week, 

where we still see two passengers, and half as many journeys as before. The latter scenario 

reflects more closely what we understand to be the intensive and extensive margins of 

demand. Weekly data reduces our sample by 80% compared to daily data. 

Figure 3.3: A two person daily/weekly travel pattern sample 

Time  Person Monday Tuesday Wednesday Thursday  Friday 

Before fare change A × × × × × 

  B × × × × × 

After fare change A × 

 

× 

 

× 

  B   ×   ×   
Note: Both persons A and B travel every day before the fare change but travel on alternating days after the fare 

change. For daily data we observe a 50% drop of journeys and of distinct passengers. For weekly data we 

observe a 50% drop of journeys, but no drop in distinct passengers. 

 

Thus, the empirical model accounts for demand specific to journey types, a quadratic time 

trend to capture global demand trends, a discontinuous change in demand on the 2
nd

 of 
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January, and petrol prices. For this analysis the most general specification also allows for 

price elasticities specific to journeys between zone 1 and rezoned stations, and for demand to 

be auto-regressive of order 1: 

ln(Y)it = αi + β1t + β2t
2
 + γ1Dt(t > January 2

nd
) + γ2ln(petrol)it  

+ δ1ln(fare)it + δ2Di(Rezone)×ln(fare)it + κln(Y)i,t-1 + uit  (3.1) 

The subscript i refers to journey type, and t to time. Observations are daily or weekly. Y is 

demand, Dt(t > January 2
nd

) is 1 if t is after January 2
nd

, and 0 else. Di(Rezone) is 1 if the 

journey type is between zone 1 and a rezoned station. The dummy variable Dt captures any 

effects which relate to the beginning of a new year (e.g., return to work, general fare 

increases, etc.). The coefficient δ1 is the elasticity for journey types other than between zone 

1 and rezoned stations, while Di is a dummy that assumes the value of 1 if the station is a 

rezoned station and zero otherwise. 

Finally, petrol is the price of petrol at the beginning of the week, and fare is the fare in 

pounds. The main parameters of interest are δ1 and δ2. Long term elasticities are calculated as 

       . Our estimates for κ range from 0.14 to 0.28, providing strong evidence against a 

unit root. Long-term elasticities are thus higher than short-term elasticities by 16% to 39%. 

The model does not contain cross-price elasticities as these cannot all be identified in a model 

with year fixed effects, considerably complicating the interpretation of coefficients.
1
 

However, any price effects that are common to all journey types will be absorbed by the 

dummy for the new year Dt(t > January 2
nd

). The fare increases in 2015 increased fares for 

all journey types, so that substituting between journey types due to new fares would be very 

unlikely. For the fare changes in 2016, we complement our main analysis by looking at 

                                                             
1
 Let there be j = 1,…,J journey types, and t = 1,2 years. Let     be the price of journey type j in year t, and      

a dummy variable equal to 1 if t = 2. Then the price of journey type 1 in any year can be written as     

(∑    
 
   )  (∑    

 
   )      (∑    

 
   )  , that is,     is a linear combination of a constant, the prices of other 

journeys, and a dummy for year 2 multiplied by a factor. 
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whether demand for journey types which had their fares changed crowded out (in) demand 

for other journey types.  

Since an observation is a record of (the log of) how many journeys were undertaken for a 

certain journey type, observations are weighted by the average demand for the journey type 

over the sample period, so that more frequent journey types receive a higher weight in the 

estimation. Standard errors are clustered by journey type – period combinations.1 For 

comparison purposes we also estimate our model under the restrictions δ2 = 0 and κ = 0.  

3.5 Results and analyses  

Table 3.1 reports estimated journey price elasticities for our entire sample of journey types 

(elasticity is denoted by ε). Model 1 does not allow for asymmetry (δ2 = 0) and does not 

differentiate between short and long-run elasticity (κ = 0), the second model freely estimates 

δ2, the third model freely estimates κ and the fourth model places no restriction on either of 

those coefficients. We estimate these elasticities separately for periods 1 and 2 (2014/15, 

left), and for periods 3 and 4 (2015/16, right). The short-term elasticities in models (1) and 

(3) in 2014/15 are not significantly different from 0, suggesting very inelastic price 

elasticities of journey demand. If we allow for journeys between zone 1 and stations which 

were rezoned in 2016 to have a different elasticity (models (2) and (4)), then our results 

suggest that these journey types exhibit a stronger response to fare changes than the 

remaining journey types. Petrol prices are found to have a positive effect on public transport 

demand. This result is robust throughout all our estimations. We focus our discussion on the 

short-run elasticities, as these are better identified by the changes in demand around the time 

of the fare changes and generally show the same asymmetry features as long-run elasticities. 

 

                                                             
1
 We also considered Newey-West standard errors, but this did not generally change the inference. Significance 

levels for results in table 3 were reduced. 
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Table 3.1: Price elasticities trips - full sample 

          
Year  2014/15 

 

2015/16 

Model (1) (2) (3) (4)   (1) (2) (3) (4) 

Short term ε -0.13 

 

-0.08 

  

-0.71*** 

 

-0.55*** 

 

 

(0.20) 

 

(0.14) 

  

(0.07) 

 

(0.07) 

 
Short term ε - not rezoned 

 

-0.15 

 

-0.10 

  

-0.87*** 

 

-0.68*** 

  

(0.20) 

 

(0.14) 

  

(0.06) 

 

(0.07) 

Short term ε - rezoned 

 

-0.74** 

 

-0.54** 

  

-0.57*** 

 

-0.43*** 

    (0.35)   (0.27)     (0.08)   (0.06) 

Long term ε 

  

-0.11 

    

-0.72*** 

 

   

(0.19) 

    

(0.07) 

 
Long term ε - not rezoned 

   

-0.13 

    

-0.90*** 

    

(0.19) 

    

(0.07) 

Long term ε - rezoned 

   

-0.75** 

    

-0.57*** 

        (0.36)         (0.08) 

Petrol price ε 0.68*** 0.68*** 0.52*** 0.53*** 

 

1.04*** 1.04*** 0.75** 0.76** 

 

(0.20) (0.20) (0.18) (0.18) 

 

(0.36) (0.36) (0.31) (0.34) 

Separate elasticity rezoned stations no  yes no yes 

 

no  yes no yes 

Includes lagged demand no  no yes yes 

 

no  no yes yes 

Number of observations 8,163 8,163 8,082 8,082 

 

7,981 7,981 7,900 7,900 

Note: Results are price elasticities of demand. Standard errors in parentheses. * Significant at 10%. ** 

Significant at 5%. *** Significant at 1%. 

 

In 2015/16 rezoning became effective and fares for journeys between rezoned and zone 1 

stations dropped by 12%. Demand for journey types not affected by re-zoning became more 

elastic (from -0.15 in 2014/15 to -0.87 in 2015/16), while demand for journeys affected by re-

zoning (which saw fare decreases in 2015/16) became less elastic (from -0.74 in 2014/15 to -

0.57 in 2015/16). The difference in these elasticity changes between rezoned and non-rezoned 

journey types is 0.89 and significant at 1% (see also table 3.3). 

Does this suggest that price-elasticities are asymmetric? There are two challenges to this 

interpretation. First, only two journey types actually saw their fares increase in 2015/16, 

while all journey types became more expensive in 2014/15. Thus, the change in elasticity for 

journeys not affected by re-zoning is driven by sample selection (in terms of journey types) 

more than a genuine change in elasticities. Second, the observations who use journey types 

which involve fare decreases are not comparable to the remaining observations, in particular, 
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their price elasticities are different. We address the first point below by looking only at the 

sub-sample of journey types which saw their fares change in either direction in 2015/16. The 

second objection is corroborated by the different elasticities between these journey types 

within a year (e.g., -0.15 for non-rezoned, and -0.74 for rezoned journey types within the 

same period 2014/15). But to say that the difference between price elasticity changes is 

driven by population differences would require a stronger, and less plausible, argument that 

the change in price elasticities between these two populations, all else equal, must be 

different. This is perhaps the case, and we cannot disprove it. We therefore progress on the 

assumption that price elasticities would have changed in the same direction and by the same 

magnitude if prices for journeys affected by rezoning had changed by the same percentage as 

journeys not affected by rezoning, making our estimate of price elasticity asymmetries 

effectively a difference-in-differences estimator. 

It is possible that demand for journey types whose fares did not change in 2016 are inelastic 

relative to demand for journey types involving rezoned stations, while demand for journeys 

whose fares increased in 2016 are more elastic – regardless the direction of the price change. 

This would explain why elasticity estimates increased for journey types not affected by 

rezoning. To see if this is the case, we repeat our estimations restricting our sample to only 

those journeys which see a change in fares in 2016. The results can be seen in table 3.2. The 

price elasticities for this smaller sample are much larger than for the full sample in 2014/15, 

but we still observe that demand for journeys involving rezoned stations is more elastic.  
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Table 3.2: Price elasticities trips - small sample 

          
Year 2014/15 

 

2015/16 

Model (1) (2) (3) (4)   (1) (2) (3) (4) 

Short term ε -1.84*** 

 

-1.49*** 

  

-0.66*** 

 

-0.52*** 

 

 

(0.46) 

 

(0.38) 

  

(0.05) 

 

(0.05) 

 
Short term ε - not rezoned 

 

-2.10*** 

 

-1.71*** 

  

-0.71*** 

 

-0.56*** 

  

(0.54) 

 

(0.44) 

  

(0.11) 

 

(0.11) 

Short term ε - rezoned 

 

-2.79*** 

 

-2.31*** 

  

-0.62*** 

 

-0.49*** 

    (0.80)   (0.65)     (0.09)   (0.07) 

Long term ε 

  

-1.76*** 

    

-0.67*** 

 

   

(0.44) 

    

(0.06) 

 
Long term ε - not rezoned 

   

-2.02*** 

    

-0.72*** 

    

(0.51) 

    

(0.13) 

Long term ε - rezoned 

   

-2.72*** 

    

-0.63*** 

        (0.75)         (0.09) 

Petrol price ε 0.58 0.58 0.54 0.54 

 

1.20 1.20 0.95 0.95 

 

(0.42) (0.42) (0.40) (0.40) 

 

(0.69) (0.69) (0.60) (0.60) 

Separate elasticity rezoned stations no  yes no yes 

 

no  yes no yes 

Includes lagged demand no  no yes yes 

 

no  no yes yes 

Number of observations 911 911 902 902 

 

898 898 889 889 

Note: Results are price elasticities of demand. Standard errors in parentheses. * Significant at 10%. ** 

Significant at 5%. *** Significant at 1%. 

 

However, in 2016 demand for the same journeys is less elastic than demand for journeys 

which have seen fare increases (the difference between the two elasticities is significant at the 

5% level in both years). The difference in the elasticity changes is 0.78 which is in the 

ballpark of the 0.89 estimated for the complete sample.  

Table 3.3 reports results of estimated price elasticities in a model with asymmetric price 

elasticities, and     (no separate long-run elasticity) based on daily data. For journeys (left 

panel), we have discussed the results above: the elasticity for journeys affected by re-zoning 

become less elastic (as the elasticities are negative) compared to journeys not affected by re-

zoning by 0.89 percentage points. This holds both for the full and the small sample of journey 

types.  For passengers, we observe that for the full sample the elasticity for journey types 

involving fare increases changes from -0.47 to -0.60 (demand becomes more elastic, though 

not significantly so).  
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Table 3.3: Price elasticities with daily data 

            

 

Journeys 

 

Passengers 

 

Frequent passengers 

 

2014/15 2015/16 Difference 

 

2014/15 2015/16 Difference 

 

2014/15 2015/16 Difference 

Full sample 

           
Short term ε - not rezoned -0.15 -0.87***  0.72*** 

 

0.12 -0.81***  0.93*** 

 

-0.16 -0.13*** -0.03 

 

(0.20) (0.06) (0.21) 

 

(0.23) (0.06) (0.24) 

 

(0.18) (0.05) (0.19) 

Short term ε - rezoned -0.74** -0.57***    -0.17 

 

-0.47 -0.60*** 0.13 

 

-0.75* -0.54*** -0.20 

 

(0.35) (0.08) (0.36) 

 

(0.43) (0.02) (0.43) 

 

(0.42) (0.02) (0.42) 

Difference  0.59** -0.30*** 0.89*** 

 

 0.59** -0.21**  0.79*** 

 

-0.59* -0.41*** -0.18 

 

(0.23) (0.12) (0.25) 

 

(0.28) (0.08) (0.29) 

 

(0.33) (0.06) (0.34) 

Number of observations 8,163 7,981     8,121 8,195     8,263 8,203   

Small sample 

           

Short term ε - not rezoned 

-

2.10*** -0.71*** -1.39*** 

 

-2.14*** -0.68*** -1.46** 

 

-2.90*** -0.14* 2.76*** 

 

(0.53) (0.11) (0.54) 

 

(0.69) (0.11) (0.69) 

 

(0.76) (0.08) (0.75) 

Short term ε - rezoned 

-

2.79*** -0.62*** -2.17*** 

 

-2.80** -0.64*** -2.16** 

 

-3.82*** -0.54*** 3.28*** 

 

(0.78) (0.09) (0.79) 

 

(1.02) (0.04) (1.01) 

 

(1.14) (0.03) (1.12) 

Difference 0.69**  -0.09 0.78** 

 

0.66* -0.04 0.70* 

 

-0.92** -0.40*** 0.52 

 

(0.29) (0.17) (0.33) 

 

(0.37) (0.15) (0.40) 

 

(0.45) (0.10) (0.46) 

Number of observations 911 902     912 903     936 919   

Note: Results are price elasticities of demand and their differences over time and between stations which were and were not rezoned. 

Standard errors in parentheses. * Significant at 10%. ** Significant at 5%. *** Significant at 1%. The number of observations varies 

between Journeys, Passengers, and Frequent passengers because the trimming of outliers (see Data section) does not affect the exact same 

observations across the three demand measures. 

 

At the same time, passenger demand for other journey types sees a significant increase in its 

elasticity, from 0.12 to -0.81, resulting in a significant difference in differences of 0.79 (0.70 

in the smaller sample). The implied difference in differences estimates for journeys per 

passenger (the intensive margin) are 0.11 in the full, and 0.20 in the small sample. As most of 

the elasticity changes are driven on the extensive margin, we cannot say whether the 

observed asymmetries are better explained by loss aversion or information asymmetry. If we 

only look at frequent passengers, we also find a positive difference between elasticity 

changes (0.18 for the full, 0.52 for the small sample) but they are not significantly different 

from zero.  

We report results for weekly data in table 3.4. Journey demand appears to have become more 

elastic for both journey types which were and were not affected by rezoning in the full 

sample (from 0.14 to -0.64 and from -0.35 to -0.64 respectively). However, the estimates 
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from the small sample suggest that elasticities have decreased (from -1.5 to -0.58 and from -

1.89 to -0.66). In either case, the resulting difference in elasticity changes is estimated as 0.49 

for the full, and 0.31 for the small sample, but their standard errors are too large to infer that 

journey demand exhibits an asymmetry in price elasticities.  

 

Table 3.4: Price elasticities with weekly data 

            

 

Journeys 

 

Passengers 

 

Regular passengers 

 

2014/15 2015/16 Difference 

 

2014/15 2015/16 Difference 

 

2014/15 2015/16 Difference 

Full sample 

           

Short term ε - not rezoned -0.14 -0.64*** 0.5*** 

 

0.57*** 

-

0.64*** 1.21*** 

 

0.23** -0.18*** 0.41*** 

 

(0.22) (0.07) (0.23) 

 

(0.13) (0.05) (0.14) 

 

(0.11) (0.02) (0.11) 

Short term ε - rezoned -0.35 -0.64*** 0.29 

 

0.09 

-

0.17*** 0.25 

 

-0.49*** -0.19*** -0.30 

 

(0.37) (0.06) (0.37) 

 

(0.27) (0.02) (0.27) 

 

(0.27) (0.01) (0.27) 

Difference 0.21** 0 0.21** 

 

-

0.49*** 

-

0.47*** 0.96*** 

 

 0.72*** 0.01 0.71*** 

 

(0.24) (0.10) (0.26) 

 

(0.19) (0.07) (0.20) 

 

(0.23) (0.03) (0.23) 

Number of observations 1,532 1,493     1,563 1,556     1,611 1,596   

Small sample 

           

Short term ε - not rezoned 

-

1.50*** -0.58*** -0.92** 

 

-0.44 

-

0.54*** 0.09 

 

-2.21*** -0.17*** -2.04*** 

 

(0.40) (0.13) (0.42) 

 

(0.34) (0.07) (0.35) 

 

(0.29) (0.04) (0.29) 

Short term ε - rezoned 

-

1.89*** -0.66*** -1.23* 

 

-0.95* 

-

0.20*** 0.75 

 

-3.23*** -0.19*** -3.04*** 

 

(0.77) (0.07) (0.61) 

 

(0.53) (0.03) (0.53) 

 

(0.47) (0.01) (0.47) 

Difference 0.39 0.08 0.31 

 

0.51** 

-

0.33*** 0.84*** 

 

1.02** 0.02 1.00*** 

 

(0.29) (0.19) (0.33) 

 

(0.23) (0.10) (0.25) 

 

(0.25) (0.05) (0.26) 

Number of observations 171 164     175 173     179 178   

Note: Results are price elasticities of demand and their differences over time and between stations which were and were not rezoned. 

Standard errors in parentheses. * Significant at 10%. ** Significant at 5%. *** Significant at 1%. The number of observations varies 

between Journeys, Passengers, and Frequent passengers because the trimming of outliers (see Data section) does not affect the exact same 

observations across the three demand measures. 

 

For passengers, we do observe statistically significant differences, and the asymmetry is close 

to one percentage point (0.96 and 0.84).  This would imply that the elasticity for journeys per 

passenger has increased more for journey types affected by rezoning than the elasticity for 

other journey types.
1
 For frequent passengers we observe similar magnitudes as for 

                                                             
1
 Note that the elasticity for journeys per passenger is inferred according to the equations 1) to 3) rather than 

estimated. 
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passengers, with implied price elasticity asymmetries of 0.71 percentage points for the full 

and 1.00 percentage point for the small sample. This last result is perhaps the most 

convincing evidence to suggest that there is price elasticity asymmetry at least on the 

intensive margin. A fare increase results in fewer people using the London Underground in a 

week. An equivalent fare decrease, however, does not recover the same passenger numbers 

that would be lost to the equivalent fare increase. Since these passengers are exposed to both 

the new and the old fares many times, this asymmetry is not driven by the information 

asymmetry channel, but rather the loss aversion channel. 

We now investigate whether the fare changes in 2016 have affected demand for journey types 

whose fares have not changed. Figure 3.4 illustrates this situation. Both passengers A and B 

travel to central London (zone 1). Passenger A lives close to a rezoned station but prefers to 

walk to the nearest zone 2 station before the rezoning to pay a cheaper fare. However, the 

fare advantage disappears once the rezoned station becomes a boundary station in 2016. 

Similarly, passenger B lives close to a zone 3 station and travels from that station before the 

rezoning. After the rezoning, they walk to a rezoned station since the fare from a rezoned 

station to a zone 1 station became lower after the rezoning.  

We analyse whether the fare change for journeys between rezoned stations and zone 1 

stations has also affected travel demand for journeys between zone 1 stations and stations 

which are adjacent to rezoned stations (henceforth adjacent journeys) on either side (in- or 

outbound). Similarly, since zone 1 to zone 1 or 2 stations became more expensive, we analyse 

whether this influenced travel between zone 1 and zone 3 stations. 
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Figure 3.4: An illustration of a two person travel pattern. 

 

Note: Person A walks to the zone 2 station before (to pay a lower fare), and to the boundary station after 

rezoning. Person B walks to the zone 3 station before, and to the boundary station after rezoning (to pay a lower 

fare). 

 

The results for this analysis are reported in table 5. In the full sample we find positive but 

mostly insignificant cross-elasticities. Only for weekly demand do we find evidence that 

fewer passengers travelled from stations adjacent to rezoned stations to zone 1 stations (and 

vice versa) after the rezoning – a cross-elasticity of 0.17% (last two columns). Interestingly, 

for the small sample we find strong evidence for crowding out of demand for the journey 

types affected by the fare increase in 2016, but not for journeys affected by rezoning. Some 

trips which previously would have been undertaken between zone 1 and zone 2 stations have 

been substituted for travel between zone 1 and zone 3 after the fare for travel between zone 1 

and zone 2 increased.  
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Table 3.5: Cross price elasticities in 2015/16 

        

 

Daily 
 

Weekly 

 

Journeys  Passengers 
Frequent  
passengers  

Journeys  Passengers 
Frequent  
passengers 

Full sample 

       Short term ε - not 

rezoned 0.09 0.06 0.10 

 

0.17 -0.04 0.04 

 
(0.13) (0.13) (0.11) 

 
(0.14) (0.16) (0.07) 

Short term ε - rezoned 0.04 0.08 0.12** 

 

0.02 0.17*** 0.17*** 

  (0.06) (0.06) (0.05)   (0.07) (0.06) (0.06) 

Small sample 

       Short term ε - not 

rezoned 0.97*** 0.61* 0.75** 

 

1.68*** 1.51*** -1.42 

 

(0.33) (0.32) (0.35) 

 

(0.56) (0.43) (0.90) 

Short term ε - rezoned -0.27** 0.09 0.12 
 

-0.33 -1.53 1.64*** 

  (0.12) (0.09) (0.09)   (0.19) (1.15) (0.41) 
Note: Results are demand elasticities of journey types which are the closest substitutes to journey types which 

saw a change in their fares with respect to that fare change. Standard errors in parentheses. * Significant at 10%. 

** Significant at 5%. *** Significant at 1%.  

 

We have analysed whether public transport demand reacts more strongly to price increases 

than to price decreases. We have exploited a rare occasion of a nominal fare decrease on the 

London Underground to estimate the price elasticity for a price decrease and compared this to 

occasions when fares increased. Our results suggest that demand is indeed more responsive to 

price increases than to price decreases. Our estimates of the difference between price increase 

and price decrease elasticities range from 0.67 to 0.89 percentage points, where our estimates 

are differentiated by the exact sample of journey types, and the period over which we 

measure demand (daily and weekly). We also differentiate between demand for journeys and 

demand in terms of distinct passengers and find that passenger demand also displays 

significant elasticity asymmetries. This differentiation and looking at a sample of only 

frequent users of the London Underground helps us to identify the underlying reason for the 

asymmetry. We consider loss aversion, and information asymmetry as possible causes.  
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The evidence here is not conclusive, but our preferred specification suggests that loss 

aversion plays an important role in explaining why demand reacts more strongly to a price 

increase than to a price decrease. But how does public transport demand respond specifically 

to a nominal decrease in fares? Given the asymmetric response of demand to fare changes, a 

fare policy aimed at returning demand to previous level would largely depend on how 

demand responds to the proposed changes in fares. We examine such reactions in detail in the 

following chapter. 
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Chapter 4 

 

The effect of an unconventional fare decrease on the demand for 

bus journeys
*
 

Kingsley Offiaeli
1
, Firat Yaman

2
 

 

4.1 Prelude 

To encourage the use of public transport and combat the effects of climate change transport 

policy makers invoke different transport demand management measures including hard and 

soft techniques (see Offiaeli and Yaman, 2021a). Transport providers can therefore influence 

transport decisions through their pricing policy which may have some effects on the 

generalised costs of travel. Transport for London, which oversees the transport network in 

London, implemented one such policy in 2016, namely the Bus Hopper Policy. A follow-up 

bus journey formerly paid for became free on the 12
th
 of September so long as it was 

undertaken within the hour of paying for the first one;
3
 akin to a ‗buy one get one free within 

the hour‘ price promotion. Most of the extant literature on the effects of public transport fare 

changes on demand are based on fare increases. Perhaps the most pertinent literature is the 

work by Brechan (2017) who performs an analysis of the results from a trial involving 15 

projects of price reduction and 9 projects of service increase on some transit corridors in 

Norway. However, the trials included in this meta-analysis took place in small cities 

(population<150,000), where the public transit system consists almost exclusively of buses.  

                                                             
*
We are greatly indebted to Vasiliki Bampi of Transport for London who extracted the data and who patiently 

answered all our queries.  
1
 City, University of London, and Transport for London. 

2
 City, University of London. 

3 In 2018 free journeys were extended to all follow-up journeys by bus or tram within the hour of the first one. 

We do not consider this extension here. 
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Urban public transport offers a good laboratory to gauge the price effects on demand. Firstly, 

it is consumed at the point of purchase so that a journey purchase truly reflects demand. 

Goods, on the other hand, can be purchased when prices are low for future consumption, 

leading observers wrongly to conclude that a price decrease increased demand. Secondly, 

while changes in fares are communicated to the public, non-profit transport providers 

typically do not try to ‗lure‘ customers into buying their service by combining fare changes 

with other marketing tactics which further confound the estimation of price elasticities (see 

Offiaeli and Yaman, 2021b).   

This chapter is unique in several ways. Firstly, the research is set in London with a large 

population and many modes of transport including trams, trains, subways, bicycles, cars, 

taxis, buses, cable car, etc. Unlike previously studied cases, London passengers have a choice 

of alternative modes in a highly integrated transport system. The ease with which passengers 

could switch modes means that there are available substitutes which would have some effects 

on individual choice and behaviour. Secondly the Bus Hopper policy represents a visible 

reduction in fares. Prices are often sticky in the downward direction and doubly so in public 

transportation. Scenarios where fares become nominally cheaper are very scarce in practice. 

This research is set apart because it examines a rare situation in London where journeys that 

were hitherto paid for became free.  

Thirdly the policy provides a case study for an atypical change in fare policy. It is more akin 

to a ‗buy one get one free‘ promotion than an actual price change. It is an economic truism 

that when prices drop more goods are demanded, but would this classical economic theory 

hold true when prices change in a rather unconventional manner?  

This research adds to the body of literature on the effects of price policy changes on demand 

and travel behaviour by using data obtained on bus demand before and after the policy 
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implementation. A rare situation in public transportation is exploited where the price of a 

mode of transport is reduced subject to certain conditions and we analyse how passengers 

respond to the price reduction. The identification relies on estimating how passengers react to 

the sudden change in price after the implementation date compared to before; only the 

immediate impact of the new fare structure is considered.  

The average treatment effect is estimated using a sharp regression discontinuity 

design (RDD) as it enables the exploitation of a discontinuity in the treatment 

assignment to identify a causal effect (see Angrist and Pischke, 2009). An RDD is 

appropriate when a single continuous forcing variable (in this case time) is used to 

determine whether a trip is in the control or treatment group.  

The analyses show that the London Bus Hopper price policy had significant effects 

on the number of initial trips (by 5%) as well as follow-up journeys (by 8%). It also 

led to an increase of passenger numbers by 4%. Bus journeys per passenger also 

increased, so that the total increase in bus usage was driven both by more intensive 

use by existing customers as well as new customers choosing to use the bus; a clear 

indication of the efficacy of the price mechanism in managing public transport 

demand.  

4.2 The Bus Hopper Policy 

Buses are by far the most used mode of transport in London, accounting for slightly over 2.2 

billion passenger journeys in 2018 compared to just over 1.5 billion mustered by London 

Underground and Light Railway combined (TfL, 2019). On the 12
th
 of September 2016, the 

Mayor of London, through TfL, introduced the Bus Hopper Policy. The policy was 

announced by press release a week prior to its stars, on the 5
th
 of September. The policy was 

introduced for two broad reasons. Firstly, it enables millions of passengers to save on their 
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generalised costs, in terms of fares and time, on the London transport networks. It benefits 

travellers on lower income who mostly use the bus network. The idea is that passengers could 

switch modes since travelling by bus would become cheaper. Secondly as a positive 

externality of the cheaper travel policy visitors and Londoners alike are encouraged to use 

public transport instead of cars to help reduce both congestion and pollution. By agreeing a 

'Low Emissions Bus Zone' and only buying hybrid or zero-emission double-decker buses the 

Mayor of London, working with TfL, aims to reduce vehicle emissions within London 

significantly. At its introduction the Bus Hopper Policy allowed passengers to make one 

follow-up journey on London's bus network for a nominal fare of £1.50 within one hour from 

the first paid journey. Once a passenger touches in using a valid payment method the Hopper 

fare is automatically applied to the journeys of anyone who uses the same card or mobile 

device to pay as they go. In other words, passengers could ‗hop‘ from one bus to another at 

no extra cost so long as it was done within the hour. This represents real savings for millions 

of people who live, work in, or visit London. September 2019 figures showed that more than 

450,000 bus and tram trips were made every day using the Hopper fare, since its launch 160m 

journeys were made using the hopper fare (London Assembly, 2018).  

4.3 The Data 

The data are from TfL‘s ODX database which records every bus journey on London‘s 

network. Only paid weekday journeys are considered. The data used are individual journeys 

made between the 14
th
 of June 2016 and the 11

th
 of December 2016, which represent data for 

3 months either side of the policy implementation date amounting to 6 months in total. To 

validate that changes in 2016 are driven by the new policy rather than other (seasonal) factors 

the same data for the year 2015 is used. For each passenger-day combination, there is data on 

the number of bus trips, distinguished by ‗First trips‘ (subject to payment under the Hopper 
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policy) and ‗Hops‘ (not subject to payment, see also below). In addition the daily total 

number of distinct people travelling on the buses in the study period (Passengers) was 

obtained. Each passenger is identified by a unique number, the total number of distinct 

passenger numbers are then summed to get the total passengers. Since the policy was 

introduced on the 12
th

 of September, time (measured in days) presents the forcing variable. 

Payment for bus journeys are made by tapping a payment card on the on-board fares 

collection equipment.  

The analysis of the effect of the Hopper fare is complicated by a peculiarity in the data 

collection. Customers could tap in when entering a bus by using a so-called Oyster card. This 

card contained pre-paid credit and had to be topped up when the existing credit did not cover 

the fare. This was still the predominant payment method in 2017. Alternatively, customers 

could pay by tapping in their bank debit card. These payments were introduced in 2012 but 

started to be registered on TfL‘s ODX database only in August 2016, which unfortunately is 

just before the Hopper policy became effective. Therefore, the analysis is restricted to bus 

journeys which were paid for by Oyster card only. As such, the analysis does not cover the 

entire demand for bus travel unless we assume Oyster card users to behave the same as 

customers paying by bank card.  

The following variables are considered:    

4.3.1 First Trips and Hops 

First trips are trips which would be paid for under the Bus Hopper Policy. This terminology 

is applied irrespective of whether the Hopper policy was in place or not. Every first bus 

journey on a day counts as a first trip. A bus journey which is undertaken within an hour of a 

first trip is a hop (e.g., would be free under the Hopper policy). A bus journey that is 
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undertaken after a hop is a first trip (since the Hopper policy allows for ONE free follow-up 

journey). A bus journey undertaken after a first trip which was more than an hour ago, is 

again a first trip (since the follow-up journey must be undertaken within one hour). If more 

people use the bus, then first trips should increase. If people use the bus more frequently, 

then both variables should increase. It is also possible that in response to the Hopper fare 

people time their trips such that they substitute a hop for a first trip (e.g., finishing their 

shopping quicker to take advantage of a hop). 

4.3.2 Passengers 

Passengers represent the daily aggregate number of distinct people using the bus network. As 

stated earlier, the data contains unique travel information of each individual passenger. A 

passenger may have one first trip and two hops or may have four first trips and nine hops 

within the day. In either case we would count this as one passenger. It is expected that an 

increase in the number of passengers since certain bus journeys became cheaper with Hopper 

fare. All things being equal, we expect a positive effect on passengers as more people would 

likely switch modes to enjoy the ‗free ride‘.  

4.3.3 First trips per passenger, hops per passenger, hops per first trip 

First trips per passenger and hops per passenger are informative about the intensive margin 

of demand for bus journeys. For example, if the increase in first trips is driven entirely by 

new customers, then we would expect no or little effect on first trips per passenger. On the 

other hand, if first trips is driven by existing customers who use bus services more often, then 

the increase in first trips per passenger should be similar to the increase in first trips. A 

similar reasoning applies to hops per passenger. Finally, hops per first trip is an alternative 

measure of the intensive margin of bus journey demand. If people switch to buses in 

anticipation of benefiting from the Hopper fare, or if people substitute hops for first trips, 

then this measure should increase.   
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Table 4.1 presents summary statistics on our outcome measures, divided by year and time 

period (before vs. after the 12
th

 of September). It can be observed that in 2016 first trips, 

hops, and passengers increased by approximately 4%. However, compared to 2015, the most 

striking increase is in hops – this variable increased only by 0.3% in 2015, but by 3.9% in 

2016 when the Hopper fare started. Similarly, while hops per passenger dropped in 2015 by 

3.4%, it did so in 2016 by only 0.3%. It can also be seen that bus use in 2016 is lower than in 

2015. This could be due to lower demand for public transport in general or could be 

explained by an increasing uptake of paying by bank card which is not included in our data. 

 

Table 4.1: Summary Statistics (Daily average) 

 
2015 

 
2016 

 
Before After % change 

 
Before After % change 

First Trips (in 1,000) 3,465 3,579 3.29 
 

3,177 3,300 3.87 

Hops (in 1,000) 1,274 1,278 0.31 
 

1,133 1,177 3.88 

Passengers (in 1,000) 1,797 1,869 4.01 
 

1,660 1,731 4.28 

First Trips / Passenger 1.93 1.92 -0.67 

 

1.91 1.91 -0.42 

Hops / Passenger 0.71 0.68 -3.39 

 

0.68 0.68 -0.29 

Hops / First Trip 0.37 0.36 -2.72 

 

0.36 0.36 0.28 

        Number of days 57 60     58 60   
Averages of daily outcomes by year and period. Before is the period from mid-June to September 11. After is the period 
from September 12 to mid-December. % change is the percentage change from Before to After.  
 

 

 

4.4 Model Specification 

This research estimates the effect of the Hopper policy on impact, that is upon its launch, 

using a Regression Discontinuity Design (RDD). RDD has become increasingly popular in 

economics since its introduction by Thistlethwaite and Campbell (1960). RDD requires 

relatively mild assumptions compared to other non-experimental approaches to econometrics 

(Angrist and Lavy, 1999; Angrist and Pischke, 2009; Lee and Lemieux, 2010). Treatments 

are assigned to units above or below a threshold; in this case the 12
th
 of September is the cut-
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off (treatment) date. Since time perfectly sorts our observations into treatment and control 

days, the RDD is sharp. An RDD is appropriate when a single continuous forcing variable is 

used to determine whether a trip is in the control or treatment group. While the RDD 

produces an impact estimate which can confidently be interpreted as causal, it can identify 

this effect only in a narrow window around the forcing variable. In this scenario, the research 

estimates the impact of the Bus Hopper policy when it was introduced – and arguably no 

other change occurred which could cause a discontinuous change in bus travel demand. 

However, no attempt is made to uncover its medium- or long-term effect on bus travel 

demand. 

In this analysis the forcing variable used is date while the threshold is determined by the date 

of the implementation of the Bus Hopper policy (12
th

 September 2016). If a trip is made on or 

after the 12
th
 of September 2016 then it is classed as treated (subject to the Hopper policy), 

while those trips made before the 12
th
 of September are in the control group.  

 The general econometric model for the estimation is of the following functional form: 

Yt = β0 + β1 Postt + β2Xt + f(t) + µt                       (4.1)                                

 Where        {
      
      

 

The receipt of treatment or participation in the policy, Post, at any time t, is determined by 

the threshold c (=the 12
th

 of September, which we set to 0). β1 is the immediate effect of the 

treatment on outcome Y. X is a vector of dummies for the day of the week, and f(t) is a 

polynomial function of time t, on either side of the threshold c, which captures the trend in 

Y over the sample period. The random error term µ is assumed to be normally distributed 

and has mean 0. The equation represents a sharp RDD because treatment assignment is 
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deterministic and discontinuous at the cut-off: all observations with t < c do not receive 

treatment and all observations where t ≥ c are treated.  

Figure 4.1: Daily values of the log of first trips 

 
Scatter plot of daily first trips (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11 th of September (the day 

before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods before 
and after the 11th of September. 

 

Figure 4.2: Daily values of the log of hops 

 
Scatter plot of daily hops (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11th of September (the day 
before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods before 
and after the 11th of September. 
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Figure 4.3: Daily values of the log of passengers 

 
Scatter plot of daily passengers (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11th of September (the 

day before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods 
before and after the 11th of September. 
 

 

Figures 4.1 to 4.3 above show the log of daily averages of first trips, hops, and 

passengers in 2015 and 2016. The cut-off date of September 11 – the day before the 

Hopper policy became effective – is marked by a vertical line. On both sides of the 

cut-off date, a third-degree polynomial is also fitted. All graphs indicate that bus use 

drops off towards the end of July, marking the beginning of the summer school 

holidays, and picks up again in September. Judging from the polynomial fit, there 

does not seem to be a significant change in bus usage just around the cut-off date. 

However, the polynomial is misleading. It could be clearly observed from the 

scatter plot of hops in 2016 (Figure 4.1, right hand panel) that hops are more 

frequent after September 12 than before. Yet, in trying to fit the unusually high 

number of hops just before the cut-off date, and the unusually low number of hops 

just after, the polynomial function increases sharply before and again after the cut-

off.  
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Figure 4.4: Daily values of the log of first trips (smaller sample) 

 

Scatter plot of daily first trips (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after 
the cut-off date. The vertical line is 11th of September (the day before the Hopper fare became effective in 2016). The 
smooth lines are third degree polynomial fits for the periods before and after the 11 th of September. 

 

 

Figure 4.5: Daily values of the log of hops (smaller sample) 

 
Scatter plot of daily hops (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after the 
cut-off date. The vertical line is 11th of September (the day before the Hopper fare became effective in 2016). The smooth 
lines are third degree polynomial fits for the periods before and after the 11th of September. 
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Figure 4.6: Daily values of the log of passengers (smaller sample) 

 
Scatter plot of daily passengers (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after 

the cut-off date. The vertical line is the 11th of September (the day before the Hopper fare became effective in 2016). The 
smooth lines are third degree polynomial fits for the periods before and after the 11 th of September. 

 

Figures 4.4 to 4.6 above are a graphical representation of the data after leaving out 

the five days just before and just after the cut-off. The data series now look 

smoother and the upward jump in the polynomials around the cut-off date in 2016 

now point towards the expected effect of the Hopper policy. In 2015 there is no 

sudden change around the same cut-off date. Thus, the changes observed in 2016 

seem unlikely to be explained by seasonal and other factors, since we should 

observe these effects also in 2015.  

4.5 The Results 

Table 4.2 reports the estimated ‗treatment‘ effects on the dependent variable. Since the 

dependent variables are in logs, the estimated β1 translate into (100*β1)% changes in the 

dependent variable. All our models include day-of-the-week fixed effects to control for any 
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changes in daily demand within the week. Standard errors are calculated as heteroskedasticity 

robust standard errors.  

 

 

Table 2: RDD estimates for 2015 and 2016 

            

 

(1) First Trips 

 

(2) Hops 

 

(3) Passengers 

 

2015 2016 Difference 

 

2015 2016 Difference 

 

2015 2016 Difference 

            Coefficient 0.001 0.052** 0.052 

 

0.018 0.081*** 0.063 

 

-0.003 0.041** 0.043 

Standard error (0.028) (0.020) (0.035) 

 

(0.050) (0.030) (0.058) 

 

(0.021) (0.016) (0.026) 

            

            

 

(4) First Trips per Passenger 

 

(5) Hops per Passenger 

 

(6) Hops per First Trip 

 

2015 2016 Difference 

 

2015 2016 Difference 

 

2015 2016 Difference 

            Coefficient 0.003 0.012** 0.009 

 

0.021 0.041** 0.020 

 

0.018 0.029** 0.011 

Standard error (0.009) (0.006) (0.011) 

 

(0.033) (0.017) (0.037) 

 

(0.026) (0.013) (0.029) 

                        
Estimated effects of the September 12 cut-off (ß1) on bus demand measures. All measures are in natural logs. Coefficients 
are semi-elasticities (ß1*100 percent change). The Bus Hopper was introduced on September 12, 2016. First trips are trips 
that would be paid for under the Bus Hopper fare. Hops are trips which would not be paid for under the Bus Hopper fare. 
Passengers are the number of distinct passengers on a day. All regressions include day-of-week dummies and third degree 

polynomials of Date on either side of the cut-off date (see also Figures 2 to 7). Standard errors are in parentheses. * p < 0.1 
** p < 0.05, *** p < 0.01.  

 

The results indicate that the number of first trips (panel 1) increased by 5.2% after the 

introduction of the Hopper policy in 2016 – an estimate significantly different from zero at 

the 5% level. In the previous year, there is no discernible difference in first trips around the 

11
th

 September. If the effect in 2015 constitutes a valid counterfactual scenario to what would 

have happened to demand if there had not been the Hopper policy, then the difference 

between the estimated effects for 2016 and 2015 can be given a causal interpretation. This 

difference is also 5.2%, but the difference is not as precisely estimated and thus insignificant.  

Not surprisingly, the strongest effect is found for hops (panel 2). Hops increased by 8.1% 

after the Hopper policy, and the difference to previous year‘s increase was 6.3%. Passengers 

(panel 3) increased by 4.1% (4.3% compared to 2015).  
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The results for our measures of the intensive margin of demand (panels 4 to 6) also suggest 

positive effects of the Hopper fare. A typical passenger undertook 1% more first trips (0.9% 

compared to 2015), and 4.1% more hops (2% compared to 2015). Finally, 2.9% more hops 

were undertaken for every first trip. 

This chapter has evaluated the performance of the London Bus Hopper policy by examining 

the effects on 6 key variables: number of first trips, number of hops, number of passengers 

and the measures of the intensive demand margin first trips per passenger, hops per 

passenger, and hops per first trip. The results show that the London Bus Hopper price policy 

had significant effects on bus usage on all of those dimensions, with the strongest effect on 

the number of hops and concludes that the policy was effective and worked as intended upon 

its launch.  
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Chapter 5 

 

Social Norms as a Cost-Effective Measure of Managing Transport 

Demand:  

Evidence from an Experiment on the London Underground
* 

[Published in Transportation Research Part A 145 (2021) 63-80] 

 

Kingsley Offiaeli
1
, Firat Yaman

2
 

5.1 Prelude 

In this chapter we now propose an alternative to the price mechanism as a measure of 

managing demand. Many metros now invest in acquiring more capacity for their networks 

through different means like technical and structural solutions to manage travel demand 

(Barron, 2016). In managing dwell times at platforms, which invariably manages platform 

demand and capacity, one could resort to hard and soft measures (Bamberg et al., 2011), 

however where there exist capacity constraints, it is imperative that the providers of the 

transport network seek smarter and cost-effective ways of managing passenger flow and 

demand. To this end many researchers now question the efficacy of using only traditional 

economic methods in controlling transport demand. Economists and transport policy makers 

have hitherto focused on prices to control passenger demand (e.g., charging more during peak 

hours), but the efficacy of price in the demand function of any public transport network 

depends critically on its price elasticity, transport policy and passengers‘ behavioural norms. 

In addition, there is evidence that non-price interventions can be very effective and relatively 

inexpensive in some scenarios (Allcott, 2011; Bertrand et al., 2010).  

                                                             
* We would like to thank Andrew Hyman, Toby Goodwin, Alexander Anhwere-James, Hayley Oberlander, and 

James Cockerton, all from Transport for London, for their help and support in carrying out this work. 
1 City, University of London, and Transport for London. 
2 City, University of London. 



58 | P a g e  
 

This chapter addresses the question of whether using social norms to nudge passengers into 

conformity has affected a reduction in dwell times on a key platform on one of the busiest 

metro networks in the world. We employ data from London Underground‘s Green Lane 

experiment at King‘s Cross station. The experiment was aimed at influencing passenger 

behaviour by laying green vinyl on the platform supported by audio and visual cues that 

encourage customers to pass along the platform until they find a non-green space to stand and 

wait for a train. The green vinyl was laid only on the Southbound Victoria line platform at 

King‘s Cross (providing the treated platform), owing to its vantage position as a pinch point 

location and a central hub on the network created by persistent increase in demand and 

connections to other inter-urban lines. The vinyl on the platform also shows where the doors 

would open when the arriving train completely stops at the platform thereby helping 

passengers know exactly where the doors would be. Data were retrieved for periods before, 

during, and after the experiment (after the vinyl was removed) for every London 

Underground train through King‘s Cross and adjacent stations using specialist software.  

We observe a significant reduction in dwell time by 6.6% (2.3 seconds), which is a profound 

result for London Underground by its own standard. London Underground values one second 

savings in dwell time at King‘s Cross station at £68,000 worth of customer benefits 

(Goodwin, 2017). Therefore, our research indicates that the Green Lane intervention 

generated customer benefits of £156,400 per year for London Underground at a cost of 

£25,000 (total costs of materials and labour for installing and decommissioning the Green 

Lanes at one platform). If dwell times could be reduced by a total of 2.7 seconds, the 

frequency of trains going through the affected platform could be increased from 36 to 37 

trains per hour, resulting in additional customer benefit of £3.6 million.
1
 The dwell time 

reductions mainly occur during peak demand times, and can be mostly attributed to 
                                                             
1 This figure comes from conversations we have had with TfL personnel. Operating more trains would decrease 

the waiting time between trains and the congestion in trains. 
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reductions in delayed departures. We further investigate whether the dwell time reductions 

are sustained after the removal of the signals which caused the behavioural change in the first 

place, thereby adding to the important discussion on how sustainable interventions suggested 

by the behavioural science literature are. Our results suggest that any beneficial effect of the 

Green Lanes on dwell times disappeared after the Green Lanes were removed. 

Methodologically, this research is distinct from the existing literature in two important 

respects: First, it is based on a real-world intervention at one of London‘s busiest stations, 

and exploits its quasi-experimental nature by comparing the dwell time changes on the 

treated platform to a number of different potential control platforms, accounting for the 

possibility of seasonal variations in dwell time, changes affecting the entire station, and 

changes affecting the entire service line. Our empirical strategy is to estimate the effect of the 

Green Lanes on dwell times under a set of different assumptions about how dwell times 

would have evolved in the absence of the experiment. We obtain statistically and 

economically significant effects in most of our models. The results show that while the 

correctness of any of those assumptions cannot be known, it seems very improbable that all 

our estimated treatment effects should be attributable to a factor other than the Green Lanes.  

The second methodological contribution is to explicitly model the operating procedure for 

trains to stop and depart. Not every potential dwell time saving translates into actual savings. 

If the train is on schedule and needs to wait for its scheduled departure, its dwell time will not 

decrease, even if alighting and boarding terminates quicker. We model dwell and delay times 

as latent variables and allow for the Green Lanes to have different effects on dwell and delay 

times.  
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5.2 Background 

 

5.2.1 The London Underground (LU) Network. 

 

London Underground is the oldest network in the world, which ran its first train service in 

1863. Consequently, LU faces capacity and structural challenges as many of the 

modernisation works to the network are either impossible or very expensive to retrofit. The 

network consists of 17 different lines connecting 270 stations and extends to 250 miles of 

track making it the 7
th

 largest (in served passengers) and 3
rd

 longest (in kilometres of track) 

network in the world. In 2017 the network served about 4 million passenger journeys per day. 

The central zones are the busiest and connect passengers to many of London‘s landmarks and 

financial hubs. 

Users of this network face overcrowding on the platforms in the peak times (0700 – 1000 

hours and 1600 – 1900 hours). Critical congestion occurs particularly in the ‗peak of the 

peak‘ (0800 – 0900 hours and 1645 – 1730 hours) when the network is busiest and operating 

close to its maximum capacity. At these times passengers face delays as they may be unable 

to board the first available train and even the subsequent ones depending on their position on 

the platform and level of congestion on both the platform and the arriving train. 

Consequently, LU is constantly exploring innovative and cost-effective methods of 

improving customer experience and reducing the generalised cost of travel. One of such ways 

is the Green Lane project designed to influence passenger travel in a certain way to aid the 

reduction of dwell times, travel time and costs.  

5.2.2 The Experiment 

The Green Lanes project was aimed at influencing passenger behaviour in a transport setting. 

It was an experiment performed at the platform level in a bid to reduce the generalised cost of 
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travel for customers by decreasing dwell and journey times which would, consequently, 

increase the capacity for more service frequency at the treated station. This could be achieved 

through ‗nudging‘ passenger behaviour using visual and audio cues, but without incurring 

high costs or imposing physical or financial impediments. The installation of the Green Lanes 

started on July the 18
th
, 2017 and was completed by the 1

st
 of September 2017. The lanes 

remained in place until early 2018.  

To perform the experiment the southbound platform of the Victoria line at London King’s 

Cross station (henceforth referred to as the treated platform) was chosen because of its 

central location and the persistent increases in dwell times in recent years. King‘s Cross 

station is a major hub and terminal with connections to many parts of London and the United 

Kingdom. The Victoria line serves several central and important stations linking many of 

London‘s landmarks, central and suburban districts. Dwell times on the Victoria line have 

increased due to congestion brought about by persistent rise in travel demand over the years. 

King‘s Cross station constitutes a pinch point location and a bottle neck on the Victoria line. 

The southbound platform was chosen for treatment because the dwell times on this platform 

increased significantly from 35 seconds to 47 seconds between 2015/16 working timetables 

(Goodwin, 2017).   

Figure 5.1:  Green lanes at London King‘s Cross station. 

Adapted from Goodwin, 2017. 
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The experiment was simple. As can be seen in Figure 5.1, green vinyl was laid on the 

platform in such a way that encourages customers to pass along the platform until they find a 

non-green space to stand and wait for a train. The green vinyl also showed where the doors 

would open when the arriving service train comes to a complete stop at the platform edge. 

The choice for the green colour is in accordance with international convention for green 

indicating ‗clearance to proceed‘ and made violation of the social norm that TfL was trying to 

establish (do not stand in the lane) highly salient.  

This salience-of-violation feature also distinguishes the experiment from previous attempts 

by TfL to control passenger behaviour via conventional methods such as speaker 

announcements and encouragement by staff not to stand in front of the doors, which were 

effective only for the duration of one dwell time occurrence, but would have to repeated for 

the next arriving train. If passenger behaviour could be altered by appeals to personal norms 

only, then we would expect the desired behaviour to become established over time. The 

Green Lane experiment adds a social dimension by making the norm violation immediately 

visible – and costly – for other passengers waiting on the platform who can then express their 

disapproval by established signs (e.g. body language). For example, it is an established norm 

on the London Underground to stand on the right of a moving escalator to allow people to 

pass on the left. The salience of the norm violation might have contributed to the relative 

success in establishing this norm. 

The passengers are expected and encouraged to keep moving on any green section of the 

platform and not to stop until they get to any non-green section. When a train arrives at the 

platform, the alighting passengers use the space on the Green Lanes spurs to exit the platform 

so that passengers waiting in the non-green sections can board quicker. In theory, this should 

eliminate or at least reduce the pushing, bumping and shoving that happens at peak times 

when the platforms are crowded.  
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The Green Lanes have been successful in reducing the number of waiting passengers who 

stand in front of the train doors before they open (TfL, 2018b). They might also have helped 

to reduce platform train interface (PTI) issues such as passengers or staff getting caught in the 

closing doors or having items caught between the doors at the platform edge. At all times 

during the experiment there were visual cues like posters and direction markers encouraging 

passengers not to stand or wait on any green section but to keep moving while on it. At peak 

times there would be a member of station staff on the platform giving audio messages, 

managing overcrowding on the platforms and assisting the train driver in ensuring safety on 

the platform during train arrival and departure. A close alternative to the Green Lanes are 

platform edge doors. As the London network is old and extensive, updating them by 

retrofitting platform edge doors on old and curved platforms would be an engineering 

challenge and significantly more expensive than the Green Lanes vinyl. 

5.2.3 Operating Procedure.    

The Victoria line runs an automatic train operation process, but all the trains have drivers in 

the front cab. The driver can intervene when automation breaks down as well as assist with 

doors opening and closing to minimise PTI issues resulting in injuries. There are 16 stations 

on the route and King‘s Cross station is somewhat in the middle in Zone 1 (centre) providing 

interchanges with other LU lines and National Rail services. When the train arrives at the 

platform, the driver opens the doors for alighting and boarding to commence. The driver 

monitors this process through the in-cab and platform CCTVs depending on location. 

Provided the station starting signal is clear, the driver then pushes the ‗doors-close‘ button 

which effectively brings boarding and alighting to completion. This usually begins with an 

audible sound that only lasts for a couple of seconds before the doors begin to shut. The trains 

are fitted with sensitive edge technology; this is a safety device which ensures the doors are 

completely shut without which the train would be unable to proceed. A ‗clear‘ signal 

https://en.wikipedia.org/wiki/Automatic_train_operation
https://en.wikipedia.org/wiki/National_Rail
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indicates that the route ahead is clear of any train, secure, and safe for the train to proceed. As 

soon as the doors close the train departs. Once it clears the platform and section of track, it is 

then safe for the next train to arrive. The process is repeated at the arrival of the next train.  

The station starting signal is automatically controlled by a computer preloaded with a 

predetermined running timetable which has the scheduled arrival and departure times of 

every train going through every platform on a line. If a train arrives before the scheduled 

arrival time, the starting signal remains at danger (red) and would only clear at the scheduled 

departure time. This always remains the case safe for when a failure occurs, at which point 

the signalling process would be controlled by a duty Signalling Operator and the service itself 

regulated by a duty Service Controller. The passengers are encouraged to stand at the non-

green areas so as not to obstruct the flow of traffic especially at peak times. At both the AM 

and PM peak times there is usually a station staff member on the platform assisting with 

platform duties. They were tasked with encouraging passengers to acknowledge the Green 

Lane and to conform to the rule of not standing or waiting anywhere on the Lane. The Green 

Lane keeps the walkways clear for alighting passengers to easily disembark from the train so 

that boarding can commence quicker.      

5.3 Data and methodology 

The Green Lane installation commenced on the 18
th

 of July 2017 with the lanes laid on the 

inbound Victoria line platform.
1
 As it was not completed until the 1

st
 of September of the 

same year, for the main analysis we exclude the time period during which the installation was 

in progress (18.7. to 1.9.). The Green Lane experiment was not announced or made public to 

passengers before its start. The dwell time data were supplied by TfL using specific software 

that records detailed real time train movements to the second. The data includes dwell time 

                                                             
1 Our main analysis therefore only uses trains travelling towards the City centre. We repeat the analysis for 

trains travelling outwards as a placebo-experiment. See section 8. 
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counts for London Underground services from 5am to 1.30am from Monday to Friday 

(weekdays), but we restrict our sample to trains departing between 6am and 11pm, since 

platform crowding does not occur outside this time interval. The weekend data have been 

excluded owing to lower weekend service frequency, prevalence of engineering works 

leading to platform or station closures and decreased weekend demand. Any abnormally long 

(>70 seconds) or short (≤10 seconds) dwell time is disregarded, retaining 98% of dwell time 

observations. We discard the right tail of dwell times as these long times are likely to have 

been caused by incidences such as train or signal failures. We exclude the left tail of dwell 

times as these short times could only be achieved with very low passenger numbers (both on 

the platform and in the carriage). The Green Lanes would not have any effect on dwell times 

in both of those scenarios. We have also repeated our analysis for dwell time observations 

between 5 and 75 seconds. This did not change any of our main results. 

All trains arriving at the study platforms have an arrival time and a departure time. The time 

difference between these variables gives the dwell time (Dwell) in seconds. We extracted 

dwell times for all trains which pass through King‘s Cross station or an adjacent station, for 

the time periods from 21
st
 of May to 30

th
 of November for 2016, 2017 and 2018. For any 

train in our data we have the following information: its arrival and departure times, which 

station it dwelled at, which service line it served, and which direction it was travelling in.  
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Figure 5.2: Stations and services lines of the study 

 
Note:King’s Cross, the treated station, is served by the Victoria line (treated line, thick light blue), the Northern 
line (black), the Piccadilly line (dark blue), the Metropolitan line (dark red), and the Hammersmith and City 

line (light blue). 

 

Figure 5.2 shows the scope of our data and highlights the treatment and the control stations 

and service lines. The treated platform is the Victoria line platform at King‘s Cross station. 

Service lines other than the Victoria line (thick line) are control lines, and stations other than 

King‘s Cross station (circle in the middle) are control stations. For each year, we have 

approximately 1 million dwell time observations. 

5.4 Empirical Strategy 

Comparing average dwell times at the treated platform after the Green Lanes installation to 

before their installation is unlikely to produce the true effect of the Green Lanes on dwell 

times. The Green Lane intervention deviates from an ideal experiment in three important 

ways: 
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 All dwell times under treatment only fall into the period of September 1
st
 to 

November 30
th
, 

 All dwell times under treatment are observed only on the Victoria line, 

 All dwell times under treatment are observed only at King‘s Cross station. 

Thus, treatment status is deterministic rather than random. Knowledge of date, station, and 

service line of an observation would perfectly reveal its treatment status. If we only compared 

observations on the treated platform after and before the intervention, then we would be 

picking up the effect of the intervention and any other factors which might cause dwell times 

to be different between September 1
st
 and November 30

th
 compared to the pre-treatment 

period (e.g. weather conditions, passenger demand, etc). For this reason, we rely on quasi-

experimental methods which are frequently deployed in empirical economics.  

The Difference-in-differences (henceforth 2D) estimator seeks to mimic experimental designs 

by identifying observations which would serve as an appropriate control group to the treated 

observations. If, for example, the above-mentioned factors affect all platforms equally, then 

the effect of the Green Lanes can be identified as the change in dwell times for the treated 

observations, over and above the change in dwell times of (a subset of) all other platforms. In 

practice, it is unlikely that all other platforms would have been affected by factors affecting 

dwell time in equal measure. We thus must be more careful in the selection of appropriate 

control observations. We consider the following scenarios: 

1. The factors affecting dwell times on the treated platform (other than the Green 

Lanes) are the same in 2016 and in 2017. This would qualify observations on the 

treated platform in the previous year as appropriate control observations. 

2. The factors affecting dwell times (other than the Green Lanes) affect all 

observations in King‘s Cross Station equally. This would qualify observations on 
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non-treated service lines at King‘s Cross Station as appropriate control 

observations. 

3. The factors affecting dwell times (other than the Green Lanes) affect all stations 

on the Victoria line equally. This would qualify observations on the Victoria line 

in stations other than King‘s Cross Station as appropriate control observations.  

All three scenarios are much less restrictive and more plausible than saying that all other 

platforms would constitute a good control group. Each scenario requires that we assume that 

external factors affect dwell times for treated and control observations equally.
1
 Since we 

cannot know or test which of the three scenarios is closest to reality, we estimate the Green 

Lane effect for all three scenarios. 

The above-described scenarios highlight the limitations of the 2D estimator. What if, for 

example, the dwell times of treated observations are affected by the Green Lanes, and by 

time-of-the-year effects which affect dwell times equally in 2017 and in 2016, and by effects 

which affect all platforms in King‘s Cross Station equally? We would need to combine 

scenarios 1 and 2 to reflect this. The triple difference (henceforth 3D) estimator does 

precisely that. For this example, for observations at King‘s Cross Station, we would first 

obtain the change in dwell times (first difference) in 2017 and subtract from this (second 

difference) the change in dwell times in 2016, only for observations which are not on the 

Victoria line. This quantity would tell us by how much the time-of-year effect at King‘s 

Cross Station has changed from 2016 to 2017 on service lines other than the Victoria line. If 

we assume that this change in the time-of-year effect would affect the Victoria line equally, 

then the difference (third difference) in this change between the Victoria line and other 

service lines would recover the pure effect of the Green Lanes. Combining any two of the 

                                                             
1 We can recover two quantities: The effect of other factors for control observations, and the combined effect of 

other factors for treatment observations and the Green Lanes. We can recover the Green Lanes effect only if we 

assume that other factors affected control and treatment observations equally. 
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above three scenarios results in three different 3D models. Again, we estimate all three of 

those models.  

Finally, all three confounding scenarios described above might be present. In a further 

generalisation of the 3D estimator we propose a quadruple difference (4D) estimator. If we 

followed the same steps as described in the previous paragraph, but this time for stations 

other than King‘s Cross Station, then we would have a 3D estimate of combined service line 

and time-of-year effects on dwell times for other stations. Under the assumption that this 

combined effect is the same for King‘s Cross and other stations, the difference (fourth 

difference) between the 3D estimate for King‘s Cross Station and other stations would 

recover the effect of the Green Lanes. We summarise the different models that we estimate in 

table 5.1 along with the assumptions which are required to recover the effect of the Green 

Lanes. Appendix 1 contains the statistical models and their explanations. All models include, 

where applicable, the control variables described in the next section 
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Table 5.1: Different estimators and assumptions 

Estimator Control group Identifying Assumption 

Simple difference  
(Before-after) 

Treated platform before the Green 
Lanes 

There would be no difference in dwell times  
on the platform between fall and summer 

2D estimator  Treated platform in previous year The difference in dwell times on the platform  

between fall and summer would be the same  
in 2016 and 2017 

2D estimator  Other stations on the same service 
line 

The difference in dwell times between fall and 
summer would be the same for all stations on the 

service line 

2D estimator  Other service lines in the same 

station 

The difference in dwell times between fall and 

summer would be the same for all service lines 
in the station 

3D estimator Treated platform in previous year 

and other stations on the same 

service line 

The change from 2016 to 2017 in the  

difference in dwell times between fall and  

summer would be the same for all stations  
on the service line 

3D estimator Treated platform in previous year 
and other service lines in the same 

station 

The change from 2016 to 2017 in the  
difference in dwell times between fall and  

summer would be the same for all service  

lines in the station 

3D estimator Other stations on the same service 
line and other service lines in the 

same station 

The difference across stations in the difference 
in dwell times between fall and summer would 

be the same for all service lines 

4D estimator Treated platform in previous year 
and other stations on the same 

service line and other service lines 

in the same station 

The difference across stations in the change  
from 2016 to 2017 in the difference in dwell  

times between fall and summer would be the  

same for all service lines 

Notes: Summer refers to the pre-treatment period May 21st to July 17th, fall refers to the treatment 

period September 1st to November 30th. 

 

5.4 Variables 

The dependent variable in our analysis is the natural logarithm
1
 of dwelling time 

denoted Ytsl where t is time, s denotes the station, and l the service line. The main 

independent variables for the 2D, 3D, and 4D estimators are: 

                                                             
1 Residuals from a dwell time regression exhibit a log-normal distribution. We therefore use the natural 

logarithm of dwell times as the dependent variable, which also results in a better model fit in terms of R2. 
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Postt = 1 if t is later than 6am, September 1
st
, in either year (2016, or 2017), and 0 

otherwise, 

D2017t = 1 if t is in 2017, and 0 if t is in 2016, 

Kingss = 1 if s is King‘s Cross station, and 0 otherwise, 

Victorial = 1 if l is the Victoria line, and 0 otherwise. 

An observation is identified as subject to the Green Lane treatment, if (and only if) all those 

indicator variables are equal to 1. Appendix A1 describes in detail how these variables are 

used in the consistent estimation of the Green Lanes effect on dwell times. 

Where applicable, we also include the following control variables: Demand is the sum of 

daily station entries and exits. We include it as a control variable since higher demand is 

likely to increase dwell times. Since the demand variable is a total daily count of the number 

of passengers through the gates of a station, it is difficult to apportion the passengers to 

individual platforms at the stations of entry or exit. We thus assume demand to be constant 

throughout the day and across station platforms. Lines is the number of service lines through 

a station: given a level of demand, more service lines would distribute station demand over 

more platforms and result in less crowding on the platform. In addition, DemandPerLine 

(Demand divided by Lines) has been added to account for average demand per platform in a 

station. ServiceLevel (in seconds) measures the time interval between two scheduled train 

arrivals and is expected to be negatively correlated to dwell time; higher service frequency 

reduces station dwell times. ServiceLevelDemand is a variable interacting demand and the 

level of train service on a line, allowing the effect of service frequency on dwell times to 

depend on demand. Since demand will not be uniformly distributed over the time of day, or 

over the days of the week, we also include dummies for each 15-minute interval of a day 
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(from 6am to 23pm), and for each weekday. Finally, we include a linear time trend
1
 which is 

restricted to be the same for all trains and both years (that is, we include a variable equal to x 

if the observation is for the x
th

 day of any year). We relax this restriction in section 7 when 

allowing for heterogeneous trends. For simplicity, we collect the control variables described 

in this paragraph in a vector X.  Table 5.2 provides the complete list and description of 

variables. 

5.5 Delay Time Analysis 

Given scheduled departure times of trains, any intervention to speed up alighting and 

boarding times of passengers would affect dwell times only if the train exceeds or is close to 

exceeding its scheduled departure time. Otherwise, even if alighting and boarding completes 

faster, the train would have to wait on the platform until its scheduled departure time, thus 

only prolonging the time where it is idle. 

We therefore extend the analysis to an investigation of whether the Green Lanes had a 

stronger effect on reducing delay times rather than dwell times in general. To do this, we 

have to take into account that 1) we observe delay times only once a train exceeds its 

scheduled departure time, and 2) we do not observe the train‘s regular dwell time once it is 

delayed (rather, the dwell time is censored). Consider the following empirical model. A train 

is scheduled to stay on the platform for  ̅ seconds. 

 

 

 

 

                                                             
1 We have also estimated our models with quadratic time trends, but this had only a negligible impact on our 

estimates. 
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Table 5.2: Variables  

Variable Description 

Dependent variable 

 Ytsl Natural log of dwell time at time t, station s, and service line l 

Main independent variables 

Postt 
Binary variable equal to 1 if t is between September 1  

and November 30 (in either year) 

D2017t Binary variable equal to 1 if t is in 2017 

Kingss Binary variable equal to 1 if s is King's Cross station 

Victorial Binary variable equal to 1 if l is the Victoria line 

Control variables 

 Demandts Number of entries and exits into station s (daily) 

Liness Number of service lines through station s 

DemandPerLinets Demandts / Liness 

ServiceLeveltl 
Scheduled time interval between two trains in seconds.  

Indexed also by t as service levels can vary over the day. 

ServiceLevelDemandtsl ServiceLeveltl × Demandts 

D600t 
Binary variable equal to 1 if t is between  
6am and 6.15am 

… … 

D2245t 
Binary variable equal to 1 if t is between  

10.45pm and 11pm 

DMondayt Binary variable equal to 1 if t falls on a Monday 
… … 

DFridayt Binary variable equal to 1 if t falls on a Friday 

Trendt 
Linear time trend: 0 for May 21 (in either year), then  

incrementing by 1 for each calendar day 

 

A latent dwell time variable      
  and a latent delay time variable      

  are given by 

                                    
              

 
                                                                

                                    
              

                                                                 

The actual dwell time       is observed only if      
    ̅ , in which case              

 , and the 

delay time is unobserved. If, on the other hand      
    ̅, then the actual delay time is given 

by            
 , and we know that the latent dwell time exceeds the schedule  ̅:       

    ̅. 

We assume that the errors are jointly normally distributed. 
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Amemiya (1985) derives closed form solutions of the likelihood of this class of models (p. 

386). We estimate this model with maximum likelihood. No restrictions are placed on the 

parameters within or across the latent variable equations. We thus allow the Green Lanes to 

have differential effects on regular dwell and delay times. 

One constraint that we face is that we do not observe the scheduled arrival and departure 

times of all trains. However, from trains for which we do observe these data, we can impute a 

train‘s scheduled dwell time. Our delay time is thus based on the difference between 

scheduled and actual dwell times, rather than the scheduled and actual departure times. For 

example, if a train arrives 5 seconds behind schedule, and departs 5 seconds behind schedule, 

it would be classified as departing just on time according to our imputation. Because the 

service frequency is high (on the Victoria line a train runs every 2-3 minutes), this 

misclassification should not be of great concern, as passengers do not arrive at the platform 

with the intention of catching a particular scheduled train, but rather to get on the next 

available train regardless its scheduled departure (actual timetables for the Underground are 

not displayed on the platforms or on TfL‘s website). 

5.6 Graphical analysis 

We begin by visually inspecting the average daily dwell times of trains. The upper panel of 

figure 5.3 shows dwell times in 2016, while the lower panel dwell times in 2017. The vertical 

line corresponds to the 18
th

 of July, the day at which the Green Lane installation began in 

2017.
1
  

 

 

                                                             
1 Figure 5.3 includes all days. For the regression analysis, we exclude observations from the installation period 

(18th July to 1st September).   
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Figure 5.3: Daily average platform dwell times for 2016 and 2017.  
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Figure 5.3: Average daily dwell times in 2016 (top) and 2017 (bottom) at treated platform (left), adjacent 
stations on the Victoria line (middle), and other service lines at King’s Cross station. The vertical line 
corresponds to the 17th of July (when the installation of the Green Lanes in 2017 started). 

 

We observe that dwell times on the treated platform (graph on the left) are longer in 2017 

than in 2016 by about a second. However, the dwell time trend over the year is flat in both 

years. Thus, since dwell times did not trend down in 2017 compared to 2016, one would 

conclude that the Green Lanes have not reduced dwell times. We stress here that the graphs 
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only show unconditional regression lines of dwell times against a linear trend while our main 

analysis includes a rich set of explanatory variables.    

If the comparison is made against other stations (graph in the middle) or other lines (graph on 

the right) in 2017, we see that while dwell times on the treated platform were flat, dwell times 

at other platforms increased over the same period. Thus, if the counterfactual trend of dwell 

times on the treated platform would be captured by either of those control platforms, one 

would conclude a successful reduction (or prevention of increase) of dwell times. The graphs 

also give an intuition about what we could expect from a triple difference estimation. The 

difference in the slope of the regression lines between 2017 and 2016 is close to zero on the 

treated platform. For other stations, we see a steep increase in 2017, and a less steep increase 

in 2016. 

Thus, a difference in differences estimate involving other stations in 2017 should produce a 

strong negative effect. However, if we assume that the difference in slopes on the treated 

platform between 2017 and 2016 would have followed the same trend as the difference in 

slopes in the control stations, then the estimated treatment effect will be smaller.  

The graphs show that choice of control observations is crucial. While inspecting trends in the 

pre-treatment period can be suggestive, uncertainty about the counterfactual evolution of 

dwell times on treated observations cannot be resolved. We therefore present in the next 

section results from alternative models. 

5.7 Main Results 

The main results are presented in Table 5.3. The first column shows results from the linear 

dwell time model, while the second and third columns are results for the delay time model 

described above. The second column shows the impact of the Green Lanes on latent dwell 

times, while the third column shows the effect on delay times. We start by comparing the 
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dwell times before and after the Green Lane intervention on the Southbound Victoria line at 

King‘s Cross station. The result suggests a modest and statistically insignificant increase in 

dwell time by  

Table 5.3: Treatment effect estimates of Green Lanes  

 

Dwell Analysis 

 

Delay Analysis 

 Model  Effect on dwell time 
 

Effect on dwell time Effect on delay time 

 

Simple difference (before-after) 1.3* 

 

5.0 -5.6 

 

 

(0.6) 

 

(4.0) (3.0) 

 

Difference-in-differences (1) 0.2 

 

3.9* -4.6** 

 

 

(0.3) 

 

(1.8) (1.2) 

 Difference-in-differences (2) -1.2** 

 

0.5 -2.1 

 

 

(0.3) 

 

(1.6) (1.4) 

 Difference-in-differences (3) -1.0** 
 

1.7 -5.1** 

 

 

(0.3) 

 

(2.1) (1.1) 

 

Triple difference (1, 2) -2.0** 

 

0.2 -8.7** 

 

 

(0.4) 

 

(2.3) (1.9) 

 Triple difference (1, 3) -5.1** 

 

-0.1 -12.6** 

 

 

(0.4) 

 

(2.6) (1.7) 

 Triple difference (2, 3) -2.1** 

 

1.4 4.4** 

 

 

(0.4) 

 

(2.3) (1.5) 

 

Quadruple difference (1, 2, 3) -6.6** 

 

-1.5 -3.9 

   (0.5)   (3.2) (2.3) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in parentheses. * p < 

0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, (2) uses adjacent stations on 
the Victoria line as control observations, (3) uses other service line platforms at King's Cross station as control 

observations. All regressions control for Demand, Lines, DemandPerLine, ServiceLevel, ServiceLevelDemand, 

day of the week dummies, dummies for each 15-minute interval of the day, as well as a linear time trend. See 

also methodology section. 

 

1.3% on the treated platform from pre to post treatment (Simple difference). We then use 

dwell time on the same platform and in the same period in 2016 as control to measure the 

possible treatment effects in 2017; this is intuitive as it accounts for any seasonal patterns on 

dwell time by comparing platform dwell times for both years (Difference-in-differences (1)). 

Here, we observe no significant reduction in dwell time on the treated platform compared to 

2016. However, if we compare the dwell times in 2017 between King‘s Cross and its adjacent 

stations (Difference-in-differences (2)), we find a 1.2% reduction in dwell times. For the 
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model that uses other service lines as a control group (Difference-in-differences (3)) we find a 

dwell time reduction of 1.0%.The next three rows display the estimated treatment effect for 

the triple difference estimator.  Triple difference (1, 2) uses adjacent stations on the Victoria 

line and the treated platform in 2016 as the two groups of control observations. Triple 

difference (1, 3) uses other service lines at King‘s Cross station and the treated platform in 

2016 as control observations. Triple difference (2, 3) uses adjacent stations on the Victoria 

line and other service lines at King‘s Cross station as control observations. The estimated 

reductions in dwell times range from 2.0% to 5.1%. Finally, the quadruple difference 

estimator – the most general model – suggests that dwell times were reduced by 6.6% – a 

reduction of 2.3 seconds.  

The second and third columns explain whether these changes in dwell times came about 

through a general reduction of dwell times or through cutting the delay times of trains which 

were behind schedule. Since the service level and timetable in 2017 was not changed we 

would expect the reduction to come mainly through reduced delay times. For most 

specifications we observe reductions of delay time, ranging from an insignificant 2.1% to 

12.6%. Only the Triple difference (2, 3) model finds a positive impact of the Green Lanes on 

delay times. 

5.8 Heterogeneous trends 

The identification of the treatment effect relies on the assumption that the dwell times of the 

treated observations would have changed by the same amount as the dwell times of the non-

treated observations in the absence of the treatment.
1
 While we cannot know whether this is 

the case, we can check whether treatment and control observations were trending in parallel 

before the treatment. We conduct tests for all our models in table 12 in the pre-treatment 

                                                             
1 Analogous parallel trend assumptions can be formulated for the triple and quadruple difference models. See 

methodology section. 
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period with the null hypothesis of parallel trends for control and treatment observations. 

Unfortunately, in all cases this hypothesis is rejected (results not reported). All our tests 

strongly indicate that the treatment observations were trending up relative to the control 

observations in the pre-treatment period. How would this bias our coefficient of the Green 

Lane effect? If we extrapolated these trends, then the difference in dwell times between 

treatment and control observations would increase over time, resulting in a positive, but 

spurious, estimate of the Green Lanes. If after the treatment the trends run in parallel, we 

would still have a positively biased estimate, as the difference in dwell times between 

treatment and control observations after the treatment would still exceed the same difference 

before the treatment. A negative, and therefore compromising, bias occurs only if the 

growing gap in dwell times before the treatment reverts. In that case, if the difference in 

dwell times after the treatment is smaller than before the treatment, we would obtain a 

negative estimate for the Green Lane effect. The visual inspection of the dwell times does not 

suggest that this is the case. 

To analyse the robustness of our results with respect to different pre-existing trends we re-

estimate our models allowing for separate trends between different observations. For 

example, for the first difference-in-differences model, we allow for different trends in 2016 

and 2017, while for the triple difference model which uses both years and different stations, 

we allow for different trends for King‘s Cross station in 2016, King‘s Cross station in 2017, 

other stations in 2016, and other stations in 2017. The results of these alternative models are 

in table 5.4. One important difference compared to the main results is the reversal of the 

effect for model Difference-in-differences (3). Since we can see that the dwell times of 

observations on other service lines are increasing over time, allowing for separate trends does 

not attribute the growing gap between other lines and the Victoria line to the treatment 

anymore and reverses the effect.  
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Table 5.4: Treatment effect estimates of Green Lanes - Heterogenous trends 

 

Dwell Analysis 

 

Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 
Difference-in-differences (1) -0.0 

 

8.5 -24.9** 

 
 

(0.8) 

 

(4.9) (4.0) 

 Difference-in-differences (2) -0.7 

 

0.6 -1.4 

 
 

(0.7) 

 

(4.6) (3.8) 

 Difference-in-differences (3) 4.0** 

 

11.0 -9.1** 

 
 

(0.8) 

 

(5.7) (2.9) 

 
Triple difference (1, 2) -7.6** 

 

1.6 -38.5** 

 
 

(1.0) 

 

(6.0) (5.0) 

 Triple difference (1, 3) -0.9 

 

5.4 -40.3** 

 
 

(1.1) 

 

(7.0) (4.5) 

 Triple difference (2, 3) -2.0* 

 

3.1 -26.2** 

 
 

(0.9) 

 

(6.3) (4.0) 

 
Quadruple difference (1, 2, 3) -9.5** 

 

0.6 -70.1** 

   (1.4)   (8.5) (6.1) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in 

parentheses. * p < 0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, 

(2) uses adjacent stations on the Victoria line as control observations, (3) uses other service line 

platforms at King's Cross station as control observations. All regressions control for Demand, Lines, 

DemandPerLine, ServiceLevel, ServiceLevelDemand, day of the week dummies, dummies for each 
15-minute interval of the day, as well as linear time trends for each combination of treatment and 

control platforms. See also methodology section. 

 

The negative effects of the Green Lanes in the triple and quadruple difference models 

however are preserved for dwell times, and we estimate very substantial reductions for latent 

delay times. 

5.9 Further results 

We next turn to the analysis of dwell times differentiated by time of day. London 

Underground typically splits the day into AM peak (07.00 to 10.00), PM peak (1600 to 

1800), Inter-peak (10.00 to 1600) and off peak (any time outside these times). Trains dwell 

longest in the AM and PM peaks due to demand as these are when commuters go to work, do 

school runs, etc.  The purpose is to examine if the Green Lane policy had a differing effect in 

any part of the day. Figure 5.4 is a plot of the estimated effects and confidence intervals from 

the quadruple difference model by time of the day in 15-minute intervals. We observe 

reductions in dwell time throughout the day, but significant effects are concentrated around 
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the morning and evening peak hours. As platform demand ramps up in both peak periods, it 

appears that passengers tend to conform to the platform norm by obeying the Green Lane 

policy; this in turn drives down dwell time by a fraction. During periods of less demand the 

Green Lane‘s effect is not so significant because the main driver of dwell time and a major 

cause of impedance to boarding and alighting is demand.   

The graph suggests that the Green Lane had higher peak effects (both AM and PM) than on 

the inter-peak and off-peak periods. This concurs with the normative theory that passengers 

tend to conform more when they know their actions impact on others, which is more 

pronounced at peak times because of high demand for waiting area. At other times, when the 

supply of waiting area exceeds demand, passengers do not bother so much about how or 

where they wait as there is abundant space for alighting and boarding to take place, 

sometimes simultaneously.  

 

Figure 5.4: Plot of the Green Lane effect. 

 
 
Figure 5.4: Estimated effects (solid blue) and confidence intervals (dashed greed) of Green Lanes on dwell times. 
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We next analyse whether the Green Lanes had any effect on the opposite direction of travel. 

It is tempting to think of the opposite travel direction as a placebo experiment because of the 

similarities of the two platforms. The outbound platform of the Victoria line at King‘s Cross 

station shares most characteristics with the inbound platform: it serves the same line, and 

therefore has the same service level; it is located at the same station (the two platforms are 

immediately connected, only separated by a passenger corridor; in particular, the platforms 

are not on opposite ends of the rails), and therefore has the same daily station demand and the 

same number of interchanges. The exact number of passengers served by a platform is not 

observed, but it is probable that the platforms serve roughly the same number of people 

within a day – e.g. commuters whose return journey is the reverse of their onward journey. 

The outbound platform differs from the inbound platform in two respects: First, the 

distribution of passengers over the day is probably different, e.g. most traffic on the inbound 

platform might be concentrated in the morning, while most of the traffic on the outbound 

platform might be concentrated in the evening. Unfortunately, we observe only daily station 

demand, but do not know the exact time of day, nor how it is distributed across the service 

lines. Second, the outbound platform was not treated with the Green Lanes.    

However, there would be a great intersection between people using the platform in the 

inbound and the outbound direction, for example commuters. It is conceivable that changes to 

their behaviour on the treated platform extend to other platforms as well. Table 5.5 presents 

results for the outbound direction.  
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Table 5.5: Treatment effect estimates of Green Lanes - outbound direction 

 

Dwell Analysis 

 

Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 
Simple difference 2.2** 

 

9.3* -5.6* 

 
 

(0.6) 

 

(4.7) (2.6) 

 
Difference-in-differences (1) 0.4 

 

1.7 2.7 

 
 

(0.3) 

 

(2.1) (1.5) 

 Difference-in-differences (2) -0.9** 

 

-0.8 -0.4 

 
 

(0.3) 

 

(2.0) (1.2) 

 Difference-in-differences (3) 1.4 

 

3.2 -2.3* 

 
 

(0.3) 

 

(2.3) (1.1) 

 
Triple difference (1, 2) -1.0* 

 

-2.4 2.0 

 
 

(0.4) 

 

(2.4) (1.9) 

 Triple difference (1, 3) -1.0* 

 

-0.0 5.1** 

 
 

(0.4) 

 

(2.8) (1.7) 

 Triple difference (2, 3) -0.4 

 

-1.5 1.4 

 
 

(0.4) 

 

(2.7) (1.3) 

 
Quadruple difference (1, 2, 3) -1.8** 

 

-5.1 6.8** 

   (0.5)   (3.5) (2.2) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in 

parentheses. * p < 0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, 

(2) uses adjacent stations on the Victoria line as control observations, (3) uses other service line 

platforms at King's Cross station as control observations. All regressions control for Demand, Lines, 

DemandPerLine, ServiceLevel, ServiceLevelDemand, day of the week dummies, dummies for each 
15-minute interval of the day, as well as a linear time trend. See also methodology section. 

 

The treatment effects on dwell times are much smaller in magnitude compared to the inbound 

observations, but we still find significant dwell time reductions on the order of 1.0% to 1.8% 

in the triple and quadruple difference models. In most specifications no significant effect on 

latent dwell and delay times are found. The result could mean two things: perhaps the 

outbound direction is an accurate scenario to describe what would have happened to the 

inbound direction in the absence of treatment, suggesting that our main results are somewhat 

negatively biased (they overestimate the reduction in dwell times). Alternatively, passengers 

might have extended their platform behaviour to the outbound platform as well, also reducing 

dwell times there, though not as strongly as on the treated platform. 
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5.10 Removal of the Green Lanes 

Our final analysis is on whether the Green Lane effect has been permanent. The Green Lanes 

were removed in early 2018. Did passengers revert to non-compliant behaviour and thus 

cause a reversion in dwell times? To this end, we now define the year 2016 as pre- and the 

year 2018 as post treatment periods and omit the year 2017 altogether. This causes us to lose 

one dimension of control, so we have two difference-in-differences and one triple difference 

model. However, the concern that led us to include the year 2016 as one control dimension in 

the main section was the possibility of seasonal patterns in dwell time. Since we are now 

comparing across rather than within years, seasonality should not be a problem.   

Table 5.6 shows what happened to dwell times after removal. Relative to 2016, dwell times 

are greater when compared against control stations, and when compared against control 

stations and control service lines. Only when compared against control service lines do we 

find a negative effect. However, the effect is statistically not distinguishable from zero. For 

delay times, two specifications support a reduction, while one supports an increase in dwell 

times. Overall, the evidence points to the disappearance of any beneficial effect of the Green 

Lanes after their removal.  
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Table 5.6: Treatment effect estimates of Green Lanes after removal 

 

Dwell Analysis 

 

Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 
Simple difference 2.6** 

 

10.4** -28.9** 

 
 

(0.2) 

 

(1.4) (1.1) 

 
Difference-in-differences (2) 8.4** 

 

21.2** 18.8** 

 
 

(0.2) 

 

(1.3) (1.1) 

 Difference-in-differences (3) -0.1 

 

-5.3** -29.6** 

 
 

(0.2) 

 

(1.3) (0.8) 

 
Triple difference (2, 3) 1.6** 

 

2.6* -4.3** 

   (0.2)   (1.3) (1.1)   
Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in parentheses. * p < 

0.05, ** p < 0.01. (2) uses adjacent stations on the Victoria line as control observations, (3) uses other service 

line platforms at King's Cross station as control observations. All regressions control for Demand, Lines, 

DemandPerLine, ServiceLevel, ServiceLevelDemand, day of the week dummies, dummies for each 15-minute 

interval of the day, as well as a linear time trend. See also methodology section. 
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CHAPTER 6 

Conclusion 

Is there a cost-effective alternative method of managing public transport demand subject to 

capacity constraint, other than price mechanism and infrastructural investments? Transport is 

a unique good that cannot exist alone, and movements cannot be postponed or preponed. A 

product would remain on the shelf until sold but an unused ticket for a train service remains 

unused. The uniqueness of transport as a commodity plays a major role in setting the papers 

included in this thesis apart. In seeking to manage public transport demand providers may 

change their pricing policies, this research sheds more light on the effects, ceteris paribus, on 

passenger behaviour. Increasing fares for any transport corridor would make users consider 

their options, they may decide to walk, cycle, or even drive. This decision is a function of 

different variables including the elasticity of demand. It is important for transport providers 

and policy makers to consider the response of demand to price manipulations. The response 

of demand to an increase in price is considered to be in the downward direction as demand is 

inversely related to price. 

This thesis concurs that the price mechanism is effective in controlling public transport 

demand. The concept of asymmetry has been tested in different fields; it has been found that 

demand reacts differently to price increases than to price decreases. But this is yet to be tested 

in the field of public transportation with actual data on a nominal decrease in ticket price; this 

research finds that there is asymmetry in the price elasticity of demand. The policy 

implication for transport providers is that they acknowledge that passengers may react 

differently to an equivalent fare increase and decrease. 
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Using fares to manage demand may be deemed to be costly. A price decrease represents a 

loss in revenue for the transport provider while a fare rise increases the generalised cost of 

travel for passengers. Therefore a relatively cost-effective measure of public transport 

demand is proposed in this research where passengers are nudged to conform to a social norm 

to achieve a desired network goal, without the need for heavy investments in infrastructure 

improvements, fleet procurements, or price manipulations. This thesis shows that norms can 

be very cost efficient when applied properly as was achieved at London King‘s Cross station. 

The Green Lanes changed passenger behaviour as people conformed to the existing platform 

norm, which in turn reduced waiting time for passengers and increased traffic flow. This is 

particularly relevant to established transport networks whose demand are relatively inelastic 

and are operating close to or at full capacity and for which infrastructural adjustments can be 

prohibitively expensive. For a fraction of the cost of procuring new rolling stock or adjusting 

station structure to meet growing demand, the Green Lane policy achieved a reduction or at 

least prevention in the increase in waiting time and generalised cost for passengers.  

Further Research 

The questions addressed in this thesis create opportunities for further research. Writing a 

thesis can sometimes be heavily time and data constrained. But concerning the Hopper policy 

it would be interesting and relevant to policy makers to know the type of passengers that used 

the policy more and for what purpose. A more granular analysis of the data is required to 

track the daily travel activities of individuals in order to delineate the particular beneficiaries 

of the Hopper policy and how much cost they save in terms of time and money. Other social 

norms could also be established in other fields to test conformity and achieve societal or 

organisational goals. Price and demand are two of the fundamental and most research topics 

in economics, but there is always room for further research questions. The demand for public 
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transport is made up different passenger types with different elasticities. Further research is 

required to determine the point beyond which a passenger would switch mode when price 

changes. 
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Appendix A1 – Methodology Details 

The difference-in-differences estimator 

Let Ytsl represent the natural logarithm of dwell time of a train at time t, at station s, on 

service line l. We consider only inbound trains. Here, t is any moment in time from 6am on 

May the 21
st
 to 11pm on November 30

th
 in 2016 and 2017. We define the following 

variables: 

Postt = 1 if t is later than 6am, September 1
st
, in either year (2016, or 2017), and 0 

otherwise. 

D2017t = 1 if t is in 2017, and 0 if t is in 2016. 

Kingss = 1 if s is King‘s Cross station, and 0 otherwise. 

Victorial = 1 if l is the Victoria line, and 0 otherwise. 

An observation is identified as subject to the Green Lane treatment, if (and only if) all those 

indicator variables are equal to 1. The error term εtsl is assumed to be independent of the 

independent variables. Robust standard errors are used to account for heteroscedasticity. We 

estimate the following equations: 

                                           

 

where the sample is restricted to trains on the Victoria line at King‘s Cross station. X is a 

vector of station and service line characteristics as described in section 4.3 and contains a 

linear time trend. A negative δ indicates a decrease in dwell times at the southbound Victoria 

line at Kings Cross in 2017 compared to the same time period in the preceding year when no 

Green Lanes were in place. To see this, take the difference in expected dwell time conditional 

on X between the post- and pre-treatment in 2017 (D2017t =1) to obtain  

          |                |                 
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while the same difference in 2016 would simply be β. The difference in the two differences is 

thus  

              

Note that this result depends critically on assuming the time-of-year effect to be the same in 

both years – β has the same value in both years. Without this assumption, the 2D estimate 

would only identify the joint effect of the Green Lanes (δ) and the difference in the time-of-

year effects between 2017 and 2016 (e.g. β2017 – β2016).  

Next, we restrict the sample to observations in 2017 and on the Victoria line to estimate  

                                              

By the same argument as above, for King‘s Cross Station we obtain  

              |                  |                  

And for other stations 

              |                  |                

The resulting 2D estimate is  

                    

The last 2D estimator only considers observations in King‘s Cross station in 2017: 

                                                    

The change in dwell times for observations on the Victoria line is 

                 |                  |                  

The change in dwell times for observations on other service lines is  

                 |                  |                

The resulting 2D estimate is  
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The triple difference estimator 

The first 3D estimator considers time-of-the-year and station specific effects and is restricted 

to observations on the Victoria line. We can obtain a 3D estimate with a model that is 

saturated in its interactions of the key variables, Post, Kings, and D2017. 

                                                            

                                                  

We obtain dwell time changes (between fall and summer) for King‘s Cross station, separately 

for 2017 and 2016: 

                    

                

With the resulting difference 

                             (A1) 

Repeating this for other stations, we obtain 

                           (A2) 

Thus, under the assumption that the year to year change in the dwell time difference between 

fall and summer is the same at King‘s Cross station as in other stations which serve the 

Victoria line, the difference between equations (A2) and (A1) identify the effect of the Green 

Lanes. The remaining two triple difference models can be constructed in analogous fashion. 

 

Quadruple difference estimator 

The 4D estimator naturally extends the 3D estimator. Now, all three scenarios need to be 

taken into account, and we have to distinguish observations by year, station, and service line. 

The model to be estimated is  
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We verify that η is the 4D estimator. If we considered only observations on the Victoria line, 

we would obtain 

                                    (A3) 

                                 (A4) 

And the resulting difference between (A3) and (A4) is  

                

Repeating this now for observations which are not on the Victoria line we would obtain 

simply   not Victoria = δ0. Thus, the resulting quadruple difference is:  

                            

 

Appendix A2 – Results for complete sample period 

Tables A1 to A3 correspond to tables 1 to 3 in the main text, but they are based on the entire 

sample, whereas the results in the main text exclude all observations which fall into the 

installation period of the Green Lanes. The 18
th

 July marks the first day of the treatment 

period (that is, the variable Post is 1 for observations from the 18
th

 of July to the 30
th
 of 

November). While quantitative differences to the main results exist, the general conclusions 

about the effectiveness of the Green Lanes hold for this alternative sample selection as well.  
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Table A1: Treatment effect estimates of Green Lanes  

 
Dwell Analysis 

 
Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 

Simple difference 1.4** 

 

4.7* -4.3** 

 

 

(0.3) 

 

(2.1) (1.6) 

 

Difference-in-differences (1) 0.2 

 

3.9* -7.2** 

 

 

(0.3) 

 

(1.7) (1.4) 

 Difference-in-differences (2) -0.8** 

 

0.4 -2.0 

 

 
(0.2) 

 
(1.5) (1.3) 

 Difference-in-differences (3) -0.3 

 

3.1 -5.2** 

 

 

(0.3) 

 

(1.9) (1.0) 

 

Triple difference (1, 2) -1.9** 

 

0.4 -7.6** 

 

 

(0.3) 

 

(2.0) (2.0) 

 Triple difference (1, 3) -5.3** 

 

-0.3 -10.1** 

 

 

(0.4) 

 

(2.4) (1.5) 

 Triple difference (2, 3) -1.9** 

 

1.9 -0.4 

 

 

(0.3) 

 

(2.1) (1.4) 

 

Quadruple difference (1, 2, 3) -7.6** 

 

-1.7 -12.4** 

   (0.5)   (2.9) (2.1) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in parentheses. * p < 

0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, (2) uses adjacent stations on 

the Victoria line as control observations, (3) uses other service line platforms at King's Cross station as control 

observations. All regressions control for Demand, Lines, DemandPerLine, ServiceLevel, ServiceLevelDemand, 

day of the week dummies, dummies for each 15-minute interval of the day, as well as a linear time trend. See 

also methodology section. 
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Table A2: Treatment effect estimates of Green Lanes - Heterogenous trends 

 
Dwell Analysis 

 
Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 
Difference-in-differences (1) 0.1 

 

4.8 -9.6** 

 
 

(0.4) 

 

(2.7) (2.2) 

 Difference-in-differences (2) 0.8* 

 

3.3 -1.9 

 
 

(0.4) 

 

(2.5) (2.1) 

 Difference-in-differences (3) 2.3** 

 

8.1** -6.7** 

 
 

(0.4) 

 

(3.1) (1.6) 

 
Triple difference (1, 2) -3.1** 

 

1.1 -13.8** 

 
 

(0.5) 

 

(3.3) (2.7) 

 Triple difference (1, 3) -4.5** 

 

0.7 -11.1** 

 
 

(0.6) 

 

(3.8) (2.5) 

 Triple difference (2, 3) -1.7** 

 

2.5 -19.0** 

 
 

(0.5) 

 

(3.4) (2.2) 

 
Quadruple difference (1, 2, 3) -10.2** 

 

-1.7 -46.9** 

   (0.8)   (4.6) (3.3) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in 

parentheses. * p < 0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, 

(2) uses adjacent stations on the Victoria line as control observations, (3) uses other service line 
platforms at King's Cross station as control observations.All regressions control for Demand, Lines, 

DemandPerLine, ServiceLevel, ServiceLevelDemand, day of the week dummies, dummies for each 

15-minute interval of the day, as well as linear time trends for each combination of treatment and 

control platforms. See also methodology section. 
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Table A3: Treatment effect estimates of Green Lanes - outbound direction 

 

Dwell Analysis 

 

Delay Analysis 

 Model  Effect on dwell time 

 

Effect on dwell time Effect on delay time 

 
Simple difference 0.6 

 

4.7 -2.9* 

 
 

(0.3) 

 

(2.6) (1.4) 

 
Difference-in-differences (1) -0.3 

 
1.6 -0.4 

 
 

(0.3) 
 

(1.9) (1.3) 

 Difference-in-differences (2) -0.5* 
 

-0.2 0.8 

 
 

(0.2) 

 

(1.8) (1.1) 

 Difference-in-differences (3) 0.3 

 

3.0 -2.8** 

 
 

(0.3) 

 

(2.1) (1.0) 

 
Triple difference (1, 2) -1.4** 

 

-1.7 -0.2 

 
 

(0.4) 

 

(2.2) (1.8) 

 Triple difference (1, 3) -2.2** 

 

-1.2 3.1* 

 
 

(0.4) 

 

(2.5) (1.6) 

 Triple difference (2, 3) -1.2** 

 

-3.0 -0.3 

 
 

(0.3) 
 

(2.4) (1.2) 

 
Quadruple difference (1, 2, 3) -3.2** 

 

-6.9* 0.8 

   (0.5)   (3.1) (2.0) 

 Notes: The coefficients are percentage changes in dwell/delay times. Standard errors are in 

parentheses. * p < 0.05, ** p < 0.01. (1) uses the treatment platform in 2016 as control observations, 

(2) uses adjacent stations on the Victoria line as control observations, (3) uses other service line 

platforms at King's Cross station as control observations. All regressions control for Demand, Lines, 

DemandPerLine, ServiceLevel, ServiceLevelDemand, day of the week dummies, dummies for each 

15-minute interval of the day, as well as a linear time trend. See also methodology section.
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