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Abstract  11 

This paper discusses and quantifies the minimum requirements of walls and tie-columns in confined masonry 12 

(CM) buildings located in earthquake-prone regions. A research database including 238 damaged CM buildings 13 

obtained from the 2008 Wenchuan earthquake survey is established and comprehensively examined. The 14 

requirements of masonry walls in CM buildings are discussed, and a simplified tie-column density index is 15 

proposed for evaluating the potential damage of the structures. Besides, the minimum requirements of reinforced 16 

concrete (RC) tie-columns and their maximum allowable spacing in CM buildings at different seismic intensity 17 

zones are discussed.  18 
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1 Introduction 24 

Confined masonry (CM) buildings commonly consist of masonry walls as well as horizontal and vertical 25 

reinforced concrete (RC) confining elements, which are widely applied in multi-storey buildings such as 26 

inhabitant apartments. The RC confining elements in CM structures are usually constructed after all masonry 27 

walls located at the same floor are completed. The most important construction aspect is that the interface edges 28 

between masonry wall and tie-column are usually toothed – the so-called “Horse-tooth” in China, as shown in 29 

Fig.1. According to the construction experiences in China, and comparing with RC and steel structures, CM is an 30 

economical structural type for low-rise buildings and has been widely applied and practiced in other seismic 31 

active regions such as Mediterranean Europe, Latin American and Asia for over five decades. Since the RC 32 

confining elements can improve the structural ductility and integrity simultaneously, a well-designed and 33 

constructed CM building can survive and resist effectively the total collapse of the structure during an 34 

earthquake. Figs. 2 and 3 show some representative CM buildings damaged without collapse during the 2008 35 

Wenchuan earthquake.  36 

 37 

In China, the first field investigation on the seismic-resistant performance of CM buildings has been reported for 38 

the 1966 XingTai earthquake (Richter magnitude scale, Ms=6.8). All inspected CM buildings survived the 39 

earthquake without collapse while all inspected unreinforced masonry (URM) buildings had been partially or 40 

entirely collapsed. Since that earthquake, CM structures have been increasingly applied in China and their 41 

effectiveness in subsequent several large earthquakes such as the 1976 Tangshan earthquake (Ms =7.8) and, 42 

more recently the 2008 Wenchuan earthquake (Ms =8.0) and the 2013 Lushan earthquake (Ms =7.0) has been 43 

verified (Wei and Xie 1989; Zhang and Sun 1999; Li and Zhao 2008). According to the field survey performed 44 

by one of the authors, almost all low-rise CM buildings resisted effectively their collapse during the 2008 45 

Wenchuan earthquake, therefore offered an effective protection for the users and their possessions. On the other 46 

hand, the demolition of buildings with severe damage or the alternative of strengthening and rehabilitation after 47 

an earthquake is strongly associated with the available time and cost. Therefore, the method to effectively reduce 48 

the heavy damage of masonry structures during an earthquake becomes an important challenge nowadays, in 49 

particular as the residential demands and construction costs of buildings (and land) increase. 50 

 51 

Up to date, the seismic behaviour of confined masonry walls/structures has been widely studied (e.g., Franch et 52 

al. 2008, Marques and Lourenço 2013, 2014; Ghorbani et al. 2015; Perez et al. 2015; Medeiros et al. 2013; 53 
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Janaraj and Dhanasekar 2014). The wall density significantly affects the seismic performance of masonry 54 

structuressuch as in terms of their seismic damage degree and ultimate failure mode. According to previous 55 

studies, the wall density of masonry structures positioned in the dominant earthquake direction has been 56 

considered as one of the key parameters influencing the seismic performance of CM buildings during an 57 

earthquake (e.g., Lourenço and Roque 2006). The index is determined as the total area of masonry walls in the 58 

direction divided by the whole floor area. It is accepted that the damage of masonry structures with a higher wall 59 

density could be well controlled. Consequently, the provisions regarding the minimum requirements of masonry 60 

walls in detail have been specified in various national seismic design codes (e.g., CEN 2005; NCH 2123 2003; 61 

GB 50003-2011 2011; NIIT 1991; EEAC 2010; NERERC 2003; NTE E.070 2006). The confining elements in 62 

CM buildings and in particular RC tie-columns influence significantly the ductility and structural integrity of 63 

masonry structures as well as restrict cracking development and extensive damage to masonry walls. However, 64 

due to the fact that confining columns are not typically designed through detailed structural calculations, the 65 

details of the elements (i.e., their spacing and arrangement) are dependent on engineers’ skills and experiences. 66 

As a consequence, a potential risk exists in the CM structures although a good seismic performance is expected. 67 

Therefore, it is essential to specify a reasonable spacing of such confining elements in CM structures during a 68 

design practice. 69 

 70 

To this end, this study discusses the relationship between the actual damage and the density of masonry walls 71 

and tie-columns in CM buildings located at Modified Mercalli Intensity Scale (hereafter, seismic intensity) zones 72 

VIII to X during the 2008 Wenchuan earthquake. Based on this, the minimum requirements of wall density and 73 

design details of RC tie-columns in CM structures are quantified and modelled through a comprehensive analysis 74 

of 238 masonry buildings damaged during the earthquake. In addition, a new simplified design parameter for 75 

describing the relationship between the used amount of RC tie-columns in CM buildings and their damage 76 

degree, called tie-column density is also presented herein. 77 

  78 

The results of this field investigation are beneficial to understand the seismic performance of confined masonry 79 

structures in earthquake prone zones, as they represent a series of full-scale tests subjected to a real earthquake. 80 

This paper also helps to understand the potential damage levels of new and existing CM buildings and realise if 81 

some effective remediation could be attained. In summary, this work contributes to the current design and 82 

assessment of CM buildings by providing:  83 
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(1)  simplified methods to quantify the tie-column density in confined masonry buildings; 84 

(2) calibration of the relationship between the damage degree and wall- or tie-column density; and 85 

(3) some recommendations for the current seismic design codes which further promotes the standardisation of 86 

CM buildings in earthquake-prone zones. 87 

2 Characteristics and seismic damage classification 88 

2.1 Characteristics of CM structures 89 

Unreinforced masonry (URM) buildings are the oldest structural types for human habitation because of the 90 

materials used which are easily available and their low construction cost. On the other hand, the URM structures 91 

present congenital deficiencies when they are used in seismic prone regions, which propelled the development of 92 

its improved versions, i.e. confined masonry (CM) and reinforced masonry (RM) buildings. CM structures have 93 

been applied commonly in many earthquake-prone countries such as Slovenia, India, Chile, and China. In CM 94 

structures, horizontal and vertical confining elements are built around masonry walls which are made of masonry 95 

units (e.g., bricks and concrete blocks) and mortars. The main vertical confining members, the so-called tie-96 

columns, are usually made of reinforced concrete and connected with the masonry wall through connection 97 

reinforcements such as steel bars. These connections are usually implemented using two 500mm length steel 98 

rebars (diameter=6mm) spaning between 500mm and 600mm (such as in China). The confining elements are 99 

assumed to be integrated into the structural wall. Thus, unlike RC frame beams and columns, these confining 100 

members are not explicitly designed via structural design calculations using specific codes of practices. Based on 101 

previous experiences and field investigations, the confining elements are still effective in the following aspects: 102 

1) improve the structural integrity and stability of masonry walls in the matters of in-plane and out-of-plane 103 

behaviours; 2) confine the deformation of masonry walls and enhance the structural shear resistance; and 3) 104 

prevent the brittle damage of masonry walls. Fig. 2 shows a CM structure which has successfully resisted a 105 

seismic attack with IX seismic intensity during the 2008 Wenchuan earthquake and survived with some 106 

moderated damages at its first storey. Fig. 2 (b) also verifies the positive effect of confining elements on the 107 

secondary damage of masonry walls, although shear cracks are still concentrated on the base walls at the first 108 

storey of the building. These results present the positive effects of confining elements on the collapse resistance 109 

of masonry buildings during an earthquake. This can provide valuable rescue/escape time and space for the users 110 

of the buildings. 111 
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2.2 Characteristics of the survey database 112 

There is a large number of CM structures which were damaged with different performance loss levels during the 113 

2008 Wenchuan earthquake, even though they did not collapse. The main damage of the buildings, however, 114 

usually took place at the first storey level due to the large seismic shearing forces, as shown in Fig. 3. 115 

Information gathering of damaged buildings can be extremely important for further studies, and helpful to guide 116 

the future design and construction of masonry structures. One of the co-authors of this paper has investigated 117 

238 masonry buildings located at the seismic intensity zones VIII~X during the 2008 Wenchuan earthquake (Su 118 

et al. 2014; Xu et al. 2013), as shown in Fig. 4. The earthquake affected more than half of China’s geographic 119 

area as well as other Asian countries and regions, including Liaoning, Shanghai, Hong Kong, Guangdong and 120 

Macao. The surveyed areas mainly included the counties of Qingchuan, Beichuan, Mianzhu, Pengzhou, 121 

Dujiangyan, Wenchuan and Emeishan, and the field investigation has focused on masonry structures. As shown 122 

in Fig. 4, during the Wenchuan earthquake, the total area of the region with a seismic intensity of higher than VI 123 

is 440,442 square kilometres, and is located within the four main provinces of China: Sichuan, Shaanxi, Ningxia, 124 

and Gansu. All surveyed masonry buildings have been constructed since the 1970s, and the number of storeys 125 

varies from 1 to 7. The used masonry units are solid burnt clay or shale blocks having a standard dimension of 126 

240mm×115mmm×53mm (length×width×height) and an average weight of 26N/unit. The average compressive 127 

strength of the used solid bricks is 10N/mm2 with a standard deviation value of 1.5N/mm2 and a variation 128 

coefficient of 0.15, which was attained by a series of tests per the Chinese test standard GB/T 2542-2012 (2012). 129 

The compressive strength of the mortar from the inspected buildings was obtained by the standard methods of 130 

mortar rebound and point load (GB/T 50315-2000, 2000). The average compressive strength of the mortar used 131 

in the bottom walls of the first floor of the 3 or more storey buildings in the database is 10N/mm2 (standard 132 

deviation value of 1.9N/mm2 and a variation coefficient of 0.19). For the bottom walls of the first floor of the 133 

other types of masonry buildings, the mortar has two levels of compressive strength.  One is about 5N/mm2 134 

(standard deviation value of 0.85 N/mm2 and variation coefficient of 0.17), and the other one is about 7.5N/mm2 135 

(a standard deviation value of 1.35 N/mm2, and a variation coefficient of 0.18). In the inspected CM buildings, 136 

tie-columns usually have been arranged at the joint and corner areas of the walls as well as the margins of 137 

openings in the walls. They were reinforced by 10mm deformed steel rebars (approximately 235MPa yielding 138 

strength) and confined by stirrups (diameter=6mm) with a spacing of 200mm.  139 

 140 
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As it was reported in previous research (GB/T 24335 2009, 2009), the damage levels of masonry structures 141 

depend significantly on the degree of damage of their base walls positioned in the earthquake direction. The 142 

damage degree of masonry structures is divided into four levels, i.e., collapse, heavy damage, moderate damage, 143 

and slight/no damage, which is defined and listed in Table 1. The amassment of these damages is mainly in 144 

accordance with the cracks and damage condition of the base wall pieces – i.e., fine cracks, large cracks, and the 145 

collapse of the walls. Fig. 5 depicts several examples of the damage pattern of cracks and collapses. 146 

 3 Wall density and existing codes 147 

Wall density is often considered as one of the most significant factors to evaluate the seismic safety of masonry 148 

buildings, which was usually used to characterize masonry structures (e.g., Kuroiwa 2002). It represents the area 149 

percentage of masonry walls in the whole floor plan area, which can also be interpreted as the effective support 150 

area ratio of walls at each floor. This is because masonry walls are still the main load-carrying members in CM 151 

structures. The previous earthquake investigations showed that masonry buildings with adequate wall density 152 

were able to resist an earthquake without collapse. Referring to the previous studies (Lourenço and Roque 2006; 153 

Franch et al. 2008; Lourenço et al. 2013; Meli et al. 2011; Brzev 2007), the wall density in a given direction is 154 

calculated as the wall area in the direction divided by the floor area and is expressed as: 155 

f

w
w A

A
d                          (1) 156 

where Aw is the total cross-section areas of the walls in the calculated direction, Af is the total floor area of the 157 

calculated storey. Due to the masonry walls in CM structures are still the main structural load carrying 158 

members/systems, in theory, the damage of masonry structures should be reduced when wall density increases, 159 

i.e., correlating the wall density per unit floor (dw/n) with the damage of the masonry buildings during an 160 

earthquake. The following equation presents the calculation of the index: 161 

f

ww
wn nA

A

n

d
d                      (2) 162 

where n is the number of storeys of the masonry building. 163 
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3.1 Existing code methods 164 

The following sections introduce several national codes which provide specified and quantified 165 

recommendations for the wall density index. 166 

3.1.1 Colombia code (EEAC 2010) 167 

Colombian code (EEAC 2010) states that a confined wall to be considered as a structural wall it must be 168 

continuous from the foundation to its upper level and cannot have any openings. The minimum strength of units 169 

for confined masonry walls must meet specified levels depending on the materials of the units; for instance at 170 

least 3MPa for clay hollow block. The minimum requirement of wall density per unit floor in the code is related 171 

to the seismic acceleration response and is given by: 172 

20/awn Ad                       (3) 173 

where Aa is a coefficient relative to the effective peak acceleration depending on the different earthquake zones 174 

in Colombia which vary from 0.1 to 0.5. As a reference model, for the CM buildings in high seismic hazard 175 

zones, this study will take Aa as 0.25 to 0.5 as the low and upper bound of the minimum requirement levels of the 176 

wall density per unit in the code. 177 

3.1.2 Peruvian code-NTE E.070 (2006)  178 

Peruvian current code states that the requirements of walls in masonry buildings depend significantly on their 179 

seismic acceleration response characteristic, the importance of the building and the construction soil condition 180 

where the building is. Therefore, the code suggested the minimum wall density of masonry buildings as: 181 

56

... nSUZ
dw                                                                        (4) 182 

Based on this, the minimum requirement for the wall density per unit floor in masonry buildings is given by:  183 

56// ZUSndw                       (5) 184 

According to NTE E.030 (2016) in the Peruvian code, the factor ‘Z’ represents the maximum horizontal 185 

acceleration of ground with a probability of 10% in the past 50 years and varies at different seismic zones. The 186 

factor is expressed as a function of acceleration of gravity and ranges from 0.1-0.45. Therefore, as a reference 187 
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model for CM buildings in a high seismic hazard zone, this study takes ‘Z’ factor as 0.22 and 0.45 to calculate 188 

the low and upper bounds of the minimum levels of wall density per unit in the code. ‘U’ is the importance 189 

factor of masonry buildings, which is taken as 1.0 for most of common residential and office buildings and as 1.3 190 

for more significant buildings (i.e., Class 2+ and 3 such as cinemas, gyms, and school buildings). The detailed 191 

information of other buildings is obtained in the NTE E.030 code. The factor ‘S’ is related to the construction 192 

soil condition of masonry buildings. In the location of the surveyed masonry buildings, the soil layer is 193 

dominated by pebbles, whose shear wave velocity is greater than 250m/s. Therefore, the factor ‘S’ is taken as 194 

1.0. 195 

3.1.3 Eurocode 8: Allowable number of storeys above ground and minimum area of shear walls  196 

Eurocode 8 (CEN 2004) and section 9.7 defined simple masonry buildings and recommended the allowable 197 

number of storeys over ground and required wall areas in two orthogonal directions with a minimum total cross-198 

sectional area Amin in each direction for the buildings. The type of masonry buildings in this code has 199 

unreinforced masonry, confined masonry and reinforced masonry buildings. Based on Eurocode 8, Table 2 lists 200 

the allowable number of storeys (n) and the minimum total cross-sectional area of the horizontal shear walls (as 201 

pA,min, a percentage of the total floor area per storey) of CM buildings. Referring to the current study, this table 202 

also lists minimum cross-sectional area per storey (pA,min/n) for to enable a further comparative study. During the 203 

2008 Wenchuan earthquake, the acceleration responses of masonry buildings located at the seismic intensity 204 

zones VIII and IX are similar with the acceleration cases of 0.1k.g and 0.2k.g in Eurocode 8, respectively. 205 

Therefore, the allowable numbers of storeys of CM buildings in the seismic intensity zones VIII and IX are 3 206 

and 2, respectively. Their average minimum cross-sectional areas per floor of the CM buildings in the two zones 207 

are 1.0~1.25% and 1.75%, respectively, depending on their allowable number of storeys.  208 

It should be noted that the summary reported does not consider other important criteria such as geometric 209 

requirements, reinforcement and detailing requirements, which must also be taken into account in the practical 210 

design of masonry buildings. As shown in Table 2, according to the different allowable number of storeys, the 211 

minimum requirement of wall area is obtained. The comparative studies of the present paper consider the 212 

difference and discuss the code in terms of the lower-upper bound of the calculated requirement of wall area. 213 

 214 

 215 
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3.2 Relationship between wall density and damage 216 

Using the surveyed buildings in the seismic intensity zones VIII~X of the 2008 Wenchuan earthquake, the 217 

relationships between all kinds of damage to the confined masonry buildings and their wall density values are 218 

studied and compared respectively, as presented in Figs. 6-8. An obvious distinguishment is presented between 219 

these buildings with different damage degree which indicates it is highly feasible to use the wall density index to 220 

predict the potential damage of CM structures. 221 

 222 

When masonry buildings are located at an earthquake intensity VIII zone, the critical levels of wall density per 223 

unit floor of a CM building with heavy damage are less than 1.2%, while the ones of a CM building with 224 

moderate damage are less than 1.7%, as shown in Fig. 6. However, the results indicated that the structural 225 

damage level to buildings increases with ground motion levels during an earthquake for all CM buildings. This 226 

verifies that masonry walls are yet the main seismic-resistant members in CM buildings. For example, for 227 

buildings experiencing heavy damage in the seismic intensity IX and X zones, their corresponding critical dwn 228 

values increased and reached 2.0% and 2.5% (yellow zones in Fig. 7 and 8), respectively. In summary, the 229 

critical dwn values of the CM buildings having moderate damage level are 2.5% and 4.0% in the seismic intensity 230 

IX and X zones, respectively (green zones in Fig. 7 and 8). These critical values can be applied for assessing the 231 

level of damage that CM buildings can escape during an earthquake. For instance, when a CM building is 232 

located at a seismic intensity zone IX but also is arranged more than 2.0% of wall density per unit floor, the 233 

potential damage level of the building can be considered as less than the heavy damage listed in Table 1. 234 

Meanwhile, as some comparative objects, the results of several URM structures are plotted in the figures as well. 235 

Results show that the critical values of dwn of the URM buildings are generally greater than the ones in the CM 236 

buildings with same damage degree in the three seismic intensity zones. This means that URM structures need to 237 

have a higher number of masonry walls than the ones of CM buildings to resist the same seismic actions.  238 

 239 

On the other hand, the results plotted in these three figures also show that a higher wall density per unit floor 240 

should be provided for CM buildings which are intended to suffer a lower damage when the buildings are 241 

located at same seismic intensity zones. This is normal because a CM building is stronger to resist the shear 242 

caused by an earthquake when it is built with more masonry walls. For example, if a CM building was expected 243 

to avoid collapsing in the seismic intensity IX zone, it should have at least 1.25% of dwn, however, if the users of 244 

the CM building prefer to avoid moderate damage, the building should have more than twice dwn. Besides, there 245 
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are some buildings which are not able to be classified using the proposed wall density which is attributed to the 246 

fact that more RC tie-columns set in these masonry walls largely enhanced the resistance of the CM buildings. In 247 

a sense, such RC tie-columns play a very important role in controlling the damage development of masonry 248 

walls of CM structures. This indicates a detailed and improved assessment that should be used if more 249 

information can be available for the CM buildings, such as the amount and arrangement of tie-columns.  250 

 251 

Figs. 6-8 show the minimum requirement zones of each existing code in different seismic zones. According to 252 

the plotted results, CM buildings can effectively escape collapse in the seismic intensity zones VIII and IX when 253 

the buildings use the minimum wall density values recommended by EC8. But the CM buildings still need to be 254 

checked by local provisions and relevant codes. The differences caused by the different allowable storey number 255 

above ground are not large in the three seismic zones examined. However, only five CM buildings have been 256 

inspected in seismic intensity X zone, thus more filed data and studies are required in the future. According to 257 

the Colombian code of practice, the CM buildings can survive in seismic intensity zones VIII and IX when their 258 

wall area meet the minimum requirement obtained per the design provision of a small-high seismic hazard 259 

(Aa=0.25) as it is given in the code (i.e., the lower limit in Figs. 6 and 7). However, for the confined masonry 260 

structures located at the seismic intensity zone X shown in Fig. 8, the higher values are suggested by the codes in 261 

an effort to avoid the buildings’ collapse. Comparing with other codes, the critical wall area suggested by the 262 

Peruvian code is not fit to the design of the CM in China, in particular, in seismic intensity zone IX and X. It is 263 

worth to mention that due to the fact that most of the inspected CM buildings reported in this study are 264 

geometrically regular and mainly subjected to shear effects without torsion actions, the above calibrations and 265 

discussions are mostly applicable to geometrically regular CM buildings such as the ones commonly found 266 

countries in China and Chile.  267 

4 Requirements of tie-columns in confined masonry structures 268 

Tie-columns are the main confining elements of masonry walls which can confine the deformation of the wall 269 

and prevent effectively the collapse of CM buildings during an earthquake. However, the minimum requirement 270 

of the area of tie-column in CM buildings has not been specified yet in many current national codes. Moreover, 271 

there are no clear and concrete provisions, except for providing suggestions about the minimum cross-sectional 272 

size and the spacing of transversal steel of tie-columns such as the ones used in Chilian, Chinese and Mexican 273 
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regulations and specifications. Therefore, the procedure to quantify reasonably the minimum requirement of tie-274 

columns is emergent and significant to CM buildings in earthquake-prone zones. On the other hand, a number of 275 

studies have clearly illustrated the enhancing influence of tie-column on the seismic performance of masonry 276 

buildings, e.g., energy dissipation, structural integrity and resistance capacity of collapse, such as the research 277 

conducted by Zhong et al. (1986), Tomaževič and Klemenc (1997) , Jin et al. (2009), Astroza et al. (2012), and 278 

Su et al. (2014).  279 

 280 

Referring to the wall density defined in Section 3, to clearly specify the required amount of tie-columns in 281 

masonry walls, a tie-column density per unit floor index is proposed in the study. The index is suggested as the 282 

survey report suggested that the CM buildings with large tie-column density per unit floor presented lower 283 

damage. It is worth trying to explore whether the tie-column density per unit floor can be used to assess the 284 

seismic behaviour of confined masonry buildings and to quantify the minimum design requirements of tie-285 

columns for structural designers. In case that is feasible, it can be regarded as a beneficial supplement of the wall 286 

density index, and provide a complete assessment method for CM structures. Therefore, the tie-column density 287 

index is defined in the form of: 288 

f

c
c A

A
d                          (6) 289 

where Ac is the total effective cross-section areas of tie-columns in the seismic direction, as shown in Fig. 9 and 290 

Af is the total plane area of each floor. 291 

 292 

The effective calculation area of tie-columns is the total cross-section area of the columns which can provide 293 

effective confinement to the masonry walls in the calculation direction. In general, the tie-columns are located at 294 

the junctions of two or more walls. Besides, it should be noted that some tie-columns are not included in the 295 

calculation of the density index when they cannot confine the wall in the seismic direction. For example, the 296 

column A8 and A16 cannot be calculated to the effective area of the tie-columns in the direction x, as shown in 297 

Fig. 9. 298 

 299 

Analogously, referring to the above wall density, the tie-column density per unit floor of confined masonry 300 

structures dcn is proposed, which is expressed as per Eq. 7. This index indirectly presents the confinement level 301 
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or enhancement ratio of masonry walls regarding supporting CM structures and assisting masonry walls to resist 302 

load action.  303 

 
f

c
cn nA

A
d                          (7)    304 

Using the same surveyed confined buildings, the relationships between damage levels and tie-column density per 305 

unit floor are calibrated at the seismic intensity zones VIII~X of the same earthquake, respectively. On the other 306 

hand, as the number of storeys is one of the most important factors of masonry structures which significantly 307 

affects the axial compressive action of a masonry wall, in particular, for base walls. Therefore, the axial 308 

compressive load of masonry walls has a significant influence on the seismic performance of masonry structures. 309 

A simplified index of axial compression R’com of these masonry walls is introduced herein and defined as: 310 
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where, G is the self-weight unit area of all masonry walls per floor and is taken as constant (12kN/m2) according 312 

to the Chinese code (GB 50011, 2010). Therefore, the simplified index of axial compression can be modified as 313 

Rcom and is calculated as follows: 314 

 cw

f
com AA

A
R


 

                      (9)    315 

Figs. 10-12 depict the relationship of the simplified axial compression index and tie-column density per unit 316 

floor of the masonry buildings located at different seismic intensity zones. Results show that an increasing dcn 317 

value has resulted in a decrease of the damage degree of confined masonry buildings. For example, having 318 

higher dcn values such as more than 1‰, the confined masonry structures can effectively prevent heavy damages 319 

in the seismic intensity zones VIII to X. This does not mean that the use amount of tie-columns does not need to 320 

increase when the confined building is built in a stronger earthquake region, as in that case, the building also 321 

needs to be designed with more masonry walls. Therefore, it should be emphasised that the requirement of both 322 

walls and tie-column densities are important for assessing the seismic resistance and damage of CM structures 323 

located in earthquake-prone regions. The results plotted in Figs. 10-12 indicate the positive effect of tie-column 324 

on the damage development of masonry wall. On the other hand, the results also verify that while increasing the 325 

axial compressive action of a masonry wall, the seismic performance of masonry buildings is reduced, i.e., their 326 

damage degree is increased. For example, in the same seismic intensity zone, when using same tie-column 327 
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density per unit floor, the potential damage levels of the confined buildings change from moderate damage to 328 

collapse. According to Fig. 10, even though no tie-column was used in the masonry wall  (i.e., single storey URM 329 

reference sample), confined buildings with a small axial compressive load of the wall still can effectively resist 330 

the earthquake effect without a collapse in the seismic intensity zone VIII. 331 

 332 

Meanwhile, on the basis of the relationship between tie-column density per unit floor and the proposed 333 

simplified index Rcom plotted in the Figs. 10-12, the critical levels of tie-column density per unit floor of the 334 

confined masonry buildings in different seismic prone zones for controlling their potential damage degree are 335 

calibrated. Due to the distribution zone of each level of damage is obviously different, through the simply 336 

partition, the proposed critical segmentation interfacial curves are presented in Figs. 10-12 and listed in Table 3. 337 

In this table, the critical values corresponding to the level of slight/no damage or collapse are presented. These 338 

critical values represent the minimum requirements of dcn values of the CM buildings to control their potential 339 

damage under the damages of slight/no damage or collapse. It should be noted that due to the total area of tie-340 

columns which is a lot smaller than the area of the walls, the values of the Rcom in this table can be attained as 341 

approximatively 1/dwn. The buildings with the first type of damages can be easily repaired after an earthquake, 342 

and are called as easily-repaired CM buildings. Thus, when a CM building is designed with the minimum 343 

requirement of dcn value, the building is assessed as safe and can be repaired easily. On the other hand, another 344 

kind of requirement is used for checking the whole structural safety of masonry structures – the collapse 345 

resistance capacity. For CM structures located at seismic intensity VIII zone, no CM building with collapse was 346 

reported during the 2008 Wenchuan earthquake. The minimum requirement of dcn value for confined masonry 347 

structures corresponding to heavy damage is listed.  348 

 5 Discussion of wall and tie-column density 349 

Generally, the relevant provisions for wall density of confined masonry walls have been specified in current 350 

codes. This section discusses and analyzes them in depth using the inspected masonry structures. Meanwhile, 351 

considering that tie-columns pay a very important role in confined masonry system, this section also includes 352 

discussions of tie-column density. 353 
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5.1 Proposed wall density for confined masonry building in seismic intensity zones VIII to X  354 

As described previously, the minimum requirement of wall density can be obtained through analysing and 355 

calibrating the relationship between the wall density per unit floor dwn and the actual damage degree of the 356 

inspected CM buildings during the 2008 Wenchuan earthquake. The detailed minimum requirements of dwn to 357 

prevent moderate and larger damage of CM structures located at seismic intensity VIII to X zones are presented 358 

in Table 4. It can be seen that the proposed minimum requirements of dwn of confined masonry buildings to 359 

avoid large scale post-earthquake repairing work at the seismic intensity VIII~X zones are 1.7% to 4.0%, while 360 

the levels are 1.25% to 2.0% to resist the collapse of CM structures, respectively.  361 

5.2 Requirement of tie columns in CM buildings 362 

5.2.1 A simplified approach 363 

The results plotted in Figs. 10-12 show that all proposed minimum requirements of tie-column per unit floor dcn 364 

for CM buildings are near to an approximate level of 1.0‰, to control the potential damages of the buildings 365 

under slight damage at the earthquake intensity zones VIII to IV. Additionally, the figures show that most of the 366 

inspected CM buildings can avoid effectively collapse and heavy damage when their dcn values are greater than 367 

1‰. Therefore, the relationship between the tie-column density dc and the storey number of CM buildings can be 368 

simplified for controlling the post-earthquake damage, by assuming a linear relation. For typical residential CM 369 

buildings being up to six storeys, the relationship between the density of tie-columns and the proposed storey 370 

number in seismic prone zones is presented in Fig. 14. In this figure, a relative design safety zone for the CM 371 

buildings in earthquake-prone zones was suggested, in which confined masonry buildings should have a higher 372 

tie-column density and a lower allowable storey number when the structures have sufficient shear masonry walls 373 

(e.g., Table 4).  374 

5.2.2 Detailed approach 375 

As previously described, the tie-column density per unit floor is one of the important indexes which can be used 376 

to predict the potential damage levels of confined masonry buildings. During practice design and construction 377 

works, however, the spacing of tie-columns is usually re-considered and is determined mainly by designers’ or 378 

engineers’ experiences and intuition. Therefore, the detailed requirement of the spacing of tie-columns in CM 379 

structures needs to be investigated and discussed further. In order to design a reasonable and reliable spacing of 380 
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tie-columns in the masonry walls of CM buildings, a simplified coefficient is defined which represents the ratio 381 

of cross-sectional area of tie-columns to the confined masonry walls, and is given by: 382 
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As illustrated in Fig. 13, in a confined masonry wall, bc and hc are the cross-sectional width and height of tie-384 

column, respectively. Lc is the central spacing between two tie-columns. Therefore, in a confined masonry wall 385 

shown in Fig. 13, the coefficient of the calculation masonry wall can be established according to Eq. 10 and is 386 

shown as: 387 
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  The spacing of tie-columns in CM buildings herein is shown as: 389 
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As tie-column density dc in masonry buildings is a function of proposed axial compression simplified index, it is 391 

calculated according to the recommended minimum requirement of tie-columns corresponding to different 392 

damage levels listed in Table 3. The spacing of tie-columns in a masonry wall is expressed as: 393 
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When the sectional height hc of tie-column equals to the thickness t of masonry units, the spacing of tie-columns 395 

can be simplified as: 396 
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  398 

5.3 Maximum allowable spacing of tie-columns in CM buildings 399 

From the above analyses, it is found that the spacing of tie-columns is significantly determined by the width of 400 

tie-columns and the ratio of the cross-sectional areas of tie-columns to masonry walls. Generally, the pervious 401 

experiences indicate that the width, bc, of tie-columns is equal to the height, hc, of tie-column. Besides, in many 402 

national provisions such as the Chinese design code of masonry structures (GB 50003-2011, 2011), the height of 403 

tie-column is usually suggested as the same level as the thickness of masonry wall as shown in Fig 13. 404 
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Therefore, the coefficient  at seismic intensity zones (VIII-X) can be attained from Table 3, for controlling the 405 

potential damage of CM buildings. Using this coefficient, the maximum allowable spacing of tie-column in CM 406 

buildings can then be calculated when the width of tie-column is specified, such as the commonly used width 407 

levels in China are 120, 180, 240 and 370mm.  408 

 409 

To simply illustrate the processes and demonstrate a representative application, Fig. 15 presents the detailed 410 

calculation results of the spacing of tie-columns through the proposed simple approach. It should be noted that 411 

the requirement levels of the spacing of tie-columns mean the maximum allowable spacing of the tie-columns in 412 

the confined masonry buildings which can effectively control their post-earthquake damage under easily 413 

repairable levels. It should be noticed that the spacing of the structural columns in the paper is only the 414 

theoretical minimum requirement for the tie-column. The arrangement of tie-columns in CM structures should 415 

also take into account other factors such as the out-of-plane failure and the ratio of the height of masonry wall to 416 

a thickness of masonry units. In general, the maximum spacing of tie-columns is set at the spacing between 4m 417 

and 5m. 418 

 419 

Fig. 15 depicts that the spacing of tie-columns is affected largely by their width and seismic density in the 420 

earthquake direction. When the CM building is located at a higher intensity earthquake zone, the maximum 421 

allowable spacing levels of tie-columns in the masonry walls increase as the seismic intensity levels. This is 422 

attributed the fact that when CM building is at a higher seismic intensity zone, the minimum requirement of wall 423 

density also increases as the seismic intensity which might result in the spacing of tie-columns needs to increase. 424 

This indicates again that both the wall and proposed tie-column densities are important to assess the structural 425 

safety of confined masonry structures during an earthquake. Additionally, there is an obvious increase in the 426 

spacing of tie-columns as the cross-sectional width of the columns increases. According to the construction 427 

experience in China, since the thickness of bearing masonry walls (GB 50011-2010, 2010) was usually 428 

recommended as 240mm, the allowable spacing of tie-columns in masonry walls when CM buildings are built at 429 

seismic intensity zones VIII to X results to be 2.6m, 4.8m, and 6.0m, respectively. 430 
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6. Concluding remarks and limitations 431 

Masonry structures are commonly used for the multi-storey residential buildings in many developing countries 432 

such China and Chile. Though confining elements have a significant influence on the seismic performance of 433 

masonry structures, their detailed requirements are not widely provided by the current design codes. Through 434 

analyses reported in this study, some conclusions are drawn. It should be noted that due to the characteristics of 435 

the inspected CM building samples reported in the study, the conclusions and results presented in the current 436 

paper are more applicable for China. However, they can also be utilised as a useful reference to several countries 437 

where multi-storey CM buildings with regular geometrical features exist such as in Chile, Peru, Slovenia and 438 

India. 439 

 440 

In the present study, the relationships between wall density per unit floor dwn and the damage levels of CM 441 

buildings are discussed for structures located at the earthquake intensity zones VIII~X during an actual 442 

earthquake, the 2008 Wenchuan earthquake. The reported CM buildings include more than 200 single to multi-443 

story masonry buildings with/without tie-columns built from the 1970s to 1990s. Based on the analysis and 444 

comparison, the detailed requirements of wall density per unit floor in CM structures located in different seismic 445 

zones are provided.  446 

 447 

(1). The study shows that to control the same level damage at higher seismic intensity earthquake zones or to 448 

better control damages at the same earthquake zone, a higher wall density per unit floor should be provided 449 

for CM buildings. However, when more RC tie-columns are used in CM buildings, the potential damage of 450 

CM buildings cannot be assessed using the proposed wall density for the confining elements largely 451 

enhanced the resistance of the masonry walls. 452 

(2). According to the current study, the minimum requirements of wall density per unit floor of confined 453 

masonry buildings to avoid large scale post-earthquake repair works in seismic intensity zones VIII~X are 454 

proposed from 1.7% to 4.0%, while the proposed levels to resist the collapse of CM structures are 1.25% to 455 

2.0%. 456 

(3). Some URM structures are discussed as comparative masonry structures, an important finding can be 457 

acquired that the critical values of dwn of the URM buildings are greater than the ones in the CM buildings 458 

in order to control same damage degree. This means that URM structures need to be designed with more 459 
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walls to resist seismic effects in the seismic intensity zones VIII to X, compared with the ones in CM 460 

buildings. 461 

 462 

This paper also proposes a tie-column density per unit floor dcn to discuss the seismic safety of CM building and 463 

provides critical values to control different post-earthquake damage levels in the structures. According to the tie-464 

column density, the maximum allowable spacing of these tie-columns in masonry walls positioned in the 465 

earthquake direction can be attained as follows. 466 

 467 

(1) By introducing a simplified index related to axial compressive of masonry walls, Rcom, the relationship 468 

between the index and the tie-column density per unit floor dcn of the CM buildings located at different 469 

seismic intensity zones has been quantized. Results show that an increasing dcn has resulted in a decrease in 470 

the damage degree of confined masonry buildings. This does not mean that the use amount of tie-columns 471 

does not need to increase when the confined building is constructed in a stronger earthquake region, as in 472 

that case, the building also needs to be designed having more masonry walls.  473 

 474 

(2) The axial compression action of masonry wall has a significant influence on the seismic performance of the 475 

masonry structures. A higher axial compression will result in a heavier damage in masonry structures. 476 

Similarly, even though no tie-columns were set in a masonry wall (i.e., single storey URM reference 477 

samples), the confined buildings with a small axial compression of the wall can still effectively resist 478 

earthquake effects without a collapse in the seismic intensity zone VIII.  479 

 480 

(3) Based on the relationship between the index Rcom and the tie-column density per unit floor dcn, the study 481 

proposed the critical levels of dcn of the confined masonry buildings in different seismic prone zones for 482 

controlling their potential damage degree. The proposal is helpful to estimate the capacity of CM buildings 483 

to resist slight/no damage or collapse in the three aforementioned seismic intensity zones.  484 

 485 

(4) This study proposes a simplified approach to quantify the critical levels of dcn of the CM buildings with up 486 

to six storeys. In general, when the density, dcn, is greater than 0.001, the confining members can effectively 487 

reduce the damage of CM buildings and control the damages under an easily repairable level when they are 488 

built at the seismic intensity zones VIII to X and meet the proposed minimum wall density requirement.  489 
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 490 

(5) To provide a simplified design procedure of tie-columns in CM building, a simplified confinement ratio of 491 

tie columns  is proposed and is defined as the ratio of cross-sectional area of the tie-column to the confined 492 

masonry walls. Employing this ratio, the maximum allowable spacing of the tie-column in CM buildings 493 

can be provided when the width of the tie-column is specified. For example, the maximum allowable 494 

spacing levels of tie-columns are 2.64m, 4.8m, and 6.0m for CM buildings at seismic intensity zones VIII, 495 

IX and X when 240mm masonry walls are used in the structures, respectively. 496 

 497 

Since most of the inspected CM buildings reported in the study are geometrically regular such as the ones in 498 

China and Chile and mainly subjected to shear effects without torsion actions, the above analyses and 499 

discussions are mostly applicable to geometrically regular CM buildings. Meanwhile, based on the discussion 500 

reported here, it should be emphasised that the requirement of wall and tie-column densities is of paramount 501 

importance for the seismic resistant design of CM structures located in earthquake-prone regions. 502 
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 606 

Fig.1 Tie columns in masonry buildings 607 

   608 

Fig.2 Wall damage of CM structures (Dujianyan, seismic intensity IX) 609 

  

(a) Global view of CM building (b) Crack patter in the masonry building 

 610 

Fig.3 Collapse resistance of CM structures (Beichuan, seismic intensity IV+) 611 

  

(a) CM structures-1 (b) CM structures-2 
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 612 

Fig.4 Earthquake intensity and damage distribution of the 12 May 2008 Wenchuan earthquake 613 
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Fig.5 Damage states of wall pieces 616 

(a)  Fine crack on wall piece (b)  Large crack on wall piece 
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(c)  Severe cracks on wall piece (d)  Wall piece broken and extroversion 

 617 

Fig.6 Relationship of wall density per unit floor between damage at seismic intensity VIII 618 
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Fig.7 Relationship of wall density per unit floor value between damage at seismic intensity IX 622 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130

d w
/n

   
(%

)

# of surveyed masonry building

Collapse damage (CMs) Collapse damage (URMs)

Heavy damage (CMs) Heavy damage (URMs)

Moderate damage (CMs) Slight or no damage (CMs)

1.25 Slight or no damage 2.0 Heavy damage

2.5 Moderate damage EC8 (Only one)

Colombia code (lower) Peruvian code (Lower)

Colombia code (upper) Peruvian code (upper)

 623 

  624 

625 



28 
 

Fig.8 Relationship of wall density per unit floor between damage at seismic intensity X 626 
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Fig.9 Calculation areas of tie columns for the tie-column density 630 
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 633 

Fig.10 Relationship between tie column density per unit floor and damage categories at seismic intensity VIII 634 
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Fig.11 Relationship between tie column density per unit floor and damage categories at seismic intensity IX 636 
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Fig.12 Relationship between tie column density per unit floor and damage categories at seismic intensity X 638 
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Fig.13 Definition of confined ratio of masonry wall 641 
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Fig.14A simplified approach for the minimum requirements for tie columns in CM buildings 645 
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Fig.15 Maximum allowable spacing of tie column in CM building at seismic intensity zones VIII~X  648 
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Table.1 Damage categories and treatment suggestions post-earthquake of masonry structure 652 

 653 

Damage 
categories   Damage description: Cracking and collapse   Treatments and 

measures 

Slight or no 
damage 

  

No obvious damage occurs in any wall pieces; or the 
number of the wall pieces with small cracks is less 
than 50% of all wall pieces in the seismic direction; 
 

  
Small-scale repair 
such as surface 

repair 

Moderate 
damage 

  

The number of the wall pieces with small cracks is 
more than 50% of the total walls in the seismic 
direction; or the number of the wall pieces with large 
cracks is less than 50% of the total wall; or the 
number of wall pieces with severe cracks under 10% 
of the total one; 
 

  
Large-scale repair 
including partial 
reconstruction; 

Heavy 
damage 

  

The number of wall pieces with large cracks is more 
than 50% of all wall pieces in the seismic direction; 
or the number of wall pieces having either severe 
cracks range from 10% to 50% of the total walls in 
the seismic direction; 
 

  
Total/partial 

reconstruction; 

Collapse    

The number of wall pieces having the severe cracks, 
broken or collapse  is more than 50% of the total 
walls in the seismic direction; or total collapse of 
building structure; 

  
Total demolition 

and reconstruction 

 654 
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Table.2 Eurocode 8 allowable number of storeys and minimum average cross-sectional area for confined masonry 657 

buildings 658 

Acceleration 
levels 

≤0.07k.g     
(%)   ≤0.1k.g     

(%)   ≤0.15k.g   
(%)   ≤0.2k.g     (%) 

**Storey #  pA,min pA,min/n   pA,min pA,min/n   pA,min pA,min/n   pA,min pA,min/n 

2 2.00 1.00   2.50 1.25   3.00 1.50   3.50 1.75 
3 2.00 0.67   3.00 1.00   4.00 1.33   N/A N/A 
4 4.00 1.00   5.00 1.25   N/A N/A   N/A N/A 
5 6.00 1.20   N/A* N/A   N/A N/A   N/A N/A 

Intensity in 
Wenchuan 

Earthq. 
VII   VIII   -   IX 

*N/A: Not acceptable;       

**Roof space above full storeys is not included in the number of storeys;       
 659 

 660 

Table.3 Minimum requirement of tie columns in confined masonry buildings 661 

 662 

Seismic 
intensity zones 

Damage levels 
Minimum requirement 

of tie columns (dcn) (‰)   Remarks 

VIII 
Slight or no damage (Rcom-40)/30   

In CM structures, due to 
Ac <<Aw, so Rcom≈1/dwn; 
In case dwn has been 
specified, dcn can be 
attained easily. 

Heavy damage (Rcom-65)/50   

IX  
Slight or no damage (Rcom)/80   

Collapse (Rcom-50)/75   

X 
Slight or no damage Ͷ   

Collapse (Rcom-40)/40   

     
 663 
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Table.4 Minimum requirement of wall density per unit floor dwn to prevent damage of CM buildings 667 

 668 

No. Seismic 
intensity 

Proposed critical values of wall density per unit floor 

Collapse  Heavy 
damage 

Moderate 
damage 

1 VIII N/G* 1.10% 1.70% 

2 IV 1.25% 2.00% 2.50% 

3 X 2.00% 2.50% 4.00% 

*N/G means the value is not gained, for no collapsed CM building was reported in the 
seismic intensity VIII zone of the Wenchuan earthquake. 
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