

City, University of London Institutional Repository

Citation: Wang, H., Audsley, N. C. & Chang, W. (2020). Addressing resource contention

and timing predictability for multi-core architectures with shared memory interconnects.
Paper presented at the 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium, 21-24 Apr 2020, Sydney, Australia. doi: 10.1109/RTAS48715.2020.00-16

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26986/

Link to published version: https://doi.org/10.1109/RTAS48715.2020.00-16

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Addressing Resource Contention and Timing

Predictability for Multi-Core Architectures with

Shared Memory Interconnects

Haitong Wang, Neil C. Audsley, Wanli Chang

Department of Computer Science, University of York, UK

{hw963,neil.audsley,wanli.chang}@york.ac.uk

Abstract—Multi-core architectures are increasingly being used
in real-time embedded systems. In general, such systems have
more processors than the shared memory modules, potentially
causing severe interference over memory accesses. This resource
contention could lead to substantial variation on memory access
latencies, and thus wide fluctuation in the overall system perfor-
mance, which is highly undesirable especially for the time-critical
applications. In this paper, we address resource contention and
timing predictability for multi-core architectures with distributed
memory interconnects. We focus on the locally arbitrated inter-
connect constructed by pipelined multiplexing stages with local
arbitration, while the globally arbitrated interconnect employing
global scheduling to the same architecture potentially suffers
synchronisation issue and requires strict coordination. Our con-
tributions are mainly threefold: (i) We analyse the resource
contention across the memory access data path, and report the
accurate calculational method to bound the worst-case behaviour.
(ii) We compare the average-case behaviour of the locally arbi-
trated and the globally arbitrated architectures with experiments,
demonstrating varying memory latencies caused by the resource
sharing issue. (iii) We propose an architectural modification to
smooth resource sharing. Evaluations on simulators and FPGA
implementations with synthetic memory workload show that the
latency variation is significantly reduced, contributing towards
timing predictability of multi-core systems.

I. INTRODUCTION

As a growing number of applications with complex func-

tionalities are integrated into the modern real-time embedded

systems, such as in the emerging domains of autonomous

vehicles and robotics, multi-core and network-on-chip (NoC)

[1] [2] architectures are increasingly being used to achieve

high performance. In general, there are more processors than

shared memory modules in these systems. This potentially

causes contention over memory accesses, which will get more

severe with the trend of integrating more processors. Such

contention could lead to substantial varying memory latency,

and thus wide fluctuation in the overall system performance,

which harms time-critical applications.

As illustrated in Figure 1, the processor stalls with different

slack time, depending on the varying memory response time.

Therefore, the memory access latency variation directly influ-

ences the processor utilisation and the dependent processes.

In addition, such latency variation leads to very pessimistic

worst-case assumptions in the timing analysis — where the

maximum contention has to be assumed for most, if not all,

memory accesses — and hence large safety margins.

Memory
Operation

Processor
Operation

Execution Time

Slack Slack

Fig. 1: Processor Operation versus Memory Operation

The current multi-core architectures trend to employ dis-

tributed memory interconnects rather than the conventional

centralised interconnect. The distributed design deploys a tree-

based structure with pipelined stages to break the critical

path of the multiplexing into multiple smaller steps with

smaller logic size. More detailed explanation can be found a

bit later in Section III as illustrated by Figure 2. Although

this design introduces additional delays in terms of clock

cycles, the distributed data path allows higher synthesisable

clock frequency. It scales to a large number of processors.

The locally arbitrated interconnect is simply constructed by

pipelined multiplexing stages with local arbitration schemes.

It allows the average-case latency to be much lower than the

worst case. However, the latency variation is large. Alter-

natively, the globally arbitrated interconnect employs global

scheduling schemes to the same architecture, based on the

pipelined data path. It budgets each processor with a limited

memory bandwidth partition. This reduces the contention to

the shared resources. However, the reservation can waste the

system bandwidth and slow down the processors. The average-

case performance is then degraded. In addition, the design

also requires strict coordination and potentially suffers the

synchronisation issue.

Main contributions: In this paper, we aim to address

the resource contention and the timing predictability for the

multi-core architectures with the distributed memory intercon-

nects. Firstly, we analyse the hardware resource contention

across the memory access data path, with the focus on the

locally arbitrated platform. We define the general flow of

the predictability analysis considering the blocking effect

caused by the critical resource contention, with the accurate

calculational method to bound the worst case. Secondly, we

compare the average-case behaviour of the locally arbitrated

and the globally arbitrated architectures using experiments,

with the analysis of the memory latency variation caused by

the resource sharing issue. Thirdly, we present an effective

architectural modification to the locally arbitrated multi-core

architecture to smooth the resource sharing. It is to employ

an additional hardware queue between the interconnect root

and the shared memory module. Experiments on simulators

and FPGA implementations show that the latency variation

is significantly reduced, contributing towards the timing pre-

dictability across the studied platform.

The remainder of this paper is structured as follows. Section

II reviews the related work in multi-core memory intercon-

nects and critical resource contention. Section III analyses

the resource contention across the locally arbitrated shared-

memory multi-core architectures with predictable behaviour,

and proposes the accurate calculational method to bound the

worst case. Section IV presents the comparison between the

locally arbitrated and globally arbitrated interconnects, with

analysis on the resource fairness issue and memory latency

variation. The root queue modification to smooth the recourse

sharing across the locally arbitrated platform is introduced

in Section V. Section VI gives the evaluation, including

hardware simulations and FPGA experiments. The related

analysis follows up. Section VII draws the conclusion.

II. RELATED WORK

This section presents the literature review, including the

multi-core memory interconnects and the critical resource

contention within such architectures.

A. Memory Interconnects

The conventional multi-core architecture employs a shared

bus to connect processors and the shared memory (e.g. the

AHB bus [3] in the SoC design). Communications between

processors or accesses between processors and the memory

must be delivered through the shared bus. Once a single access

occurs, the bus is blocked. This leads to serious contention. Al-

ternatively, the crossbar interconnect alleviates the contention

issue with a set of switch boxes, using dedicated links to

replace the shared bus, such as the AXI interconnect [4]. This

allows multiple accesses to occur simultaneously. The NoC

architecture employs a packet switching network [5] [6]. Each

processor connects through a router to the communication

network. In this way, a processor can access its target with less

bus contention. Commonly, the shared memory is connected

to the edge of the router network.

With the aim to predict the behaviour of memory access,

the architectures above typically utilise an arbitration scheme

(e.g. priority-based, TDM or round-robin) to provide timing

guarantees. The conventional centralised implementation of

arbitration schemes employs a single arbiter, allowing arbitra-

tion decisions to be made at the central location. However,

as the number of processors increases, the logic size of

the arbiter increases. This limits the maximum synthesisable

clock frequency. One promising approach is to use distributed

memory interconnects. It deploys the tree-based structure with

pipelined stages to break the critical path of the multiplexing

into multiple smaller steps with small logic size. Although

this introduces additional delays in terms of clock cycles,

the distributed interconnect allows higher synthesisable clock

frequency, and scales to a large number of processors.

The locally arbitrated distributed interconnect is con-

structed based on a binary arbitration tree that multiplexes the

memory requests from the processors to the shared memory

module. For example, [7] develops the arbitration tree with

the globally synchronised timestamps. Then the arbitration at

each local distributed multiplexing stage operates the first-

come-first-served (FCFS) scheme that the memory request

with a lower timestamp will be allowed to relay. However,

the application is only feasible to few platforms, such as the

system employing AXI bus [8] with very limited number of

outstanding memory requests.

Alternatively, Bluetree [9] [10] is initially developed for

the NoC architecture. It is the external memory tree which

provides a second network exclusive for the accesses or

communications to the shared memory. This separates the

memory traffic from the processor router network. In this way,

memory accesses no longer interfere with the communications

between the processors. Bluetree interconnect is constructed

by a set of pipelined multiplexers using local round-robin

arbitration scheme, and the Bluetree memory architecture does

not require full synchronisation. Besides that, it also allows

multiple memory requests to be in the transfer through the tree

network simultaneously. This aids further scalability. However,

the locally arbitrated interconnect requires complicated anal-

ysis on the predictable behaviour.

By contrast, the globally arbitrated interconnect integrates

the global scheduling scheme with the distributed multiplex-

ing. For example, TDM Tree [11] is constructed by the global

TDM scheduling components and the distributed tree network.

When the TDM time slot arrives, one memory request from

a processor is allowed to relay to the tree network. With

the global scheduling interval, there is no contention to the

shared resource, neither the tree data path nor the root memory

module. However, the TDM tree requires strict synchronisation

and complex coordination. In addition, it does not support

work-conservation. This can waste bandwidth.

Based on the global scheduling interval, Globally Arbitrated

Memory Tree (GAMT) [12] [13] extends the distributed tree

with priority-based rate control, such as the Frame-based

Static Priority (FBSP) and the Credit-Controlled Static Priority

(CCSP). With the aim to utilise the bandwidth with flexibility,

GAMT allows successive memory requests from one processor

to relay at a time. It can benefit specific applications.

B. Critical Resource Contention

In this paper, we address the resource contention over multi-

core architectures with distributed memory interconnects. Such

architectures are typically designed for average-case perfor-

mances, with inevitable interference from the software com-

ponents or tasks. The consequent contention to the shared

hardware resources may block the flow of memory requests

and communication packets. It may also block any subsequent

flow, even causing the resource fairness issue. The contention

to the critical resources, such as the memory module and

hardware data path, potentially leads to varying latency.

The impact of the critical resource contention has been

widely discussed within the multi-core or many-core architec-

tures, especially in the NoC applications [14] [15]. The con-

tention to the shared router blocks the flow of communication

packets, leading to varying edge-to-edge latency across the

processor router network. With the aim to regulate the access

to a single shared router, [15] [16] introduce the wormhole

switching with credit-based or priority-based flow rate control

schemes. [17] presents the design of channel tree with reserved

time slots to achieve contention-free routing in the network.

The alternative method is to employ virtual channel [18] [19],

which provides flexibility in the channel utilisation.

By contrast, the tree-based architecture appears more sensi-

tive to the blocking caused by the contention to the critical

resource. For example, the locally arbitrated architecture

allows multiple memory requests in transfer simultaneously,

leading to the contention to the shared root memory module.

The entire interconnect network may also be affected by any

blocking in the overlapped request paths, especially with the

blocking closer to the tree root. When there is one request

occupying the memory module, many others stall, just waiting

in the shared interconnect paths. It blocks the entire tree

network and the subsequent requests as well. With the locally

arbitrated multiplexing stages, these pending requests may be

further blocked by the newly issued requests. The sequence of

the pending requests is broken, and the memory bandwidth is

not fairly shared. Requests suffer additional latency, and the

actual latency could vary substantially at runtime. Such latency

variation requires complex timing analysis.

According to the previous analysis, the globally arbitrated

interconnect integrates the global scheduling scheme with the

distributed multiplexing. For example, due to the globally

scheduled time slots, TDM Tree provides the contention-free

request paths. Based on the global scheduling interval, GAMT

employs additional rate control schemes. These architectures

avoid the resource contention, and there is no resource sharing

issue. However, those memory requests stalled due to the

timing division may suffer additional latency, and the latency

variation is related to the global timing interval. If the memory

requests are distributed in time, they must wait for the strict

scheduling cycle, increasing the latency proportional to the

global cycle, and resulting in substantial variation.

The alternative solution to alleviate the critical resource con-

tention within the tree-based architecture is message combin-

ing [20]. For the memory interconnect with multiple pipelined

stages, the requests simultaneously arriving at one arbiter

stage can be merged. This reduces the contention to both the

request path and the shared root memory module. The memory

response is then split to multiple individual ones during the

response path. This method leaves the design burden to the

root memory controller. Besides, it requires increasing logic

µ0 µ1 µ2 µ3 µ5 µ6 µ7µ4

D

P1

Fig. 2: 8-client Bluetree Architecture

size for each pipelined stage in the data path, limiting the

synthesisable clock frequency.

III. PREDICTABLE RESOURCE CONTENTION BEHAVIOUR

ACROSS THE LOCALLY ARBITRATED ARCHITECTURE

Our work starts with the resource contention analysis over

the multi-core architectures with distributed memory inter-

connects. We focus on the predictable behaviour analysis of

the locally arbitrated Bluetree which provides good average-

case performance and guarantees the worst-case latency. The

Bluetree-based multi-core application is shown in [21], which

shows promising performance, although the behaviour analysis

is very limited due to the architectural choice [22]. In this

section, we provide the predictable behaviour analysis consid-

ering the resource contention. It involves the analysis of the

blocking effects within the Bluetree memory architecture, and

gives the accurate calculational worst-case bound.

A. Bluetree Architecture

Figure 2 shows the 8-client Bluetree memory architecture.

It consists of the clients, the Bluetree interconnect, and the

shared memory module. A client can be a single processing

core or a multi-core processor. It is marked as µj , where

j is for the client index. Each client also has its individual

memory access path Pj , such as path P1 for client µ1 as

highlighted in the graph. The Bluetree interconnect B employs

multiple stages of 2-to-1 multiplexers to construct the tree

network, connecting multiple clients at the tree leaves to the

shared memory module D at the tree root. When a client

issues a memory request, this request is multiplexed and

relayed to the shared memory across the Bluetree network.

Then the memory response returns to the corresponding client

across the bi-directional Bluetree network. As the number of

client increases, the tree network scales with more Bluetree

multiplexer stages. This increases the Bluetree depth Nβ .

The design of the Bluetree multiplexer is shown in Figure

3. Arbitration occurs in the request path (RQ) to decide

which request from either the client direction to be relayed

to the memory direction, potentially to the next Bluetree

multiplexers. The blocking factor α of the internal arbiter

is defined such that every α requests from path 0 can be

Arbiter

Memory Direction

Client Direction 0

RQ

RSRQ

RS RQRS

Client Direction 1

DEMUX

Fig. 3: Bluetree Multiplexer

blocked by at most one request from path 1. In this way,

path 0 can be considered as the local high-priority path, and

path 1 is the local low-priority, with the caveat that starvation

can be prevented by allowing one request from the local low-

priority path to be eventually relayed. If there is no request

from path 0, the arbiter allows no blocking to path 1 with an

outstanding request. Therefore, every single request from the

local low-priority path can be blocked by up to α requests

from the local high-priority path. In contrast, the response

path (RS) is non-blocking (in any Bluetree multiplexor). The

internal demultiplexer simply decides the route direction of

the memory response. Besides that, a buffer is employed in

each local path as the common pipeline design.

The Bluetree memory architecture is designed to provide

good average-case performance and guarantee the worst-case

memory latency. However, the shared root memory is the

architectural bottleneck. As shown in Figure 2, closer to the

Bluetree root, more memory access paths overlap. Therefore,

the memory requests from different clients have to share the

common hardware paths, as well as the shared root memory.

This shared interconnect architecture inevitably introduces the

resource contention over simultaneous memory accesses.

The behaviour analysis focuses on the memory latency

across the Bluetree architecture. It involves the integration of

the shared root memory into the system. The latency t of a

memory request ω consists of request path latency tRQ, root

memory latency tD, and response path latency tRS as follows:

t(ω) = tRQ(ω) + tD + tRS(ω) (1)

In this paper, the root memory latency tD is considered as

a fixed constant to simplify the analysis. The response path

latency tRS defines the latency across the Bluetree network B

from the memory to the client. With the pipelined buffers in the

response path, it requires 1 clock cycle to cross one Bluetree

stage. The analysis of the basic request path latency tRQ is

similar. However, when there is contention in the request path,

the memory request ω can be blocked by other requests. If the

request ω is blocked, the corresponding request path latency

tRQ inevitably increases. This increases the total latency t(ω).

B. Worst-Case Behaviour

With the analysis above, blocking only occurs in the request

path, the worst-case latency tWC requires the determination

of the worst-case latency in the request path tWC
RQ as follows:

tWC(ω) = tWC
RQ + tD + tRS(ω) (2)

For each blocking that the request ω suffers, the maximum

overall latency will increase by an amount proportional to the

root memory latency tD - essentially the request flow actually

stalls until the shared memory is empty again to accept a next

request. The root memory latency can mask the buffer latency

across the Bluetree path, as requests can proceed within the

Bluetree until blocked in parallel to the memory responding

to the current request. Therefore, to determine the worst-case

latency in the request path tWC
RQ requires to determine the

related maximum blocking number NWC
RQ , and the relationship

between tWC
RQ and NWC

RQ is defined as follows:

tWC
RQ = NWC

RQ × tD (3)

Therefore, the worst-case memory latency with Bluetree

depth Nβ can be refined from equation 2 as follows:

tWC(ω) = (NWC
RQ + 1)× tD +Nβ (4)

In [22], the maximum blocking number is determined by

a simulation-based method for a specific Bluetree application,

which utilises the AXI bus [8] between Bluetree multiplexers

and the shared memory module. It only considers very lim-

ited blocking (i.e. blocking effect is limited by architectural

choice). In this section, we provide the accurate blocking anal-

ysis considering all blocking effects. The maximum blocking

number will be determined with calculational method.

Blocking in the Bluetree memory architecture can be clas-

sified as inter-path blocking and intra-path blocking. Inter-

path blocking is when request ω transfers across a Bluetree

multiplexer and is blocked by some other request from the

other local path. As shown in the previous analysis, inter-path

blocking is affected by the local blocking factor α. By contrast,

intra-path blocking is when one memory request ω is blocked

by any other request ahead of it, either from the same client or

from other clients. According to the nature of the architecture,

there are more intra-path blocking closer to the Bluetree root.

The interaction of inter-path blocking and intra-path blocking

also needs to be included. When request ω is interfered by a

single inter-path blocking, one request from a different path

overtakes ω, becoming the request ahead in their overlapping

path. This can lead to additional intra-path blocking.

As the Bluetree depth Nβ increases, the blocking analysis

complicates. First of all, the number of Bluetree buffers in one

request path increases. This increases the intra-path blocking.

Secondly, inter-path blocking increases as the number of

Bluetree arbiters increases. Also, there is interference between

different Bluetree stages. According to the nature of the tree-

based architecture, if there is any blocking in the stage closer

to the root, the entire Bluetree interconnect will be affected.

For example, if the Bluetree root stage β0 is blocked, the

request flow in all Bluetree paths stall, with the Bluetree

blocking counters stalled but not updated. Therefore, if there

are more inter-path blocking in the level closer to the clients

at the tree leaf level, there will be more consequent intra-path

blocking in the overlapping paths. The interference between

Bluetree stages becomes serious, and the maximum blocking

number NWC
RQ increases significantly.

Based on the analysis above, priority path is introduced to

analyse the maximum blocking number in the request path

NWC
RQ . It is to track the local priority at each Bluetree stage

of one request path, from the client to the shared memory.

For example, as shown in Figure 2, priority path P1 for client

µ1 is P1 = {L,H,H}, where L is for local low-priority and

H for local high-priority. Then path P1 is across the local

low-priority path at Bluetree stage β2, the local high-priority

path at β1, and the local high-priority path at the Bluetree root

stage β0 to the memory. The related local priority expressions

are P1(β2) = L, P1(β1) = H , and P1(β0) = H .

The calculation of NWC
RQ for one complete request path is

iterative, based on the calculation of the maximum blocking

number at each separate Bluetree stage. The intuition behind

this method is that, the blocking number at any given Bluetree

stage is dependent on (1) the amount of blocking has occurred

at previous stages along the request path, and (2) the amount

of blocking can occur at the current stage (which is dependent

on α). NWC
RQ (βi) is defined as the iterative blocking upto

and including the stage βi, and maximum arbiter blocking

number NWC
α (βi) is to represent the blocking at stage βi

only. Therefore, the iterative calculation can be expressed as

follows, where plus 1 represents the local buffer is occupied:

NWC
RQ (βi) = NWC

RQ (βi+1) +NWC
α (βi) + 1 (5)

The maximum arbiter blocking number NWC
α (βi) is de-

cided by the local blocking factor α at the Bluetree stage.

According to the previous analysis, every α requests from the

local high-priority path can be blocked by at most one request

from the local low-priority path, and every single request from

the local low-priority path can be blocked by upto α requests

from the local high-priority path. Therefore, the maximum

arbiter blocking number NWC
α (βi) at one Bluetree stage can

be calculated as follows:

NWC
α (βi) =

{

⌈
(NWC

RQ (βi+1)+1)

α
⌉ H

(NWC
RQ (βi+1) + 1)× α L

(6)

In summary, the maximum blocking number in the request

path NWC
RQ can be determined with the iterative calculation

stages from the client to the Bluetree root, with assumptions

that (1) all the pipelined buffers are occupied, and (2) each

local Bluetree arbiter always harms the request flow. Request

ω in one priority path gives ω ∈ Pj . Equation (5) and

(6) bound the maximum blocking number at each Bluetree

stage NWC
RQ (βi) with local priority Pj(βi). In this way, the

maximum blocking number NWC
RQ is calculated iteratively.

Obviously, with the blocking factor α increasing, the max-

imum blocking number NWC
RQ decreases in the request path

with more local high-priority tracks, while NWC
RQ increases

with more local low-priority tracks. The calculation can also

be extended that different blocking factor α values can be

set at each Bluetree stage. By contrast, when the blocking

factor is set as α = 1, the Bluetree can be considered as the

distributed binary tree stages with local round-robin scheme.

This provides the relatively fair access to the shared memory

module for all clients. It remains as default in later sections.

In this section, our method first defines the general analyti-

cal flow for the predictable behaviour of the locally arbitrated

platform. It can be easily extended to multi-core architectures

using a different locally arbitrated memory interconnect, with

modification to the local arbitration calculation.

IV. LOCALLY ARBITRATED VS. GLOBALLY ARBITRATED

Section III presents the resource contention analysis in

multi-core architectures with distributed memory intercon-

nects. It also defines the general analysis flow of the locally

arbitrated interconnect. The memory access over such archi-

tectures shows predictable behaviour. If there is uncertainty

with respect to the memory request numbers or the memory

request issuing time instants, the worst-case memory access

latency across the multi-core architecture can also be bounded.

However, this inevitably leads to pessimistic results. If the

exact memory access profiles can be provided, the detailed

blocking analysis requires accurate knowledge of the local

arbiter states and memory request flow states. This requires

increased complexity. Besides that, due to the variable block-

ing behaviour within the locally arbitrated architecture, the

memory access latency can vary severely.

By contrast, the globally arbitrated interconnect integrates

the global scheduling scheme with the distributed multiplexing

stages. It can be considered as the locally arbitrated inter-

connect with path traffic shaping components. This real-time

method aims to budget each processor with limited available

memory bandwidth to achieve temporal isolation. It can

reduce the hardware resource contention. However, sufficient

reservations potentially waste the system bandwidth and slow

down processors, degrading the overall system performance.

For example, TDM Tree strictly shapes memory accesses to

the shared resources and therefore eliminates the contention.

However, memory requests can stall in TDM Tree even with

empty interconnect and idle memory module simultaneously.

GAMT employs additional rate control schemes based on the

reserved time slots as compensation. It can benefit applica-

tions with successive memory requests. However, the globally

arbitrated architecture suffers synchronisation issue. When

memory requests are distributed in time, they must wait for

the strict scheduling cycle, increasing the latency proportional

to the global cycle, and resulting in substantial variation.

In this section, we compare behaviour difference between

the locally arbitrated and the globally arbitrated interconnect,

and unveil the latency variation within both architectures.

A. Average-Case Behaviour

The worst-case analysis above shows the behaviour when

the system is flooded by memory requests. Due to the ar-

chitectural features, the locally arbitrated interconnect allows

multiple simultaneous requests, and this leads to contention

to the shared hardware resource. The requests have to share

the overlapped interconnect path as well as the root memory

module. The contention increases latency. As more bandwidth

is requested due to the increase of workload, more available

system bandwidth is consumed. If the requested bandwidth

keeps increasing, the system will saturate at some point, with-

out delivering any additional bandwidth. Any further memory

request will only have to wait for the service of the system.

This saturation phenomenon commonly occurs with shared

resource [23]. As shown in Section III-B, the saturation point

of the Bluetree memory architecture can be determined by the

worst-case analysis. It clearly bounds the maximum request

number in one Bluetree path. Obviously, the workload pattern

in the related worst-case assumption is independent of the

response time. The client just keeps pushing requests into the

system regardless of memory response.

In practical applications, the number of memory requests

issued to the system will be limited, either by the character-

istics of the application software, or by the architecture of a

processor (e.g. maximum number of outstanding memory re-

quests before the processor stalls). Besides that, the workload

pattern is dependent on the memory response. The congestion

still occurs due to the contention to the shared resource, and

the latency increases. However, as the workload pattern is

dependent on the response time, the client will slow down the

request generation. Then the latency increase stops in turn.

This dependency actually reflects the process of the practical

applications. For example, a processor has to receive data from

memory before any related operation. The characteristics of

the workload pattern can be represented as follows:

NRQ(Pj): The path outstanding request number, where j

is for the path index. A client generates requests successively

until the path limit. Then the client stalls, waiting for the re-

sponse. Only when there is any response returned, another new

request can be generated. The workload pattern is dependent

on the response time. Besides that, the total system outstanding

request number can be calculated with the sum operation.

TRQ(Pj): The request interval between two successive

memory requests. The client generates successive requests

with intervals, normally in clock cycles. This distributes mem-

ory requests in time. It actually reflects the necessary processor

execution time or the time across the data path in practical

applications. Obviously, the appropriate amount of jitter can

be introduced for the behaviour description. By contrast, when

the interval is fixed as 1, the requests will be issued into the

system more intensively. This keeps the corresponding path

and the shared root memory module busy.

NRQ(Pj) and TRQ(Pj) can be combined to describe the

path memory workload. This workload pattern is dependent

on the response time, and it will be used to evaluate the

multi-core interconnect in later sections. Obviously, the shared

root memory module impacts the system performance. Any

contention to this critical resource causes the congestion of

the request flow and increases latency. As the path workload

NRQ(Pj) increases or TRQ(Pj) decreases, the root memory is

not able to response to the intensively incoming requests fast

TABLE I: Path Outstanding Request Number

NRQ(Pj) 0 1 2 3 4 5 6 7

a 0 0 0 2 1 0 0 0
b 1 0 1 2 2 0 0 1
c 2 1 1 3 3 1 1 1

enough. The root module is actually in high demand but with

limited bandwidth. In turn, memory access latency increases.

B. Investigating Behaviour of Memory Interconnects

This section compares the average-case behaviour of the

locally arbitrated Bluetree and the globally arbitrated TDM

Tree. It is to evaluate the memory access latency of both archi-

tectures based on the 8-client system, with the assumption that

both architectures are running with the same clock frequency.

1) Hardware Simulation: The initial experiments are per-

formed by hardware simulations. We implement the system

using Bluespec System Verilog (BSV) [24], with simulations

running on BlueSim simulator. The shared memory module

is implemented using BSV BRAM package [25] with extra

delays as a constant tD = 20 in clock cycles. A traffic gener-

ator is employed as a client instead of a processor. The traffic

generator simulates memory requests without processing any

data, and the workload pattern follows the analysis above.

In this experiment, each traffic generator issues 36 mem-

ory requests totally. The path request interval is fixed as

TRQ(Pj) = 1, and the path outstanding request number

NRQ(Pj) varies as shown in Table I. The column is for path

Pj , and the row is for three groups of memory workload

combinations. The table content shows the increasing memory

workload (from group a to group c) with the path outstanding

request number increasing. The path traffic generator issues

a memory request every clock cycle until the path limit

NRQ(Pj). Then the traffic generator stalls. If there is any

memory response returned, this traffic generator will issue a

new memory request a next clock cycle.

With the setup above, the simulations run for Bluetree

memory architecture and TDM Tree respectively. The mea-

sured metrics are release time and latency, both in clock

cycles. The release time is to record the time point when the

traffic generator issues one memory request refer to the global

simulation time, and the latency is to record memory access

time across each request path in the shared architecture. The

experimental results are shown in Figure 4 and Figure 5 (please

refer to the colourful version). The horizontal axis is for the

release time, and the vertical axis is for the latency. The scatter

plot is to show the latency variation.

Figure 4 (a) shows the performance of the 8-client Bluetree

architecture with only memory requests in path P3 and P4. At

the beginning of the simulation, the total system outstanding

request number is NRQ(B) = 3. As shown in the graph,

the latency increases to approximately 60 very quickly. With

the fixed request interval TRQ(P3) = TRQ(P4) = 1, the

system shows the regular latency values. With different path

outstanding request number NRQ(P3) = 2 and NRQ(P4) = 1
but with the same total request number, the path simulation

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(c)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 4: 8-client Bluetree Performance

completes at different time points. For example, the simulation

in path P3 with NRQ(P3) = 2 completes at approximately

1000. With the reduction of the system outstanding request

number NRQ(B) = 1, the contention to the memory reduces.

The latency in path P4 also decreases to approximately 20 until

the end of the simulation. Figure 4 (b) shows the performance

with the increased memory workloads. The latency variation

shows the similar trend as in Figure 4 (a). By contrast, with the

increased total system outstanding request number, the highest

observed latency increases to approximately 150.

Figure 4 (c) shows the performance with further increased

memory workloads. As shown in the graph, the latency for

each path increases sharply in a very short period of time from

the start period of the simulation. The Bluetree architecture

actually becomes congested relatively quickly with intensively

issued memory requests. Essentially, as the memory workload

pattern is dependent on the response time, the rate of the

request release drops. Then the latency increase stops in turn.

In this way, the latency in each path tends to reach the

corresponding maximum limit. Obviously, the fixed traffic

parameters lead to these regular latency values. Besides that,

the distribution of the scatters shows the latency variation. For

example, the Bluetree latency in path P4 and P5 is approxi-

mately 280 or 240. With the contention to the shared resource,

the latency varies due to the varying blocking behaviour. In

the later period of the simulation, the latency decreases due to

the reduction of of the system outstanding request number.

Figure 5 shows the performance of the 8-client TDM Tree

architecture. Compared with Figure 4 (a), Figure 5 (a) clearly

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(c)

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 5: 8-client TDM Tree Performance

shows that TDM Tree does not support work conservation.

With only memory requests in path P3 and P4, the interconnect

or the memory module can be idle. However, the strict TDM

only allows one memory request to be relayed to the empty

data path at a time. As a result, the observed latency in

path P4 is approximately 160, and the simulation completes

at approximately 5500. This reflects the global scheduling

interval for 8 clients. Figure 5 (b) and Figure 5 (c) show the

similar performance with increased memory workloads. By

contrast, Bluetree employs local work-conserving round-robin

scheme to provide good average-case performance.

In these experiments, the request interval is fixed as 1. A

new memory request is issued immediately after the response

returns. In this way, these memory requests can satisfy the

TDM interval. As shown in Figure 5 (c), TDM Tree shows

regular latencies which are easy to predict. For example,

latency in path P3 with NRQ(P3) = 3 is approximately 480.

By contrast, Bluetree allows multiple memory requests in data

path hence variable blocking behaviour as shown in Figure 4

(c). The inter-path interference also affects paths nearby. For

example, P5 with NRQ(P5) = 1 is severely affected by P4

with NRQ(P4) = 3, and latency varies between 280 or 240.

2) FPGA Experiments: Further experiments are performed

with FPGA implementation. We implement the 8-client system

on Zedboard [26] (using Xilinx Vivado [27] [28]). The shared

memory module is based on FPGA BRAM [29] with extra

delays to fix as a constant tD = 20. The traffic generator is

employed as client. The synthetic memory workload includes

path outstanding request number NRQ(Pj) and path request

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a) Bluetree

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b) TDM Tree

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 6: 8-client Architecture Performance

interval TRQ(Pj). This provides varying memory workloads

more close to the practical applications. The contents of the

synthetic memory workload are stored in local BRAM for each

client. In this experiment, the path outstanding request number

NRQ(Pj) is set as group c in Table I, and the request interval

TRQ(Pj) varies with randomly generated values between 1 to

64 as TRQ(Pj) ∈ [1, 64]. The results are shown in Figure 6.

Figure 6 (a) shows Bluetree performance. With the intro-

duction of the memory request interval, the latency varies

following the similar trend as in Figure 4 (c) but with larger

variation. With variable memory workloads, Bluetree shows

variable behaviour and hence complex inter-path interference.

For example, latency variation in P4 increases from 40 to 100.

By contrast, Figure 6 (b) shows TDM Tree performance. With

variable request intervals, TDM Tree shows varying latencies.

For example, latency variation in P4 is approximately 100.

3) Discussion: This section shows the behaviour features of

the locally arbitrated and the globally arbitrated interconnect.

It also clearly demonstrates latency variation within the shared

memory multi-core architecture. The locally arbitrated Blue-

tree provides good average-case performance. However, due to

the variable blocking behaviour within Bluetree data path the

timing predictability requires complex analysis on the accurate

knowledge of the local arbiter states and the request flow

states. By contrast, the globally arbitrated TDM Tree only

provides regular latencies with memory workload satisfying

strict timing interval. Besides that, TDM Tree potentially

wastes bandwidth and Memory latency variation leads to

wide fluctuations in overall system performance, and harms

applications with real-time requirements.

V. SMOOTHING RESOURCE CONTENTION ACROSS

MULTI-CORE ARCHITECTURES

The multi-core architecture is typically designed for good

average-case performance, and the resource contention within

such architectures is inevitable. The contention to the critical

resource, either the shared root memory or the overlapped

µ0 µ1 µ2 µ3 µ5 µ6 µ7µ4

D

Root Queue

Fig. 7: Modified Bluetree Architecture with Root Queue

data path, leads to varying memory access latencies. Section

II-B discusses solutions to alleviate the resource sharing over

the pipelined network. However, the tree architecture appears

more sensitive to blocking caused by the resource contention.

The key difference between the locally arbitrated inter-

connect and the globally arbitrated interconnect lies on the

hardware resource sharing. The locally arbitrated interconnect

employs local arbitration scheme along the distributed multi-

plexing data path, while the globally arbitrated interconnect

isolates memory requests with global scheduling scheme.

According to the analysis in Section IV-B, both architectures

show varying memory access latencies. The locally arbitrated

interconnect allows the average case to be much better than the

worst case. However, the latency variation in the average case

is inevitably substantial, and it requires complicated timing

analysis. By contrast, the globally arbitrated interconnect al-

lows the easy-to-predict behaviour with the assumption that the

memory access profile strictly satisfies the global scheduling

interval. It can benefit specific applications.

In this section, we present the architectural modification of

multi-core platforms to smooth resource sharing and reduce

memory latency variation. We improve the predictable mem-

ory interconnect to better support the real-time applications.

This work is based on the locally arbitrated interconnect, and

the Bluetree memory architecture is shown as an example. We

modify the interconnect with an additional hardware queue.

As shown in Figure 7, the queue is employed to connect the

Bluetree root and the shared memory module. As request paths

overlap to the root of the tree-based interconnect, each request

will be relayed into the shared hardware queue. The root queue

buffers the requests that arrive at the Bluetree root.

The design of the root queue is based on the bypass FIFO

buffer. If the queue is empty, a request can be relayed to the

memory directly without additional delays. If not empty, the

queue temporarily stores the requests that arrive but cannot be

immediately processed by the memory. The FIFO buffer also

treats the queued requests equally, and the first-arrived request

can be relayed to the memory first. This remains the arrival

sequence of memory requests from the Bluetree interconnect,

alleviating the contention over the overlapped paths.

With sufficient root queue size, all the outstanding memory

requests can be stored in the buffers, rather than blocking the

overlapped interconnect. In this way, there is no contention

to the shared request paths. The root memory responses to

these requests in FIFO sequence, and new arrival requests have

to wait in queue behind. This can be defined as the queued

service which smooths the resource sharing, and therefore

reduces the latency variation across the architecture.

The premise of the queued service is that the size of the

root queue is sufficiently large enough to store all outstanding

memory requests in the system. Due to the architectural fea-

tures, the locally arbitrated Bluetree interconnect also provides

buffers as well as the root queue. The amount of the total

queued buffers in this architecture is analysed as follows:

• The root memory provides 1 buffer - a request occupying

the memory module can be considered as stored locally.

• The employed root queue provides Q buffers (size).

• The Bluetree root multiplexer provides 1 pipelined buffer.

• Either the Bluetree multiplexer adjacent to the root stage

provides 1 buffer. If buffers from both Bluetree multiplex-

ers are considered, there can be path contention. With the

aim to guarantee the queued service, only one buffer can

be considered as applicable.

With the analysis above, the total size of the queued buffer

within the architecture is Q+3. By contrast, the total outstand-

ing request number can be assumed as NRQ(B) according to

the analysis of memory workload in Section IV-A. Therefore,

the minimum size of the root queue QS for the queued service

is QS = NRQ(B) − 3. The queued service requirement can

be summarised as follows:

Q >= QS , where QS = NRQ(B)− 3 (7)

The root queue modification introduces very low overhead.

From the perspective of the hardware, to employ the FIFO

queue buffers with the appropriate size requires very few extra

resources, compared with the entire interconnect. Besides that,

this method requires no modification to software operations.

When the queued service requirement is satisfied, the system

stores the outstanding memory requests into the root buffers

in sequence. The queue modification effectively smooths the

sharing of the critical resource within the multi-core architec-

ture. It reduces memory access latency variation and facilitates

timing analysis or verification for real-time applications. This

platform supports further software development.

Predictable behaviour: The employment of the root queue

introduces additional blocking within the memory architecture.

According to the blocking analysis in Section III-B, memory

requests stalled in the root queue only leads to intra-path

blocking. With blocking at the tree root, the entire interconnect

will be affected. The request flow in each path stalls. However,

this does not complicate the blocking behaviour within the

shared memory multi-core interconnect, and the maximum

latency due to the queued blocking will increase by an amount

proportional to the root memory latency tD.

The maximum blocking number in the request path NWC
RQ

can be determined with the similar calculation in Section III-B.

The worst-case assumption follows that the system is flooded

by memory requests. Memory request ω in priority path gives

ω ∈ Pj . Equation (5) and (6) bound the maximum blocking

number at each local stage NWC
RQ (βi) with local priority

Pj(βi). The iterative calculation is then performed from the

client to the interconnect root. With the root queue size Q,

the maximum blocking number NWC
RQ can be determined

with the sum calculation that the iterative process result plus

Q. With this worst-case assumption, memory requests suffer

pessimistic blocking and hence no latency variation.

As for practical applications, the number of memory re-

quests issued to th system will be limited as the path out-

standing request number NRQ(Pj). The value of NRQ(Pj)
can be determined according to path memory workload pattern

(e.g. exact memory access profiles). The alternative method is

to determine NRQ(Pj) according to the architectural feature.

For example, AXI bus [8] allows only one outstanding request

between the master-slave pair. Then the total system outstand-

ing request number NRQ(B) can be determined with the sum

calculation. The increasing of NRQ(B) complicates the timing

analysis in the original Bluetree architecture, and the detailed

analysis requires the accurate knowledge of both the local

Bluetree arbiter states and the request flow states. By contrast,

with the root queue modification, the value of NRQ(B) can

be used to determine the minimum root queue size QS with

Equation (7) to satisfy the queued service requirement.

When the queued service requirement is satisfied, the archi-

tecture is able to store the outstanding memory requests into

the root buffers, waiting for the service of the shared mem-

ory module in FIFO sequence. The root queue modification

actually smooths the resource sharing, and hence reduces the

latency variation. Besides that, the memory requests suffer the

same maximum queued delay, and root memory latency can

mask the data path latency across the pipelined buffers. There-

fore, the latency of memory request ω across the architecture

can be bounded as follows:

t(ω) < NRQ(B)× tD (8)

According to the analysis in Section IV-A, the interval

between two successive memory requests TRQ(Pj) also affects

the path workload pattern. With a very small interval value

such as 1, memory requests will be issued arriving to the

interconnect root more intensively. This actually quickly fills

the shared root queue. If TRQ(Pj) remains the same value,

the memory latency will be identical. In contrast, the varying

request interval TRQ(Pj) leads to varying memory latency.

Considering the memory workload pattern which is dependent

on the response time, the new issued requests arrive at the root

queue distributed in time. Such memory requests then suffer

various queued delays. Therefore, the memory latency within

the locally arbitrated architecture only varies with the varying

memory workloads, but not due to the resource fairness issue.

VI. EVALUATION

This section examines the effectiveness of the root queue

modification on the latency variation reduction across the

locally arbitrated architecture. Our evaluation is based on the

8-client Bluetree memory multi-core architecture, including

hardware simulations and FPGA experiments.

A. Hardware Simulation

The initial evaluation is performed by hardware simulations,

and the experimental method is similar to Section IV-B. The

system is implemented using Bluespec System Verilog (BSV)

[24], with simulations on BlueSim simulator. The root memory

latency is fixed as a constant tD = 20. A traffic generator is

employed as a client instead of a processor. It simulates totally

36 memory requests, and memory workload patterns follows

the parameters in Section IV-A. In this experiment, the request

interval TRQ(Pj) is set as 1, and the path outstanding request

number NRQ(Pj) is set as group c in Table I.

With the platform setup above, the experimental param-

eter is the Bluetree root queue size Q. The root queue is

implemented using bypass FIFO in Bluespec SpecialFIFOs

package [24] [25]. The size of the queue Q is reconfigurable.

It increases from 0, 5, to 10. Q = 0 indicates the Bluetree

architecture with no additional root queue buffers. It evaluates

modified Bluetree behaviour with unbalanced path workload.

Figure 8 (a) shows the latency variation within the original

Bluetree system with no root queue as Q = 0. The experiment

shares the same results as in Figure 4 (c). As shown in the

graph, the latency in each path is similar from the start period

of the simulation, increasing sharply in a very short period of

time. The system becomes congested relatively quickly with

contention at the shared root memory, with a result that the

latency of requests increases to a constant (for a period of

time). Essentially, as the workload pattern is dependent on the

response time, the rate of the request release drops. Then the

latency increase stops in turn. In this way, the Bluetree latency

in each path tends to reach the corresponding maximum limit.

Obviously, the fixed memory interval leads to the regular

latency values. The distribution of the scatters shows the

variation in the path outstanding request number. Besides that,

the unbalanced path workloads also impact the performance

of clients nearby. For example, the latency in path P2 with

NRQ(P2) = 1 is affected by path P3 with NRQ(P3) = 3.

The resource fairness issue harms the performance. With the

reduction of the system outstanding request number NRQ(B),
the contention to the shared resource reduces. Therefore, the

latency decreases in the later period of the simulation.

Figure 8 (b) shows the latency variation in the modified

architecture with the root queue size Q = 5. Compared

with Figure 8 (a), some latency lines coincide in Figure 8

(b). This shows the effect of the root queue modification on

balancing the average-case latency. With the root queue, some

stalling requests can be stored in the shared FIFO buffers

instead of blocking in the interconnect path. In this way, the

shared memory component response to blocked requests in

sequence. This alleviates resource sharing. In this experiment,

the root queue modification benefits some memory paths, and

latency in path with heavy workload pattern decreases. For

example, the latency in path P4 with NRQ(P4) = 3 no longer

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a) Q = 0

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b) Q = 5

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(c) Q = 10

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 8: Latency Variation with Root Queue

varies between 280 and 240, and the value remains constant at

approximately 240. By contrast, latency in path with relatively

lower workload increases due to the smoothing effects. For

example, the latency in path P7 with NRQ(P7) = 1 increases

from 200 to 240. However, the queue size Q = 5 is not enough

to buffer all the outstanding requests in the system. As shown

in the graph, the latency in either path P2 or path P3 fails to

coincide with others. With the increasing of the root queue

size Q, the balancing effect will be more noticeable.

When the root queue is reconfigured Q = 10 in Figure 8 (c),

the latency variation is eliminated. The modified architecture

satisfies the queued service requirement, Q >= QS , where

QS = NRQ(B) − 3 = 13 − 3 = 10 in this case. As

the request interval is constant, the traffic generator releases

requests intensively. The root queue is filled in a very short

period of time, and then all the latency lines coincide. The

latency is actually identical due to the fixed request inter-

val. The worst-case latency can also be bounded as tS =
NRQ(B) × tD = 13 × 20 = 260, and the accurate highest

observed value is 259 in Figure 8 (c). It drops significantly

compared with approximately 325 in Figure (a). In later period

of the simulation, latency lines still coincide. The root queue

modification effectively reduces the latency variation across

the Bluetree memory architecture.

B. FPGA Experiments

This section further evaluates the effectiveness of the archi-

tectural modification with synthetic memory workload, and the

experimental method is similar to Section IV-B. The evaluation

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a) Q = 0

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b) Q = 20

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 9: Latency Variation with Varying Memory Workloads

work is performed by FPGA experiments based on the 8-client

system with the root memory latency tD = 20 implemented on

Zedboard [26] (using Xilinx Vivado [27] [28]). The traffic gen-

erator is employed as client. The synthetic memory workload

includes the path outstanding request number NRQ(Pj) and

the request interval TRQ(Pj). With the platform setup above,

the reconfigurable root queue size Q varies as the experimental

parameter. The measured metrics are release time and latency.

Three groups of experiments are presented.

1) Latency Variation with Varying Memory Workloads:

This experiment evaluates latency variation with unbalanced

varying memory workloads. The total memory requests num-

ber increases to 100. The path outstanding request number

NRQ(Pj) remains as group c in Table I, and the memory

request interval TRQ(Pj) varies as TRQ(Pj) ∈ [1, 64].
Figure 9 shows the experimental results with the root queue

size Q increasing from 0 to 20. As shown in Figure 9 (a), the

latency varies with no root queue Q = 0. The latency variation

follows the similar trend as in Figure 8 (a). The system

becomes congested quickly with intensive memory requests.

It causes contention to the shared resource, and the latency

increases. Essentially, as the workload pattern is dependent on

the response time, the rate of the memory request release drops

with the congestion. Then the latency increase stops in turn.

The distribution of the scatters reflexes the unbalanced path

workloads, and the resource fairness leads to varying latencies.

By contrast, with the root queue size increasing to Q = 20,

the architecture satisfies the queued service requirement. Fig-

ure 8 (b) shows flat latencies, and highest observed values

are reduced. With the introduction of the varying request

interval, the accurate latency no longer keeps identical. In this

experiment, the latency variation actually reflexes the varying

request interval TRQ(Pj) ∈ [1, 64]. The latency variation ap-

proximately reduces from 200 to 50, and the highest observed

latency approximately reduces from 320 to 250.

2) Latency Variation with Balanced Path Workloads: This

experiment evaluates the Bluetree latency variation with bal-

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a) Q = 0

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b) Q = 20

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 10: Latency Variation with Balanced Path Workloads

anced path memory workloads. The number of total requests

issued in each path is 100, and request interval TRQ(Pj) varies

as TRQ(Pj) ∈ [1, 64]. The path outstanding request number

NRQ(Pj) is fixed to 2, balanced for each client.

Figure 10 (a) is with no root Q = 0, and Figure 10 (b) is for

Q = 20, which satisfies the queued service requirement. With

local round-robin arbitration, Bluetree provides relatively fair

accesses to the shared memory for all clients. However, the

resource sharing issue within the architecture is still noticeable,

even with the balanced outstanding requests. As shown in

Figure 10 (a), the highest observed latency is approximately

380, and the latency approximately varies between 220 and

380. By contrast, latency lines tend to coincide in Figure 10

(b). With the root queue size Q = 20, the highest observed

latency reduces to 320, and the latency only varies within 50.

The root queue appears the essential architectural complement.

3) Latency Variation with Increasing Request Intervals:

Based on the balanced path outstanding requests, this exper-

iment further evaluates the Bluetree behaviour with increas-

ing memory request intervals. The variation of the interval

TRQ(Pj) is increased to TRQ(Pj) ∈ [1, 256].
Figure 11 shows the experimental results. With the increased

memory request intervals, the latency varies widely in Figure

11 (a) with no root queue Q = 0. By contrast, the effect of

the root queue modification is clearly shown in Figure 11 (b).

With the root queue Q = 20, latency lines tend to coincide

with smaller variation, and the highest observed latency also

drops to approximately 230. However, the accurate latency still

varies widely. For example, within the global time period be-

tween 3000 to 6000, the latency can drop to less than 50, while

it can also increase to more than 200. The similar tendency

can also be frequently observed in Figure 11 (b). Considering

the experimental setup TRQ(Pj) ∈ [1, 256], the system is

not sufficiently loaded. This actually alleviates the resource

sharing within the architecture. These memory requests can

suffer variable queued delays, and the latency only varies due

to the varying memory workload. One potential solution to

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(a) Q = 0

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

0

50

100

150

200

250

300

350

400

0 3000 6000 9000 12000 15000 18000

L
a

te
n

c
y
 (

C
L

K
)

Release Time (CLK)

(b) Q = 20

P₀

P₁

P₂

P₃

P₄

P₅

P₆

P₇

Fig. 11: Latency Variation with Increasing Request Intervals

keep the latency identical can be to utilise dummy memory

requests at root of the interconnect.

C. Discussion

Our initial evaluation employs synthetic memory workload.

The results show that the root queue modification effectively

smooths resource sharing across the locally arbitrated archi-

tecture. This reduces memory latency variation, and the high

latencies are also reduced significantly. The modified hardware

platform facilitates timing analysis or verification for real-time

applications and better supports software development.

VII. CONCLUSION

In this paper, we address resource contention for multi-

core architectures with distributed memory interconnect. We

define the analytical flow for the predictable behaviour of

the locally arbitrated platform with calculational worst-case

bound, and also unveil the latency variation within both

locally arbitrated and globally arbitrated architectures. Then

we present the root queue modification to the locally arbitrated

architecture to smooth resource sharing. Our evaluation shows

the effectiveness of this architectural complement that the

memory latency variation is effectively reduced across the

modified multi-core platform. Further architectural exploration

or software co-design development remains future work.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: A new soc paradigm,”
Computer -IEEE Computer Society-, vol. 35, no. 1, pp. 70–78, Jan 2002.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, Jun. 2006.

[3] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi,
and C. Turchetti, “System-level power analysis methodology applied
to the amba ahb bus,” in Proceedings of the Conference on Design,

Automation and Test in Europe: Designers’ Forum - Volume 2, ser. DATE
’03. Washington, DC, USA: IEEE Computer Society, 2003, p. 20032.

[4] Xilinx, AXI Interconnect.
[5] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intecon-

nection networks,” in Proceedings of the 38th Annual Design Automation

Conference, ser. DAC ’01. New York, NY, USA: ACM, 2001, pp. 684–
689.

[6] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration: A quantitative evaluation of
point-to-point, bus, and network-on-chip approaches,” ACM Trans. Des.

Autom. Electron. Syst., vol. 12, no. 3, pp. 23:1–23:20, May 2008.
[7] J. H. Rutgers, M. J. G. Bekooij, and G. J. M. Smit, “Evaluation of a

connectionless noc for a real-time distributed shared memory many-core
system,” in 2012 15th Euromicro Conference on Digital System Design,
Sep. 2012, pp. 727–730.

[8] ARM, AMBA AXI and ACE Protocol Specification.
[9] G. Plumbridge, J. Whitham, and N. Audsley, “Blueshell: A platform for

rapid prototyping of multiprocessor nocs and accelerators,” SIGARCH

Comput. Archit. News, vol. 41, no. 5, pp. 107–117, Jun. 2014.
[10] N. Audsley, “Memory architecturesfor noc-based real-time mixed criti-

cality systems,” Proc. WMC, RTSS, pp. 37–42, 2013.
[11] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A Time-

Predictable Memory Network-on-Chip,” in 14th International Workshop

on Worst-Case Execution Time Analysis, ser. OpenAccess Series in
Informatics (OASIcs), vol. 39. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014, pp. 53–62.

[12] M. Dev Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,
“A generic, scalable and globally arbitrated memory tree for shared dram
access in real-time systems,” in 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2015, pp. 193–198.
[13] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,

“A globally arbitrated memory tree for mixed-time-criticality systems,”
IEEE Transactions on Computers, vol. 66, no. 2, pp. 212–225, Feb 2017.

[14] A. Sharifi, E. Kultursay, M. Kandemir, and C. R. Das, “Addressing
end-to-end memory access latency in noc-based multicores,” in Pro-

ceedings of the 2012 45th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-45. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 294–304.

[15] I. Walter, I. Cidon, R. Ginosar, and A. Kolodny, “Access regulation to
hot-modules in wormhole nocs,” in First International Symposium on

Networks-on-Chip (NOCS’07), May 2007, pp. 137–148.
[16] Z. Shi and A. Burns, “Real-time communication analysis for on-chip

networks with wormhole switching,” in Second ACM/IEEE International

Symposium on Networks-on-Chip (nocs 2008), April 2008, pp. 161–170.
[17] A. Hansson, M. Coenen, and K. Goossens, “Channel trees: Reduc-

ing latency by sharing time slots in time-multiplexed networks on
chip,” in 2007 5th IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis (CODES+ISSS), Sep.
2007, pp. 149–154.

[18] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, “A virtual channel
router for on-chip networks,” in IEEE International SOC Conference,

2004. Proceedings., Sep. 2004, pp. 289–293.
[19] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels

in networks on chip: Implementation and evaluation on hermes noc,” in
2005 18th Symposium on Integrated Circuits and Systems Design, Sep.
2005, pp. 178–183.

[20] G. F. Pfister and V. A. Norton, “Hot spot contention and combining in
multistage interconnection networks,” IEEE Transactions on Computers,
vol. C-34, no. 10, pp. 943–948, Oct 1985.

[21] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, and A. Tocchi, “T-crest: Time-predictable
multi-core architecture for embedded systems,” Journal of Systems

Architecture, vol. 61, 04 2015.
[22] J. Garside and N. C. Audsley, “Wcet preserving hardware prefetch for

many-core real-time systems,” in Proceedings of the 22Nd International

Conference on Real-Time Networks and Systems, ser. RTNS ’14. New
York, NY, USA: ACM, 2014, pp. 193:193–193:202.

[23] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:

A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998.

[24] Bluespec, https://bluespec.com/.
[25] Bluespec System Verilog Reference Guide.
[26] ZedBoard, http://www.zedboard.org/product/zedboard.
[27] Xilinx, https://www.xilinx.com.
[28] Vivado, https://www.xilinx.com/products/design-tools/vivado.html.
[29] Xilinx, 7 Series FPGAs Memory Resources.

