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Abstract Understanding perceptual decision-making requires linking sensory neural responses

to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified

with a single measure of choice probability (CP), without characterizing their changes across

stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice

covariations. Assuming a general decision-threshold model, which comprises both feedforward and

feedback processing and allows for a stimulus-modulated neural population covariance, we

analytically predict a very general and previously unreported stimulus dependence of CPs. We

develop new tools, including refined analyses of CPs and generalized linear models with stimulus-

choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron,

characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze

CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary

empirical evidence for the promise of studying stimulus dependencies of choice-related signals,

encouraging further assessment in wider data sets.

Introduction
How perceptual decisions depend on responses of sensory neurons is a fundamental question in sys-

tems neuroscience (Parker and Newsome, 1998; Gold and Shadlen, 2001; Romo and Salinas,

2003; Gold and Shadlen, 2007; Siegel et al., 2015; van Vugt et al., 2018; O’Connell et al., 2018;

Steinmetz et al., 2019). The seminal work of Britten et al., 1996 showed that responses from single

cells in area MT of monkeys during a motion discrimination task covaried with behavioral choices.

Similar activity-choice covariations have been found in many sensory areas during a variety of both

discrimination and detection two-choice tasks (see Nienborg et al., 2012; Cumming and Nienborg,

2016, for a review). Identifying which cells encode choice, and how and when they encode it, is

essential to understand how the brain generates behavior based on sensory information.

With two-choice tasks, Choice Probability (CP) has been the most prominent measure

(Britten et al., 1996; Parker and Newsome, 1998; Nienborg et al., 2012) used to quantify activity-

choice covariations. Although early studies (Britten et al., 1996; Dodd et al., 2001) explored poten-

tial dependencies of the CP on the stimulus content, no significant evidence was found of a CP stim-

ulus dependency. Accordingly, it has become common to report for each neuron a single CP value

to quantify the strength of activity-choice covariations. This scalar CP value has been typically calcu-

lated either only from trials with a single, non-informative stimulus level (e.g. Dodd et al., 2001;

Parker et al., 2002; Krug et al., 2004; Wimmer et al., 2015; Katz et al., 2016; Wasmuht et al.,

2019), or by pooling trials across stimulus levels (so-called grand CP [Britten et al., 1996]) under the
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assumption that choice-related neural signals are separable from stimulus-driven responses (e.g.

Verhoef et al., 2015; Pitkow et al., 2015; Smolyanskaya et al., 2015; Bondy et al., 2018). Alterna-

tively, a single CP is sometimes obtained simply averaging CPs across stimulus levels (e.g. Cai and

Padoa-Schioppa, 2014; Latimer et al., 2015; Liu et al., 2016). Even when activity-choice covaria-

tions are modeled jointly with other covariates of the neural responses using Generalized Linear

Models (GLMs) (Truccolo et al., 2005; Pillow et al., 2008), the stimulus level and the choice value

are also usually used as separate predictors of the responses (Park et al., 2014; Runyan et al.,

2017; Scott et al., 2017; Pinto et al., 2019; Minderer et al., 2019).

This focus on characterizing a neuron by a single CP value is mirrored in the existing theoretical

studies. Existing theoretical results rely on a standard feed-forward model of decision making in

which a neural representation of the stimulus is converted by a threshold mechanism into a behav-

ioral choice (Shadlen et al., 1996; Cohen and Newsome, 2009b; Haefner et al., 2013) assuming a

single, zero-signal stimulus level, and hence ignoring stimulus dependencies of CPs. Furthermore, so

far no analytical mechanistic model accounts for feedback contributions to activity-choice covaria-

tions known to be important empirically (Nienborg and Cumming, 2009; Cumming and Nienborg,

2016; Bondy et al., 2018).

The main contribution of this work is to extend CP analysis reporting a single CP value for each

cell to a more complete characterization of within-cell patterns of choice-related activity across stim-

ulus levels. First, we extended the analytical results of Haefner et al., 2013 to the general case of

informative stimuli and to include both feedforward and feedback sources of the covariation

between the choice and each cell. Our results predict that CP stimulus dependencies can appear in

a cell-specific way because of stimulus-dependencies of cross-neuronal correlations. We show that

they can also appear for all neurons because of the transformation of the neural representation of

the stimulus into a binary choice, if the decision-making process relies on a threshold mechanism (or

threshold criterion) to convert a continuous decision variable into a binary choice. Second, we devel-

oped two new analytical methods (a refined CP analysis and a new generalized linear model with

stimulus-choice interactions) with increased power to detect stimulus dependencies in activity-choice

covariations. Our new CP analysis isolates within-cell stimulus dependencies of activity-choice cova-

riations from across-cells heterogeneity in the magnitude of the CP values, which may hinder their

detection (Britten et al., 1996). Third, we applied this analysis framework to the classic dataset of

Britten et al., 1996 containing recordings from neurons in visual cortical area MT and found evi-

dence for our predicted population-level threshold-induced dependency but also additional interest-

ing cell-specific dependencies. We found consistent results on the existence of stimulus-choice

interactions in neural activity both with our refined CP analysis and using generalized linear models

with interaction terms. Finally, we show that main properties of the additional dependencies found

can be explained modeling the cross-neuronal correlation structure induced by gain fluctuations

(Goris et al., 2014; Ecker et al., 2014; Kayser et al., 2015; Schölvinck et al., 2015), which have

been shown to explain a substantial amount of response variability in MT visual cortex (Goris et al.,

2014).

Results
We will first present the analysis of a theoretical model of how informative stimuli modulate choice

probabilities. We will then analyze MT visual cortex neuronal responses from Britten et al., 1996,

applying new methods developed to quantify stimulus-dependent activity-choice covariations with

CPs and GLMs. This analysis provides preliminary empirical evidence in support of using these new

methods for studying stimulus dependencies of activity-choice covariations.

A general account for choice-related neural signals in the presence of
informative stimuli
In a two-choice psychophysical task, such as a stimulus discrimination or detection task, a neuron is

said to contain a ‘choice-related signal’, or ‘decision-related signal’ when its activity carries informa-

tion about the behavioral choice above and beyond the information that it carries about the stimulus

(Britten et al., 1996; Parker and Newsome, 1998; Nienborg et al., 2012). The interpretation of

choice-related signals in terms of decision-making mechanisms is however difficult. Much progress in

our understanding of their meaning has relied on using models to derive mathematically the
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relationship between the underlying decision-making mechanisms and different measures of activity-

choice covariation (Haefner et al., 2013; Pitkow et al., 2015) usually used to quantify choice-related

signals.

The most widely used measure of activity-choice covariation for tasks involving two choices is

choice probability, CP. The CP is defined as the probability that a random sample of neural activity

from all trials with behavioral choice D equal to 1 is larger than one sample randomly drawn from all

trials with choice D ¼ �1 (Britten et al., 1996; Parker and Newsome, 1998; Nienborg et al., 2012;

Haefner et al., 2013):

CP�
Z

¥

�¥
dr pðrjD¼ 1Þ

Z r

�¥
dr0 pðr0jD¼�1Þ; (1)

where r is any measure of the neural activity, which we will here consider to be the neuron’s per-trial

spike count. Another prominent measure of choice-related signals is choice correlation, CC

(Pitkow et al., 2015). This quantity is defined under the assumption that the binary choice D is medi-

ated by an intermediate continuous decision value, d. This value may represent the brain’s estimate

of the stimulus, or an internal belief about the correct choice. The definition of CC further assumes

that the categorical choice D is related to d via a thresholding operation such that the choice

depends on whether d is smaller or larger than a threshold q (Gold and Shadlen, 2007). Its expres-

sion is as follows:

CC� corrðr;dÞ ¼ covðr;dÞ
ffiffiffiffiffiffiffiffiffiffi

var r
p ffiffiffiffiffiffiffiffiffiffi

vard
p ; (2)

where covðr;dÞ is the covariance of the neural responses with d, and var r, vard their variance across

trials. Perhaps, the simplest measure of activity-choice covariation, which has been used in empirical

studies (Mante et al., 2013; Ruff et al., 2018), is what we called the choice-triggered average,

CTA, defined as the difference between a neuron’s average spike count r across trials with behav-

ioral decision D¼ 1 minus the average spike count in trials with decision D¼�1:

CTA� hriD¼1
�hriD¼�1

: (3)

The CP and CTA quantify activity-choice covariations without assumptions about the underlying

decision-making mechanisms. However, their interpretation has commonly (Nienborg et al., 2012)

been informed in previous analytical and computational studies by assuming a specific feedforward

decision-threshold model of choice-related signals (Shadlen et al., 1996; Cohen and Newsome,

2009b). Haefner et al., 2013 used that model to derive an analytical expression for CP valid under

two assumptions that are often violated in practice: first, the model assumes a causally feedforward

structure in which sensory responses caused the decision, and second, it is assumed that both deci-

sions are equally likely. However, the presence of informative stimuli leads to one choice being more

likely than the other, hampering the application of the analytical results to Grand CPs and to detec-

tion tasks (Bosking and Maunsell, 2011; Smolyanskaya et al., 2015), which involve informative

stimuli. Furthermore, decision-related signals have empirically been shown to reflect substantial

feedback components (Nienborg and Cumming, 2009; Nienborg et al., 2012; Macke and Nien-

borg, 2019). We will next extend this previous model (Haefner et al., 2013) to obtain a general

expression of the CP valid for informative stimuli and regardless of the feedforward or feedback ori-

gin of the dependencies between the neural responses and the decision variable.

We first consider a most generic model in which we simply assume that the response ri of the

i� th sensory neurons covaries with the behavioral decision D, but without making any assumption

about the origin of that covariation (Figure 1A). We find that to a first approximation (exact solution

provided in Methods), the CP of cell i captures the difference between the distributions pðrijD ¼ 1Þ
and pðrijD ¼ �1Þ resulting from a difference in their means, and hence is related to the CTA:

CPi »
1

2
þ 1

2
ffiffiffiffi

p
p CTAi

ffiffiffiffiffiffiffiffiffiffiffi

var ri
p : (4)

The CTA generically quantifies the linear dependencies between responses and choice, and this

approximation of the CP does not depend on their feedforward or feedback origin (Figure 1A). We
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next add the assumption that the relationship between a neuron’s response and the choice is medi-

ated by the continuous variable d, as commonly assumed by previous studies and described above

(Figure 1B). This splits any correlation between the neural response ri and choice D into the product

of the two respective correlations: corrðri;DÞ ¼ corrðri;dÞcorrðd;DÞ = CCicorrðd;DÞ, where

CCi ¼ corrðri;dÞ is the choice correlation as defined in Equation 2. It follows (see Methods) that:

CTAi ¼CCi

ffiffiffiffiffiffiffiffiffiffiffi

var ri
p
ffiffiffiffiffiffiffiffiffiffi

vard
p CTAd; (5)

where CTAd is the average difference in d between the two choices, in analogy to the CTAi for neu-

ron i. Equation 5 describes how activity-choice covariations appear in the model (Figure 1C): the

threshold mechanism dichotomizes the space of the decision variable, resulting in a different mean

of d for each choice, which is quantified in CTAd. If the activity of cell i is correlated with the decision

variable d (non zero CCi), the CTAd is then reflected in the CTAi of the cell. In previous theoretical

work (Haefner et al., 2013), the distribution over d was assumed to be fixed and centered on the

threshold value q. Here, we remove that assumption and consider that d may not be centered on the

a 

Y Y 

b 

Y Y 

c 

Figure 1. Models of choice probabilities. Arrows indicate causal influences. Undirected edges indicate relationships that may be due to feedforward,

feedback, and/or common inputs. (a) A model agnostic to the causal origin of the choice–response covariation: the response of sensory neurons

encoding a stimulus s covaries with choice D. (b) Threshold model with a continuous decision variable d mediating the relationship between responses

and choice. The binary decision is made comparing d to a threshold q. (c) The threshold mechanism (vertical dashed black line) dichotomizes the d-

space, resulting in a difference between the means of the conditional distributions associated with D ¼ �1 (red and blue vertical dashes on top of

figure). This difference is quantified by CTAd (horizontal thick black line) and implies a non-zero difference between the choice-triggered average

responses (CTAi) in the presence of a correlation, CCi, between d and ri.
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threshold if the stimulus is informative, containing evidence in favor of one of the two choices, or if

the choice is otherwise biased. In those cases, the normalized CTAd in Equation 5, namely

CTAd=
ffiffiffiffiffiffiffiffiffiffi

vard
p

, can be determined (see Materials and methods) in terms of the probability of choos-

ing choice 1, pCR � pðD¼ 1Þ ¼ pðd>�Þ, which we call the ‘choice rate’, pCR. Since the decision variable

is determined as the combination of the responses of many cells, its distribution is well approxi-

mated by a Gaussian distribution, but now with a nonzero mean determined by the stimulus content.

With this assumption, the normalized CTAd for pCR ¼ 0:5 is equal to 4=
ffiffiffiffiffiffi

2p
p

, and for each other pCR
value differs by a scaling factor

hðpCRÞ ¼
ffiffiffiffiffiffi

2p
p

fðF�1ðpCRÞÞ
4pCRð1� pCRÞ

; (6)

where fðxÞ is the density function of a zero-mean, unit variance, Gaussian distribution, and F
�1 is

the corresponding inverse cumulative density function. By construction, hðpCRÞ ¼ 1 for pCR ¼ 0:5

where it has its minimum. Given the factor hðpCRÞ, combining Equations 4 and 5 we can relate CP

and CC across different ratios pCR, corresponding to different stimulus levels, irrespectively of

whether CP is caused by feedforward or feedback signals. In the linear approximation (see Methods

for the exact formula and derivation with the decision-threshold model), this relationship reads:

CPiðpCRÞ»
1

2
þ

ffiffiffi

2
p

p
hðpCRÞCCiðpCRÞ: (7)

For equal fractions of choices, pCR ¼ 0:5, this CP expression corresponds to the linear approxima-

tion derived in Haefner et al., 2013. Note that extending the CP formula to pCR 6¼ 0:5 required us to

also make explicit the dependency of the choice correlations on the choice rate, CCiðpCRÞ. Unlike
hðpCRÞ which is an effect of the decision-making threshold mechanism and shared by all neurons,

CCiðpCRÞ is specific to and generally different for each neuron, reflecting its role in the perceptual

decision-making process. A CC stimulus dependence may arise as a result of stimulus-dependent

decision feedback (Haefner et al., 2016; Bondy et al., 2018; Lange and Haefner, 2017), or other

sources of stimulus-dependent cross-neuronal correlations (Ponce-Alvarez et al., 2013;

Orbán et al., 2016) such as shared gain fluctuations (Goris et al., 2014). In fact, we will show below

that gain-induced stimulus-dependent cross-neuronal correlations account for observed features in

our empirical data. Note that we do not distinguish between CC stimulus dependencies and a

dependence of the CC on pCR. We do not make this distinction here because most generally a

change in the stimulus level results in a change of pCR, and the two cannot be disentangled. How-

ever, the pCR more generally depends on other factors such as the reward value, attention level, or

arousal state, and in Equation 7 the separate dependencies on the stimulus and pCR can be explicitly

indicated as CCiðpCR; sÞ when the experimental paradigm allows to separate these two influences.

For simplicity, we presented above only the general relationship between the CP and CC in Equa-

tion 7 derived as a linear approximation for weak activity-choice covariations, as this is the regime

relevant for single sensory neurons. See Methods for the exact analytical solution from the threshold

model (Equation 16) and Appendix 1 for its derivation. Despite the assumption of weak activity-

choice covariations, this approximation is very close over the empirically relevant range of CC’s

(Figure 2A–B). Below we will focus on a concrete type of CC stimulus dependence, namely origi-

nated by gain fluctuations, but it is clear from Equation 7 that any CC stimulus dependence will

modify the CPðpCRÞ shape induced purely by the threshold effect. A summary of the overall relation

between the CP, CTA, and CC is provided in Figure 2D.

The model provides a concrete prediction of a stereotyped dependence of CP on pCR through

hðpCRÞ when the choice-related signals are mediated by an intermediate decision variable d, which is

testable using data. First, under the assumption that CC is constant and therefore hðpCRÞ is the only

source of CP dependence on pCR, for a positive CC (CP>0:5), the CPðpCRÞ should have a minimum

at pCR ¼ 0:5 and increase symmetrically as pCR deviates from 0.5 as the result of a change in the stim-

ulus in either direction (Figure 2A). When the CC is negative (CP<0:5), then CPðpCRÞ should have a

maximum at pCR ¼ 0:5 and analogously decrease symmetrically as pCR deviates from 0.5. Second,

since the influence of hðpCRÞ is multiplicative, it creates higher absolute differences in the CP across

different stimulus levels for cells with a stronger CP (either larger or smaller than 0.5). Third, the

dependence on hðpCRÞ is weak for a wide range of pCR values (Figure 2A), making it empirically
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detectable only when including highly informative stimuli in the analysis to obtain pCR values very dif-

ferent from 0.5. However, for those pCR values, CP estimates are less reliable, because only for few

trials the choice is expected to be inconsistent with the sensory information, meaning that one of

the two distributions pðrijD ¼ 1Þ or pðrijD ¼ �1Þ is poorly sampled. This means that to detect the

hðpCRÞ modulation for single cells, many trials would be needed for each value of pCR to obtain good

estimates. Because hðpCRÞ is common to all cells, averaging CPðpCRÞ profiles across cells can also

improve the estimation. This averaging may also help to isolate the hðpCRÞ modulation, assuming

that cell-specific CPi stimulus dependencies introduced through choice correlations CCi are hetero-

geneous across cells and average out. We refer to Appendix 1 for a detailed analysis of the statistical

power for the detection of hðpCRÞ as a function of the number of trials and cells used to estimate an

average CPðpCRÞ profile. We will present below (Section ‘Stimulus dependence of choice-related sig-

nals in the responses of MT cell’) evidence for the hðpCRÞ modulation from a re-analysis of the data in

Britten et al., 1996.

The structure of CP stimulus dependencies induced by response gain
fluctuations
We will now focus on a concrete source of stimulus-dependent correlations that leads to a non-con-

stant CCðpCRÞ, namely the effect of gain fluctuations into the stimulus-response relationship

(Goris et al., 2014; Ecker et al., 2014; Kayser et al., 2015; Schölvinck et al., 2015). Goris et al.,

2014 showed that 75% of the variability in the responses in monkeys MT cells when presented with

drifting gratings could be explained by gain fluctuations. We derive the CP dependencies on pCR in

a feedforward model of decision-making (Shadlen et al., 1996; Haefner et al., 2013) that also

C
P

 

pCR ≡ p(choice = 1)  

   exact CP 

  linear CP 

a b 

C
P

 
CC 

   pCR= 0.9 

  pCR= 0.5 

pCR ≡ p(choice = 1)  

c 

C
P

 

   λi =0.1          λi =0.5 

d 
Relations between the different 

measures of activity-choice   

covariation   

Figure 2. Predictions for stimulus dependencies from the threshold model. (a) CP dependence on pCR through the threshold-induced factor hðpCRÞ.
Results are shown for three values of a stimulus-independent choice correlation, CCi, isolating the shape of hðpCRÞ from other stimulus dependencies.

Solid curves represent the exact solution of the CP obtained from our model (see Methods, Equation 16) and dashed curves its linear approximation

(Equation 7). (b) Comparison of the exact solution of the CP (solid) and its linear approximation (dashed), as a function of the magnitude of a stimulus-

independent choice correlation. Results are shown for two values of pCR, 0.5 and 0.9. (c) CP dependence on pCR when together with the factor hðpCRÞ
stimulus dependencies also appear through stimulus-dependent choice correlations induced by response gain fluctuations (Equation 11). Results are

shown for five values of CCðpCR ¼ 0:5Þ (dotted horizontal lines) and in each case for two values of li, the fraction of the variance of a cell i caused by

the gain fluctuations (Methods). (d) Summary of the derived relationships as provided by Equations 4-7.
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models the effect of gain fluctuations in the responses. The feedfoward model considers a popula-

tion of sensory responses, ~r ¼ ðr1; :::; rnÞ, with tuning functions ~f ðsÞ ¼ ðf1ðsÞ; :::; fnðsÞÞ, responses

ri ¼ fiðsÞ þ �i, and a covariance structure S of the neuron’s intrinsic variability �i. The responses are

read out into the decision variable with a linear decoder

d¼~w>~r�
X

n

i¼1

wiri; (8)

where ~w are the read-out weights. The categorical choice D is made by comparing d to a threshold

q. With this model, the general expression of Equation 7 reduces to

CPiðpCRÞ»
1

2
þ

ffiffiffi

2
p

p
hðpCRÞ

ðSðsÞ~wÞi
ffiffiffiffiffiffiffiffiffiffiffi

SiiðsÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w>SðsÞ~w
p : (9)

where ðSðsÞ~wÞi ¼ covðri;dÞ and vard¼~w>
SðsÞ~w. This expression corresponds to the one derived by

Haefner et al., 2013, except for hðpCRÞ and for the fact that we now explicitly indicate the depen-

dence of the correlation structure SðsÞ on the stimulus. The expression relates the CP magnitude to

single-unit properties such as the neurometric sensitivity, as well as to population properties, such as

the decoder pooling size and the magnitude of the cross-neuronal correlations, which determine CC

(Shadlen et al., 1996; Haefner et al., 2013). In particular, if the decoding weights are optimally

tuned to the structure of the covariability SðpCR ¼ 0:5Þ at the decision boundary, this results in a pro-

portionality between CPiðpCR ¼ 0:5Þ and the neurometric sensitivity of the cells:

CPiðpCR ¼ 0:5Þ / f 0i =sri (Haefner et al., 2013), as has been experimentally observed (Britten et al.,

1996; Parker and Newsome, 1998). While this feedfoward model is generic, we concretely study

CC stimulus dependencies induced by the effect of global gain response fluctuations in cross-neuro-

nal correlations. Following Goris et al., 2014 we modeled the responses of cell i in trial k as

fikðsÞ ¼ gkfiðsÞ, where gk is a gain modulation factor shared by the population. We assume that the

readout weights ~w are stimulus-independent. As a consequence, the covariance of population

responses S has a component due to the gain fluctuations:

SðsÞ ¼ �Sþs2

G
~f ðsÞ~f>ðsÞ; (10)

where s2

G is the variance of the gain g and �S is the covariance not associated with the gain, which

for simplicity we assume to be stimulus independent. The component of the cross-neuronal covari-

ance matrix S induced by gain fluctuations is proportional to the tuning curves (/~f ðsÞ~f TðsÞ). A devia-

tion Ds� s� s0 of the stimulus from the uninformative stimulus s0 produces a change D~f ¼~f 0ðs0ÞDs in
the population firing rates, which affects the variability of the responses, the variability of the

decoder, and their covariance, which all vary with Ds. Because the variance of the decoder

vard¼~w>SðsÞ~w and the covariance covðri;dÞ ¼ ðSðsÞ~wÞi both depend on the concrete form of the

read-out weights, the effect of gain-induced stimulus dependencies on the CP is specific for each

decoder. Under the assumption of an optimal linear decoder at the decision boundary s0

(~w/ S
�1~f 0ðs0Þ), we obtain an approximation of the CC dependence on the stimulus deviation Ds from

s0 (see Methods for details):

CCiðpCRÞ ¼CCiðpCR ¼ 0:5ÞþsGli 1�CC2

i ðpCR ¼ 0:5Þ
� � Ds

ffiffiffiffiffiffiffiffiffiffi

vard
p ; (11)

where the slope is determined by the coefficient bpCR
¼ sGli 1�CC2

i ðpCR ¼ 0:5Þ
� �

, with li being the

fraction of the variance of cell i caused by the gain fluctuations (Methods). The choice rate pCR is

determined by the stimulus Ds as characterized by the psychometric function. For this form of the

slope coefficient bpCR
obtained with an optimal decoder all the factors contributing to it are positive

(Figure 2C). In Appendix 4 we further analytically describe how gain fluctuations introduce CP stimu-

lus dependencies not only for an optimal decoder, but also for any unbiased decoders. Conversely

to the factor hðpCRÞ, the pattern of CPðpCRÞ profiles produced by the gain fluctuations is cell-specific,

with a stronger asymmetric component for cells with higher li (Figure 2C). Furthermore, while the

sign of the multiplicative modulation hðpCRÞ changes when CC>0 or CC<0, the gain-induced contri-

bution in Equation 11 is additive. As seen in Figure 2C, for cells with a weak activity-choice
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covariation for uninformative stimuli (CPðpCR ¼ 0:5Þ close to 0.5), this implies that the CP of a neuron

can actually change from below 0.5 to above 0.5 across the stimulus range presented in the

experiment.

Stimulus dependencies of choice-related signals in the responses of MT
cells
In the light of our findings above, we re-analyzed the classic Britten et al., 1996 data containing

responses of neurons in area MT in a coarse motion direction discrimination task (see Methods for a

description of the data set). Our objective is to identify any patterns of CP dependence on the

choice rate/stimulus level. First, we describe our results testing for the threshold-induced CP stimu-

lus dependence, hðpCRÞ, and then more generally we characterize the CPðpCRÞ patterns found in the

data using clustering analysis. Finally, as an alternative to CP analysis, we show how to extend Gen-

eralized Linear Models (GLMs) of neural activity to include stimulus-choice interaction terms that

incorporate the stimulus dependencies of activity-choice covariations derived with our theoretical

approach and found above in the MT data.

Testing the presence of a threshold-induced CP stimulus dependence in
experimental data
We start describing how to analyze within-cell CPðpCRÞ profiles to test the existence of the thresh-

old-induced modulation. The theoretically derived properties of hðpCRÞ suggest several empirical sig-

natures that will be reflected in the within-cell CPðpCRÞ profiles. First, because hðpCRÞ introduces a

multiplicative modulation of the choice correlation, for informative stimuli it leads to an increase of

the CP for cells with positive choice correlation (CP>0:5) and to a decrease for cells with negative

choice correlation (CP<0:5). Second, because hðpCRÞ is multiplicative, the absolute magnitude of the

modulation will be higher for cells with stronger choice correlation, that is CPs most different from

0.5. Third, the effect of hðpCRÞ is strongest when one choice dominates and hence most noticeable

for highly informative stimuli.

These properties of hðpCRÞ indicate that, to detect this modulation, it is necessary to examine

within-cell CPðpCRÞ profiles isolated from across-cells heterogeneity in the magnitude of the CP val-

ues. Ideally, we would like to calculate a CPðpCRÞ profile for each cell and analyze the shape of these

single-cell profiles. However, given the available number of trials, estimates of CPðpCRÞ profiles for

single cells are expected to be noisy. The estimation error of the CP is higher when pCR is close to 0

or 1, the same pCR values for which the hðpCRÞ modulation would be most noticeable. The standard

error of ĈP can be approximated as SEMðĈPÞ» 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12KpCRð1� pCRÞ
p

(Bamber, 1975; Hanley and

McNeil, 1982, see Methods), where K is the number of trials. In the Britten et al. data set the num-

ber of trials varies for different stimulus levels, and most frequently K ¼ 30 for highly informative

stimuli. In that case, for pCR ¼ 0:9, only three trials for choice D ¼ �1 are expected, and

SEMðĈPÞ» 0:18. As can be seen from Figure 2A, this error surpasses the order of magnitude of the

CP modulations expected from hðpCRÞ. This means that we need to combine CP estimates of adja-

cent pCR values, and/or combine estimated CPðpCRÞ profiles across neurons, to reduce the standard

error (See Appendix 1 for a detailed analysis of the statistical power for the detection of hðpCRÞ).
When averaging CPs across neurons, two considerations are important. First, cells that for

pCR ¼ 0:5 have a CP higher or lower than 0.5 should be separated, given that the sign of the CC

leads to an inversion of the profile resulting from hðpCRÞ (Equation 7). If not separated, the hðpCRÞ-
dependence would average out, or the average CPðpCRÞ profile would reflect the proportion of cells

with CPs higher or lower than 0.5 in the data set. Second, the average should correspond to an aver-

age -across cells- of within-cell CPðpCRÞ profiles, and hence it should only include cells for which a full

CPðpCRÞ profile can be calculated. This is important because for each cell i the hðpCRÞ modulation is

relative to the value of CPiðpCR ¼ 0:5Þ. If a different subset of cells was included in the average of

the CP at each pCR value, the resulting shape across pCR values of the averaged CPs would not be

an average of within-cell CPðpCRÞ profiles. Conversely, in that case, the resulting shape would reflect

the heterogeneity in the magnitude of the CP values across the subsets of cells averaged at each

pCR value. In the single-cell recordings from Britten et al., the range of stimulus levels used varies

across neurons, and for a substantial part of the cells a full CPðpCRÞ profile cannot be constructed.
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Following the second consideration, those cells were excluded from the analysis to avoid that they

only contributed to the average at certain pCR values.

We derived the following refined procedure to analyze CPðpCRÞ profiles. As a first step, we con-

structed a CPðpCRÞ profile for each cell. First, for each cell and each stimulus coherence level we cal-

culated a CP estimate if at least four trials were available for each decision. For the experimental

data set, CPs are always estimated from its definition (Equation 1), and we will only use the theoreti-

cal expression of hðpCRÞ to fit the modulation of the experimentally estimated CPðpCRÞ profiles. Sec-
ond, as a first way to improve the CP estimates, we binned pCR values into five bins and assigned

stimulus coherence levels to the bins according to the psychometric function that maps stimulus lev-

els to pCR, with the central bin containing the trials from the zero-signal stimulus. A single CP value

per bin for each cell was then obtained as a weighted average of the CPs from stimulus levels

assigned to each bin. The weights were calculated as inversely proportional to the standard error of

the estimates, giving more weight to the most reliable CPs (see Methods). The results that we pres-

ent hereafter are all robust to the selection of the minimum number of trials and the binning inter-

vals. Unless otherwise stated, in all following analyses we included all the cells (N ¼ 107) for which

we had data to compute CPs in all five bins, thus allowing us to estimate a full within-cell CPðpCRÞ
profile. As a second step, we averaged the within-cell CPðpCRÞ profiles across cells, taking into

account the two considerations above. As before, averages were weighted by inverse estimation

errors.

Figure 3A shows the averaged CPðpCRÞ profiles. To assess the statistical significance of the CP

dependence on pCR, we developed a surrogates method to test whether a pattern consistent with

the predicted CP-increase for informative stimuli could appear under the null hypothesis that the CP

has a constant value independent of pCR (see Methods). For the cells with average CP higher than

0.5, we found that the modulation of the CP was significant (p ¼ 0:0006), with higher CPs obtained
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Figure 3. Choice probability as a function of the choice rate for MT cells during a motion direction discrimination task (Britten et al., 1996). (a)

Average CP as a function of pCR � pðD ¼ 1Þ. The average across N ¼ 107 cells was calculated separately for cells with average CP higher or lower than

0.5. Dotted curves reflect the relationship predicted by the factor hðpCRÞ (Equation 6). Significance of the stimulus dependencies was evaluated against

the null hypothesis of a constant CP value using surrogate data (see Methods). (b) Same analysis but with a less strict inclusion criterion (see main text).

(c) CPðpCRÞ profile for four example cells with average CP lower and higher than 0.5, respectively. (d) Standard errors of the estimated CP for the

example cells as a function of pCR.

Chicharro et al. eLife 2021;10:e54858. DOI: https://doi.org/10.7554/eLife.54858 9 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.54858


for pCR close to 0 or one in agreement with the model. For cells with average CP lower than 0.5, the

modulation was not significant (p ¼ 0:26). While the actual absence of a modulation would imply that

the choice-related signals in these neurons are not mediated by a continuous intermediate decision-

variable but may be, for example, due to categorical feedback, we point out the lower power of this

statistical test due to fewer neurons being in the CP<0:5 group and the expected effect size being

lower, too. First, there were 74 cells with CP higher than 0.5 but only 33 with CP lower than 0.5,

meaning that the estimation error is larger for the average CPðpCRÞ profile of the cells with CP<0:5.

Second, as the modulation predicted by hðpCRÞ is multiplicative, its impact is expected to be smaller

when the magnitude of CP� 0:5 is smaller. Figure 3A shows that CP values are on average closer to

0.5 for the cells with CP<0:5, in agreement with Figure 5 of Britten et al., 1996. This means that

fewer cells classified in the group with CP<0:5 have choice-related responses. Therefore, the fact

that we cannot validate the prediction of an inverted symmetric hðpCRÞ modulation for the cells with

CP<0:5 with respect to the cells with CP>0:5 is not strong evidence against the existence of a

threshold-induced CP stimulus dependence. We further confirmed the robustness of the results in a

wider set of cells. For this purpose, we repeated the analysis forming subsets separately including

cells with a computable CP for the three bins with pCR lower or equal 0.5, and the three with pCR

higher or equal than 0.5. Also in this case the observed CPðpCRÞ pattern was significant (p ¼ 0:0013)

for cells with average CP higher than 0.5 (Figure 3B, N ¼ 171), and non-significant for cells with CP

lower than 0.5 (p=0.20).

Interestingly, the identified significant CPðpCRÞ dependence for the cells with CP>0:5 goes

beyond the symmetric threshold-induced shape predicted by hðpCRÞ, both in magnitude and shape

(Figure 2A), since the increase is bigger for pCR values close to 1 than to 0. This implies that the

choice correlation for each neuron, CCiðpCRÞ, must systematically change with pCR as well, contribut-

ing to the overall CP stimulus dependency observed. In particular, the observed average CPðpCRÞ
profile indicates that the CP increase appears to be higher for pCR>0:5. The finding of this asymme-

try is consistent with results reported in Britten et al., 1996, who found a significant but modest

effect of coherence direction on the CP (see their Figure 3). By experimental design, the direction of

the dots corresponding to choice D ¼ 1 was tuned for each cell separately to coincide with their

most responsive direction. This means that this asymmetry indicates that CPs tend to increase more

when the stimulus provides evidence for the direction eliciting a higher response. However,

Britten et al., 1996 found no significant relation between the global magnitude of the firing rate

and the CP (see their Figure 3), and we confirmed this lack of relation specifically for the subset of

N ¼ 107 cells (no significant correlation coefficient between average rate and average CP values,

p ¼ 0:33). This eliminates the possibility that higher CPs for high pCR>0:5 values are due only to

higher responses, and suggests a richer underlying structure of CPðpCRÞ patterns, which we will

investigate next using cluster analysis to identify the predominant patterns shared by the within-cell

CPðpCRÞ profiles.

Characterizing the experimental patterns of CP stimulus dependencies with
cluster analysis
We carried out unsupervised k-means clustering (Bishop, 2006) to examine the patterns of CPðpCRÞ
without a priori assumptions about a modulation hðpCRÞ associated with the threshold effect. Cluster-

ing was performed on CPðpCRÞ � 0:5, with each cell represented as a vector in a five-dimensional

space, where five is the number of pCR bins used to summarize the data as described above. To con-

sider both the shape and sign of the modulation, distances between neurons were calculated with

the cosine distance between their CPðpCRÞ profiles (one minus the cosine of the angle between the

two vectors). Clustering was performed for a range of specified numbers of clusters. Specifying the

existence of two clusters, we naturally recovered the distinction between cells with CP higher or

lower than 0.5 (Figure 4A). The statistical significance of any pCR-modulation was again assessed

constructing surrogate CPðpCRÞ profiles and repeating the clustering analysis on those surrogates.

As before, a significant dependence of the CP on pCR was found only for the cluster associated with

CP higher than 0.5 (p ¼ 0:0007 for CP>0:5 and p ¼ 0:21 for CP<0:5).

As mentioned above, the divergence from hðpCRÞ of the average CPðpCRÞ profile for cells with

CP>0:5 suggests that cell-specific modulations are introduced through CCiðpCRÞ. While the variabil-

ity of individual CPiðpCRÞ profiles (Figure 3C) is expected to reflect substantially the high estimation
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errors of ĈP for the single cells (Figure 3D), the presence of subclusters can identify CPðpCRÞ pat-

terns common across cells.

We proceed to examine subclusters within the CP>0:5 cluster with a significant CPðpCRÞ profile,

excluding from our analysis cells within the CP<0:5 cluster (analogous results were found when

increasing the number of clusters in a nonhierarchical way, without a priori excluding these cells, see

Appendix 3—figure 1A). Average CPðpCRÞ profiles obtained when inferring two subclusters of cells

with CP>0:5 are shown in Figure 4B. For both subclusters the CPðpCRÞ dependence is significant

(p ¼ 0:0008 for cluster two and p ¼ 0:0026 for cluster 3, respectively, in Figure 4B). The larger cluster

has a more symmetric shape of dependence on pCR, with an increase of CP in both directions when

the stimulus is informative, consistent with the prediction of a threshold-induced CP stimulus depen-

dence hðpCRÞ. For the smaller cluster the dependence is asymmetric, with a CP increase when the

stimulus direction is consistent with the preferred direction of the cells and a decrease in the oppo-

site direction. We verified that no significant difference exists between the firing rates of the cells in

the two subclusters (Wilcoxon rank-sum test, p ¼ 0:23). The monotonic shape of the second subclus-

ter mirrors the dependency produced by response gain fluctuations as predicted by the gain model

described above. This suggests that the neurons in this subcluster differ from the neurons in the
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Figure 4. Clustering analysis of choice probability as a function of pCR. (a–b) CP as a function of pCR for clusters of the MT cells determined by k-means

clustering. Each CPðpCRÞ profile corresponds to the center of a cluster. Significance of the modulation was quantified as in Figure 3. (a) Two clusters

(Nc ¼ 2) for all cells. (b) Further subclustering of cells with average CP>0:5 into two subclusters. (c) Representation of the CPðpCRÞ profiles in a two-

dimensional space spanned by the cluster means. The horizontal axis is defined by clusters 1 and 2 and closely aligned with CP� 0:5. Vertical axis is

defined as perpendicular to horizontal axis in the plane defined by the subcluster means. Colors correspond to the clusters of panel b, with blue and

cyan further indicating subclusters of cells with average CP<0:5 (see Appendix 3—figure 1A). (d) Space defined by projection onto two templates: a

constant relationship (x-axis) representing the magnitude of CP� 0:5, and a monotonic relationship with slope 1 (y-axis) representing CP asymmetry.

Colors correspond to the clusters of panel b and numbers indicate example cells shown in Figure 3C. (e) Modeling the influence of neuronal gain

modulation on CPðpCRÞ profiles. CPðpCRÞ profiles for different combinations of strength of the gain fluctuations, s2

G, and the choice correlation that

would be obtained for the uninformative stimulus s0 with no gain fluctuations, CCi0ðs0Þ. We display CPðpCRÞ for four values of CCi0ðs0Þ (curves vertically
separated) and two values of s2

G (solid vs dashed). Each curve corresponds to a point in the two-dimensional space defined by the symmetric and

asymmetric templates introduced in panel b. See Methods for model details.
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other subcluster by a substantially larger gain-induced variability, a testable prediction for future

experiments and further discussed below.

Introducing a second cluster allows for representing each neuron’s CPðpCRÞ-dependency in the

two-dimensional space (Figure 4C) spanned by the mean profiles for each of the three clusters. The

horizontal axis corresponds to the separation between the two initial clusters, and is closely aligned

to the departure of the average CP from 0.5. The vertical axis is defined by the vectors correspond-

ing to the centers of the two subclusters and hence is determined separately for the cells with aver-

age CP higher and lower than 0.5 (see Methods for details, and Appendix 3—figure 1A). The

vertical axis is associated with the degree to which the CPðpCRÞ dependence is symmetric or asym-

metric with respect to pCR ¼ 0:5. Cells for which the CP increases consistently with its preferred

direction of motion coherence lie on the upper half-plane. To further support this interpretation of

the axis, we repeated the clustering procedure replacing the nonparametric k-means procedure with

a parametric procedure that defines the subclusters with a symmetric and an asymmetric template,

respectively. The data is distributed approximately equally in both spaces (Figure 4C–D).

Similar results were also obtained when increasing the number of clusters non-hierarchically.

Introducing a third cluster for all cells leaves almost unaltered the cluster of cells with CP lower than

0.5 (Appendix 3—figure 1B). The cluster of cells with CP higher than 0.5 splits into two subclusters

analogous to the ones found from cells with CP higher than 0.5 alone. The distinction between cells

with more symmetric and asymmetric CPðpCRÞ dependencies is robust to the selection of a larger

number of clusters, that is, clusters with this type of dependencies remain large when allowing for

the discrimination of more patterns (Appendix 3—figure 1C). However, we do not mean to claim

that the variety of CPðpCRÞ profiles across cells can be reduced to three separable clusters. As

reflected in the distributions in Figure 4C–D, the clusters are not neatly separable. Indeed, a richer

variety of profiles would be expected if the properties of CPðpCRÞ profiles across cells were associ-

ated with their tuning properties and the structure of feedback projections, as we further argue in

the Discussion. The predominance of a symmetric and asymmetric pattern would only reflect which

are the predominant CPðpCRÞ shapes shared across cells.

This clustering analysis confirms the presence of shared patterns of CP stimulus-dependence

across cells, whose shape is compatible with the analytical predictions from the threshold- and gain-

related dependencies. The symmetric component of CP stimulus dependence is congruent with

hðpCRÞ (Equation 6), albeit with a larger magnitude than predicted (Figures 2A and 3A, and addi-

tional analysis of the statistical power in Appendix 1). This stronger modulation suggests an addi-

tional symmetric contribution of the choice correlation CCðpCRÞ and/or a dynamic feedback

reinforcing the stronger modulation for highly informative stimuli. However, while the cluster analysis

separates the predominant CPðpCRÞ patterns, the Britten et al. data lacks the statistical power to fur-

ther distinguish between hðpCRÞ and symmetric CCðpCRÞ contributions with a similar shape.

Gain-induced CP stimulus dependencies in the MT responses
Three key features of the CPðpCRÞ dependencies observed for the MT cells are qualitatively

explained by introducing shared gain fluctuations in the decision threshold model described above

(Figure 4E) – the first two manifesting itself on the population (cluster) level and the third one on an

individual neuron level. First, a shared gain variability predicts the existence of the asymmetric CP

stimulus dependence seen in cluster 3 (Equation 11 and Figure 2C). Second, the average CP of the

asymmetric cluster 3 is lower than the average CP of the symmetric cluster 2 (compare red and

green profiles in Figure 4B+E). And third, if gain variability is indeed a driving factor for the

observed asymmetry in cluster 3, then within this cluster, neurons with a higher amount of gain vari-

ability should also have a steeper CPðpCRÞ profile, a prediction we could confirm as described in the

next paragraph.

In order to test this prediction, for each neuron in cluster 3, we first computed the degree of

asymmetry of its CPðpCRÞ profile from the data directly, by simply fitting a quadratic function to

CPðpCRÞ (Methods). Next, and independently of this, we used the method of Goris et al., 2014 to

estimate the amount of gain variability for each neuron. Knowing each neuron’s gain variability

allowed us to predict each neuron’s degree of asymmetry (slope of CPðpCRÞ as determined by bpCR
,

using Equation 11). We indeed found a significant correlation between the predicted and the

observed slopes (r ¼ 0:58, p ¼ 0:0018) supporting the conclusion that shared gain variability underlies
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the observed asymmetric shape of CPðpCRÞ for the neurons in cluster 3. For cluster 2, in which the

symmetric pattern is predominant, no analogous correlation was found (r ¼ 0:15, p ¼ 0:35). It is

important to note that the asymmetry predicted by the gain variability overestimates the actually

observed one by an order of magnitude (average observed slope of 0:002� 0:0003 compared to an

average predicted slope of 0:034� 0:008). However, this is not surprising given our simplifying

assumption of a single global gain factor across the whole population whereas in practice the gain

fluctuations are likely inhomogeneous across the population. Furthermore, the actual read-out used

by the brain may deviate from the optimal one, further reducing the expected match between pre-

dictions and observations. A more precise modeling of CP–stimulus dependencies would require

measurements of the cross-neuronal correlation structure that is not available from the single unit

recordings of Britten et al., 1996 but will be for future population recordings.

Modeling stimulus-dependent choice-related signals with GLMs
The implications of a stimulus-dependent relationship between the behavioral choice and sensory

neural responses are not restricted to measuring them as CPs, for which activity-choice covariations

are quantified without incorporating other explanatory factors of neural responses. To further sub-

stantiate the existence of this stimulus-dependent relationship in MT data, and to understand how

our model predictions could help to refine other analytical approaches, we examined how represent-

ing that relationship can improve statistical models of neural responses. In particular, we study how

the stimulus-dependent choice-related signals that we discovered may inform the refinement of

Generalized Linear Models (GLMs) of neural responses (Truccolo et al., 2005; Pillow et al., 2008).

In the last few years, GLMs have been used for modelling choice dependencies together with the

dependence on other explanatory variables, such as the external stimulus, response memory, or

interactions across neurons (Park et al., 2014; Runyan et al., 2017). Typically, in a GLM of firing

rates each explanatory variable contributes with a multiplicative factor that modulates the mean of a

Poisson process. In their classical implementation, the choice modulates the firing rate as a binary

gain factor, with a different gain for each of the two choices (Park et al., 2014; Runyan et al., 2017;

Pinto et al., 2019). The multiplicative nature of this factor already introduces some covariation

between the impact of the choice on the rate and the one of the other explanatory variables. How-

ever, using a single regression coefficient to model the effect of the choice on the neural responses

may be insufficient if choice-related signals are stimulus dependent, as suggested by our theoretical

and experimental analysis.

We developed a GLM (see Methods) that can model stimulus-dependencies of choice signals (or,

in other words, stimulus-choice interactions) by including multiple choice-related predictors that

allow for a different strength of dependence of the firing rate on the choice for different subsets of

stimulus levels (via the choice rate, pCR). We fitted this model, which we call the stimulus-dependent-

choice GLM, to MT data and we compared its cross-validated performance against two traditional

GLMs. In the first type, called the stimulus-only GLM, the rate in each trial is predicted only based

on the external stimulus level. In a second type, that we called stimulus-independent-choice GLM

and that corresponds to the traditional way to include choice signals in a GLM (Park et al., 2014;

Runyan et al., 2017; Scott et al., 2017; Pinto et al., 2019; Minderer et al., 2019), additionally the

effect of choice is included, but using only a single, stimulus-independent choice predictor.

To compare the models, we separated the trials recorded from each MT cell (Britten et al.,

1996) into training and testing sets, and calculated the average cross-validated likelihood for each

type of model on the held-out testing set. To quantify the increase in predictability when adding the

choice as a predictor we defined the relative increase in likelihood (RIL) as the relative increase of

further adding the choice as a predictor relative to the increase of previously adding the stimulus as

a predictor. RIL measures the relative influence of the choice and the sensory input in the neural

responses. Figure 5A compares the cross-validated RIL values obtained on MT neural data when fit-

ting either the stimulus-independent-choice or the stimulus-dependent-choice GLMs. We found that

RIL values were mostly higher when allowing for multiple choice parameters, both in terms of aver-

age RIL values (Figure 5C) and in terms of the proportion of cells in each cluster for which the RIL

was higher than a certain threshold, here selected to be at 10% (Figure 5B).

GLMs that include stimulus-choice interaction terms can be used not only to better describe the

firing rate of neural responses, but also to individuate more precisely the neurons or areas by their

choice signals. To illustrate this point, we show how adding the interaction terms may change the
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relative comparison of cells by their RIL values. Consider the three neurons with highest RIL for the

stimulus-dependent-choice GLM (Figure 5A, and with corresponding CPðpCRÞ profiles shown in

Figure 5D). The ranking of cells 1 and 2 by RIL flips with respect to the stimulus-independent-choice

GLM because of the higher CPðpCRÞ modulation of cell 2. Similarly, while the RIL with multiple choice

parameters for cells 1 and 3 are close, the RIL of cell 3 is substantially lower with a single choice

parameter, indicating that its pattern of stimulus dependence is less well captured by a single

parameter. The degree to which a model with interaction terms improves the predictability will

depend on the shape of the CPðpCRÞ patterns, which themselves are expected to vary across areas

or across cells with different tuning properties. For example, we see in Figure 5C that for the cluster

with an asymmetric CPðpCRÞ profile (cluster 3), the average RIL with only one choice parameter sug-

gests that this type of cells are not choice driven. The reason is that for the cells in this cluster the

sign of the choice influence on the rate can be stimulus dependent, which is impossible to model by

a single choice parameter. Furthermore, the profile of the GLM choice parameters across stimulus

levels provides a characterization of stimulus-dependent choice-related signals analogous to the

CPðpCRÞ profile, in this case within the GLM framework, hence allowing efficient inference including
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Figure 5. Modeling stimulus-dependent choice-related signals with GLMs. (a) Scatter plot of the cross-validated relative increase in likelihood (RIL),

with respect to a stimulus-only model, of the stimulus-dependent-choice GLMs (multiple choice parameters) versus the stimulus-independent-choice

GLMs (a single choice parameter). (b) Proportion of cells with RIL>0.1 for the two types of models, grouped by the clusters as in Figure 4B. Cells not

included in the set of 107 cells for which a CP value could be estimated for each bin of pCR are labeled as ‘Others’. (c) Average RIL values, grouped as

in b. (d) CPðpCRÞ profiles of the three cells with the highest RIL in the stimulus-dependent-choice GLMs, as numbered in panel a.
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principled regularization and the ability to account for a range of factors beyond choices and stimuli.

Overall, we expect that accounting for stimulus-choice interactions in GLMs will allow for a more

accurate assessment of the relative importance of stimulus and choice on neural responses.

Discussion
Our work makes several contributions to the understanding of how choice and stimulus signals in

neural activity are coupled. The first is that we derived a general analytical model of perceptual deci-

sion-making predicting how the relationship between sensory responses and choice should depend

on stimulus strength, regardless of whether this relationship is due to feedforward or feedback

choice-related signals. The key model assumption is that the link between sensory responses and

choices is mediated by a continuous decision variable and a thresholding mechanism. Second, we

designed new, more powerful methods to measure within-cell dependencies of choice probabilities

(CPs) on stimulus strength. Third, we studied CP stimulus dependencies in the classic dataset by

Britten et al., 1996. Interestingly, we found a rich and previously unknown structure in how CPs in

MT neurons depend on stimulus strength. In addition to a symmetric dependence predicted by the

thresholding operation, we found an asymmetric dependence which we could explain by incorporat-

ing previously proposed gain fluctuations (Goris et al., 2014) in our model, thereby introducing a

stimulus-dependent component in the cross-neuronal covariance. Finally, we showed that general-

ized linear models (GLMs) that account for stimulus-choice interactions better explain sensory

responses in MT and allow for a more accurate characterization of how stimulus-driven and how

choice-driven a cell’s response is.

Advances on analytical solutions of choice probabilities
Previous work has demonstrated that solving analytically models of perceptual decision-making can

lead to important new insights on the interpretation of the relationship between neural activity and

choice in terms of decision-making computations (Bogacz et al., 2006; Gold and Shadlen, 2007;

Haefner et al., 2013). In particular, previous analytical work on CPs has shown how experimentally

measured CPs relate to the read-out weights by which sensory neurons contribute to the internal

stimulus decoder in a feedforward model, assuming both choices are equally likely (Haefner et al.,

2013; Pitkow et al., 2015). Here, we provided a general analytical solution of CPs in a more general

model, with informative stimuli resulting in an unbalanced choice rate, and valid both for feedfor-

ward and feedback choice signals. We derived the analytical dependency of CP on the probability of

one of the choices (pCR � pðchoice ¼ 1Þ), which mediates the dependence of the CP on the stimulus

strength. Our model is therefore directly applicable to both discrimination and detection tasks, for

any stimulus strength that elicits both choices. As we demonstrated, these advances in the analytical

solution of the decision-threshold model allowed for detecting and interpreting stimulus dependen-

cies of choice-related signals in neural activity.

Characterization of patterns of choice probability stimulus-dependencies
from sensory neurons
Characterizing within-cell stimulus dependencies of activity-choice covariations at the population

level requires isolating these dependencies from across-cells heterogeneity in the magnitude of the

CP values. Our analytical analysis suggests possible reasons why previous attempts failed to find

stimulus dependencies of CPs in real neural data. First, the magnitude of the CP dependence on pCR

is proportional to the magnitude of choice-related signals (i.e. on how different CPs are from 0.5).

This implies that neuron-specific dependencies need to be characterized for each cell individually,

relative to the CP obtained with the uninformative stimulus. Only neurons for which a full individual

CP profile can be estimated should be averaged to determine stimulus dependencies at the popula-

tion level, or otherwise the overall average CP profile of stimulus dependence will be dominated by

variability associated with the different subsets of neurons contributing to the CP estimate at each

stimulus level. Second, the threshold-induced predicted direction of CP dependence on pCR is differ-

ent for neurons with CP larger or smaller than 0.5, that is, neurons more responsive to opposite

choices. This opposite modulation can cancel out the magnitude of the overall threshold-induced

dependence of the CP on stimulus strength when averaging over all neurons, as done in previous
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analyses (Britten et al., 1996). Informed by these insights we characterized the within-cell depen-

dencies of choice-related signals on stimulus strength. The application of our refined methods to the

classic neural data from MT neurons during a perceptual decision-making task of Britten et al.,

1996 allowed us to find stimulus dependencies of CPs, while previous analyses had not detected a

significant effect.

Our understanding of how CP-stimulus dependencies may arise within the decision-making pro-

cess, and the methods we used to measure these dependencies in existing data, will allow future

studies to perform more fine-grained analyses and interpret more appropriately choice-related sig-

nals. Traditional analyses computed a single CP value for each neuron by either concentrating on

zero-signal trials (e.g. Dodd et al., 2001; Parker et al., 2002; Krug et al., 2004; Wimmer et al.,

2015; Katz et al., 2016; Wasmuht et al., 2019) or calculating grand CPs (Britten et al., 1996)

across stimulus levels (e.g. Cai and Padoa-Schioppa, 2014; Verhoef et al., 2015; Latimer et al.,

2015; Pitkow et al., 2015; Smolyanskaya et al., 2015; Liu et al., 2016; Bondy et al., 2018). Grand

CPs are calculated directly as a weighted average of the CPs estimated for each stimulus level, or by

pooling the responses from trials of all stimulus levels, after subtracting an estimate of the stimulus-

related component (Kang and Maunsell, 2012). Our theoretical CP analysis shows that the latter

procedure also corresponds to a specific type of weighted average (Appendix 2). Using the so com-

puted individual CP values for each cell, areas or populations were then often ranked in terms of

their averaged CP values per neurons. Areas with higher CP values are then identified as areas key

for decision-making (e.g. Nienborg and Cumming, 2006; Cai and Padoa-Schioppa, 2014;

Pitkow et al., 2015; Yu et al., 2015).

However, if CPs depend on pCR, it is clear that a single grand CP value cannot summarize this

dependence. The use of average single CPs may thus introduce confounds in their comparison and

miss important cell-specific information. For example, CPðpCRÞ patterns with different sign for differ-

ent pCR values will result in lower average CP values. Similarly, the comparison of the grand CP of a

cell across tasks may mostly reflect changes in the sampling in each task of stimulus levels, leading

to a change in how much the CP(s) associated with each stimulus level contributes to the grand CP.

As a result, the change in the grand CP may be interpreted as indicating the existence of task-

dependent choice-related signals, even if the CP(s) profile is invariant. In the same way, if the struc-

ture of CPðpCRÞ patterns covaries with the tuning properties, the comparison of the grand CP across

cells with different tuning properties may mostly depend on the sampling of stimulus levels. This lim-

itation is not specific to average CP values, and applies to other measures that consider choice-

related and stimulus-driven components of the response as separable, such as partial correlations

(e.g. Zaidel et al., 2017). Our work instead indicates that the shape of the CPðpCRÞ patterns cannot
be summarized in the average, and this shape may be informative about the role of the activity-

choice covariations, when comparing across cells with different tuning properties, cells from different

areas, or across tasks (e.g. Romo and Salinas, 2003; Nienborg and Cumming, 2006;

Nienborg et al., 2012; Krug et al., 2016; Sanayei et al., 2018; Shushruth et al., 2018;

Jasper et al., 2019; Steinmetz et al., 2019). Our new methods allow quantifying these CP patterns

to better characterize the covariations between neural activity and choice across neurons and

populations.

A key novelty introduced in our study is the development of a model-inspired methodological

procedure for identifying genuine within-cell CPðpCRÞ profiles, that would otherwise be masked by

across-cells heterogeneity in the magnitude of the CP values. As representative examples of how

our procedure may find previously unnoticed patterns of CP dependencies, we discuss the previous

analyses in Britten et al., 1996 and in Dodd et al., 2001. Britten et al., 1996 analyzed the depen-

dence of the CP on the stimulus strength at the population level (see their Figure 3). In particular,

for each stimulus level they averaged the CP of all cells for which an estimate of the CP was calcu-

lated, without separating cells with CP higher or lower than 0.5. Furthermore, in their data set, the

stimulus levels vary across cells, and hence in their analysis different subsets of cells contribute to

the CP average at each stimulus level. Dodd et al., 2001 presented a scatter plot of the CPs for all

cells and stimulus levels (see their Figure 6). Although this analysis did not average cells with CP>0:5

and CP<0:5, in the scatter plot the cell-identity of each dot is not represented. This means that it is

not possible to trace the within-cell CPðsÞ profiles. Like in the case of Britten et al., also in

Dodd et al., 2001 the sampled stimulus levels varied across cells, further confounding the within-cell

CPðsÞ profiles with heterogeneity of CP magnitudes across cells. As shown by our analysis of the
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data of Britten et al., 1996, our analytical tools can add extra discoveries from these data, by

removing some potential confounds that may have obscured the presence of within-cell CP patterns.

It is important to note however that our model-based results do not imply in any way that these pre-

vious papers reached to inaccurate conclusions, as these analyses were done for purposes other

than discovering the within-cell patterns predicted by our models. In particular, most of the analysis

of Dodd et al., 2001 used only CPs calculated from trials with non-informative stimuli, and their

main results did not rely on the evaluation of CP stimulus dependencies. Similarly, while

Britten et al., 1996 used z-scoring to calculate grand CPs combining all stimulus levels, their analysis

did not involve the comparison of grand CPs across areas or types of cells with different tuning

properties. As discussed above, it is for this kind of comparisons, when the patterns of CPðpCRÞ pro-
files may themselves vary across the groups of cells compared, that reducing CPðpCRÞ profiles to a

single CP value may confound the comparison.

Generalized linear models with stimulus-choice interactions
Our work has also implications for improving generalized linear models (GLMs) of neural activity,

which are very widely used to describe neural responses in the presence of many explanatory varia-

bles that could predict the neuron’s firing rate, such as the external stimulus, motor variables, auto-

correlations or refractory periods, and the interaction with other neurons (Truccolo et al., 2005).

While usually the stimulus and the choice are treated as separate explanatory variables (e.g.

Park et al., 2014; Runyan et al., 2017; Scott et al., 2017; Pinto et al., 2019; Minderer et al.,

2019), we used GLMs including explicit interactions between choice and stimulus to show that, con-

sistently with the finding of non-constant CPðpCRÞ patterns, these models improved the goodness of

fit for the responses of MT cells. Importantly, making the choice term depend on the choice rate,

pCR, affected the quantification of how stimulus-driven or choice-driven different cells are, quantified

as the increased in predictive power when further adding the choice as a predictor after the stimu-

lus. This suggests a more fine-grained way to compare the degree of a neuron’s association with the

behavioral choice or the stimulus, for example across neuron types or brain areas (Runyan et al.,

2017; Pinto et al., 2019; Minderer et al., 2019). Our GLMs with multiple choice parameters associ-

ated with subsets of stimulus levels also allow characterizing the patterns in the vector of choice

parameters analogously to our analysis of CPðpCRÞ-patterns. Furthermore, our approach can be

extended straightforwardly to GLMs that model the influence of the choice across the time-course

of the trials (Park et al., 2014), by making the stimulus-choice interaction terms time-dependent.

GLMs with time-dependent stimulus-choice interaction terms can also be useful for experimental set-

tings with multiple sensory cues presented at different times (e.g. Romo and Salinas, 2003;

Sanayei et al., 2018) or a continuous time-dependent stimulus (Nienborg and Cumming, 2009), to

account for a difference in the interaction of stimuli with the choice depending on the time they are

presented. Similarly, the interaction terms may also help to model the influence of choice history in

the processing of sensory evidence in subsequent trials (Tsunada et al., 2019; Urai et al., 2019), in

which case the interaction terms would be between the stimulus and the choice from the previous

trial.

Patterns of stimulus-choice interactions as a signature of mechanisms of
perceptual decision-making
Theoretical and experimental evidence suggests that the patterns of stimulus dependence of

choice-related signals may be informative about the mechanisms of perceptual decision-making.

Activity-choice covariations have been characterized in terms of the structure of cross-neuronal cor-

relations and of feedforward and feedback weights (Shadlen et al., 1996; Cohen and Newsome,

2009b; Nienborg and Cumming, 2010; Haefner et al., 2013; Cumming and Nienborg, 2016).

Stimulus dependencies may be inherited from the dependence of cross-neuronal correlations on the

stimulus (Kohn and Smith, 2005; Ponce-Alvarez et al., 2013), or from decision-related feedback

signals (Bondy et al., 2018). Experimental (Nienborg and Cumming, 2009; Cohen and Maunsell,

2009a; Bondy et al., 2018), and theoretical (Lee and Mumford, 2003; Maunsell and Treue, 2006;

Wimmer et al., 2015; Haefner et al., 2016; Ecker et al., 2016) work indicates that top-down modu-

lations of sensory responses play an important role in the perceptual decision-making process. In

particular, feedback signals are expected to show cell-specific stimulus dependencies associated
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with the tuning properties (Lange and Haefner, 2017). Different coding theories attribute different

roles to the feedback signals, for example, conveying predictive errors (Rao and Ballard, 1999) or

prior information for probabilistic inference (Lee and Mumford, 2003; Fiser et al., 2010;

Haefner et al., 2016; Tajima et al., 2016; Bányai and Orbán, 2019, Bányai et al., 2019;

Lange and Haefner, 2020). Accordingly, characterizing the stimulus dependencies of activity-choice

covariations in connection with the tuning properties of cells is expected to provide insights into the

role of feedback signals and may help to discriminate between alternative proposals. Such an analy-

sis would require simultaneous recordings of populations of neurons tiling the space of receptive

fields, and the joint characterization of the cross-neuronal correlations and tuning properties.

Although this is beyond the scope of this work, we have shown that the analysis methods we pro-

posed are capable of identifying a nontrivial structure in the stimulus-dependencies of choice-related

signals. A better understanding of their differences across brain areas, across cells with different tun-

ing properties, or for different types of sensory stimuli, promises further insights into the mecha-

nisms of perceptual decision-making.

While we here analyzed single-cell recordings, our conclusions hold for any type of recordings

used to study activity-choice covariations. This spans the range from single units (Britten et al.,

1996), multiunit activity (Sanayei et al., 2018), and measurements resulting from different imaging

techniques at different spatial scales like intrinsic imaging or fMRI (Choe et al., 2014;

Thielscher and Pessoa, 2007; Runyan et al., 2017; Michelson et al., 2017). Given the increasing

availability of population recordings, larger number of trials due to chronic recordings, and the

advent of stimulation techniques to help to discriminate the origin of the choice-related signals

(Cicmil et al., 2015; Tsunada et al., 2016; Yang et al., 2016; Lakshminarasimhan et al., 2018;

Fetsch et al., 2018; Yu and Gu, 2018), we expect our tools to help gain new insights into the mech-

anisms of perceptual decision-making.

Materials and methods
We here describe the derivations of the CP analytical solutions, our new methods to analyze stimulus

dependencies in choice-related responses, and we describe the data set from Britten et al., 1996 in

which we test the existence of stimulus dependencies.

An exact CP solution for the threshold model
We first derive our analytical CP expression valid in the presence of informative stimuli, decision-

related feedback, and top-down sources of activity-choice covariation, such as prior bias, trial-to-trial

memory, or internal state fluctuations. We follow Haefner et al., 2013 and assume a threshold

model of decision making, in which the choice D is triggered by comparing a decision variable d

with a threshold q, so that if d>� choice D ¼ 1 is made, and D ¼ �1 otherwise. The identification of

the binary choices as D ¼ �1 is arbitrary and an analogous expression would hold with another map-

ping of the categorical variable. The choice probability (Britten et al., 1996) of cell i is defined as

CPi ¼ pðrijD¼1>rijD¼�1Þ ¼
Z

¥

�¥
dripðrijD¼ 1Þ

Z ri

�¥
dr0ipðr0i jD¼�1Þ (12)

and measures the separation between the two choice-specific response distributions pðrijD¼�1Þ
and pðrijD¼ 1Þ. It quantifies the probability of responses to choice D¼ 1 to be higher than responses

to D¼�1. If there is no dependence between the choice and the responses this probability is

CP¼ 0:5. To obtain an exact solution of the CP, we assume that the distribution pðri;dÞ of the

responses ri of cell i and the decision variable d can be well approximated by a bivariate Gaussian.

Under this assumption, following Haefner et al., 2013 (see their Supplementary Material) the proba-

bility of the responses for choice D¼ 1 follows the distribution

pðzijD¼ 1Þ ¼ 1

pCR
f zi;0;1ð ÞF

hdiþ sri ;d

sri

zi� �

sdjri
;0;1

 !

; (13)

where a more parsimonious expression is obtained using the z-score zi ¼ ðri�hriiÞ=sri . This distribu-

tion is a skew-normal (Azzalini, 1985), where fð�;0;1Þ is the standard normal distribution with zero
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mean and unit variance, and Fð�;0;1Þ is its cumulative function. Furthermore, sri;d is the covariance of

ri and d, sdjri is the conditional standard deviation of d given ri, and the probability of D¼ 1 is

pCR � pðd>�Þ ¼F
hdi� �

sd

� �

; (14)

which determines the rate of each choice over trials. The choice D¼�1 could equally be taken as

the choice of reference, resulting in an analogous formulation. Intuitively, pCR increases when the

mean of the decision variable hdi is higher than the threshold q, and decreases when its standard

deviation sd increases. The form of the distribution of Equation 13 can be synthesized in terms of

pCR and the correlation coefficient �rid, which was named by Pitkow et al., 2015 choice correlation

(CCi). In particular, defining a� �rid=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2rid

q

and c�F
�1ðpCRÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2rid

q

pðzijD¼ 1Þ ¼ 1

pCR
f zi;0;1ð ÞF aziþ c;0;1ð Þ: (15)

The CP is completely determined by pðzijD¼�1Þ and pðzijD¼ 1Þ, and these distributions depend

only on pCR and the correlation coefficient �rid. Plugging the distribution of Equation 15 into the def-

inition of the CP (Equation 12) an analytical solution is obtained:

CPi ¼
1

2
þ
T F

�1ðpCRÞ; �rid
ffiffiffiffiffiffiffiffiffiffi

2��2
rid

p

 !

pCRð1� pCRÞ
; (16)

where T is the Owen’s T function (Owen, 1956). In Appendix 1, we provide further details of how

this expression is derived. For an uninformative stimulus (pCR ¼ 0:5), the function T reduces to the

arctangent and the exact result obtained in Haefner et al., 2013 is recovered. The dependence on

�rid can be understood because under the Gaussian assumption the linear correlation captures all

the dependence between the responses and the decision variable d. The dependence on pCR

reflects the influence of the threshold mechanism, which maps the dependence of ri with d into a

dependence with choice D by partitioning the space of d in two regions.

While Equation 16 provides an exact solution of the CP, in the Results section we present and

mostly focus on a linear approximation to understand how the stimulus content modulates the

choice probability. This approximation is derived (Appendix 1) in the limit of a small �rid, which leads

to CPs close to 0.5 as usually measured in sensory areas (Nienborg et al., 2012). However, as we

show in the Results and further justify in the Appendix this approximation is robust for a wide range

of �rid values. The linear approximation relates the choice probability to the Choice Triggered Aver-

age (CTA) (Haefner, 2015; Chicharro et al., 2017), defined as the difference of the mean responses

for each choice (Equation 3). Given the binary nature of choice D, the CTA is directly proportional

to the covariance of the responses and the choice: CTAi ¼ covðri;DÞ=½2pðD ¼ 1ÞpðD ¼ �1Þ�.
[Note: This relation holds for the covariance between any variable x and a binary variable D, and

independently of the convention adopted for the values of D: the factor 2 has to be replaced by

a� b in general for D ¼ a; b instead of D ¼ 1;�1.] This relation between CTAi and covðri;DÞ, given
the factorization corrðri;DÞ ¼ CCicorrðd;DÞ resulting from the mediating decision variable d in the

threshold model, allows expressing the CTAi as in Equation 5, connecting CTAi to the choice-trig-

gered average of d, CTAd. This connection indicates that in the threshold model CTAi is expected

to be stimulus dependent, since an informative stimulus s shifts the mean of d, thus altering the

dichotomization of d produced by the threshold q. The exact form of CTAd depends on the distribu-

tion pðdÞ. However, since d is determined by a whole population of neurons, its distribution is

expected to be well approximated by a Gaussian distribution, even if the distribution of neural

responses for any single neuron is not Gaussian. With this Gaussian approximation, the normalized

CTAd in Equation 5, namely CTAd=
ffiffiffiffiffiffiffiffiffiffiffi

var d
p

, is specified in terms of the probability of choosing

choice 1, pCR � pðD ¼ 1Þ ¼ pðd>�Þ, by the factor hðpCRÞ (Equation 6). In more detail, the CTA is
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CTAi � hriiD¼1
�hriiD¼�1

¼ 4hðpCRÞ
ffiffiffiffiffiffi

2p
p �ridsri ¼

4hðpCRÞ
ffiffiffiffiffiffi

2p
p

sd

sri;d: (17)

Neuronal data
To study stimulus dependencies in the relationship between the responses of sensory neurons and

the behavioral choice, we analyzed the data from Britten et al., 1996 publicly available in the Neural

Signal Archive (http://www.neuralsignal.org). In particular, we analyzed data from file nsa2004.1,

which contains single unit responses of macaque MT cells during a random dot discrimination task.

This file contains 213 cells from three monkeys. We also used file nsa2004.2, which contains paired

single units recordings from 38 sites from one monkey. In the experimental design, for the single

unit recordings the direction tuning curve of each neuron was used to assign a preferred-null axis of

stimulus motion, such that opposite directions along the axis yield a maximal difference in respon-

siveness (Bair et al., 2001). For paired recordings, the direction of stimulus motion was selected

based on the direction tuning curve of the two neurons and the criterion used to assign it varied

depending on the similarity between the tuning curves. For cells with similar tuning, a compromise

between the preferred directions of the two neurons was made. For cells with different tuning, the

axis were chosen to match the preference of the most responsive cell. To minimize the influence in

our analysis of the direction of motion selection, we only analyzed the most responsive cell from

each site. Accordingly, our initial data set consisted in a total of 251 cells. The same qualitative

results were obtained when limiting the analysis to data from nsa2004.1 alone. Further criteria

regarding the number of trials per each stimulus level were used to select the cells. As discussed

below, if not indicated otherwise, we present the results from 107 cells that fulfilled all the criteria

required.

Analysis of stimulus-dependent choice probabilities
Our analysis of choice probabilities stimulus dependencies is based on examining the patterns in the

CPðpCRÞ profile as a function of the probability pCR � pðD ¼ 1Þ. We here describe how these profiles

are constructed, the surrogates-based method used to assess the significance of stimulus dependen-

cies, and the clustering analysis used to identify different stimulus dependence patterns. Matlab

functions are available at https://github.com/DanielChicharro/CP_DP (Chicharro, 2021; copy

archived at swh:1:rev:5850c573860eb04317e7dc550f96b1f47ca91c6a) to calculate weighted average

CPs, to obtain CP profiles, and to generate surrogates consistent with the null hypothesis of a con-

stant CP.

Profiles of CP as a function of the choice rate
We constructed CPðpCRÞ profiles instead of CPðsÞ profiles based on the prediction from the theoreti-

cal threshold model of the modulatory factor hðpCRÞ. We estimated the pCR value associated with

each random dots coherence level using the psychophysical function for each monkey separately.

For each coherence level, we calculated a CP value if at least 15 trials were available in total, and at

least four for each choice. In the original analysis of Britten et al., 1996 stimulus dependencies

CPðsÞ were examined averaging across cells the CP at each coherence level. This analysis did not

separate the within-cell stimulus dependencies CPðsÞ from variability due to changes in choice prob-

abilities across cells. In particular, in the data set the stimulus levels presented vary across cells,

which means that for each coherence level the average CP does not only reflect any potential stimu-

lus dependence of the CP but also which subset of cells contribute to the average at that level.

Therefore, we binned the range of pCR in a way that for each cell at least one stimulus level mapped

to each bin of pCR. We here present the results using five bins defined as

½0� 0:3; 0:3� ð0:5� "Þ; ð0:5� "Þ � ð0:5þ "Þ; ð0:5þ "Þ � 0:7; 0:7� 1�, where e was selected such that

only trials with the uninformative (zero coherence) stimulus were comprised in the central bin. Results

are robust to the exact definition of the bins. We selected larger bins for highly informative stimulus

levels for two reasons. First, the stimulus levels used in the experimental design do not uniformly

cover the range of pCR, there are more stimulus levels corresponding to pCR values close to

pCR ¼ 0:5. Second, the CP estimates are worse for highly informative stimuli. In particular, the stan-

dard error of the CP estimates depends on the magnitude of the CP itself (Bamber, 1975;

Hanley and McNeil, 1982) but for small jCP� 0:5j can be approximated as
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SEMðĈPÞ»1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12KpCRð1� pCRÞ
p

; (18)

where K is the number of trials. The product pCRð1� pCRÞ is maximal at pCR ¼ 0:5 and decreases

quadratically when pCR approximates 0 or 1. Furthermore, in the data set the number of trials K is

higher for stimuli with low information, while most frequently K ¼ 30 for highly informative stimuli.

We used these estimates of the ĈP error to combine the CPs of Mk different stimulus levels assigned

to the same bin k of pCR. The average CPðpCR;kÞ for bin k was calculated as

CPðpCR;kÞ ¼
PMk

j wjCPðsjkÞ with normalized weights proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KjpCR;jð1� pCR;jÞ
p

. A full profile

CPðpCRÞ could be constructed for 107 cells, while for the rest a CP value could not be calculated for

at least one of the bins because of the criteria on the number of trials. Together with the profile

CPðpCRÞ, we also obtained an estimate of its error as a weighted average of the errors, which corre-

sponds to

SEMðĈPðpCR;kÞÞ ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffi

12Mk

p

hwUiÞ; (19)

where hwUi is the average of the unormalized weights wU;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KjpCR;jð1� pCR;jÞ
p

. Following this proce-

dure, we can iteratively calculate weighted averages of the CPs across different sets. In particular,

we used this same type of average to obtain averaged CPðpCRÞ profiles across cells. Importantly, in

contrast to the analysis of Britten et al., 1996, we previously separated the cells into two groups,

with a positive or negative average CP� 0:5 value, given that the effect of hðpCRÞ predicts an inverse

modulation by pCR.

Surrogates to test the significance of CP stimulus dependencies
Given a certain average profile CPðpCRÞ, we want to assess whether the pattern observed is compat-

ible with the null hypothesis of a constant CP value for all pCR values. In particular, because the error

of the CP estimates is sensitive to the number of trials K and to pCR (Equation 18), we want to dis-

card that any structure observed is only a consequence of changes of K and pCR across the bins

used to calculate the CPðpCRÞ profiles. For this purpose, we developed a procedure to build surro-

gate data sets compatible with the hypothesis of a flat CPðpCRÞ and that preserves at each stimulus

level the number of trials for each choice equal to the number in the original data. The surrogates

are built shuffling the trials across stimulus levels to destroy any stimulus dependence of the CP.

However, because the responsiveness of the cell changes across levels according to its direction tun-

ing curve, responses need to be normalized before the shuffling. Kang and Maunsell, 2012 showed

that, to avoid underestimating the CPs, this normalization should take into account that mean

responses at each level are determined by the conditional mean response for each choice and also

by the choice rate. Under the assumption of a constant CP, they proposed an alternative z-scoring,

which estimates the mean and standard deviation correcting for the different contribution of trials

corresponding to the two choices (see Appendix 2 for details of their method).

We applied the z-scoring of Kang and Maunsell, 2012 to pool the responses within an interval of

stimulus levels with low information, preserving only the separation of trials corresponding to each

choice. We selected the interval from �1.6% to 1.6% of coherence values, which comprises a third

of the informative coherence levels used in the experiments. Because these stimuli have low informa-

tion they lead to pCR values close to pCR ¼ 0:5 and hence we can approximate the CP as constant

within this interval. The fact that the factor hðpCRÞ is almost constant around pCR ¼ 0:5 (see

Figure 2A) further supports this approach. We used this pool of neural responses to sample

responses for all stimulus levels in the surrogate data set. For each stimulus level of the surrogate

data, the number of trials for each choice was preserved as in the original data. In these surrogates,

apart from random fluctuations, any structure in the CPðpCRÞ profiles can only be produced by the

changes in K and pCR across bins. To test the existence of significant stimulus dependencies in the

original CPðpCRÞ profiles we calculated the differences DCPk ¼ CPðpCR;kþ1Þ � CPðpCR;kÞ for the bins

k ¼ 1; :::; 4. To test for an asymmetric pattern with respect to pCR ¼ 0:5 the average of DCPk across

bins was calculated. To test for a symmetric pattern the sign of the difference was flipped for the

bins corresponding to pCR<0:5 before averaging. When testing for a pattern consistent with the

modulation predicted by the threshold model, the shape was inverted for cells with average CP

lower than 0.5. The same procedure was applied to each surrogate CPðpCRÞ profile. We generated
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8000 surrogates and estimate the p-value as the number of surrogates for which the average DCP

was higher than for the original data.

Clustering analysis
We used clustering analysis to examine the patterns in the CPðpCRÞ profiles beyond the stereotyped

shape hðpCRÞ predicted from the threshold model. We first used nonparametric k-means clustering

for an exploratory analysis of which patterns are more common among the 107 cells for which a

complete CPðpCRÞ profile could be constructed. The clustering was implemented calculating cosine

distances between vectors defined as CPðpCRÞ � 0:5. The selection of this distance is consistent with

the prediction of the threshold model that a different pattern is expected for cells with a CP higher

or lower than 0.5. We examined the patterns associated with the clusters as a function of the number

of clusters to identify robust patterns of dependence (see Appendix 3—figure 1B,C). We then

focused on a symmetric and an asymmetric pattern of CPðpCRÞ with respect to pCR ¼ 0:5, for cells

with average CP higher than 0.5. To better interpret these two clusters, we complemented the anal-

ysis with a parametric clustering approach in which a symmetric and asymmetric template were a pri-

ori selected to cluster the CPðpCRÞ profiles. To assess the significance of the CPðpCRÞ patterns we

repeated the same clustering procedure for surrogate data generated as described above. We refer

to Appendix 3 for a more detailed description of the construction, visualization, and significance

assessment of the CPðpCRÞ patterns.

The effect of response gain fluctuations on choice probabilities
To model the effect on the CP of response gain fluctuations we adopted a classic feedforward

encoding/decoding model (Shadlen et al., 1996; Haefner et al., 2013), with a linear decoder

d ¼ ~w>~r (Equation 8), for which the CP depends on cross-neuronal correlations and the read-out

weights ~w following Equation 9. This expression can be derived from Equation 7 directly calculating

the choice correlation from its definition (Equation 2). The expressions covðri; dÞ ¼ ðSðsÞ~wÞi and

s2

d ¼ ~w>SðsÞ~w are obtained as derived in the Supplementary Material S1 of Haefner et al., 2013. For

this model, if the read-out weights are optimized to the form of covariability for the uninformative

stimulus s0 at the decision boundary, the CPs are proportional to the neurometric sensitivity of the

cells (Haefner et al., 2013; Pitkow et al., 2015), a relationship for which there is some experimental

support (e.g. Britten et al., 1996; Parker et al., 2002, reviewed in Nienborg et al., 2012). In more

detail, modeling the responses as ri ¼ fiðsÞ þ �i, with tuning functions ~f ðsÞ ¼ ðf1ðsÞ; :::; fnðsÞÞ and a

covariance structure S of the neuron’s intrinsic variability �i, the optimal read-out weights have the

form

~w¼ S
�1ðs0Þ~f 0ðs0Þ

~f 0Tðs0ÞS�1ðs0Þ~f 0ðs0Þ
; (20)

where ~f 0ðs0Þ and Sðs0Þ are the derivative of the tuning curves and the responses covariance matrix,

respectively, for s¼ s0. With these optimal weights, the covariability of the population responses is

unbundled, with S
�1ðs0Þ canceling the effect of Sðs0Þ in covðri;dÞ ¼ ðSðsÞ~wÞi, and for each cell the CC

is proportional to its own neurometric sensitivity f 0i =sri , namely

CCiðs0Þ ¼
f 0i ðs0Þsdðs0Þ

sriðs0Þ
: (21)

While this expression is valid for the uninformative stimulus s0, we examined how this CP expres-

sion is perturbed for other informative stimuli s in the presence of gain fluctuations that make the

covariance structure SðsÞ stimulus-dependent, altering the structure for which the read-out weights

are optimized. Goris et al., 2014 estimated that in MT gain fluctuations accounted for more than

75% of the variance in the responses to sinusoidal gratings, and we found that in the data set of

Britten et al., 1996 gain fluctuations also explain a large fraction of trial-to-trial variability of the

neurons (62 ± 25% across neurons). Trial-to-trial excitability fluctuations are modeled as a a gain

modulatory factor gk, such that the tuning function for cell i in trial k, is fikðsÞ ¼ gkfiðsÞ. In general, the

magnitude of the gain may vary across cells, as well as the degree to which the gain co-fluctuates

across cells. We here modeled a global gain fluctuation affecting the response of the whole
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population. Given the gain variability, the covariance structure can be partitioned as in Equation 10,

as the sum of a component �S unrelated to the gain fluctuations – which for simplicity we consider to

be stimulus-independent – and the gain-induced covariance s2

G
~f ðsÞ~f TðsÞ. In a first order approxima-

tion, a change Ds¼ s� s0 in the stimulus leads to a change in the covariance structure such that

SðsÞ»Sðs0Þþs2

G½~f ðs0Þ~f 0Tðs0Þþ~f 0ðs0Þ~f Tðs0Þ�Ds; (22)

where Sðs0Þ ¼ �Sþs2

G
~f ðs0Þ~f Tðs0Þ is the covariance structure for which the weights are optimized. Com-

bining this covariance structure with the form of the optimal read-out weights (Equation 20), we

derive the changes in covðri;dÞ, s2

ri
, and s2

d with Ds, and given Equation 9 determine the perturbation

of the CP, leading to the following CP expressions

CCiðpCR ¼ 0:5Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�l2i

q

CCi0ðpCR ¼ 0:5Þ (23a)

CCiðpCRÞ»CCiðpCR ¼ 0:5Þ 1�bsr
DsðpCRÞ

� �

þ s2

Gfiðs0ÞDsðpCRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w>Sðs0Þ~w
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

Siiðs0Þ
p ; (23b)

where s2

dðs0Þ ¼~w>Sðs0Þ~w, s2

ri
ðs0Þ ¼ Siiðs0Þ, bsr

� s2

Gfiðs0Þf 0i ðs0Þ=s2

ri
ðs0Þ, and l2i � s2

rig
ðs0Þ=s2

ri
ðs0Þ, as

introduced in Equation 11, with s0 resulting in pCR ¼ 0:5 for an unbiased decoder. Equation 23a

relates the choice correlation for pCR ¼ 0:5 with the choice correlation CCi0ðpCR ¼ 0:5Þ that cell i

would have if there were no gain fluctuations (s2

G ¼ 0). The coefficient bCC �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�l2i

q

indicates a

decrease in the CC in the presence of gain fluctuations, because of the increase in the response vari-

ability produced by the fluctuations, namely s2

rig
¼ s2

Gf
2

i . Equation 23b describes the CCðpCRÞ profile
induced by the gain fluctuations. The second summand corresponds to the increase in the choice

correlation due to a new component of covðri;dÞ proportional to Ds, given that the whole population

response determining d is jointly modulated by the gain. In the first summand, the factor

1�bsr
DsðpCRÞ

� �

indicates an attenuation of CCiðpCR ¼ 0:5Þ analogous to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�l2i

q

in Equation 23a,

associated with an increase of the variance in the responses ri due to Ds. Rearranging the terms in

Equation 23b, and taking into account the form of the CC for pCR ¼ 0:5 (Equation 21), the expres-

sion in Equation 11 is obtained, which indicates that the overall effect of the gain fluctuations is an

increase of the choice correlation for the stimuli to which the cell is more responsive. A more general

form of this expression is derived in Appendix 4, valid for any unbiased decoder.

Apart from producing an asymmetric CPðpCRÞ pattern, the gain fluctuations also create a negative

covariation between the CP at pCR ¼ 0:5 and the degree of asymmetry of the CPðpCRÞ pattern. This
covariation appears because the cells with a higher portion of their variability driven by the gain fluc-

tuations (higher li) have a higher attenuation of CCiðpCR ¼ 0:5Þ, given Equation 23a, while both a

higher li and smaller CCiðpCR ¼ 0:5Þ lead to an increase in the slope bpCR
� sGlið1� CC2

i ðpCR ¼ 0:5ÞÞ
of the dependence on DsðpCRÞ in Equation 23b. Furthermore, a smaller CCiðpCR ¼ 0:5Þ also leads to

a smaller effect of the multiplicative symmetric modulation hðpCRÞ, further contributing to the nega-

tive covariation between the magnitude of the CP and predominance of the symmetric or asymmet-

ric pattern.

To illustrate the properties common to the model and to the CPðpCRÞ patterns from the MT data,

Figure 4E shows CPs from Equation 23 as a function of pCR for examples combining four values of

CCi0ðpCR ¼ 0:5Þ and two values of s2

G, while the other parameters of the cell responses are kept con-

stant. In particular, to determine l2i only in terms of the strength of the gain we fixed the rate to

fiðpCR ¼ 0:5Þ ¼ 10 spike=s and considered the variance not associated with the gain to be equal to

that rate, so that l2i ¼ 1=ð1þ 0:1=s2

GÞ. Accordingly, the values of s2

G in Figure 4E, namely s2

G ¼ 0:1

and s2

G ¼ 0:01, correspond to l2i ¼ 0:5 and l2i ¼ 0:09, respectively. Further analysis of the model is

provided in Appendix 4, where we also discuss the form of the CPðpCRÞ pattern produced by gain

fluctuations when the decoder is composed by two pools of opposite choice preference

(Shadlen et al., 1996).

To experimentally estimate the coefficients bðexpÞ
pCR

we fitted a quadratic regression of the CPs on

the stimulus levels. To theoretically estimate the coefficients bðthÞ
pCR

, we used the negative binomial
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model of Goris et al., 2014 to estimate s2

G for each cell and used the form

bpCR
� sGlið1� CC2

i ðpCR ¼ 0:5ÞÞ predicted by the gain model (Equation 11) to estimate bðthÞ
pCR

.

Generalized linear models modeling the interaction between stimulus
and choice predictors
We implemented a new GLM, called stimulus-dependent-choice GLM, that includes regression coef-

ficients quantifying the effect on the firing rate of interactions between stimulus and choice. This

model of the firing rate of each neuron was compared to two simpler and traditional models: a stim-

ulus-only GLM, which includes only stimulus predictors of the neuron’s firing rate, and a stimulus-

independent-choice GLM, which includes together with the stimulus predictor a single, stimulus-

independent choice predictor.

In more detail, all three GLMs were Poisson models in which the mean firing rate �ðriÞ of cell i

was generally expressed by the following equation:

logð�ðriÞÞ ¼ S
4

j¼0
ajs

j þS
Nc

j¼1
IPj
ðpCRÞbjD: (24)

The terms S
4

j¼0
ajs

j are present in all three types of GLM, and model the stimulus influence with a

fourth order polynomial function of the stimulus level. These are the only terms of the stimulus-only

GLM.

The choice dependence is modeled by S
Nc

j¼1
IPj
ðpCRÞbjD, with the parameter Nc (Nc 2 f1; 2; 3g) set-

ting the number of possible different levels of stimulus-dependent choice (we restricted the fitting

to up to three different choice levels for simplicity, and because we found empirically this to work

well for the MT data analyzed here). IPj
ðpCRÞ is an indicator function which equals one if a pCR value

belongs to the subset Pj of values selected to be associated with the choice parameter bj, and is

zero otherwise. For the stimulus-independent-choice model, we set Nc ¼ 1 so that the choice affects

the predicted responses equally for all stimulus levels. For the stimulus-dependent-choice GLM, we

set Nc>1. For this stimulus-dependent-choice GLM, we determined the subsets of stimulus levels

associated with each of those parameters using the CPðpCRÞ profiles for a first characterization of

the stimulus dependencies. Like for the CP analysis, for each cell we determined which coherence

values could be included in the analysis given a criterion requiring a minimum number of trials for

each choice (at least 4). The existence of non-monotonic CPðpCRÞ profiles, such as the symmetric

pattern around pCR ¼ 0:5, indicated that it would be sub-optimal to tile the domain of pCR with Np

bins and assign a different choice-parameter level to each bin. Accordingly, we first estimated the

CPðpCRÞ profile of each cell and then used k-means clustering with an Euclidean distance to cluster

the components of CPðpCRÞ, corresponding to the bins of pCR, into Nc subsets. A different GLM

choice-parameter bj was then assigned to each choice-parameter level j ¼ 1; :::Nc.

We compared the predictive power of the three types of models using cross-validation. To avoid

that the choice-parameters fitted were affected by the ratio of trials with each choice, we matched

the number of trials of each choice used to fit the model at each choice-parameter level. We first

merged in two pools, one for each choice separately, the trials of all stimulus levels assigned to the

same choice-parameter level. We then determined the number of trials from each pool to be

included in the fitting set as an 80% of the trials available in the smallest pool, hence matching the

number of trials selected from each choice. The remaining trials were left for the testing set. This

procedure was repeated for each choice-parameter level and a GLM model was fitted on the fitting

set obtained combining the selected trials for all levels. This random separation between fitting and

testing data sets was repeated 50 times and the average predictive power was calculated. Perfor-

mance was then quantified comparing the increase in the likelihood of the data in the testing set

with respect to the likelihood of the null model which assumes a constant firing rate (L0). To deter-

mine if incorporating the choice as a predictor improved the prediction, we examined the relative

increase in likelihood (RIL) defined as the ratio of the likelihood increase

Lðchoice; stimulusÞ � LðstimulusÞ and the increase LðstimulusÞ � L0. For the stimulus-dependent-choice

models, we selected the most predictive model from Nc ¼ 2; 3. To evaluate the improvement when

considering stimulus-dependent choice influences, we compared the RIL obtained for the stimulus-

dependent-choice and stimulus-independent-choice models.
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Code availability
The codes for the analysis of Choice Probability stimulus-dependencies and GLMs with stimulus-

choice interaction terms are available at https://github.com/DanielChicharro/CP_DP (copy archived

at swh:1:rev:5850c573860eb04317e7dc550f96b1f47ca91c6a).
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Appendix 1

The analytical threshold model of choice probability
We here provide details of how the CP analytical expression of Equation 16 is obtained from the

definition of Choice Probability (Equation 12) when the probability of the responses for each choice

has the form of Equation 15, derived from the threshold model. We subsequently characterize the

statistical power for the detection of the threshold-induced modulation hðpCRÞ, as a function of the

magnitude of the CP, the number of trials, and the number of cells used to estimate an average

CPðpCRÞ profile.

Derivation of the CP analytical expression

Plugging the distribution of Equation 15 into the definition of the CP we get

CPi ¼
1

2pCRð1� pCRÞ
1�a

Z

¥

�¥

dxfðaxþ cÞF2ðxÞ�
Z

¥

�¥

dxfðxÞFðaxþ cÞ

0

@

1

A

22

4

3

5: (A1)

This expression is derived analogously to Equation S1.2 in Haefner et al., 2013, and generalizes

the case examined there, which corresponds to c¼ 0. To solve this expression, we use some results

involving integrals of normal distributions:
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(A2)

where b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þa2
p

and T is the Owen’s T function (Owen, 1956). The equality above is valid for

the cases q¼ 0;n¼ 1;2, and q¼ 1;n¼ 1, which we used to derive the expressions of the CP and CTA.

Using the equality for q¼ 0;n¼ 1;2 into Equation (A1) we obtain the CP expression of Equation 16.

On the other hand, the case with q¼ 1;n¼ 1 allows deriving the expression of the CTA (Equation 17)

calculating hriiD¼1
and hriiD¼�1

using the form of Equation 15 for PðrijD¼ 1Þ.
The CP linear approximation of Equation 4 is generically valid when the activity-choice covaria-

tions are well captured by the linear dependence between the responses and the choice. It can be

generically derived with a first order approximation such that d or D only affect the mean of the dis-

tribution of the responses ri. We here only present a restricted derivation, specifically from the exact

CP solution resulting from the threshold model. It can be checked that the same approximation fol-

lows for example from the exact solution of the CP obtained when taking the conditional distribu-

tions pðrijDÞ to be Gaussians (Dayan and Abbot, 2001; Carnevale et al., 2013) and not skew

normals (Equation 15) like for the threshold model. Expanding Equation 16 in terms of �rid we get a

polynomial approximation

CPi ¼
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This expansion contains only odd order terms, producing a symmetry of CP� 0:5 with respect to

the sign of �rid. This explains why Haefner et al., 2013 found that the linear approximation was accu-

rate for a wide range of �rid values, since the choice correlation needs to be high so that the contri-

bution of �3rid is relevant. Up to order 3.

CPi »
1

2
þ

ffiffiffi

2
p

hðpCRÞ
p

�rid þ
1�ðF�1ðpCRÞÞ2

12
�3rid

" #

: (A4)

Since F
�1ð0:5Þ ¼ 0, for pCR values for which j1�ðF�1ðpCRÞÞ2j<1 the third order term makes a
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smaller contribution than for the uninformative case. This is true for F
�1ðpCRÞ 2 ð�

ffiffiffi

2
p

;
ffiffiffi

2
p

Þ, which
leads to pCR 2 ð0:08;0:92Þ. This means that the linear approximation is expected to be an even better

approximation in this range than for pCR ¼ 0:5. Furthermore, for ðF�1ðpCRÞÞ2<1 the third order contri-

bution is positive, so that for the pCR values fulfilling this constraint, pCR 2 ð0:16;0:84Þ, the linear

approximation is expected to underestimate the CP. The range of pCR in which the linear approxima-

tion underestimates or overestimates the CP can be seen in Figure 2 of the main article.

Statistical power for the detection of threshold-induced CP stimulus
dependencies

In Figure 2, we showed the shape and magnitude of the threshold-induced CP modulation for differ-

ent values of CPðpCR ¼ 0:5Þ. The magnitude of this modulation is small and is most noticeable for

the extreme pCR values, for which the estimation of the CPs is also the poorest. As discussed in the

Results, we calculated weighted average CPs both across stimulus levels and across cells to reduce

the standard error of the resulting averaged within-cell CPðpCRÞ profiles. We here characterize the

statistical power for the detection of this CP modulation as a function of the magnitude of

CPðpCR ¼ 0:5Þ, the number of cells, and the number of trials per stimulus level. For this purpose, we

generated responses following the probability distribution analytically derived in the model (Equa-

tion 15). We selected five CPðpCR ¼ 0:5Þ levels, namely f0:55; 0:6; 0:65; 0:7; 0:75g, and for each we

simulated cell responses corresponding to different pCR values. We simulated responses for a collec-

tion of 5000 cells, selecting their CPðpCR ¼ 0:5Þ values from a uniform distribution centered at each

CPðpCR ¼ 0:5Þ level, and a range of width 0.1. We repeated the same procedure using different

numbers of trials. For each selection of the number of trials, we generated three times that number

of trials for the pCR bin corresponding to an uninformative stimulus, to allow the shuffling of trials

used in the construction of surrogate data, as for the experimental data. We estimated averaged

CPðpCRÞ profiles for different numbers N of cells. We repeated this estimation 500 times, indepen-

dently randomly sampling from the 5000 cells the N cells used for the average. For each of these

repetitions, we generated the surrogate data required to implement the surrogates test described

in Methods.

Appendix 1—figure 1 shows the p-values obtained when testing for a symmetric increase of the

CP with extreme pCR values. As expected, p-values decrease with the number of cells, the number

of trials, and the magnitude of the CP. This characterization of the p-values indicates the utility of

our method to calculate averaged within-cell CPðpCRÞ profiles, combining CP estimates across neigh-

boring stimulus levels -analogously to increasing the number of trials- as well as averaging CP esti-

mates across cells. We can compare these predicted p-values with the p-values obtained when

analyzing the experimental data. Concretely, for cluster 2 in Figure 4B, which contains N ¼ 48 cells,

the average CPðpCR ¼ 0:5Þ value is hCPðpCR ¼ 0:5Þi ¼ 0:57 and, for each of the two pCR bins most

distant from pCR ¼ 0:5, the average number of trials available is hKi ¼ 147, comprising all stimulus

levels assigned to those bins. These values of hCPðpCR ¼ 0:5Þi, N, and hKi resulted in a p-value p ¼
0:0008 (Figure 4B), which is substantially smaller than what predicted in the simulations of Appen-

dix 1—figure 1A. Accordingly, while the model correctly predicts the existence of a symmetric CP

modulation with higher CP values for extreme pCR values, it underestimates its actual strength. As

discussed in Results, this stronger symmetric modulation may be due to other symmetric contribu-

tions from CCðpCRÞ in addition to hðpCRÞ, or to a dynamic amplification of the threshold-induced

modulation, for example due to reinforcing decision-related feedback signals. Independently of the

origin if this higher effect size, the method developed to better characterize within-cell CPðpCRÞ
dependencies allowed us to detect the actual presence of CP stimulus dependencies in the

Britten et al., 1996 data, and promises to be a useful tool to characterize the properties of these

dependencies.
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Appendix 1—figure 1. Statistical power for the detection of threshold-induced CP stimulus depen-

dencies. For cell responses generated from the threshold model (see text for details), the figure

characterizes the p-values obtained in the surrogates test used to assess the presence of a

symmetric modulation of the CP, with increased CP values for unbalanced choice rates. Each panel

presents the p-values as a function of the number of cells included to calculate an averaged CPðpCRÞ
profile, and of the CPðpCR ¼ 0:5Þ value. Curves corresponding to different CP values are shifted for a

better visualization of the error bars (standard deviation of the p-value across 500 simulations). The

horizontal dashed line indicates the threshold of significance p ¼ 0:05.
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Appendix 2

The relation between the weighted average CP and the grand CP of
z-scored responses
We here describe the connection between a weighted average CP and the corrected z-scoring pro-

cedure Kang and Maunsell, 2012 used to calculate a grand CP pooling the responses across stimu-

lus levels. We will use zc to refer to the responses with the corrected z-scoring, as opposed to the

standard z-scoring z. For each stimulus level s, the corrected z-scoring is calculated as zc ¼
ðr � ~�rjsÞ=~srjs with

~�rjs �
�rjD¼1;sþ�rjD¼�1;s

2
; ~srjs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

rjD¼1;sþs2

rjD¼�1;s

2
þ
D�2

rjD;s
4

s

; (A5)

where �rjD¼�1;s are the mean responses to each choice for the stimulus s, s2

rjD¼�1;s are the variance of

the responses to each choice for the stimulus s, and D�rjD;s ¼ �rjD¼1;s��rjD¼�1;s is the CTA for the

fixed stimulus level s.

The relation between the CP and the CTA of Equation 4 holds due to the definition of the meas-

ures and does not depend on the nature of the response variable, and hence also holds when the

CP is not calculated for the raw responses but for their corrected z-scores. Furthermore, the relation

holds when the CP is calculated for a fixed stimulus level, or when the responses are pooled across

stimulus levels to calculate the grand CP. For the latter case

grand CPzc »
1

2
þ 1

2
ffiffiffiffi

p
p D�zc jD

szc

; (A6)

where we drop the cell index i for simplicity. We here use the notation D�zc jD ¼CTAzc and

szc ¼ var zc, in comparison to Equation 4. Furthermore, in this section we need to explicitly differenti-

ate which measures are calculated for a fixed stimulus, as indicated by the conditioning on s in the

subindex, and which measures are calculated from the distribution of the pooled responses, in which

case there is no stimulus subindex, for example, for D�zc jD. The grand CPzc and D�zcjD are calculated

from the distributions pðzcjD¼�1Þ obtained after pooling, while for a fixed stimulus CPzc ðsÞ and

D�zc jD;s are calculated from pðzjD¼�1; sÞ. The choice rate pCR is defined as in the main text as

pCR � pðD¼ 1jsÞ, although previously the dependence on the fixed stimulus was implicit.

We use the definition of zc according to Equation (A5) to calculate D�zcjD. Given the definition of

~�rjs and ~srjs, we obtain that the conditional means �zcjD¼1;s and �zcjD¼�1;s are equal to �zcjD¼1;s ¼
D�rjD;s=ð2~srjsÞ and �zcjD¼�1;s ¼ �D�rjD;s=ð2~srjsÞ, respectively. We calculate D�zcjD as follows:

D�zcjD ¼ �zcjD¼1 ��zcjD¼�1 ¼
Z

ds pðsjD¼ 1Þ�zcjD¼1;s�
Z

ds pðsjD¼�1Þ�zc jD¼�1;s

¼
Z

ds
1

2
pðsjD¼ 1Þþ pðsjD¼�1Þ½ �D�rjD;s

~srjs
:

(A7)

The first equality corresponds to the definition of D�zc jD. In the second equality, we have esti-

mated the means �zcjD¼�1 in terms of the conditional means �zc jD¼�1;s using the general property that

the mean of a variable is equal to the average of its conditional means. The third equality results

from inserting the actual values of �zcjD¼�1;s. Given Equation (A7), the choice-triggered average

obtained after pooling the normalized responses zc across stimulus levels corresponds to a weighted

average of D�rjD;s=~srjs across stimulus levels. Indeed, the factor ½pðsjD¼ 1Þþ pðsjD¼�1Þ�=2 is prop-

erly normalized and plays the role of a weight wzc ðsÞ, since
R

ds pðsjD¼�1Þ ¼ 1 and hence
R

ds wzc ðsÞ ¼ 1. Moreover, ~srjs only introduces a second-order correction with respect to the standard

normalization with srjs. In particular, given the skew-normal distributions (Equation 15) resulting

from the threshold model, both D�2

rjD;s and s2

rjD¼�1;s depend quadratically on the strength of the

activity-choice covariations, as determined by the choice correlation (Arnold and Beaver, 2000;

Azzalini, 2005). Neglecting this second-order correction we have that D�rjD;s=~srjs ffi D�rjD;s=srjs and

szc ffi sz ¼ 1. Furthermore, taking into account the general relation between the CP and CTA

Chicharro et al. eLife 2021;10:e54858. DOI: https://doi.org/10.7554/eLife.54858 33 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.54858


(Equation 4), D�rjD;s=srjs approximates 2
ffiffiffiffi

p
p ðCPrðsÞ� 1=2Þ, and analogously, as indicated in

Equation (A6), D�zc jD=szc approximates 2
ffiffiffiffi

p
p ðCPzc � 1=2Þ. Altogether, Equation (A7) can be

expressed for the CP as

CPzc »

Z

ds
1

2
pðsjD¼ 1Þþ pðsjD¼�1Þ½ �CPrðsÞ: (A8)

As mentioned above, the weights wzc ðsÞ � ½pðsjD¼ 1Þþ pðsjD¼�1Þ�=2 are properly normalized to
R

wzc ðsÞds¼ 1, and hence CPzc is approximated as a weighted average of the CPs of the responses at

each stimulus level, CPrðsÞ. This shows that in fact the use of corrected z-scores to pool responses

across stimulus levels to calculate a grand CP is in the linear approximation equivalent to calculating

a weighted average of the CPs at each stimulus level, with a specific selection of the average

weights, namely wzcðsÞ. An analogous derivation with the uncorrected z-scoring shows that in that

case the pooling across stimulus levels is associated with an improper use of unormalized weights,

which analytically confirms the arguments and simulations in Kang and Maunsell, 2012 indicating

that a grand CP calculated with the standard z-scoring provides a biased estimation of an underlying

stimulus independent CP (see a detailed derivation in section S2 of Chicharro et al., 2019). The

weights wzcðsÞ differ from the ones inversely proportional to the standard error of the CP estimates

(Equation 18). In particular, if the stimulus set is designed such that across all stimulus levels the rate

of the choices is balanced, i. e. if pðD¼ 1Þ ¼ pðD¼�1Þ, then these weights simplify to wzcðsÞ ¼ pðsÞ,
that is, the CPs are averaged according to the relative number of trials available for each stimulus

level. When there are no CP stimulus dependencies, the weights related to the estimate error are

preferable since the grand CP will provide a better estimate of the underlying constant CP. In the

presence of CP stimulus dependencies, any grand CP calculated as a weighted average across stim-

ulus levels may introduce some confoundings in the comparison of grand CPs across cell types,

areas, or across tasks. For example, if the distribution of the presented stimuli pðsÞ is not uniform,

the weights wzcðsÞ ¼ pðsÞ, will assign a higher weight to the CPðsÞ of certain stimulus levels, and dif-

ference in the grand CP across cells may reflect for which stimulus levels the cells compared have a

higher CPðsÞ. Accordingly, characterizing the CPðsÞ patterns can also help to understand if differen-

ces in grand CPs reflect functionally meaningful differences or are produced by the grand CP

weighted average estimation.
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Appendix 3

Clustering analysis
We here provide further details about the alternative procedures used to cluster the CPðpCRÞ pro-

files, about the visualization of the clusters, and about how to assess the significance of the CPðpCRÞ
patterns. As a first step, we implemented a nonparametric k-means clustering analysis to cluster the

CPðpCRÞ profiles of the 107 cells for which a full profile could be constructed. We started using C ¼
2 clusters (Figure 4A) and found that this nonparametric approach, when using the cosine distance,

recovered qualitatively the same patterns obtained when separating a priori the cells into cells with

an average CP higher or lower than 0.5 (Figure 3A). From the patterns of the two clusters only the

one of cells with an average CP higher than 0.5 was found significant (see below for details on the

significance analysis). Given this difference in significance, we subsequently increased the number of

clusters in two alternative ways. In a first approach, we a priori separated the cells with an average

CP higher or lower than 0.5 and continued the clustering analysis separately for these two groups.

Appendix 3—figure 1A shows the obtained subclusters with C ¼ 2 for the two groups separately.

As a second approach, we increased the number of clusters to C ¼ 3 without any previous separa-

tion in two groups. The resulting clusters (Appendix 3—figure 1B) indicated that the separation of

the two subclusters for the cells with average CP higher than 0.5 naturally appears without enforcing

the separation. Increasing the number of clusters without any a priori separation provided evidence

that the two main patterns for cells with average CP higher than 0.5 are robust and still contain a

substantial portion of the cells even for C ¼ 6 (Appendix 3—figure 1C). We therefore focused our

posterior analysis in characterizing the features of these symmetric and asymmetric patterns.
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Appendix 3—figure 1. Subclustering of CPðpCRÞ dependencies. (a) Analogous to Figure 4B but

showing also the average profiles for the two subclusters obtained from cells with average CP<0:5.

(b) Nonparametric k-means clustering with three clusters determined from all cells. (c)

Nonparametric k-means clustering with six clusters determined from all cells. The clusters more

similar to the ones of Figure 4B are correspondingly coloured.

To evaluate the significance of the CPðpCRÞ patterns found with the clustering analysis, we

repeated the same clustering procedure for the surrogate data generated as described in Methods.

For each surrogate, each of the C clusters found was associated with the most similar original pat-

tern of the ones being tested. For example, in Figure 4B, when testing the significance of the sym-

metric and asymmetric patterns for cells with average CP higher than 0.5, each of the two surrogate

cluster patterns was assigned to the most similar pattern among the symmetric and asymmetric one.

Subsequently, the average of DCPk across bins was calculated for the original and surrogate profiles

as explained in the Methods. The p-value corresponding to each original pattern was calculated

from the number of surrogate patterns associated with it for which the average DCPk was higher.

To visualize the clusters in Figure 4 and Appendix 3—figure 1A, we constructed orthonormal

axes using either the vectors corresponding to the center of the clusters or the selected templates,

for nonparametric and parametric clustering, respectively. In the case of nonparametric clustering,

the x-axis corresponds to the separation between the two initial clusters, and is closely aligned to

the departure of the average CP from 0.5. The y-axis was built as a projection orthogonal to the

x-axis of the vector connecting the center of the two subclusters. When templates were used, the
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x-axis corresponds to the template with a constant CP and the y-axis was built as an orthogonal pro-

jection of the template with an asymmetric profile (a vector with a positive unit slope).
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Appendix 4

The effect of gain fluctuations on the CP
We here derive a general CP expression accounting for the effect of response gain fluctuations valid

for a feedforward encoding/decoding decision-making model with any unbiased weights, and subse-

quently focus on the decoder based on two pools of cells with opposite choice preference, as previ-

ously studied in Shadlen et al., 1996. As described in Methods, we consider a decoder d ¼ ~w>~r

(Equation 8), estimating the decision variable d from the responses ri ¼ fiðsÞ þ �i, with tuning func-

tions ~f ðsÞ ¼ ðf1ðsÞ; :::; fnðsÞÞ and a covariance structure SðsÞ of the neuron’s intrinsic variability �i. The

general expression of the CP valid for any stimulus level and agnostic about the source of the activity

source covariations is

CPiðsÞ»
1

2
þ

ffiffiffi

2
p

hðpCRÞ
p

CCiðsÞ; (A9)

and, as described in Equation 9, the CC is determined by the covariance matrix SðsÞ and the read-

out weights ~w as

CCiðsÞ ¼
ðSðsÞ~wÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w>SðsÞ~w
p

ffiffiffiffiffiffiffiffiffiffiffiffi

s2
ri
ðsÞ

q (A10)

where covðri;dÞðsÞ ¼ ðSðsÞ~wÞi and s2

dðsÞ ¼~w>SðsÞ~w. Given that the covariance matrix has a structure

SðsÞ ¼ �Sþs2

G
~f ðsÞ~f>ðsÞ (Equation 10), with the component s2

G
~f ðsÞ~f>ðsÞ induced by the gain fluctua-

tions, a change Ds¼ s� s0 in the stimulus level departing from the uninformative stimulus s0 alters

the covariance structure as indicated in Equation 22. This leads to the following perturbation of the

CC

CCiðsÞ»CCiðs0Þ 1� 1

2

Ds2

dðsÞ
s2

dðs0Þ
þ
Ds2

ri
ðsÞ

s2
ri
ðs0Þ

 !

Ds

" #

þDcovðri;dÞðsÞDs
sriðs0Þsdðs0Þ

; (A11)

which is a generalization of Equation 23b, where Ds2

ri
ðsÞ, Ds2

dðsÞ, and Dcovðri;dÞðsÞ are the changes

produced in the variances and covariance due to Ds. From Equations (A10) and 22, the change in

the variability of the responses is Ds2

ri
ðsÞ ¼ 2s2

Gfiðs0Þf 0i ðs0Þ, the change in the variability of the decision

variable is Ds2

dðsÞ ¼ 2s2

G~w
>~f ðs0Þ~w>~f 0ðs0Þ, and the covariance varies in

Dcovðri;dÞðsÞ ¼ s2

Gfkðs0Þ~w>~f 0ðs0Þþs2

Gf
0
kðs0Þ~w>~f ðs0Þ. Furthermore, for any unbiased decoder

~w>~f 0ðs0Þ ¼ 1, so that d¼~w>~r properly estimates dðsÞ� dðs0Þ ¼~w> ~f 0ðs0ÞDs¼ Ds (Moreno-Bote et al.,

2014). Taking this into account, Equation (A11) can be expressed as

CCiðsÞ»CCiðs0Þ 1�sG ldhd þlihið ÞDs½ �þsG ldhi þlihdð ÞDs: (A12)

Here li � srigðs0Þ=sriðs0Þ quantifies the portion of the responses variance of cell i caused by the

gain fluctuations, as defined in Equation 11, and ld �~w>~f ðs0Þ=sdðs0Þ quantifies the portion of the

variance of the decision variable caused by the gain fluctuations. We define hi � f 0i ðs0Þ=sriðs0Þ, which
quantifies the neurometric sensitivity of the cell, and hd � 1=sdðs0Þ, which quantifies the behavioral

sensitivity. Note that Pitkow et al., 2015 defined the so-called neural threshold �i and behavioral

threshold �d such that hi ¼ 1=�i and hd ¼ 1=�d, but in our case the measures of sensitivity are more

suited to describe the dependence of the CC. In particular, the CCiðs0Þ of the uninformative stimulus

has an attenuation factor that depends on the relative increase in variability in the responses and in

the decision variable, each determined by the product lkhk of the sensitivity to the change in the

stimulus and the relative magnitude of the variance produced by the gain fluctuations. On the other

hand, the additional contribution to CCiðsÞ depends on the cross-products lkhk0 , of the relative mag-

nitude of the gain-related variance for the cell and the sensitivity of the decision variable, or vice-

versa. Rearranging the terms this equation can also be expressed as

CCiðsÞ»CCiðs0ÞþsG lihd 1�CCiðs0Þ
hi

hd

� �

þldhi 1�CCiðs0Þ
hd

hi

� �� �

Ds: (A13)
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From this expression, Equation 23b in Methods is recovered for the case of the optimal decoder,

since the CC with the optimal decoder at s0 is equal to the ratio of the neural and the behavioral

threshold (Pitkow et al., 2015), that is, CCðs0Þ ¼ hi=hd, as indicated in Equation 21. For this optimal

decoder the second summand of Equation (A13) is canceled out, while in the first CCiðs0Þhi=hd

equals CC2

i ðs0Þ, ensuring that the slope of dependence on Ds is positive. More generally, ld ¼
~w>~f ðs0Þ is zero when the decoder is uncorrelated to the magnitude of the tuning curves. In this case

the performance of the decoder is not affected by global gain fluctuations when presenting a non-

informative stimulus (Moreno-Bote et al., 2014; Ecker et al., 2016) and the gain does not contrib-

ute to the variability of d or its covariance with the cell responses. This additional assumption was

used to determine Equation 23a, such that only the variance of the cell changes with respect to the

case of no gain fluctuations.

We now additionally examine the decoder formed by two pools of cells with opposite choice

preference, because of the role it has played in previous understanding of activity-choice covaria-

tions (Shadlen et al., 1996; Cohen and Newsome, 2009b). We consider the particular configuration

examined in Haefner et al., 2013, such that the decoder is formed by n neurons divided in two

pools of n=2 neurons, all with the same variance s2

ri
ðs0Þ, and with the same intra-pool covariance

covjjðri; rjÞ for all pairs of cells within the same pool and the same inter-pool cov?ðri; rjÞ for all pairs

across pools. The read-out weights all have the same magnitude, with opposite sign for the cells of

the two pools. For this configuration, Haefner et al., 2013 derived (see their Suppl. Material S5) that

CCiðs0Þ» �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=nþ D%=2
p

, where D% � ð1� 2=nÞ�jj � �? is the difference between the intra- and inter-

pool correlations, in the limit of a large pool, and the sign of the choice correlation is the opposite

across pools. They also showed that sdðs0Þ ¼ nsriðs0ÞjCCiðs0Þj=c, with c being a normalization factor

of the weights to ensure that the decoder is unbiased (~w>~f 0ðs0Þ ¼ 1). Accordingly, for this decoder

hi=hd ¼ nf 0i ðs0ÞjCCiðs0Þj=c. Assuming that for a pair of neuron/antineuron in the two pools their firing

rates have derivatives of same magnitude and opposite sign, c ¼ nhjf 0ðs0Þji, being hjf 0ðs0Þji the aver-

age of the magnitude of the derivatives. This leads to hi=hd ¼ f 0i ðs0ÞjCCiðs0Þj=hjf 0ðs0Þji. Further follow-
ing the idea that the two pools contain neurons and antineurons with the same response properties

but opposite choice preference (Cohen and Newsome, 2009b), ld ¼ ~w>~f ðs0Þ ¼ 0, since for the unin-

formative stimulus each neuron with tuning curve fkðs0Þ is paired by a cell in the other pool with the

same firing rate and an equal weight but of opposite sign. Accordingly, for this decoder

Equation (A13) takes the form

CCiðsÞ»CCiðs0ÞþsGlihd 1�CC2

i ðs0Þ
f 0i ðs0Þ

hjf 0ðs0Þji

� �

Ds: (A14)

Given the structure of the covariance matrix, this decoder is in fact optimal if furthermore all cells

had the same derivative f 0i ðs0Þ, in which case Equation (A14) equals Equation 11 and for all cells the

CPðsÞ pattern has a positive slope in dependence on Ds. More generally, with this two-pools

decoder and covariance matrix, the CPðsÞ pattern can have a negative slope for those cells with

larger derivatives. Indeed, only for the optimal decoder the general model of Equation (A13) guar-

antees a positive slope.

Finally, in Appendix 4—figure 1 we further characterize the dependencies predicted by the

model when using an optimal decoder (Equations 11 and 23). The covariation of the coefficients

bpCR
� sGlið1� CC2

i ðpCR ¼ 0:5ÞÞ from Equation 23b and bCC �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2i

q

from Equation 23a that

modulate the strength of the CPðpCRÞ dependence and the magnitude of CPiðpCR ¼ 0:5Þ, respec-
tively, is shown in Appendix 4—figure 1A. We determined l2i only in terms of the strength of the

gain as for Figure 4E, namely as l2i ¼ 1=ð1þ 0:1=s2

GÞ. The range s2

G ¼ ½0� 0:5� corresponds to

l2i ¼ ½0� 0:83�. Appendix 4—figure 1B-C further illustrate how combinations of different

CCi0ðpCR ¼ 0:5Þ and s2

G populate the 2-D space of CPðpCRÞ profiles as in Figure 4D,E. CPðpCRÞ pro-
files were simulated randomly sampling the average CP values from the ones observed for the MT

cells. For Appendix 4—figure 1B,D, the fluctuation gains were uniformly sampled from the interval

s2

G ¼ ½0 � 0:1�, corresponding to l2i ¼ ½0 � 0:5�. For Appendix 4—figure 1C,E, the 2-D space was

not evenly sampled, simulating a further dependence between CCi0ðpCR ¼ 0:5Þ and s2

G values which
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determines the exact balance between the symmetric and asymmetric dependencies observed in

the average profiles associated with each cluster.
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Appendix 4—figure 1. Modeling the influence of neuronal gain modulation on CPðpCRÞ profiles. (a)

Dependence of gain coefficients bCC and bpCR
(Equations 23) on the strength of the gain

fluctuations, sG
2 determines their effect on the choice correlation CCiðs0Þ for the uninformative

stimulus s0. bpCR
determines the degree of asymmetry of the choice correlation dependence on the

pCR. (b) CPðpCRÞ profiles, represented in the same 2-D space as in Figure 4D,E, generated with a

uniform sampling of CCi0ðs0Þ consistent with the observed average CPs of the MT cells, and with a

uniform sampling of the gain (s2

G ~Uð0; 0:1Þ). (c) Analogous to b, but with a nonuniform distribution

in the 2-D space, reflecting structure in the covariation of CCi0ðs0Þ and s2

G. (d–e) CPðpCRÞ profiles
corresponding to the clusters centers obtained when sampling the space according to panels b and

c, respectively.
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