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Abstract

The choice of a copula model from limited data is a hard but important task. Motivated

by the visual patterns that different copula models produce in smoothed density heatmaps,

we consider copula model selection as an image recognition problem. We extract image

features from heatmaps using the pre-trained AlexNet, and present workflows for model

selection that combine image features with statistical information. We employ dimension

reduction via Principal Component and Linear Discriminant Analyses, and use a Support

Vector Machine classifier. Simulation studies show that the use of image data improves

the accuracy of the copula model selection task, particularly in scenarios where sample sizes

and correlations are low. This finding indicates that transfer learning can support statistical

procedures of model selection.

Keywords: copula, dependence modelling, image recognition, model selection, classification,

transfer learning

1 Introduction

Copulas are dependence modelling tools of fundamental importance in actuarial and finan-

cial risk management (Frees and Valdez, 1998, Denuit et al., 2006, McNeil et al., 2015), and

fields beyond (e.g. Genest and Favre, 2007). An extensive literature has emerged on specifically

actuarial applications of copula modelling, in credibility (Frees and Wang, 2005), stochastic re-

serving (Shi and Frees, 2011, Shi, 2014, Abdallah et al., 2015), and claims modelling (Czado

et al., 2012, Shi and Valdez, 2014, Hu et al., 2021, Tzougas and Pignatelli di Cerchiara, 2021).

∗The authors are grateful to Marius Hofert, Jinghao Xue, George Tzougas, and Tim Verdonck for helpful

comments.
†Corresponding author. Email: rui.zhu@city.ac.uk
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At the same time, the problem of choosing a copula model based on datasets that are of limited

size is a non-trivial task, as evidenced in various strands of the literature, indicatively including:

seminal work on copula goodness-of-fit (Genest et al., 2009); the study of practical problems

arising in insurance risk management (Shaw et al., 2010); the impact of copula choice on port-

folio risk (McNeil et al., 2015, Sec. 11.1.5); and the consideration of dependence uncertainty in

a regulatory framework (Embrechts et al., 2014).

The different properties of alternative copula models are often visualised by joint density

contour plots or heatmaps. For example, in Figure 1 we show heatmap images of smoothed

bivariate densities for six well-known copula models, with standard Normal margins. It is obvi-

ous that different copula models have heatmaps with different patterns, reflecting for example

different degrees of skewness. This observation motivates our research question: Do images of

smoothed joint densities convey useful information that can improve the accuracy of copula model

selection procedures?

(a) Gaussian copula. (b) t copula (ν = 4). (c) Frank copula.

(d) Gumbel copula. (e) Joe copula. (f) Pareto copula.

Figure 1: Examples of heatmap images of smoothed bivariate densities for different copula models

(n = 2000, τ = 0.3).

Our paper seeks to address this question, in the context of small data sizes and bivariate

copula models. Small data sizes, e.g. from n = 100 to 250, make the copula model selection

problem hard, hence an improvement offered by image data would be welcome. Furthermore,

when sample size is small, it is natural to focus on the simplest models, given the likely lack of

statistical power to detect more complex model features. We note that bivariate copulas can be

used to hierarchically build complex multivariate dependence structures (Aas et al., 2009); for

a selection tool projecting multivariate copulas to two dimensions see Michiels and De Schepper
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(2013). In the case where datasets are richer, the problem the modeller faces is not so much one

of selecting between different models, but more one of designing a model that is flexible enough

to reflect idiosyncratic features of the data, see e.g. Hofert et al. (2021).

Here, we treat bivariate copula density heatmaps as RGB images and exploit the spatial

patterns present in the images to aid bivariate copula selection. The copula selection task is

treated as an image recognition or classification task: we classify a given copula sample to an

element of a model set, based on its density heatmap image.

One vital challenge in image recognition is to obtain good representations of the images

that can summarise well their distinct spatial patterns and thus make the recognition task

easier; this is known as representation learning. Deep neural models have been demonstrated

to be effective for representation learning, especially in the machine vision community (Bengio

et al., 2013). We utilise a deep convolutional neural network, the AlexNet pre-trained by the

ImageNet dataset (Krizhevsky et al., 2012), to extract image features with strong representation

abilities. This is an example of transfer learning, that is, the use of knowledge from addressing

a particular problem, to a new task (Pan and Yang, 2009, Zhuang et al., 2020).

Instead of using the extracted image features to train a classifier directly, we propose three

additional amendments on them. First, the AlexNet image features are high-dimensional. To

avoid potential problems induced by high dimensionality, principal component analysis (PCA)

(Wold et al., 1987) is applied to reduce the dimensions of the extracted image features. Second,

to further enhance the representation ability of the features, summary statistics are concatenated

with image features to provide a more complete description of copula samples. Lastly, we aim to

make these features more discriminative via linear discriminant analysis (LDA), which projects

the concatenated features to a low-dimensional subspace where the observations from the same

classes are grouped close together, while those from different classes are pushed apart (Yang and

Jin, 2006). Hence, the recognition task becomes easier on this discriminative subspace. The

features extracted by LDA are used as the final representations of the copula samples to train

the classifier. Support vector machine (SVM) is chosen as the classifier for the image recognition

task, because it is proven to be effective on various real-world applications (Tzotsos and Argialas,

2008, Islam et al., 2017, Sheykhmousa et al., 2020).

We test the performance of the proposed image recognition approach to copula selection via

simulation studies. We consider the six copula models of Figure 1 and evaluate the classification

accuracy of our approach in different scenarios, comparing to the statistical benchmarks of AIC

and BIC. First, we consider model selection when all training and testing instances arise for

copula pseudo-samples with the same sample size and underlying rank correlation. While this is

not a realistic setting, it allows us to explore the performance of image recognition for different
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problem parameters. We observe that image recognition consistently outperforms AIC/BIC,

except when the underlying rank correlation is very high. The biggest improvement occurs in

those scenarios of low sample size and correlation, where the copula selection problem is the

hardest. Robustness checks in relation to the choice of marginal for generating images and the

dimensions of PC/LDA spaces illustrate sensitivity to those assumptions, but also that the a

priori choices we made are reasonable.

Subsequently, we consider a more realistic scenario, where a copula model needs to be

selected for data with differing sample sizes and correlations, generated under any rotation of

the six bivariate baseline copula models. In this scenario, the heatmap images from the same

copula model can present very different patterns, leading to substantial within-class variations.

For that reason, we propose to add a first data rotation step, based on sample statistics, with

the aim of converting the data to be positively correlated and skewed. Then, in a second step,

we apply the image recognition approach to images generated from the rotated data.

We find that this two-step image recognition approach dominates AIC for the copula model

selection task, again except in the situation of high correlations. This motivates our final proposal

to combine the two-step image recognition approach with AIC. In this combined approach, AIC

values (calculated on the rotated data) are concatenated with the image features and statistical

features before applying LDA. Experiments show that the combined approach improves on both

AIC and image recognition-based model selection. We conclude the analysis with a sensitivity

analysis of model predictions, by adapting the scenario weighting method proposed by Pesenti

et al. (2019) for simulation models, to our case of a predictive model. The analysis demonstrates

how sample skewness is important for distinguishing symmetric from asymmetric models, with

image features providing additional information that allows a more granular classification to

individual models.

This paper is organised as follows. In Section 2, we give preliminaries on copula modelling.

Section 3 introduces the image recognition approach, with fixed correlation and sample sizes. In

Section 4 we discuss the two-step approach to copula model selection for more general datasets.

Experimental results are summarised within each section. Section 5 presents our concluding

remarks.

2 Copulas

2.1 Copula models and their properties

Consider continuous random variables X,Y with marginal distributions F, G and joint

distribution H, on a probability space (Ω,F ,P). The copula of (X,Y ) is a distribution on [0, 1]2
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with uniform marginals, such that

H(x, y) = C(F (x), G(y)). (1)

Denote U = F (X), V = G(Y ) and also Ū = 1 − U, V̄ = 1 − V . Then it follows from (1) that

C is the joint distribution of (U, V ), that is,

C(u, v) = P(U 6 u, V 6 v), (u, v) ∈ [0, 1]2. (2)

Analogously, the joint distribution of (Ū , V̄ ) is called the survival copula of (X,Y ) and denoted

by C̄.

Definition (1) implies a separation of a random vector’s marginal behaviour from its de-

pendence structure, which has enabled copulas to be widely employed as multivariate modelling

tools. For detailed treatments of copulas, including applications in insurance and financial risk

management, see Nelsen (2007), Denuit et al. (2006), McNeil et al. (2015). We note that the

copulas of discontinuous random vectors are not uniquely defined – in such a case the variables

U, V as constructed above are not uniform. However, we can always uniquely determine a cop-

ula for X,Y via (2), with uniform variables U, V constructed via the generalised distributional

transform of Rüschendorf and de Valk (1993).

In risk management, the specific properties of different copula families are important. As-

sume that X and Y represent losses, such that high (joint) outcomes are associated with adverse

events. Then, beyond considering (rank) correlation measures, it is important to model the

extent to which X and Y will jointly achieve high values. A typical way in which the liter-

ature considers the propensity of joint extremes is via the coefficients of upper and lower tail

dependence (e.g. McNeil et al., 2015, Sec. 7.2.4):

λU (U, V ) := lim
p→1

P
(
Y > G−1(p) | X > F−1(p)

)
= lim

p→1

C̄(1− p, 1− p)
1− p

,

λL(U, V ) := lim
p→0

P
(
Y 6 G−1(p) | X 6 F−1(p)

)
= lim

p→0

C(p, p)

p
.

Models for which λU or λL are non-zero are, respectively, called upper or lower tail dependent.

While tail dependence is an asymptotic property, a distinct issue is the skewness or asymme-

try of a copula. A copula is symmetric if C(1−u, 1−v) = C(u, v). Various measures of bivariate

skewness have been proposed by Rosco and Joe (2013). Here we focus on the moment-based

measure ζ, defined for k ∈ (1,∞) as:

ζ(U, V ; k) = E
[
|U + V − 1|ksign(U + V − 1)

]
.

Implications of the choice of the parameter k are briefly explored in Rosco and Joe (2013).
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A further property of bivariate copulas relates to the extent that observations are concen-

trated in the four corners of the unit box, even when correlation is low, leading to spider-like

pattern. This property, which distinguishes, e.g., a t from a Gaussian copula model, is termed

arachnitude in Shaw et al. (2010), see also Androschuck et al. (2017), Genest et al. (2019). We

measure arachnitude in the way proposed by Shaw et al. (2010), that is, as

ξ(U, V ) := ρ
(
(U − 0.5)2, (V − 0.5)2

)
,

where ρ is the Pearson (product-moment) correlation.

In this paper we consider six bivariate copula models:

1. The Gaussian copula is probably the most widely used copula model. It is symmetric and

tail independent.

2. The t copula is symmetric but both upper- and lower-tail dependent. It admits a degree

of freedom parameter ν; λL, λU decrease in ν, while for ν → ∞, the t copula reduces to a

Gaussian.

3. The Frank copula is symmetric and tail independent.

4. The Gumbel copula, commonly used in risk management, is positively skewed and upper tail

dependent.

5. The Joe copula is positively skewed and upper tail dependent.

6. The Pareto copula (or Clayton survival copula), is positively skewed and upper tail dependent.

We do not provide technical detail on these models, as they are all well known and exhaus-

tively discussed in the literature (Nelsen, 2007, Denuit et al., 2006, McNeil et al., 2015). The

Gaussian and t models are, respectively, the copulas of bivariate Normal and t distributions; the

remaining four models belong to the family of Archimedean copulas. All models, except the t

copula, have a single parameter, which can be calibrated to (e.g. Kendall’s) rank correlation or

estimated by MLE. The t model has the degrees of freedom ν as an additional parameter.

The properties of different copula families are illustrated in Figure 1, which shows heatmaps

of smoothed bivariate densities, each derived from samples of size n = 2000, with underlying

Kendall rank correlation τ = 0.3. The distinct patters of the different models are visible. At the

same time there is substantial similarity between some of the resulting heatmaps (e.g. Gaussian

and t; Joe and Pareto), which indicates that selecting the correct model from data is not a trivial

task. This is of course even more challenging for smaller datasets. We show heatmaps from the

same six copula families in Figure 2, but this time generated from bivariate samples of size
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n = 100. While the general patterns observed in Figure 1 are preserved, they are substantially

noisier.

(a) Gaussian copula. (b) t copula (ν = 4). (c) Frank copula.

(d) Gumbel copula. (e) Joe copula. (f) Pareto copula.

Figure 2: Examples of heatmap images of smoothed bivariate densities for different copula models

(n = 100, τ = 0.3).

2.2 Estimation and model selection

Consider a sample from (X,Y ), (x1, y1), . . . , (xn, yn). Realisations of the random vec-

tor (U, V ) are not directly observable. As a result it is common to construct copula pseudo-

observations (e.g. Genest et al., 2009). Let ri(z) be the rank of observation zi in a univariate

sample z = (z1, . . . , zn). Then, the pseudo-observations are given by

ui =
ri(x)

n+ 1
, vi =

ri(y)

n+ 1
.

From the pseudo-observations (ui, vi), i = 1, . . . , n, we can readily estimate skewness and arach-

nitude, denoting the corresponding estimates by ζ̂, ξ̂. Furthermore, we denote the sample version

of Kendall’s rank correlation as τ̂ .

For a parametric family of copulas C(m)(·; θ), θ ∈ Θm, the parameters θ can be estimated by

maximum likelihood estimation, treating the pseudo-observations as if they are a random sample

from C(m)(·; θ). If we are considering a family of copula models {C(m), m ∈ M}, likelihood

methods also offer model selection criteria. Let c(m) be the bivariate density corresponding to

copula C(m) and θ̂(m) the (km-dimensional) estimate of the corresponding model parameter.
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The Akaike and Bayes Information criteria are given by:

AIC(m) = 2km − 2

n∑
i=1

log c(m)
(
ui, vi; θ̂

(m)
)
,

BIC(m) = km log n− 2

n∑
i=1

log c(m)
(
ui, vi; θ̂

(m)
)
.

The selected model is then the one with the lowest AIC(m) or BIC(m). A cross-validated log-

likelihood criterion is formulated by Grønneberg and Hjort (2014, eq. (42)); see Jordanger and

Tjøstheim (2014) for a simulation study. Other model selection criteria can be constructed

using goodness-of-fit statistics; for example Kularatne et al. (2021) employ the Cramer-von

Mises statistic, the use of which (including variations) in copula goodness-of-fit testing has been

thoroughly explored by Genest et al. (2009). Bayesian copula selection is discussed in Huard

et al. (2006).

In this paper, we use as statistical benchmarks for model selection AIC and BIC.1

3 An image recognition-based approach to copula model

selection

In this section we introduce a new methodology, which uses image recognition to select

a suitable bivariate copula from a pseudo-sample, by classifying its density heatmap image to

one of the six models we consider. The recognition process is designed to incorporate rich

information that can well represent the samples and is discriminative to make the classification

task easier. The generation of the heatmap images is introduced first, and then the image

recognition approach is discussed in detail. Subsequently, experimental results are shown to

demonstrate the effectiveness of this approach for copula model selection.

We note that in the present section we apply the classification / copula model selection

framework to simulated data with very benign features, with all images in any given dataset

derived from pseudo-samples with the same sample size and underlying correlation. This is

of course an unrealistic testing environment, with classes that are more homogeneous than in

any practical application. Nonetheless, the setting of this section allows us to evaluate whether

image recognition can be effective as a copula selection tool (and under which conditions). The

restrictive assumptions of this section are relaxed in the two-step approach of Section 4.

1In early experiments we have found that these outperform both the Cramer-von Mises statistic and the cross-

validated log-likelihood of Grønneberg and Hjort (2014) with 10-fold cross-validation. Hence we do not report on

those statistics in the paper.
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3.1 Generating heatmap images of smoothed bivariate densities

Here we outline how the image datasets are generated, on which classifiers are trained

to perform the copula selection task. Each image is a smoothed bivariate density heatmap,

generated from a simulated pseudo-sample from (U, V ), drawn from a given copula specification

C(m)(·; θ), θ ∈ Θ(m), m ∈M.

For each image dataset that we generate the following hold:

a) The dataset contains R = 20, 000 images.

b) Each image is derived from a bivariate sample of size n, drawn from one of the 6 copula

families we consider in this paper, M = Ms ∪ Ma, where Ms = {Gaussian, t, Frank}

and Ma = {Gumbel, Joe, Pareto} contain symmetric and asymmetric (positively skewed)

models respectively. Each dataset contains approximately the same number of images from

each copula family.

c) In each dataset all images are generated from simulated samples with a fixed sample size

n ∈ {100, 150, 200, 250} and (population) Kendall τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Hence we have

4×5 = 20 datasets, corresponding to different (n, τ) combinations, each containing R images.

d) All images are generated from bivariate samples that have positive empirical rank correlation

and positive empirical skewness. This means that samples that display negative rank correla-

tion are rejected and not used to produce images in the dataset. Furthermore, samples that

display negative sample skewness, when the underlying copula model has positive skewness,

are also rejected.2

e) Images are generated based on pseudo-observations from the copula samples, since the lat-

ter would not be available in practice. Furthermore, to generate the heatmap images, we

transform pseudo-observations to have a standard normal marginal distribution. This trans-

formation is employed only for image generating purposes and reflects no assumption of

normality for the marginal distribution of the underlying data.

The precise process by which images are generated is given in Algorithm 1, where we

suppress the subscript i for quantities estimated from the ith simulated sample. All calculations

are carried out in R. For random number generation we use package copula (Jun Yan, 2007,

Hofert et al., 2020). For AIC/BIC calculations we use the package VineCopula (Schepsmeier

et al., 2021). Joint densities are estimated on a 100×100 grid on [−3, 3]2 using an axis-aligned

2This process takes away from realism, by removing some noise from the generated datasets. Nonetheless,

we pursue this strategy for image generation in order to maintain consistency with the two-step approaches of

Section 4.
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bivariate normal kernel, by the function kde2d of the package MASS, with bandwidths set to

1.3 times the values given by the heuristic in Venables and Ripley (2002, eq. (5.5)). The plots

are produced by the image function and saved as png files.

3.2 The image recognition approach

Training phase Test phase

Predicted 
copula
model

AlexNet
Summary 
statistics

AlexNet LDA SVM

Summary 
statistics

PCA

Training setTraining set Training setTest set

Figure 3: The workflow of the image recognition approach for copula model selection.

Now we present the image recognition approach with the complete workflow shown in

Figure 3. Similarly to all classification tasks, the image recognition approach consists of a

training phase to extract features and train a classifier, and a test phase to predict a copula

model for a test sample. In Figure 3, the training phase is presented by the black flow while the

test phase is presented by the red flow.

3.2.1 The training phase

The training phase contains two parts: 1) the representation learning part to extract features

with strong representation and discrimination abilities and 2) the classification part to train an

effective classifier.
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Algorithm 1: Algorithm for generating the image dataset, with given fixed n, τ .

i← 0;

while i < R do

Choose randomly copula family C(m), m ∈M;

if m is the t copula then

Choose randomly degrees of freedom ν from {3, 4, . . . , 10};

Work out parameters θ from (τ, ν);

else

Work out parameter θ from τ ;

end

Simulate n pairs of observations from (U, V ) ∼ C(m)(·; θ);

Transform simulated observations to pseudo-observations (uj , vj)j=1,...,n;

From (uj , vj)j=1,...,n calculate sample statistics τ̂ , ζ̂, ξ̂;

if τ̂ > 0 then

if ζ̂ > 0 then
KeepData← TRUE

else

if m ∈Ms then

Rotate pseudo-observations, uj ← 1− uj , vj ← 1− vj , j = 1, . . . , n;

ζ̂ ← −ζ̂;

KeepData← TRUE;

else

KeepData← FALSE;

end

end

else
KeepData← FALSE

end

if KeepData =TRUE then

i← i+ 1;

Calculate AIC(l) and BIC(l) from (uj , vj)j=1,...,n, for each l ∈M ;

Save τ̂ , ζ̂, ξ̂, AIC(l), BIC(l);

Transform pseudo-observations to normal xj ← Φ−1(uj), yj ← Φ−1(vj), j = 1, . . . , n;

Estimate joint density of (xj , yj). Create heatmap and save image;

end

end
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Figure 4: The architecture of the AlexNet.

Figure 5: Left: The heatmap image of a Gaussian copula sample. Right: The activations of the

first convolutional layer of AlexNet for the sample.
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Representation learning In the representation learning part, two types of features are ex-

tracted from the training copula samples: pure image features and statistical features. The pure

image features are extracted from the training heatmap images by the pretrained AlexNet, a

deep convolutional neural network that has been trained on the ImageNet dataset with 1000

classes of high-resolution images (Deng et al., 2009). Given the complex nature of the images in

the ImageNet dataset and the competitive classification performance of AlexNet, we believe that

this pretrained network can provide good representations of our heatmap images of relatively

simple patterns.

The architecture of AlexNet is depicted in Figure 4, with an input layer of RGB images, five

convolutional layers and three fully connected layers. The output from the last fully connected

layer is the predicted distribution of the class labels, i.e. the predicted probabilities for each of

the 1000 classes considered. Note that we do not use the classification output of AlexNet, as

the 1000 classes used are not relevant to our copula selection task; however the representation

ability of the network allows us to use it for feature extraction from our heatmap images. To

demonstrate the good representation ability of the pretrained AlexNet, we show the activations

of a Gaussian copula sample for all 96 channels of the first convolutional layer in Figure 5, with

each square presenting the activations of one channel. The bright pixels reflect high activations,

which means that they make substantial contributions to the extracted features. It is obvious

that the contour shapes of the Gaussian sample can be well captured by the first convolutional

layer.

We input the training heatmap images to the pretrained AlexNet, and extract 4096 fea-

tures from the second fully connected layer, ‘fc2’ in Figure 4, which is the last feature extrac-

tion layer before working out predicted probabilities. This layer provides high-level abstract

features that can well represent the images. To be precise, each training heatmap image is

represented by a 4096-dimensional vector xM
i ∈ R4096×1 (i = 1, 2, . . . , N), where N is the num-

ber of training copula samples, and the image features of the whole training set is denoted as

XM = [xM
1 ,x

M
2 , . . . ,x

M
N ]T ∈ RN×4096. (Note that N here is different to the value of R in Al-

gorithm 1, as the generated images for each dataset will be subsequently split into training and

test samples.)

The high number of image features can lead to potential problems in classification, e.g.

the curse of dimensionality and high computational cost. Thus, we reduce the number of image

features before training a classifier. This dimension reduction step is achieved by principal

component analysis (PCA), which is a widely adopted unsupervised dimension reduction method

that can provide low-dimensional yet effective representations of the original high-dimensional

data (Wold et al., 1987). PCA projects data from the original feature space to a low-dimensional
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subspace, spanned by the first few principal components (PCs) that can explain most of the

variation in data. This can be achieved by applying the reduced singular value decomposition

(SVD) on the column-centred XM :

(XM )c = UDVT , (3)

where (XM )c ∈ RN×4096 is the column-centred XM derived by extracting column means from

XM , U ∈ RN×r and V ∈ R4096×r contain left and right singular vectors, D ∈ Rr×r is a diagonal

matrix with singular values d1 > d2 > . . . > dr > 0. The first q (q 6 r) columns in V, i.e. the

first few PCs, are selected to construct the PC subspace. In this paper, we set q = 150 to explain

99.9% of the variation in XM . After PCA, the image features of the training set become

XMP = (XM )cV150 ∈ RN×150, (4)

where V150 ∈ R4096×150 is V with the first 150 columns. Thus the image features now lie in a

150-dimensional PC subspace.

Besides the pure image features extracted from AlexNet, we propose to utilise some ad-

ditional statistical features to enrich the description of the training copula samples. Three

summary statistics, Kendall’s rank correlation, skewness and arachnitude are chosen as the

statistical features. The statistical features of each sample are denoted as xS
i = (τ̂i, ζ̂i, ξ̂i) ∈

R3×1, i = 1, 2, . . . , N .

The low-dimensional image features and three statistical features are then concatenated to

provide a representation for the ith copula sample, xi = [(xMP
i )T , (xS

i )T ]T ∈ R153×1, where

xMP
i ∈ R150×1 is the ith observation in XMP . The feature matrix to represent all training copula

samples is denoted as X = [x1,x2, . . . ,xN ]T ∈ RN×153. Before simply feeding this feature matrix

to a classifier, we extract more compact and discriminative information to reflect the differences

between classes better and make the classification process easier. For that purpose, we apply

linear discriminant analysis (LDA) on X. LDA is a well known supervised dimension reduction

method that projects data to a subspace such that between-class variation is maximised while

within-class variation is minimised (Yang and Jin, 2006). The classification task is easier on this

subspace because the instances from the same class are pulled close together while those from

different classes are pushed further away. LDA finds such discriminative subspace by solving the

following optimisation problem:

max
W

det(WTSBW)

det(WTSWW)
, (5)

with SW =
K∑

k=1

∑
i in class k

(xi − µk)(xi − µk)T and SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T . Here K is

the number of classes, W ∈ R153×(K−1) contains the bases of the linear discriminant subspace,
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xi ∈ R153×1 denotes each sample in X, µk ∈ R153×1 is the class mean of the k-th class and

µ ∈ R153×1 is the overall mean of X. As the optimisation problem (5) involves class information,

W summarises the discriminative information between classes. By projecting X on the linear

discriminant subspace, we have

XP = XW ∈ RN×(K−1). (6)

LDA can provide at most a (K − 1)-dimensional subspace. In this paper, six copula mod-

els are considered, thus the LDA subspace is at most five-dimensional. Here we take all five

discriminative dimensions provided by LDA.

Classification Support vector machine (SVM) is chosen as the classifier for its efficiency in

many real-world applications (Tzotsos and Argialas, 2008, Islam et al., 2017, Sheykhmousa

et al., 2020). The training set to train SVM contains N pairs of observations {xP
i ,mi}Ni=1, where

xP
i ∈ R5×1 is the feature vector of the ith observation obtained in the representation learning

part and mi ∈M is the corresponding copula model.

SVM aims to find a separating hyperplane f(x) = φ(xP
i )Tw + b for classification by max-

imising the margin M between two classes:

max
w,b

M (7)

s.t. yi(φ(xP
i )Tw + b) >M(1− ψi) ∀i,

ψi > 0 ∀i,
N∑
i=1

ψi 6 C,

where w and b defines the separating hyperplane, φ(·) is a function that projects xP
i to a

reproducing kernel Hilbert space, ψi is the slack variable that allows violations of the training

observations to the margins, and C is a predefined positive integer that controls the trade-off

between the goodness-of-fit of the training set to the classifier and the generalisation ability of

the classifier on unseen data. The solutions w∗ and b∗ are then used to classify a test observation

x: if f(x) = φ(x)Tw∗ + b∗ is positive, then x belongs to the positive class; otherwise, x belongs

to the negative class.

Note that this formulation of SVM can only be used for binary classification. To apply it

in our case with six classes, we adopt the one-versus-one strategy (Friedman et al., 2009). We

apply SVM to pairs of classes, which means that
(
K
2

)
SVM classifiers are trained. For the test

observation x, we obtain
(
K
2

)
classification results. A majority vote is then applied to these

classification results to determine the class of x, i.e. the class with the highest vote is selected.
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3.2.2 The test phase

In the test phase, given one observed copula sample, we first extract its image features

xM
t ∈ R4096×1 from the pretrained AlexNet and project them to the PC subspace constructed

in the training phase:

xMP
t = VT

150(xM
t )c ∈ R150×1, (8)

where (xM
t )c is the centred xM

t by the column means of XM . The image features are then

concatenated with the summary statistics xS
t ∈ R3×1 to form the feature vector of the test

copula sample, xt = [(xM
t )T , (xS

t )T ]T ∈ R153×1. We then project this vector to the linear

discriminant subspace to obtain the discriminative features for classification:

xP
t = WTxt ∈ R5×1. (9)

The copula model is then selected by applying the trained SVM on xP
t , based on the procedure

discussed in section 3.2.1.

3.3 Classification results on copula samples with fixed n and τ

3.3.1 Experimental settings

For each dataset with fixed n and τ , we randomly select 70% of the R = 20, 000 images to

form the training set, with the remaining images used as a test set; hence the training sample size

is N = 0.7×R = 14, 000. For SVM, the radial basis function (RBF) kernel is chosen as the kernel

function. The hyperparameters associated with the SVM classifier are tuned by 10-fold cross-

validation on the training set. The classification accuracies of the image recognition approach are

recorded. Furthermore, we record the accuracy by which the copula model is selected when using

AIC or BIC as a criterion. To make the results more reliable, the training/test random split

process is repeated 20 times. Thus for each combination of n and τ , we record 20 classification

accuracies for each copula model selection method.

3.3.2 Classification results

The classification results are shown in Figure 6, with each plot presenting the accuracies of

the three approaches with a fixed value of n and all values of τ . For each plot, the horizontal

axis represents the values of τ , while the vertical axis represents the classification accuracy. The

mean classification accuracies of the image recognition approach are shown by blue curves, those

of AIC are shown by red curves, and those of BIC are shown by green curves. The two short

bars associated with each point in Figure 6 are the lower quartile and upper quartile of the 20

recorded accuracies for each method.
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(d) n = 250

Figure 6: Classification accuracies for fixed n and τ .
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It is clear that, generally, the classification accuracy increases as τ increases for each value

of n, and also increases as n increases for each value of τ . This pattern makes sense because the

underlying model can be better described by samples with larger n’s. The models with larger

τ ’s are also easier to classify, as the characteristics of the models are presented clearer when τ

is large. The image recognition approach can beat both AIC and BIC when τ is small, i.e. less

than 0.7, and this is more obvious when n is small. This is encouraging, as the improvement

provided by the image recognition approach to select copula models occurs for samples that

are difficult to classify, i.e. those with small n and τ . However, when τ is large, the image

recognition approach performs obviously worse than AIC and BIC; moreover, beyond τ = 0.7,

the classification accuracies start decreasing. A plausible reason for this is that, when τ is very

large, the heatmap images of different copula models exhibit very similar visual patterns and

image recognition cannot easily distinguish between them.

We also note the consistently better performance of AIC compared to BIC. The only dif-

ference between those two statistics is the higher penalty for additional parameters that BIC

assigns. As there is only one model with 2 parameters (the t copula), the BIC seems to system-

atically mistake the t copula for another model (most commonly the Gaussian).

To sum up, the preliminary experimental results on copula samples with fixed n and τ

demonstrate the potential effectiveness of image recognition to select copula models, especially

when n and τ are relatively small.

3.4 Robustness tests

Here we summarise the results of two robustness checks, seeking to evaluate the extent to

which classification performance is impacted by potentially arbitrary decisions in the design of

our copula selection process.

First, in order to generate heatmaps, a choice of marginal distribution is necessary. (As

we are only investigating dependence effects, this choice does not reflect any assumption re-

garding the marginal distributions of the actual data one may be modelling; in a sense, it is a

hyperparameter choice). So far, all heatmap images are generated from bivariate samples with

Normal margins. Here, we additionally consider Cauchy, Laplace and Uniform margins. For

the R = 20, 000 bivariate copula samples we generated with n = 250 and τ = 0.5, we produce

heatmaps using each of those additional margins by slightly modifying Algorithm 1. Subse-

quently, we extract features and train a SVM to classify those heatmaps in the case of each

margin, following the same process and experiment settings as in Section 3.3. The results are

summarised in Figure 7. Clearly, the Normal and Laplace margins have very similar medians and

interquartile ranges, indicating that classification performance is similar for those two marginal
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choices. The Cauchy and Uniform margins show worse classification accuracies, with medians

lower than those of Normal and Laplace margins by around 1.5%. This shows that the choice of

margin has a noticeable effect on the final results and that the choice of a Normal margin proved

to be a beneficial one.

Normal Cauchy Laplace Uniform

0.
71

0.
72

0.
73

0.
74

A
cc

ur
ac

y

Figure 7: The classification accuracies for different margins with n = 250 and τ = 0.5.

Second, the dimensions of the PC and LD subspaces can affect the final classification perfor-

mance, because they determine the amount of information to be included in the low-dimensional

subspaces. Setting the dimensions to small numbers may result in low classification accuracies

because of the loss of vital information for classification, while setting them to large numbers

close to the original feature dimensions fails to achieve dimension reduction. In Figure 8, we

show the surface curve of the classification accuracies for different dimensions of the PC and

LD subspaces to classify copula samples with n = 250 and τ = 0.5. Five dimensions of the PC

subspace are tested, {10,50,70,100,150}, while three dimensions of the LD subspace are tested,

{3,4,5}. As expected, when the dimensions of the subspaces are low, e.g. the dimension of the

PC subspace is 10 and that of the LD subspace is 3 or 4, the classification accuracies are just

around 71%. However, when the dimension of the PC subspace is higher than 50 and that of

the LD subspace is set to the maximum number of five, we can observe the highest classification

accuracies of more than 73%. These results demonstrate that our choices of 150-dimensional PC

subspace and 5-dimensional LD subspace are sensible.

Following the analysis of this section, we will continue using Normal margins, 150 PCs and

a 5-dimensional LD subspace in the rest of the paper.
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Figure 8: Classification accuracies for different dimensions of the PC and LD subspaces to classify

copula samples with n = 250 and τ = 0.5.

4 Selecting (rotated) copula models with variable n and τ

Encouraged by the results of Section 3, we here address the more realistic scenario where n

and τ are not fixed. Furthermore, we allow τ to be negative. In particular, for asymmetric copula

models, we consider all rotations, such that each model in Ma has now four distinct versions.

We believe that this addresses a realistic modelling scenario, as the classification approach does

not assume anything a priori about the sign of either the correlation or the skewness of the

underlying model.

In this section we consider three distinct approaches:

1. Copula selection with AIC. This approach requires us to consider an enlarged set of

candidate models, which also includes the rotations of the positively correlated and skewed

models in M.

2. Image recognition with a two-step approach. In the first step, sample statistics

are used to assess the sign of correlation and skewness – essentially trying to detect if

elements of M have been rotated. Then, the pseudo-samples are transformed to have

positive correlation and skewness. In the second step, heatmap images are generated from

the transformed samples and classified to models in M.

3. Combining image recognition with AIC. The same approach as in 2. is followed,
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with the AIC of the models in M added as a feature in the second step of the process.

The motivation for this is to not miss out on any information encoded in likelihood-based

statistical criteria, which is not present in image features.

The performance of the three copula model selection approaches is assessed on a test set. In

contrast to Section 3, for the two-step approaches of this section we cannot validate the result of

the classification algorithm on subsets of the training set. In the training set, all copula samples

are positively correlated and skewed, to make the within-class variation smaller. However, this is

not a realistic testing scenario. Thus, in the test set, we consider copula samples that may have

negative or positive correlation and skewness. Before we discuss each of the three approaches

in more depth, we describe the construction of this test set.

4.1 Test set

We produce a test set of S = 10, 000 bivariate copula pseudo-samples. Each pseudo-

sample is generated from a copula in M, with randomly (uniformly) chosen n ∈ [100, 250] and

τ ∈ [0.1, 0.9]. Before simulating each pseudo-sample, the underlying copula model is rotated by 0,

90, 180, or 270 degrees counter-clockwise. Hence, we deal with an enlarged model set, denoted by

M′. Let mr represent a model m inM, rotated by r degrees, such that m0 = m. For symmetric

models m ∈ Ms, we also have m180 = m0, m270 = m90. Then, we let M′ =M′s ∪M′a, where

M ′s = {mr : m ∈Ms, r ∈ {0, 90}} and M ′a =
{
mr : m ∈Ma, r ∈ {0, 90, 180, 270}

}
. The data

and copula model specification are saved, as well as the rank correlation of the rotated model

τr.

The generation of the test set is outlined in Algorithm 2.

4.2 Copula selection approaches

4.2.1 Copula selection with AIC

For each instance i in the test set, the model in M′ is chosen with the smallest AIC, as

calculated in the penultimate step of Algorithm 2. The classification is successful if the chosen

model is identical to the underlying model mr ∈M′.

4.2.2 Image recognition with a two-step approach

When we allow for models with negative correlation and skewness, the classification task

becomes harder. One can either assign a different class for each element in the enlarged model

spaceM′ – thus moving from 6 to 18 classes – or within each of the 6 classes inM accommodate
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Algorithm 2: Algorithm for generating the test set, with variable n, τ and model

rotations.

i← 0;

while i < S do

Choose randomly m ∈M, n ∈ [100, 250], τ ∈ [0.1, 0.9];

if m is the t copula then

Choose randomly degrees of freedom ν from {3, 4, . . . , 10};

Work out parameters θ from (τ, ν);

else

Work out parameter θ from τ ;

end

Choose randomly r ∈ {0, 90, 180, 270};

if r ∈ {0, 180} then

τr ← τ ;

else

τr ← −τ ;

end

Simulate n pairs of observations from (U, V ) ∼ C(mr)(·; θ);

Transform simulated observations to pseudo-observations (uj , vj)j=1,...,n;

Calculate AIC(l), l ∈M′;

Save m, r, τr, (uj , vj)j=1,...,n, and AIC(l), l ∈M′;

i← i+ 1;

end
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model rotations – resulting in non-homogeneous classes. We address this challenge pragmati-

cally, by using the sample statistics τ̂ , ζ̂ to infer the rotation of the underlying model. Thus,

as a first step pseudo-observations are transformed to have positive correlation and skewness.

Subsequently, heatmap images are created from the transformed samples. As a second step,

these heatmaps are classified, to select one of the 6 copula models in m ∈M. Thus in the image

recognition stage we avoid the need to consider too many or very heterogeneous classes.3

Figure 9 depicts the workflow of the two-step image recognition approach. The two steps

are discussed in more detail below.

Sample	correlation	is	negative

Do	not	change

Do	not	change

Rotate	90	degrees

Rotate	180	degrees

Sample	skewness	is	negative

No Yes

No Yes

Test	set

Step	1:	Image	rotation

Training	set

Training phase Test phase

Step	2:	The	image	recognition	approach

Figure 9: The workflow of the two-step approach for copula model selection.

Step 1

The pre-processing of samples in the test-set to arrive at homogeneous image classes, corre-

sponding to the first step discussed above, is outlined in Algorithm 3. The algorithm first checks

whether the rank correlation is negative – if so the data are rotated by 90 degrees counter-

clockwise. Then skewness is checked – if negative, the data are rotated by another 180 degrees.

The quantity s represents the degree of data rotation to achieve a positive correlation and skew-

ness; hence r̂ = 360 − s is an estimate of the rotation r under which the pseudo-observations

(uj , vj) were simulated. The statistics and images are exported after being calculated on the

3Note this two-step procedure gives the rationale for the rejections of training samples with negative skewness

or correlation, in Algorithm 1, which will be adapted to this section. Importantly, in the test set of Algorithm 2,

no such rejection of images takes place.
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transformed sample (note that the saved AIC values are only used in the combined approach of

Section 4.2.3). The process is illustrated on the right of Figure 9, which shows an example of

the heatmap image of a 90-degree rotated Pareto copula.

At the end of Algorithm 3 we assess whether the first step has been performed successfully, in

that the rotation applied to the data before producing the heatmap is consistent with the rotation

of the underlying copula model. Symmetric and asymmetric models are treated differently, to

reflect that for symmetric models m0 = m180, m90 = m270, which in practice requires us only

to test whether the sign of the rank correlation τr of the copula model mr matches that of the

pseudo-observations, τ̂ .

Step 2 In the second step, images generated by Step 1 are classified to models in M. The

classification approach proceeds analogously with what was discussed in Section 3.2. The only

difference is that, when generating a training sample of R = 20, 000 according to Algorithm 1,

rather than using fixed n and τ , for each i these are now randomly chosen in [100, 250] and

[0.1, 0.9] respectively.

Once again we randomly split the R = 20, 000 to a training set containing with 70% of

the samples and a validation set with 30% of the samples. A SVM with RBF kernel is trained

based on training sets of size 0.7R = 14, 000. The training/validation split process is repeated

20 times.

Finally, the 2-step approach is applied to classify the samples in the test set. For each

test sample, we obtain 20 classification results based on the 20 classifiers trained in the training

phase. A majority vote is applied to these results to get the final decision. In other words, the

copula model with the highest vote by the 20 results is selected for the test copula sample.

We count a test sample as correctly classified only if both steps in the classification process

are successful. In other words, for a sample to be classified correctly we need both to be true:

1. In the first step, the data were rotated in a way consistent with the underlying copula model;

the variable FirstStep in Algorithm 3 has the value TRUE .

2. In the second step, the classifier identifies the correct copula model out of the six models in

M. In other words, if the model underlying a test set was mr ∈ M′, the prediction of the

classifier is m ∈M.

4.2.3 Combining image recognition with AIC

The analysis of Section 3 has shown that image recognition and statistical approaches may

be complementary, each being dominant in different ranges of n and τ . For that reason we
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Algorithm 3: Algorithm for generating heatmap images from the test set, with variable

fixed n, τ and model rotations. (First step of Section 4.2.2.)

i← 0;

while i < S do

Read pseudo-observations (uj , vj)j=1,...,n, underlying model with (m, r) such that mr ∈M′,

and rank correlation τr, from the ith instance of the test set;

Calculate τ̂ from (uj , vj)j=1,...,n;

Initialise the degree to which data will be rotated, s← 0;

if τ̂ < 0 then

s← s+ 90;

vj ← 1− vj , j = 1, . . . , n;

τ̂s ← −τ̂ ;

end

Calculate ζ̂ from (uj , vj)j=1,...,n;

if ζ̂ < 0 then

s← s+ 180;

uj ← 1− uj , vj ← 1− vj , j = 1, . . . , n;

ζ̂s ← −ζ̂;

end

Estimate the copula rotation r̂ ← 360− s;

Calculate from (uj , vj)j=1,...,n, ξ̂s and AIC
(l)
s for each l ∈M;

Save τ̂s, ζ̂s, ξ̂s, AIC
(l)
s ;

Transform pseudo-observations to normal xj ← Φ−1(uj), yj ← Φ−1(vj), j = 1, . . . , n;

Estimate joint density of (xj , yj). Create heatmap and save image;

if m ∈Ms then

if sign(τ̂) = sign(τr) then
FirstStep← TRUE

else
FirstStep← FALSE

end

end

if m ∈Ma then

if r̂ = r then
FirstStep← TRUE

else
FirstStep← FALSE

end

end

i← i+ 1;

end
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propose to combine the two approaches. We adapt the approach of Section 4.2.2, to integrate

AIC information for different models in M in the second step of the process. Specifically:

1. We follow the Step 1 of Section 4.2.2 in exactly the same way.

2. In Step 2, we follow again the approach of 4.2.2, but now adding the AIC values for l ∈ M

in both the training and testing phases. Specifically, for a training instance i denote the

AIC values of different models by xA
i = {AIC

(l)
i }l∈M, i = 1, 2, . . . , N – these are extracted

by Algorithm 1 (modified version with variable n, τ). The concatenated feature vector for

each copula sample then becomes xi = [(xMP
i )T , (xS

i )T , (xA
i )T ]T ∈ R159×1. The rest of the

training phase follows exactly as described in the second step of Section 4.2.2. Similarly, a

test sample is represented by xt = [(xM
t )T , (xS

t )T , (xA
t )T ]T ∈ R159×1, where xA

t are the AIC

values, extracted by Algorithm 3. xt is then projected to the linear discriminant subspace

constructed in the training phase and classified by SVM.

4.2.4 Classification results

First we compare the performance of the different copula model selection methods presented

in Section 4.2 by calculating their classification accuracies on the test set. It is seen in Table 1

that the image recognition approach of Section 4.2.2 outperforms AIC. Furthermore, combining

image recognition with AIC information, as in Section 4.2.3, leads to a better accuracy than

either of those two approaches.

Table 1: Test classification accuracies of AIC, two-step image recognition approach, and com-

bining image recognition with AIC.

AIC Image recognition Combined

Accuracy 0.5688 0.5822 0.6061

To gain more insight into the test results, we plot smoothed curves of the average test

classification accuracies of the three approaches against n and τ in Figures 10(a) and 10(b),

respectively. The curves are generated by the function locfit of the package locfit with the

smoothing parameter of 0.5. It is clear that the image recognition approach outperforms AIC,

except for high correlations. Furthermore, the combined approach, including the information

from both images and AIC, provides better results than simply using the image information in

the two-step approach for all values of n and τ . Figure 10(a) shows that the combined approach

is the best over all values of n while AIC is the worst, which is consistent with our conclusion in

Table 1. However, Figure 10(b) presents a slightly different pattern for τ : AIC performs better
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Figure 10: Fitted curves of the test classification accuracies of the three approaches against (a)

n and (b) τ .

than both the combined and two-step approaches when the value of τ is larger than 0.8. This

indicates that the heatmap image information does not help copula selection when τ is very

high.

Table 2: Confusion matrix of the two-step image recognition approach on the test set.

Predicted

True
Gaussian t Frank Gumbel Joe Pareto

Gaussian 1037 391 181 179 27 50

t 287 974 51 204 23 18

Frank 197 102 1360 64 19 31

Gumbel 163 225 50 868 126 137

Joe 5 16 8 116 1003 803

Pareto 31 11 21 136 409 580

Accuracy 0.6029 0.5666 0.8144 0.5539 0.6241 0.3582

In Tables 2 and 3 respectively, we present the confusion matrices of the image recognition

and combined approaches. The classification accuracies for each class are summarised in the

bottoms of the two tables. For simplicity of exposition, we calculate the confusion matrices only

for those testing instances where we had FirstStep =TRUE (99.02% of instances). It is apparent

that the Frank, Gaussian and Joe models are best predicted. Predictions for underlying Gumbel

and t models are less accurate, while for Pareto models the predictions are the worst. Pareto

models are confused with Joe by both approaches, due to the similarity between their heatmap
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Table 3: Confusion matrix of the approach combining image recognition and AIC on the test

set.

Predicted

True
Gaussian t Frank Gumbel Joe Pareto

Gaussian 1181 394 160 179 28 40

t 191 1004 53 203 24 19

Frank 171 97 1390 68 22 37

Gumbel 136 190 42 870 112 150

Joe 6 19 6 106 979 736

Pareto 35 15 19 141 442 637

Accuracy 0.6866 0.5841 0.8323 0.5552 0.6092 0.3935

images. Comparing Tables 2 and 3, we can see that the combined approach can provide better

predictions on Gaussian and Pareto models, which demonstrates the effectiveness of involving

the information provided by AIC.

4.3 Sensitivity analysis

We complete our discussion with a sensitivity analysis of the predictive model behind the

image recognition approach of Section 4.2.2. Given the complexity of the workflow of Figure 9,

and the concurrent use of image-based and statistical features, we are interested in understand-

ing which of those features drive the predictions of each model. For this purpose we adapt the

scenario weighting and reverse sensitivity framework developed by Pesenti et al. (2019) in the

context of stress testing simulation models and implemented in the R package SWIM (Pesenti

et al., 2021). This framework is well suited to situations where it is cumbersome or computa-

tionally expensive to repeatedly evaluate the prediction function on new observations.

We apply the sensitivity analysis on the test set, with xt ∈ R153 the feature vector of the tth

sampling instance, for t = 1, . . . , S, where S = 10, 000. Furthermore, for each testing instance

we also consider the vector yt ∈ R6, where yt,l represents the number of votes obtained by the

lth copula model as part of the majority voting procedure described in Section 3.2. Then, for

each model l = 1, . . . , 6 we calculate a vector of weights in RS , such that, under re-weighting

the sample y1,l, . . . , yS,l, the average number of votes for this model increases by 1. The vector

of weights is selected by minimising the Kullback-Leibler divergence; specifically we solve the
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problem: 

minw∈RS
1
S

∑S
t=1 wt log(wt) s. t.

wt > 0, t = 1, . . . , S

1
S

∑S
t=1 wt = 1

1
S

∑S
t=1 wtyt,l = 1

S

∑S
t=1 yt,l + 1.

The solution of this problem follows directly from Csiszár (1975); see Pesenti et al. (2019) for

an overview of related work. The solution w∗ ∈ RS applies a higher weight to those testing

instances that drive the increase in the average vote for model l. Subsequently a sensitivity

index for the ith feature can be defined as the normalised increase in the average of xt,j , t =

1, . . . , S, j = 1, . . . , 153, over instances, arising from weighting by w∗ – for more details see

Pesenti et al. (2019).

The results of this analysis are shown in Figure 11, which plots the sensitivity of the majority

vote for each of the models inM to the first 10 principal components of the heatmap images, as

well as the statistical features τ̂ (tau) ζ̂ (skew), ξ̂ (arach). It can be seen that the sensitivity to

skewness ζ̂ is important for symmetric models (with a negative effect) and for the Pareto and Joe

models (with a positive effect), consistently with the properties of these copulas. Beyond that,

the main role in telling apart the different models is played by the image principal components;

e.g. we can note the quite different patterns of PC1-PC10, for the 3 symmetric models on the left

of the plot. On the other hand, for the Joe and Pareto models, which, as discussed, cannot be

easily distinguished by the classification approach, the PC patterns are rather similar, confirming

the information in the confusion matrix of Table 2.

5 Conclusions

In this paper, we proposed approaches for selecting copula models by utilising image recog-

nition of the density heatmap images obtained from copula samples. PCA-reduced AlexNet

image features and summary statistics were utilised to represent each copula sample and a

low-dimensional discriminative projection by LDA used to train an SVM for classification. Ex-

perimental results showed that the proposed image recognition approach can provide improved

classification performance on copula samples with relatively low sample size and correlation,

compared to AIC. When combining image recognition with AIC, performance improves further.

Hence, we can answer our research question in the affirmative: indeed, heatmap images do

contain relevant information for copula model selection that can help improve on standard pro-

cedures, and we propose workflows to harness this information for model selection. Furthermore,

we demonstrate the potential value of transfer learning in statistical applications. In this paper,
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Figure 11: Sensitivity of majority vote for each copula model, to different features.
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the knowledge obtained from the domain of natural images is transferred to the different domain

of copula heatmap images, to assist in the new classification task of copula selection. This shows

the potential of utilising machine learning algorithms that have been trained on a large amount

of high-quality data to provide additional useful information for statistical applications, or to

help in situations where collecting enough data is not an easy task (Pan and Yang, 2009).

The workflows we propose are more complex than evaluating likelihood-based criteria, at

least where efficient implementation of the latter is available. We do not argue for replacing

well-established criteria such as AIC, but provide a ‘proof of concept’ that image recognition

can supplement standard statistical approaches. With this in mind, future work can consider

designing an expert system with a broader scope, e.g. including a wider range of models and

sample sizes, as well as handling multivariate dependence structures. For example, a copula

sample with multivariate dependence structure can be partially represented by several two-

dimensional heatmap images generated from pairwise bivariate dependence structures. In this

way, each sample is represented by a set of images, which leads to the image set classification

task in computer vision (Fukui and Maki, 2015).
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