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ABSTRACT 8 

This paper studies the shear strength and load-slip behaviours of a recently developed novel 9 

steel-concrete composite flooring system (PUSS) with two different types of shear connectors 10 

while also using lightweight concrete. PUSS consists of a T-ribbed lightweight concrete floor 11 

and C-channel steel edge beams. The proposed shear connection system is using either web-12 

welded shear studs only, or with horizontally lying steel dowels too. This unique system 13 

further minimises its structural depth and results in ultra-shallow floors.  14 

Eight full-scale push-out tests were conducted to investigate the connection under the direct 15 

shear force with three different concrete types (normal concrete, lightweight and ultra-16 

lightweight concretes) and two different shear connection systems (web-welded shear studs 17 

only and horizontally lying steel dowels together with web-welded shear studs). Three types 18 

of failure were recorded from the push-out tests; shear failure with bending near the roots of 19 

the connectors, shear failure of the weld toe of shear studs, and concrete cracking. Amongst 20 

the conclusions, it was validated that the compressive strength of the concrete significantly 21 

influences the ultimate shear strength capacity loads while it is changing the failure mode of 22 

the connection. The failure mechanisms of the shear connectors were extensively studied, 23 

which led to the development of a calculation method for the shear strength and load–slip 24 

behaviours of the new connectors embedded in lightweight concrete. The analytical results 25 

are compared with those predicted by modern codes and available methods from the 26 

literature. It is concluded that the proposed formulae offer a reliable prediction. 27 

 28 
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1. INTRODUCTION 33 

The use of lightweight concrete in structural applications for sustainable design of composite 34 

slabs require the revision of today’s flooring systems and the development of more efficient 35 

shear connectors. Evolution of flooring systems during the past decade has resulted moving 36 

to the traditional downstand steel beams with the concrete siting on the top steel flange and 37 

forming a steel-concrete composite beam to a lighter, shallower, and often aka a ‘plug’ 38 

composite system where the concrete slab sits at the bottom flange of the steel beam and is 39 

confined within the two flanges (Ahmed and Tsavdaridis, 2019; Tsavdaridis, 2010; 40 

Tsavdaridis et al, 2009a,b; Tsavdaridis et al., 2013; Huo et al., 2010). Research on such 41 

shallow flooring systems expands on their vibration performance due to their thin and wide 42 

nature (Tsavdaridis and Giaralis, 2011; Kansinally and Tsavdaridis, 2015), and also on their 43 

fire performance which can change a lot due to the new system in which the steel is partially 44 

protected by the concrete (Maraveas et al., 2017a,b; Alam et al., 2018a-d). 45 

Different flooring systems with integrated building services are beneficial for the use 46 

in residential and office buildings, malls and airport structures. However, design rules for 47 

such flooring systems have not been included in the European codes (Schäfer, 2015).  48 

Additional guidelines for shallow flooring systems should be considered for ultimate limit 49 

state, serviceability limit state, and fire design. The plastic moment resistance, the influence 50 

of transverse bending moments and the characteristics in erection state for the cross section 51 

classification for shallow flooring systems have been presented by (Schäfer, M., 2015). One 52 

of the most recent marketed shallow flooring system is the Slim-floor beam. This type of 53 

flooring system consists of a rolled or a welded steel profile which is completely or almost 54 

completely integrated into the ceiling (Schäfer and Braun, 2019). The construction method of 55 

this type of shallow flooring system and its development is presented by (Schäfer and Braun, 56 

2019).  57 

Sustainability needs have led to the development of other innovative integrated floor 58 

slabs which enable wide spans and building services to be integrated through the floor height 59 

(Hegger et al., 2013). These integrated floor slabs require large web openings in the structural 60 

elements (Dressen et al., 2015). The influence of openings on the load-bearing capacity and 61 

deformation behaviour of double-T-shaped concrete beams with prestressed tension chords 62 

were investigated using six beam tests. The test parameters were the amount of vertical 63 

reinforcement at the edges of the opening, the concrete strength, and the location of openings 64 

in the longitudinal direction (Dressen et al., 2015). The load-carrying capacity of concrete 65 
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beams with openings can achieve approximately the same load-carrying capacity of the 66 

concrete beams without openings using proper arrangement and dimensioning of 67 

reinforcement. The load bearing of an integrated composite floor system has been 68 

investigated by Gallwoszus et al. (2014). This type of floor is a novel multifunctional flooring 69 

system which integrates building services and technical installations within the structural 70 

element. Therefore, the presence of large openings in the structural elements’ webs is 71 

required. The load bearing structural element within the innovative flooring system is 72 

represented by the prestressed steel-concrete hybrid beams with single flange and puzzle 73 

shaped shear connectors. Twenty-one beam tests were conducted to evaluate the global load 74 

bearing behaviour of the integrated composite flooring system.  75 

 Another type of composite flooring system which is recently developed is using 76 

cellular beams (Frangi et al., 2011). This novel flooring system is beneficial as the integrated 77 

installation floor, adding value to the floor without extra costs. The flooring system is 78 

consisted from half-cellular beams made of hot-rolled sections. The openings in the cellular 79 

beams allow for placing the installations in all directions which providing flexibility for the 80 

user for changing the installations. The general design and details of the construction of this 81 

flooring system are presented by (Frangi et al., 2011). The load-carrying and dynamic 82 

behaviour of two floor elements with a span of 7.2m were conducted. The experimental 83 

results are compared to common calculation models for composite slabs.  84 

 InaDeck is a multifunctional composite flooring system which incorporates all 85 

building services and installations into the structural element by means of an integrated 86 

installation floor (Hegger et al., 2014). The new flooring system is consisted from prestressed 87 

composite beams with shear connectors (single flange and continuous) having large web 88 

openings for integrating building services. The physical and fire protection characteristics of 89 

the flooring system has improved due to the prestressed concrete chord at the bottom of the 90 

cross section.  91 

The increasing demand for prefabricated and shallow flooring systems in the recent 92 

years has led to the development of the hollow core precast floors and Cofradal floors. The 93 

span and width of these flooring systems with depth below 300mm are up to 7.8m for the 94 

Cofradal floor and 10.5m for the hollow core precast units (with a width of 1.2m)  95 

(Bison, 2007; ArcelorMittlal, 2019). It has become obvious that the industry is looking for 96 

increased spans with the lowest possible structural depth and weight of the flooring system to 97 
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meet architectural and functional requirements as well as to reduce the number of columns 98 

and foundations leading to a lighter and more sustainable construction with reduced time and 99 

costs. For that reason, different types of flooring systems have been developed with the use of 100 

new lightweight materials (Yan et al., 2016a,b).     101 

2. NEW COMPOSITE FLOORING SYSTEM 102 

A recently proposed ultra-shallow flooring system is examined in this paper also known as 103 

prefabricated ultra-shallow flooring system - PUSS (Ahmed et al., 2017; Ahmed and 104 

Tsavdaridis, 2017; Ahmed and Tsavdaridis, 2018; Ahmed et al., 2018). This is a 105 

prefabricated steel-concrete composite flooring system which consists of two main structural 106 

components: the concrete floor and the steel beams. The concrete floor is in the form of T-107 

ribbed slab sections constructed using reinforced lightweight aggregate concrete. The C-108 

channel steel edge beams encapsulate the floor slab and provide clean and straight finish 109 

edges. The floor slab width is 2.0m inclusive of the width of the steel edge beams and a 110 

finished depth of 230mm; Table 1 summarises different span and depths limit for the new 111 

ultra-shallow flooring system with lightweight concrete of a density of 1700kg/m3.  112 

The total weight of the floor is reduced by having ribs and troughs running from one 113 

side to the other side of the slab sitting on the two C-channel edge beams either side. This 114 

ultra-shallow flooring system also reduces the weight and the number of erection 115 

(installation) lifts by using lighter elements (lightweight concrete and thin-walled steel 116 

elements) and the wider possible units. Moreover, the extent of site works is reduced by pre-117 

off site fabrication as the material cost against the fabrication and site erection costs is 118 

proportional in the order of 35% and 65%, respectively (Ahmed et al., 2017; Ahmed and 119 

Tsavdaridis, 2017). In addition, this new flooring system can be used with slimflor and ultra-120 

shallow floor beams, creating a shallow floor construction system, as illustrated in Figure 1. 121 

Lytag with a low density of 700kg/m3 and Leca with a low density of 280kg/m3 were 122 

employed as the lightweight aggregates to achieve a very low possible density, thus weight. 123 

Lytag aggregate is recycled from the fly ash in coal-burning power plants that saved energy 124 

and reduces the carbon dioxide emissions. Lytag is up to 50% lighter than normal weight 125 

aggregate and is manufactured (artificial) lightweight aggregate. After heating at 1150°C in a 126 

rotary kiln, the clay is expanded to about four to five times its original size and takes the 127 

shape of pellets. Leca is up to 50% lighter than lightweight aggregate (Lytag) (Mazaheripour 128 

et al., 2011).  129 
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Table 1: Span limits for the ultra shallow flooring system  130 

Floor 
Type 

Concrete 
Type 

Concrete 
density 
kg/m3 

Maximum 
Span (m) 

Overall 
Floor 
Depth 
(mm) 

Total 
Floor 

Weight 
(kN/m2) 

Live 
Load 

(kN/m2) 

Unit 
Width 
(mm) 

Ultra 
shallow 

flooring 
system 

Lightweight 

concrete  
1700 

8.0 230 2.67 2.5 2000 

8.0 260 2.71 3.5 2000 

9.5 300 2.81 5.0 2000 

10.0 300 2.81 3.5 2000 

 131 

Ultra-shallow flooring system exercises the sustainability approach in the selection of 132 

its components using sustainable materials such as lightweight concrete (Doel, 2007) and 133 

thin-webbed steel members. An explicit Life Cycle Assessment (LCA) for this flooring 134 

system was developed and compared with other lightweight composite flooring systems such 135 

as Cofradal slab and hollow core precast slab (Ahmed and Tsavdaridis, 2018). From the 136 

study, it was found that this ultra-shallow flooring system reduces the embodied energy and 137 

embodied carbon by about 28.89% and 37.67%, respectively when compared with the 138 

Cofradal slab, and 19.47% and 33.05%, respectively when compared with the hollow core 139 

precast slab. 140 

This paper investigates the shear resistance and behaviour of the connection systems 141 

designed for PUSS. A series of push-out tests, consisting of 8 full-scale test specimens, was 142 

performed to examine the shear connection under direct longitudinal shear force. The test 143 

specimens were designed to represent actual configurations of the shear connection system 144 

according to the construction practice. The design principle is that the shear connection of the 145 

test specimens is subjected to the direct longitudinal shear force. Therefore, the shear-146 

resisting capacity and load-slip behaviour of the shear connection can be obtained. The 147 

experimental apparatus was specifically designed in such a way to create the desired static 148 

loading conditions and in compliance with the specifications of Eurocode 4 (EN 1994-1-1, 149 

2004). The results of the push-out tests are analysed herein with emphasis on the failure 150 

mechanisms of the shear connection systems.  151 
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3. MECHANISMS OF SHEAR TRANSFER 152 

The most commonly used shear connectors in bridge and building applications are the headed 153 

shear studs which are usually welded vertically to the steel flanges. In ultra-shallow flooring 154 

systems, headed shear studs are usually welded horizontally to the steel webs – no need for 155 

extra concrete depth to create the shear bond, otherwise horizontal dowels are employed to 156 

assist and/or replace the headed shear studs.  157 

In PUSS, headed shear studs are welded on the inner side of the webs of the parallel 158 

C-channels, as shown in Figure 2(a). The shear studs of the examined specimens were 159 

positioned at 435mm centres to resist the longitudinal shear force. The diameter of the studs 160 

was 19mm and the height was 95mm.   161 

An additional shear connection system is that of the horizontally lying dowels to 162 

provide the tie-force for the concrete slab and the parallel flange C-channels. High yield 163 

dowels of Ø20mm with 2m length are used to pass through the centre of slab ribs at 870mm 164 

centres, as illustrated in Figure 2(b). The studs are passing through the thin concrete flange 165 

(at 435mm centres). The dowels with the web-welded studs are designed to simultaneously 166 

resist the longitudinal shear force.  167 

4. EXPERIMENTAL INVESTIGATION 168 

4.1 Push-out test specimens 169 

A total of 8 full-scale test specimens were conducted to investigate the performance of the 170 

shear mechanisms and grouped in two categories: (a) the web-welded shear studs, and (b) the 171 

combination of horizontally lying dowels and web-welded shear studs.  172 

4.1.1 Shear connection systems 173 

The design principle is that the shear connection of the test specimens is subjected to direct 174 

longitudinal shear force. Each test group consists of four different test specimens 175 

investigating a particular type of shear connection. The details of the test groups and the 176 

corresponding shear connection system are summarised in Table 2. In order to investigate 177 

the factors that influence the shear-resisting properties of the shear connection system, the 178 

test specimens of test groups (T1 and T2) were designed to have one type of variables; the 179 

concrete strength. Three types of concretes were used to cast the slabs, i.e., normal concrete, 180 

lightweight concrete (using Lytag aggregates), and ultra lightweight concrete (using Leca 181 

aggregates). The tensile strength of normal concrete was higher than that of the lightweight 182 
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concrete with different compressive strength. Details of the lightweight concrete are 183 

presented in section 4.1.2. 184 

The availability and cost of lightweight aggregate material was a limiting factor. At least one 185 

specimen with normal weight concrete, one with lightweight concrete, and one with ultra 186 

lightweight concrete, for each group, was planned. More specimens were prepared and tested 187 

to confirm the results when it was needed. For instance, one of the specimens from the Group 188 

T1 (with normal weight concrete) failed from one side rather than both sides as the load was 189 

slightly moved towards that side during testing. As a result, this specimen was repeated with 190 

normal weight concrete. 191 

Table 2: Push-out test group details 192 

Test Group Shear connection Concrete type Specimen No. 

Group T1 

Web-welded studs 
Normal weight 
Concrete(NWC) 

T1-NWC-1 

Web-welded studs 
Normal weight 
Concrete(NWC) 

T1-NWC-2 

Web-welded studs 
Lightweight Concrete 

(LWC) 
T1-LWC 

Web-welded studs 
Ultra Lightweight 
Concrete (ULWC) 

 
T1-ULWC 

Group T2 

Dowels and Web-
welded studs  

Normal weight 
Concrete(NWC) 

T2-NWC 

Dowels and Web-
welded studs  

Lightweight Concrete 

(LWC) 
T2-LWC 

Dowels and Web-
welded studs  

Lightweight Concrete 

(LWC) 
T2-LWC 

Dowels and Web-
welded studs  

Ultra Lightweight 
Concrete (ULWC) 

 

T2-ULWC 

 193 

All test specimens comprised of two parallel flange C-channel steel sections as edge beams 194 

and the concrete slab flush with the steel flanges, as shown in Figure 3(b). The studs and 195 

dowels were welded to the web of the channels. The reinforced concrete ribbed slab is 196 

connecting the parallel steel edge beams and sitting on their bottom flanges. In practice, it is 197 

common to use steel wire mesh or rebar reinforcement in the concrete slab, thus minimum 198 
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reinforcement was provided for the ribbed slab as well. However, heavy reinforcement might 199 

create undesirable confinement in the vicinity of the shear connection and may restrain the 200 

transverse separation of the shear connection in the push-out tests, therefore to jeopardise the 201 

accuracy of the results while overestimating the capacity.  Consequently, no reinforcement 202 

has been provided in the area of shear connection systems for the experiments in order to 203 

examine the system solely subjected to direct longitudinal shear force and to minimise the 204 

number of variables which affect the push-out test [11].     205 

The total width of the concrete slab was 2000mm for all test specimens of the test 206 

groups (T1 and T2) aiming to represent the effective width of the full concrete slab of the test 207 

specimen. Wider slabs are not suggested, as they will not fit horizontally in tracks for the 208 

transportation; equally it is not suggested to be positioned inclined as the shear connection 209 

system may be damaged during transportation. In case, narrower slabs are designed, it is 210 

expected that the failure will be more uniform, with a better interaction of developing locally 211 

around the shear studs and ends of dowels, resulting to higher shear capacity. Thus, the tested 212 

system will yield the most underestimated results. The depth of the infill part of the slabs was 213 

217.5mm. The depth of the ribbed slabs is 75mm, with ribs of 85mm at 870mm centres in 214 

addition to the finishes of 40mm (within the depth of the ribbed slab). The overall depth of 215 

the slabs including the finishes is 200mm, as depicted in Figure 4 and Figure 5.  216 

4.1.2 Materials properties 217 

In the present study, three types of materials were used: (1) normal weight concrete (NWC), 218 

(2) light weight concrete (LWC), and (3) ultra-light weight concrete (ULWC). Figure 6 219 

illustrates different types of aggregates used for different types of concrete. The concrete 220 

mixture proportions were presented in Table 3. NWC was manufactured from the coarse 221 

aggregate (gravel), natural sand, Portland cement, and water. Coarse aggregates with a 222 

maximum size of 10mm and natural sand were used as fine aggregates, respectively. 223 

Densities for gravel and natural sand were 1600 and 1800kg/m3, respectively. The density of 224 

the normal concrete was 2325kg/m3 with a compressive strength of 30MPa at 28 days.  225 

LWC consisted of recycled lytag aggregates; coarse aggregates of size 8mm, fine 226 

aggregates of size 4mm, cement, and water with a density of 1700kg/m3 with a compressive 227 

strength of 30MPa at 28 days. 228 

 The ULWC was produced by expanded clay coarse aggregates of size 8mm, 229 

expanded clay fine aggregates of size 4mm cement, and water with a 28-day compressive 230 

strength of about 16MPa.  231 
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All materials (steel and concrete) properties were determined through standard tests. 232 

The tensile strength of the steel beam sections, shear stud connectors, and dowel shear 233 

connectors used to fabricate the push-out test specimens were obtained from coupon tests 234 

according to the ISO 6892-1 (2009). The concrete material properties were obtained from 235 

compression and splitting tensile tests that carried out on cylinder specimens in accordance 236 

with the BS 1881-116 (1983). Compressive and splitting tensile concrete properties are 237 

presented in Table 4. The mechanical properties of the steel section and steel shear 238 

connectors are summarised in Table 5. 239 

Table 3: Concrete mixture proportions 240 

W/C water to cement ratio, FA fine aggregate, CA coarse aggregate, NA natural aggregate, NS natural sand, RA 241 

recycled aggregate, EC expanded clay. 242 
a NG: natural aggregate with dry density of 1600kg/m3  243 
b NS: natural sand with dry density of 1800 kg/m3 244 
c RA: recycled aggregate (coarse Lytag) with bulk density of 700 kg/m3 245 
d RA: recycled aggregate (fine Lytag) with bulk density of 1000 kg/m3 246 
e EC: expanded clay (coarse Leca) with bulk density of 280 kg/m3 247 
f  EC: expanded clay (fine Leca) with bulk density of 620 kg/m3  248 
 249 

 250 

 251 

Table 4: Comparison of concrete strength between normal concrete and lightweight concrete 252 

at age of 28 days. 253 

 254 

Concrete 
type 

W/C 
ratio 

Cement 
(kg/m3) 

FA 
(kg/m3) 

CA 
(kg/m3) 

CA type FA type 
Density 
(kg/m3) 

NWC 0.75 300 810 990 NA NS  2325 

LWC  0.79 250 625 520 RA  RA  1700 

ULWC 0.98 450 324.5 229 EC EC 1300 

Concrete type 
Compressive strength, 

(MPa) 
Tensile strength,  

(MPa) 

Ec  
(GPa) 

Normal weight 
concrete 

30.0 2.31 31.18 

Lightweight 

concrete  
30.0 1.99 18.73 

Ultra Lightweight 

concrete  
16.0 1.25 9.56 

Connection type d 
fy 

(MPa) 
fu 

(MPa) 
Es 

 (GPa) 
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Table 255 5: 

Mechanical properties of steel section and steel connectors  256 

4.2 Details of test specimens 257 

Test specimens of group T1 were designed with 6 headed shear studs welded symmetrically 258 

on the inner side of the web of each edge beam, as depicted in Figure 4.  The diameter of the 259 

studs was 19mm and the height was 95mm.  260 

Test specimens of the group T2 were designed to include the dowels and the web-261 

welded shear studs. The reinforced concrete ribbed slab was designed according to Eurocode 262 

2 (EN 1992-1-1, 2004) and the steel-concrete composite flooring system was designed 263 

according to Eurocode 4 (EN 1994-1-1, 2004). The diameter of the dowels was 20mm and 264 

welded to the edge beams, tying the slab and edge beams together while passing through the 265 

centre of the slab ribs. The dowels are also useful during the casting process, while holding 266 

the two edge beams in place. With these, the fabrication of this composite flooring system 267 

can also be easily done on the site if necessary. The 2 dowels were positioned at 870mm 268 

centres, as shown in Figure 5. The shear studs were positioned at 435mm centres passing 269 

through the thin concrete slab only (not the ribs). The dowels and studs shear connections 270 

were designed to act simultaneously to resist the longitudinal shear force.  271 

4.3 Setup and testing procedures 272 

The steel sections of all test specimens were covered with de-bonding grease before casting 273 

with concrete. The use of de-bonding grease was to prevent the development of the bond 274 

between the steel and concrete for this investigation. All push-out test specimens were cast in 275 

the Heavy Structures Laboratory at the University of Leeds. 276 

The test specimens were cast horizontally for the ease of casting and replicating the 277 

fabrication in the shop. The concrete mix was designed with less flow for normal and 278 

lightweight concrete, and all test specimens were uniformly compacted to avoid any voids or 279 

segregation of the aggregates from the cement paste. Examination of tested specimens 280 

showed that segregation of aggregates did not occur. The concrete strength specimens, cubes, 281 

and cylinders were prepared using the same batch of concrete for the push-out test specimens. 282 

Web-welded shear stud 6.6 452.1 530.2 200 

Dowels 19.83 322.5 455.5 200 

Steel section - 406 570 200 
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All specimens, cubes, and cylinders of each push-out tests were cured under the same 283 

conditions; covered with wet sacked and plastic sheets. 284 

A test rig of 1000kN capacity was used for the push-out tests. Static monotonic loads 285 

were applied to the test specimens by one identical hydraulic jack of 1000kN capacity. A 286 

spreader steel beam 254x254x73 UC was used to distribute the load uniformly from the 287 

hydraulic jack to the specimen. Digital dial gauges were used to measure the slip and 288 

separations of the shear connection systems. 6 digital dial gauges were positioned on both 289 

sides of the slabs measuring the slips in the vertical direction, as shown in Figure 7. Two 290 

digital dial gauges were positioned on both sides of the slab measuring the separations in the 291 

horizontal direction.   292 

A data logger machine connected to a computer recording all the readings from 293 

different load levels. All the push-out test specimens were loaded until failure. The failure 294 

patterns were captured using a digital camera. 295 

The push-out tests were carried out according to Eurocode 4 (EN 1994-1-1, 2004). 296 

Test specimens were settled onto a layer of plaster (gypsum) to create an even contact surface 297 

between the specimens and the reaction platform. The push-out tests were load-controlled 298 

with the monotonic loading applied to the steel section; hence, the incremental shear force 299 

was applied to the shear connectors, rather than the concrete slab as in typical push-out tests, 300 

aiming to avoid damaging the thin and wide concrete slab in tesing. The specimens were 301 

tested until the destructive failure of the shear connection. The duration of all push-out tests 302 

was approximately 2 hours with a load rate of 0.5kN/sec. 303 

5. TEST RESULTS  304 

5.1 Failure mechanisms 305 

Tested specimens were further examined to understand the failure mechanisms of the two 306 

shear connection systems. The failure profiles of the web-welded shear stud connection 307 

system are depicted in Figures 8, 9, 10, and 11. The studs were sheared off from one side 308 

(either right or left side of the specimen) in the direction of the longitudinal shear force while 309 

bending near the root of the stud; however, the studs on the opposite side were bent without 310 

shearing off. This was due to the distribution of stresses over the slab width during the test, 311 

which results in stress concentration on one side of the specimen. The bending length of the 312 

shear studs with NWC was around 40mm and larger than the one of the shear studs with 313 

LWC and ULWC which was around 10mm. This is related to the higher compressive 314 

strength of NWC which imposes higher stress on the shear studs and increases their bended 315 
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length. The concrete in the vicinity of the studs was crushed in the shear direction. The 316 

concrete and web-welded shear stud connection system’s failure patterns were similar to the 317 

concrete and the horizontally lying shear connection system failure patterns tested by 318 

Kuhlmann and Breuninger (2002), as shown in Figure 12. 319 

 320 

The web-welded shear stud connection demonstrated splitting of the concrete slab in 321 

the push-out tests. Annex C of Eurocode 4 (EN 1994-2, 2005) provides specifications for the 322 

design of lying studs. It is thus recommended that the design of the web-welded shear stud 323 

connection system should, in practice, conform to Annex C. 324 

The concrete cracking profile of the specimens with web-welded shear studs initiated 325 

from the top studs’ position, where the position of the ribs in both sides extend towards the 326 

shear studs in the middle of the specimen, and then the cracks appear near the bottom studs as 327 

shown in Figures 8, 9, 10, and 11.  328 

The failure profile of the horizontally lying steel dowels together with the web-welded 329 

shear studs are shown in Figures 13, 14, 15, and 16. The dowels and studs were sheared off 330 

from one side (either right or left side of the specimen) with bending shown near their roots, 331 

nevertheless the dowels and studs on the other side were bent without shearing off. The 332 

bending length of the steel dowels with NWC was around to 80mm and larger than the one of 333 

the steel dowels with LWC and ULWC which was around 40mm. The concrete in the vicinity 334 

of the studs was crushed in the shear direction. The shear failure mechanism of this 335 

connection system was similar to the failure mechanism shown in standard push-out tests of 336 

the headed shear studs [EN 1994-1-1, 2004].  337 

The steel dowels together with the web-welded studs shear connection system 338 

demonstrated the splitting of the concrete slab in the push-out tests. The concrete cracks of 339 

the specimens with this shear connection system were similar to the concrete cracks shown 340 

by the specimens with web-welded shear studs connection, as depicted in Figures 13, 14, 15, 341 

and 16. 342 

5.2 Load-slip and Load-separation behaviours 343 

Relative slip between the steel beams and concrete slab was recorded during the tests.  344 

Figure 17 demonstrates the typical load–slip curves of the push-out tests. The load–slip 345 

curves selected for the discussion according to: (1) the type of shear connection and (2) the 346 

type of concrete (i.e., NWC, LWC, and ULWC). A comparison of the load–slip behaviours 347 

and failure modes was then established. 348 
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The majority of the load–slip curves illustrate that the specimens exhibited substantial 349 

inelastic deformation before failure. All shear connectors, which failed by bending and 350 

shearing off failure, describe a ductile load–slip performance where the slip at maximum load 351 

was more than 6mm, which is the minimum requirement according to Eurocode 4 352 

(EN1994-1-1, 2004) for ductile shear connection. Specimens failed by bending of the 353 

connectors near the roots without shearing off, the load–slip behaviour was ductile with a slip 354 

at maximum load of more than 6mm. 355 

Figure 18 illustrates the two load–slip behaviours per specimen of a flooring system 356 

with the two modes of failure of the shear connectors. At the initial stage of loading, the 357 

relationship between load and slip was linear. The load–slip curve exhibited nonlinear 358 

behaviour up to the maximum load. Shear studs or dowels were sheared off from one side 359 

(either right or left side of the specimen) while bending near the root of the connectors was 360 

found; however, the studs on the opposite side were bent without shearing off, as shown in 361 

Figure 18. The reason for obtaining these differences is that the quality of the concrete 362 

cannot be entirely guaranteed as it is produced in a laboratory environment and by 363 

technicians, instead of large mixers. It is also worth to note that the quality of lightweight 364 

concrete can vary a lot during compaction affecting the concrete strength. Thus, it is 365 

preferable to be compacted in the shop and using approved methods. In our case, as it was 366 

aforementioned, we did not use reinforcement along the steel members and in the vicinity of 367 

the shear connectors, to avoid further compaction and confinement issues. The specimens 368 

with lightweight concrete exhibited a noticeable brittle behaviour compared with the 369 

specimens with normal concrete. This is related to the normal concrete properties and its 370 

higher compressive strength.   371 

The use of web-welded shear studs resulted in slips between 2mm and 30mm in the 372 

push-out tests. The steel dowels together with the web-welded shear studs resulted in slips 373 

between 13mm and 29mm. Large separations of the steel and concrete were observed for the 374 

specimens with web-welded shear studs; somewhere between 3mm and 24mm, which 375 

indicates the weak tie-resistance of the web-welded shear studs. On the other hand, small 376 

separations of the steel and concrete were observed for specimens with steel dowels and web-377 

welded shear studs; somewhere between 3mm and 9mm, which indicates the strong tie-378 

resistance of the steel dowels. All specimens demonstrate that the separation started at a load 379 

level where the sudden slip increased (Figure 17).  380 

 It was clearly demonstrated by all four specimens of test group T2 that an 381 

interlocking mechanism occurs between the concrete and the shear connectors at ultimate 382 
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load levels. This mechanism indicates that the failure resistance (or longitudinal shear 383 

strength) of the dowels contributed to holding the whole system from failure. This confirms 384 

with the observation that the failure of the dowels occurred after the failure of the shear studs, 385 

near the end of the test. In contrast, this mechanism did not occur in the specimens of test 386 

group T1 and the contribution of web-welded studs only to holding the whole system from 387 

failure was reasonably small. 388 

Load-separation curves represent the tie-resisting behaviour of the shear connection to 389 

the longitudinal shear force and are shown in Figures 17 and 19. The results of the push-out 390 

tests are summarised in Tables 6 and 7.  391 

 392 

Table 6: Results of the push-out test group (T1) 393 

Specimen 

No. 

fcu
a  

(MPa)  

fct
b  

(MPa) 

Shear 

Connections 

Ultimate 

shear 
capacity, 

Pu, 

(kN) 

Slip 
capacity, 
δu (mm) 

Stiffness, 

K, 

(kN/mm) 

Ductility 

classificati
on 

 

T1-NWC-1c 

  
Right top stud 187.17 2.37 78.97 Fail 

  Right middle 
stud 

187.17 2.06 90.85 Fail 

31.60 2.26 Right bottom 
stud 

187.17 2.06 90.85 Fail 

  Left top stud 187.17 13.59 13.77 Pass 

  Left middle 
stud 

187.17 13.09 14.29 Pass 

  Left bottom 

stud 
187.17 12.33 15.18 Pass 

T1-NWC-2 

  Right top stud 103.97 21.60 5.34 Pass 

  Right middle 
stud 

103.97 21.30 4.88 Pass 

38.52 2.88 Right bottom 
stud 

103.97 23.20 4.48 Pass 

  Left top stud 103.97 6.58 15.80 Fail 

  Left middle 
stud 

103.97 6.58 15.80 Fail 

 
  Left bottom 

stud 
103.97 6.63 15.68 Fail 

T1-LWC 

  Right top stud 86.70 16.28 5.32 Pass 

  Right middle 

stud 
86.70 15.45 5.61 Pass 

32.20 
1.61 Right bottom 

stud 
86.70 15.63 5.54 Pass 

  
Left top stud 86.70 30.07 2.88 Pass 

  Left middle 
stud 

86.70 30.07 2.88 Pass 

  
 Left bottom 

stud 
86.70 21.82 3.97 Pass 
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Table 7: Results of the push-out test group (T2) 394 

T1-ULWC 20.0 1.36 

Right top stud 57.02 20.63 2.76 Pass 

Right middle 
stud 

57.02 20.29 2.81 Pass 

Right bottom 
stud 

57.02 20.12 2.83 Pass 

Left top stud 57.02 12.41 4.59 Pass 

Left middle 

stud 
57.02 11.85 4.81 Pass 

Left bottom 
stud 

57.02 11.73 4.86 Pass 

a Mean cube compressive strength. 
b Mean cylinder tensile splitting strength. 

c  The specimen, T1-NC-1 was failed from one side rather than two sides, therefore the ultimate load is 
taken by three shear connections only rather than six shear connections, and the ultimate shear capacity is 
per shear connection of the three shear connections 

 

Specimen 
No. 

fcu
a  

(MPa)  

 

fct
b  

(MPa) 
Shear 

Connections 

Ultimate 
shear 

capacity, 

Pu, 
(kN) 

Slip 
capacity, 

δu (mm) 

Stiffness, 

K, 

(kN/mm) 

Ductility 
classificat

ion 

 

T2-NWC 

  
Right top  

dowel 
121.9 12.18 10.0 Pass 

  Right stud 121.9 11.55 10.58 Pass 

37.3 2.45 
Right bottom 

dowel 
121.9 12.09 10.08 Pass 

  
Left top 
dowel 

121.9 13.64 8.93 Pass 

  Left stud 121.9 12.83 9.50 Pass 

  
Left bottom 

dowel 
121.9 13.64 8.93 Pass 

T2-LWC-1 

  Right top 
dowel 

101.65 22.10 4.59 Pass 

  Right stud 101.65 21.50 4.72 Pass 

34.6 2.11 
Right bottom 

dowel 
101.65 21.10 4.81 Pass 

  
Left top 

dowel 
101.65 31.10 3.63 Pass 

  Left stud 101.65 30.10 3.37 Pass 

 
  Left bottom 

dowel 
101.65 30.10 3.37 Pass 

T2-LWC-2 

  Right top 
dowel 

103.51 22.20 4.66 Pass 

  Right stud 103.51 21.00 4.92 Pass 

36.8 2.12 
Right bottom 

dowel 
103.51 22.20 4.66 Pass 

 
 Left top 

dowel 
103.51 31.20 3.31 Pass 

  Left stud 103.51 30.10 3.43 Pass 

  
 Left bottom 

dowel 
103.51 30.90 3.34 Pass 

  
 Right top 

dowel 
73.83 31.90 2.31 Pass 

   Right stud 73.83 30.70 2.40 Pass 

T2-ULWC 20.0 1.38 
Right bottom 

dowel 
73.83 30.90 2.38 Pass 
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5.3 Effect of connection system type 395 

Figure 20 shows the effect of the connector type on the maximum applied load. It could be 396 

observed that changing the type of the shear connection from web-welded shear studs to the 397 

combination of horizontal lying dowels with web-welded shear studs leads to a higher 398 

capacity. This is related to the larger diameter of the dowel with a larger cross-sectional area 399 

and thus a larger bearing area of the concrete as it passes from one side to the other side of 400 

the flooring system tying it all together, which in turn increases the maximum shear capacity 401 

of the connection system.   402 

Nevertheless, the maximum shear capacity of the shear connection system is also 403 

influenced by the yield strength of the steel shear connectors and the mechanical properties of 404 

the concrete used. When the diameter of the shear connector is large (> 12mm), the 405 

maximum shear capacity of the shear connection system depends on the strength of the 406 

concrete materials. However, if the diameter of the shear connection system is small 407 

 (< 10mm), the failure is controlled by shank shearing and not influenced much by the type 408 

and strength of concrete (Yan et al., 2014). 409 

5.4  Effect of concrete type 410 

Figure 21 shows the effect of the concrete type on the maximum shear capacity of both shear 411 

connection systems. The shear capacity of the connection system is defined as the ratio of the 412 

maximum applied load to the number of the shear connectors per specimen.  413 

 It is evident that the maximum applied load increased by 15% when NWC was used 414 

in comparison with the LWC of similar compression strength (see Tables 6 and 7). 415 

Subsequently, the maximum applied load increased by 14% when LWC was used in 416 

comparison with the ULWC of similar compression strength. Modern design codes, such as 417 

Eurocode 4(EN 1994-1-1, 2004) and AISC (1994), include the compressive strength and 418 

secant modulus properties of concretes to predict the shear strength of the connection.  The 419 

formulae in Eurocode 4 (EN 1994-1-1, 2004) can be used with a concrete of density not less 420 

than 1750kg/m3, thus it deals with LCW, but not ULWC. 421 

  
 Left top 

dowel 
73.83 29.00 2.54 Pass 

   Left stud 73.83 27.30 2.70 Pass 

  
 Left top 

dowel 
73.83 28.00 2.63 Pass 
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6. LOAD–SLIP BEHAVIOUR OF SHEAR CONNECTION 422 

To analyse this proposed ultra-shallow flooring system for load–slip response and ultimate 423 

shear capacity, it is essential to represent the load–slip (P–s) behaviour of the shear 424 

connection systems. This section proposes a suitable load–slip model for web-welded studs, 425 

and horizontally lying dowels together with web-welded studs, which is established from the 426 

regression analysis of the load–slip curves of the push-out tests. 427 

6.1  Load-slip models for headed shear stud connector 428 

Ollgaard et al. (1971) suggested an expression to represent the load–slip relationship based on 429 

curved fitting with the data from the push-out test as shown below:   430 𝑃𝑃𝑢 =  (1 − 𝑒−18𝛿 )0.4                       (1)            431 

Where P is the applied shear force, Pu is the shear resistance of the shear connector, δ is the 432 

slip in inches due to applied load P.  433 

However, a modification has been made by Lorenc and Kubica (2006) on Eq. 1 using 434 

an experimental calibration with the data from the push-out test to achieve different 435 

coefficients: 436 𝑃𝑃𝑢 =  (1 − 𝑒0.55𝛿 )0.3                                    (2)                437 

Xue et al. (2008) introduced a formula to predict the load–slip relationship using 30 438 

push-out tests using headed shear stud connectors and the analysis of other researchers’ 439 

expressions. The formula is as follows: 440 𝑃𝑃𝑢 =  𝛿0.5 + 0.97𝛿                                         (3)   442 

 441 

Where δ is the slip in mm.  443 

An and Cederwall (1996) proposed two expressions based on a nonlinear regression 444 

analysis of the test results to predict the load–slip behaviour of the headed shear stud 445 

connectors in NWC and high-performance concrete (HPC) under cyclic loading, as follows: 446 𝑃𝑃𝑢 =  2.24(𝛿 − 0.058)1 + 0.98(𝛿 − 0.058)       for NWC,                    (4a)   447 

𝑃𝑃𝑢 =  4.44(𝛿 − 0.031)1 + 4.24(𝛿 − 0.031)       for HPC,                    (4b)   448 
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Where δ is the slip in mm.  449 

Gattesco and Giuriani (1996) proposed an alternate empirical model for the load-slip 450 

behaviour, the model is as follows:  451 𝑃𝑃𝑢 = 𝛼√1 − 𝑒−𝛽𝛿/𝛼  + 𝛾𝛿                                           (5)   452 

Where a, b, and c are empirical parameters with the values of 0.97, 1.3, and 0.0045 453 

mm-1, respectively, obtained from curve fitting with the test data. Eq. 5 is a modified model 454 

to the models suggested by Aribert (1990) and by Johnson and Molenstra (1991). 455 

The following section extends the existing models, which are established for headed 456 

shear stud connectors, to predict the load–slip behaviour of web-welded studs, and 457 

horizontally lying dowels together with web-welded studs.  458 

6.2  Load-slip models for the two proposed shear connection systems 459 

The experimental non-dimensionalised load (P/Pu) and slip (𝛿) curves of specimens in groups 460 

T1 and T2 with the two shear connection systems and with different concrete types are shown 461 

in Figure 22.  462 

It is noticed that the generalised load–slip curves are very similar for specimens with 463 

similar concrete type and similar shear connection system. Therefore, it is proposed that the 464 

load–slip models should be identified based on the specimens with (i) different concrete types 465 

and (ii) different shear connections. 466 

Based on the measured values and shape of the experimental push-out test curves, the 467 

constitutive laws of Xue et al. (2008), Ollgaard et al. (1971), and Gattesco and Giuriani 468 

(1996) were adopted for the theoretical analysis of the two proposed shear connection 469 

systems.  470 𝑃𝑃𝑢 =  𝐴𝛿0.5 + 𝐵𝛿                                                 (6𝑎)   471 

𝑃𝑃𝑢 = (1 − 𝑒𝐴𝛿) 𝐵                                               (6b)   472 

𝑃𝑃𝑢 = 𝐴√1 − 𝑒−𝐵𝛿 /𝐴 + 𝐶𝛿                                 (6c)   473 

Where A, B, and C are the coefficients. 474 
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The nonlinear regression analysis of the push-out test results was carried out to obtain 475 

the coefficients in Eq. 6. Different values of A, B, and C were suggested for NWC, LWC, 476 

and ULWC and summarised in Table 8. The comparisons between generalised load–slip 477 

curves from Eqs. 6a–6c and test results are also shown in Figure 22. It is noticed that the 478 

suggested models for representing the load–slip behaviours agree well with the experimental 479 

load–slip curves, especially for the specimens with LWC. Equation 6a is the simplest among 480 

the three equations and therefore it is recommended for the use in predicting the load–slip 481 

response of both shear connection systems using different concrete materials as follows: 482 

For specimens with web-welded stud shear connection system:  483 𝑃𝑃𝑢 =  4.02𝛿1 + 4.16𝛿   , for NWC                                   (7𝑎)   484 

𝑃𝑃𝑢 =  0.98𝛿1 + 0.96𝛿   , for LWC                                   (7𝑏)   485 

𝑃𝑃𝑢 =  1.92𝛿1 + 1.77𝛿    , for ULWC                                   (7𝑐)   486 

For specimens with horizontally lying dowels together with web-welded stud shear 487 

connection system: 488 𝑃𝑃𝑢 =  1.81𝛿1 + 1.95𝛿   , for NWC                                   (8𝑎)   489 

𝑃𝑃𝑢 = 1.09𝛿1 + 1.25𝛿   , for LWC                                   (8𝑏)   490 

𝑃𝑃𝑢 = 0.23𝛿1 + 0.21𝛿    , for ULWC                                   (8𝑐)   491 

Table 8: Coefficients for proposed design formula 492 

Shear 
connection 

type 

Concrete 
type 

A B C 

Equation 6a  

Web-welded NWC 4.02 4.16 - 
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stud 
LWC 0.98 0.96 - 

ULWC 1.92 1.77 - 

Horizontally 
lying dowels 
together with 
web-welded 

stud 

NWC 1.81 1.95 - 

LWC 1.09 1.25 - 

ULWC 0.23 0.21 - 

Equation 6b 

Web-welded 
stud 

NWC -0.5 0.35 - 

LWC -0.2 0.35 - 

ULWC -0.3 0.4 - 

Horizontally 
lying dowels 
together with 
web-welded 

stud 

NWC -0.2 0.35 - 

LWC -0.1 0.35 - 

ULWC -0.05 0.35 - 

Equation 6c 

Web-welded 
stud 

NWC 0.9 0.75 0.0095 

LWC 0.85 0.45 0.0075 

ULWC 0.9 0.5 0.006 

Horizontally 
lying dowels 
together with 
web-welded 

stud 

NWC 0.85 0.35 0.01 

LWC 0.75 0.3 0.009 

ULWC 0.75 0.35 0.0075 

7. SHEAR STRENGTH OF CONNECTION SYSTEM WITH WEB-WELDED STUDS AND 493 

DOWELS 494 

7.1  Existing design formulae for headed shear studs 495 

Design codes are available to determine the shear capacity (PRd) of the headed shear stud 496 

connectors. In Eurocode 4 (EN 1994-1-1, 2004), the shear strength of the headed shear studs 497 

is given as: 498 
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Ps = min (0.8f𝑢πd2/4ɣv , 0.29αd2√fckEcɣv      )                                          (9) 499 

Where fu is the specified ultimate strength of the stud (≤ 500 MPa), d is the diameter 500 

of the stud, ɣv is the partial factor (1.25), fck is the concrete cylinder compressive strength, Ec 501 

is the elastic modulus of concrete, α = 0.2(hs/d +1) for 3 ≤ hs/d ≤ 4 or α= 1.0 for hs/d ≥ 4, and 502 

hs is the overall height of the stud. 503 

In Annex C of Eurocode 4 (EN 1994-2, 2005), the shear strength of the horizontal 504 

lying shear stud connector, which is responsible for the splitting in the direction of slab 505 

thickness, is specified by: 506 

Ps = 1.4𝑘𝑣(𝑓𝑐𝑘d𝑎�̀�)0.4(𝑎/𝑠)0.3ɣv                                                              (10) 507 

Where 𝑎�̀�  is the effective edge distance = ar - cv-Øs/2 ≥ 50 mm; kv = 1 for shear 508 

connection in an edge position, kv = 1.14 for shear connection in a middle position; ɣv  is a 509 

partial factor taken as (1.25), fck is the characteristic cylinder strength of the concrete at the 510 

age considered, in N/mm2; d is the diameter of the shank of the stud with 19 ≤ d≤ 25mm; h is 511 

the overall height of the headed stud with h/d ≥ 4; a is the horizontal spacing of studs with 512 

110 ≤ a ≤ 440 mm; s is the spacing of stirrups with both a/2 ≤ s ≤ a, and s/𝑎�̀�  ≤ 3; Øs is the 513 

diameter of the stirrups with Øs  ≥ 8 mm, Øℓ is the diameter of the longitudinal reinforcement 514 

with Øℓ ≥ 10 mm, and Cv is the vertical concrete cover. 515 

In ANSI/AISC 360-10 (2010), the nominal shear strength of the headed studs 516 

embedded in concrete is specified by: 517 Ps = 0.5As√fck Ec  ≤ 0.75fuAs                                              (11) 518 

In AASHTO (2004), the shear strength of headed shear studs embedded in concrete is 519 

calculated as: 520 Ps = Ø0.5As√fck Ec  ≤ 0.75 fuAs                                             (12) 521 

Where Ø is the resistance factor for the shear connectors (=0.85). 522 

Chinn (1965) proposed a formula for estimating the shear strength of headed shear 523 

studs embedded in LWC. The shear strength of the headed shear studs is given as: 524 

Ps = 39.22d1.766                                                                           (13) 525 
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Where d is the stud diameter.  526 

Ollgaard et al. (1971) also developed a formula for calculating the ultimate shear 527 

strength of the stud (Ps) as follows:  528 Ps = 1.106Asfc `0.3 Ec 0.44                                                              (14) 529 

Classen & Hegger (2017) have proposed more accurate models using realistic 530 

parameters like stiffness and ductility for calculating the shear strength of composite dowel 531 

connectors.  532 

P𝑝𝑜 = 1𝜂 . χ𝑥 . (1 + ρ𝐷,𝑖). 41. √𝑓𝑐𝑘  .ℎ𝑝01.5                                                           (15) 533 

Where: 534 𝜂 = 0.4 − 0.001.𝑓𝑐𝑘 535 

χ𝑥 = 𝑒𝑥4.5ℎ𝑝0  536 

ρ𝐷,𝑖 = 𝐴𝑠𝑓𝐸𝑠𝐴𝐷,𝑖𝐸𝑐 = (𝐴𝑏+𝐴𝑡)𝐸𝑠ℎ𝑐 − 𝑒𝑥 − 𝐸𝑐 537 

ℎ𝑝𝑜 = min (𝑐𝑡 + 0.07. 𝑒𝑥 ; 𝑐𝑏 + 0.13.𝑒𝑥 ) 538 

 To this end, Eqs. 9-12 presented earlier were developed for headed shear stud 539 

connectors embedded in NWC. The latter two studies have been conducted on establishing 540 

the shear strength of headed shear studs embedded in LWC, but there is no design guide 541 

available for the design of the horizontal lying dowels. Therefore, the design of the two 542 

proposed shear connection systems and with the use of ULWC require further calibration 543 

with test data as described in the next section. 544 

7.2 Proposed formulae for connection system with web-welded studs and dowels 545 

A preliminary equation suggested based on the nonlinear regression analysis using the 546 

statistic software MINITAB (2017). Further development will be carry out based on finite 547 

element parametric studies. 548 

The shear strength (Psd) from the web-welded shear studs and the one from the 549 

horizontal lying dowels together with the web-welded shear studs was considered as an 550 
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independent variable. The fc, d, and ar were considered as dependent variables with respect to 551 

the shear strength of the connection system. 552 

For specimens in group T1 and T2, shear strength is assumed as an exponential 553 

function of the above parameters: 554 Psd = 1.873(fck 𝑑 𝑎𝑟)0.835  ≤ 0.8f𝑢A𝑠                                         (16) 555 

Where Psd is the shear resistance of shear stud or dowel, fck is the cylinder compressive 556 

strength of concrete, d is the diameter of stud or dowel, and ar is the distance from first stud 557 

or dowel to the top of concrete, fu is the ultimate tensile strength of the material of the stud or 558 

dowel which should not be greater than 500N/mm2, and As is the cross-sectional area of the 559 

shear the stud or dowel.   560 

7.3 Shear strength verification against test results 561 

The shear resistances of the two proposed connection systems as predicted by various 562 

formulae are compared with the test results and shown in Table 9.  563 

From the results shown in Table 9 and Figure 23, the proposed equation (Eq. 16) 564 

demonstrates a good fit. Ollgaard et al. (1971) gives the least reliable predictions which 565 

overestimate the test results by about 36%. The formula given in AASHTO (2004) is almost 566 

identical to design formulae given by ANSI/AISC 360-10 (2010) except the value of the 567 

reduction factor (ANSI adopted 0.5 instead of Ø0.5), see Eqs. 11 and 12. Hence, the 568 

AASHTO (2004) gives lower predictions than the ones by ANSI/AISC 360-10 (2010). 569 

Eurocode 4 (EN 1994-1-1, 2004) (Eq. 9) provides the second most conservative predictions 570 

compared to Eq. 14.  571 

It is worth noting that the exiting formulae given in modern codes are derived the 572 

connection systems proposed in this paper – i.e., web-welded studs and horizontal lying 573 

dowels, neither for the use of ULWC. Therefore, considering both accuracy and reliability, 574 

the proposed formula Eq. 16 offers a reasonable prediction and is recommended to be used in 575 

the design of PUSS with both proposed shear connection systems. More data is required to 576 

validate the proposed formula; a parametric finite element study is further suggested. 577 

8. CONCLUDING REMARKS 578 

The maximum shear strength and load–slip behaviours of two proposed connection systems 579 

using NWC, LWC, and ULWC were investigated through full-scale 8 push-out tests of a new 580 

prefabricated ultra-shallow flooring system design, the so-called PUSS. On the basis of the 581 

test results and analyses presented herein, the following conclusions were made. 582 
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(1) Three types of failure were noticed from the push-out tests: (a) shear failure with 583 

bending near the roots of the connectors, (b) shear failure of the weld toe of shear 584 

studs, and (c) concrete cracking. Brittle weld failure must be avoided by ensuring 585 

quality of the welding during the fixing of the shear connectors. 586 

(2) The concrete strength, fck, influences the failure modes. The shear resistance of each 587 

connection system was increased with the increase of the concrete strength. 588 

(3) Larger diameter of horizontally lying steel dowels (up to 20mm in the current study) 589 

increases the shear interaction area in addition to the concrete bearing area, thus 590 

enhances the shear resistance. 591 

(4) The horizontally lying steel dowels together with the web-welded shear studs 592 

connection system increases the shear resistance and the slip capacity of the shear 593 

connection. 594 

(5) The shear resistance of any connection system is governed by both the tensile strength 595 

of the connectors and the concrete bearing strength. The compressive strength of the 596 

concrete significantly influences the ultimate shear strength capacity loads (higher 597 

when NWC and lower when ULWC) while it is changing the failure mode of the 598 

connection. After a regression analysis of the push-out test results, an empirical 599 

formula has been proposed; it is suggested to revise it after conducting parametric 600 

finite element studies. 601 Psd = min (1.873(fck 𝑑 𝑎𝑟)0.835  ,0.8f𝑢A𝑠 )                                           602 

(6) The connection system with the web-welded shear studs demonstrated a ductile failure 603 

mode of the entire slab system under direct longitudinal shear force, with slip 604 

capacities ranging between 2mm and 30mm for different concrete strengths.  605 

(7) The connection system with the horizontal lying steel dowels together with the web-606 

welded shear studs demonstrated a more ductile failure mode of the entire slab system 607 

under direct longitudinal shear force in comparison with the system having studs only, 608 

with slip capacities ranging between 13mm and 29mm for different concrete strengths. 609 

(8) An interlocking mechanism was found at ultimate loads between the concrete and the 610 

shear connectors of the specimens in group T2. This mechanism demonstrates strong 611 

tie-resistance of the steel dowels, as very little separation in the transverse direction 612 

was observed when compared with the large separation of the specimens in group T1 613 

(shear studs only). 614 
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(9) It is worth to mention that the combined horizontal and vertical shear has an important 615 

effect on the behaviour of the new PUSS. The probability of concrete cracks occur in 616 

the layer of the stud connectors should be taken into consideration. The aspect has not 617 

been investigated for conventional steel and concrete composite structures, where 618 

concrete is only used in the compression zone. However, for these shallow flooring 619 

systems, where concrete is also used in the tension zone, this may have critical. It has 620 

been demonstrated from several researchers, that concrete cracking may have a 621 

significant influence on the connector behaviour (e.g., Johnson, R. P., Greenwood, R. 622 

D., & Van Dalen, K., 1969; Classen, M., & Hegger, J., 2018).  623 
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