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Abstract: Understanding how different information sources together transmit information is crucial
in many domains. For example, understanding the neural code requires characterizing how different
neurons contribute unique, redundant, or synergistic pieces of information about sensory or behavioral
variables. Williams and Beer (2010) proposed a partial information decomposition (PID) that separates
the mutual information that a set of sources contains about a set of targets into nonnegative terms
interpretable as these pieces. Quantifying redundancy requires assigning an identity to different
information pieces, to assess when information is common across sources. Harder et al. (2013)
proposed an identity axiom that imposes necessary conditions to quantify qualitatively common
information. However, Bertschinger et al. (2012) showed that, in a counterexample with deterministic
target-source dependencies, the identity axiom is incompatible with ensuring PID nonnegativity.
Here, we study systematically the consequences of information identity criteria that assign identity
based on associations between target and source variables resulting from deterministic dependencies.
We show how these criteria are related to the identity axiom and to previously proposed redundancy
measures, and we characterize how they lead to negative PID terms. This constitutes a further
step to more explicitly address the role of information identity in the quantification of redundancy.
The implications for studying neural coding are discussed.

Keywords: information theory; mutual information decomposition; synergy; redundancy
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1. Introduction

The characterization of dependencies between the parts of a multivariate system helps to
understand its function and its underlying mechanisms. Within the information-theoretic framework,
this problem can be investigated by breaking down into parts the joint entropy of a set of variables [1–3]
or the mutual information between sets of variables [4–6]. These approaches have many applications
to study dependencies in complex systems such as gene networks (e.g., [7–9]), neural coding and
communication (e.g., [10–12]), or interactive agents (e.g., [13–15]).

An important aspect of how information is distributed across a set of variables concerns
whether different variables provide redundant, unique or synergistic information when combined
with other variables. Intuitively, variables share redundant information if each variable carries
individually the same information carried by other variables. Information carried by a certain variable
is unique if it is not carried by any other variables or their combination, and a group of variables
carries synergistic information if some information arises only when they are combined. The presence
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of these different types of information has implications for example to determine how the information
can be decoded [16], how robust it is to disruptions of the system [17], or how the variables’ set can be
compressed without information loss [18].

Characterizing the distribution of redundant, unique, and synergistic information is especially
relevant in systems neuroscience, to understand how information is distributed in neural population
responses. This requires identifying the features of neural responses that represent sensory stimuli
and behavioral actions [19,20] and how this information is transmitted and transformed across brain
areas [21,22]. The breakdown of information into these different types of components can determine the
contribution of different classes of neurons and of different spatiotemporal components of population
activity [23,24]. Moreover, the identification of synergistic or redundant components of information
transfer may help to map dynamic functional connectivity and the integration of information across
neurons or networks [25–28].

Although the notions of redundant, unique, and synergistic information seem at first intuitive,
their rigorous quantification within the information-theoretic framework has proven to be elusive.
Synergy and redundancy have traditionally been quantified with the measure called interaction
information [29] or co-information [30], but this measure does not quantify them separately, and the
presence of one or the other is associated with positive or negative values, respectively. Synergy has
also been quantified using maximum entropy models as the information that can only be retrieved
from the joint distribution of the variables [1,31,32].

However, a recent seminal work of [33] introduced a framework, called Partial Information
Decomposition (PID), to more precisely and simultaneously quantify the redundant, unique,
and synergistic information that a set of variables (or primary sources) S has about a target X.
This decomposition has two cornerstones. The first is the definition of a general measure of redundancy
following a set of axioms that impose desirable properties, in agreement with the corresponding abstract
notion of redundancy [34]. The second is the construction of a redundancy lattice, structured according
to these axioms, which reflects a partial ordering of redundancies for different sets of variables [33].

The PID framework has been further developed by others (e.g., [35–40]). However, the properties
that the PID should have continue to be debated [38,41]. In particular, properly quantifying redundancy
is inherently difficult because it requires assigning an identity to different pieces of information.
This is needed to assess when different sources carry the same information about the target.
The work in [35] argued that the original redundancy measure of [33] quantifies only quantitatively
equal amounts of information and not information that is qualitatively the same. They introduced
a new axiom, namely the identity axiom, which states that, for the concrete case of a target that is a
copy of two sources, redundancy should correspond to the mutual information between the sources,
and thus vanish for independent sources. Several redundancy measures that fulfill the identity
axiom have been subsequently proposed [35–37]. However, although this axiom imposes a necessary
condition to capture qualitatively common information, the question of how to generally determine
the identity of different pieces of information to assess redundancy has not yet been solved, and
information identity criteria are implicit in the axioms and measures used. Furthermore, the identity
axiom is incompatible with ensuring the nonnegativity of the PID terms when there are more than two
sources (multivariate case). This was proven by [42] with a counterexample that involves deterministic
target-source dependencies, just like the target-source copy example used to motivate the axiom.

In this work, we examine in more detail how assumptions on the assignment of information
identity determine the properties of the PIDs. We study in a general way the form of the PID terms
for systems with deterministic target-source dependencies. These dependencies are particularly
relevant to address the question of information identity because they allow exploring the consequences
of alternative assumptions about how target-source identity associations constrain the existence of
information synergistic contributions. These target-source identity associations naturally occur for
example when the same variable appears both as a source and in the target: if some piece of information
is assumed to be only associated with a variable that appears both as a source and as part of the target,
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this identity association would imply that there is no need to combine that source with any other
to retrieve that piece of information. In other words, the corresponding synergy should be zero.
Importantly, the deterministic relationships between the target and sources allow us to analyze how
information identity criteria constrain the properties of the PIDs without the need to rely on any
specific definition of PID measures.

To formalize the effect of deterministic target-source dependencies on the PID terms, we enunciate
and compare the implications of two axioms that propose two alternative ways in which deterministic
dependencies can constrain synergistic contributions because of assumptions on target-source identity
associations. These axioms impose constraints to synergy for any (possibly multivariate) system with
deterministic target-source dependencies, while the identity axiom only concerns a particular class
of bivariate systems. We prove that the fulfillment of these axioms implies the fulfillment of the
identity axiom and that several measures that fulfill the identity axiom also comply with one of the
synergy axioms in general [36], or at least for a wider class of systems [35,43] than the one addressed
by the identity axiom. The proof of the existence of negative terms when adopting the identity axiom
was based on a concrete counterexample [41,42,44]. Oppositely, the stricter conditions of our synergy
axioms allow us to explain in general how negative PID terms result from the specific information
identity criteria underlying these axioms. More concretely, we derive, specifically for each of the
two axioms, general expressions for deterministic components of the PID terms, which occur in the
presence of deterministic target-source dependencies.

The comparison of the two axioms allows us to better understand the role of information identity in
the quantification of redundancy. When the target contains a copy of some primary sources, an important
difference between the redundancy measures derived from the two axioms regards their invariance,
or lack thereof, to a transformation that reduces the target by removing all variables within it that are
deterministically determined by this copy. This transformation does not alter the entropy of the target, and
thus, a redundancy measure not invariant under it depends on semantic aspects regarding the identity
of the variables within the target. We discuss why, in contrast to the mutual information itself, the PID
terms may not be invariant to this transformation and depend on semantic aspects, as a consequence of
the assignment of identity to the pieces of information, which is intrinsic to the notion of redundancy.
In particular, we indicate how the overall composition of the target can affect the identity of the pieces of
information and also can determine the existence of redundancy for independent sources (mechanistic
redundancy [35]). Furthermore, based on this analysis, we identify the minimal set of assumptions that
when added to the original PID axioms [33,34] can lead to negative PID terms. We indicate that this
set comprises the assumption of the target invariance mentioned above. Overall, we conclude that
if the redundancy lattice of [33] is to remain as the backbone of a nonnegative decomposition of the
mutual information, a new criterion of information identity should be established that is compatible
with the identity axiom, considers the semantic aspects of redundancy and results in less restrictive
constraints on synergy in the presence of deterministic target-source dependencies than the two
synergy axioms herein studied. Alternatively, the redundancy lattice should have to be modified to
preserve nonnegativity.

We start this work by reviewing the PIDs (Section 2). We then introduce two alternative axioms
that impose constraints on the value of synergistic terms in the presence of deterministic target-source
dependencies, following an information identity criterion based on target-source identity associations
(Section 3). Using these axioms, we derive general expressions that separate each PID term into a
stochastic and a deterministic component for the bivariate (Section 4.1) and trivariate (Section 5.1) case.
We show how these axioms constitute two alternative extensions of the identity axiom (Section 4.2)
and examine if several previously-proposed redundancy measures conform to our axioms (Section 4.3).
We reconsider the examples used by [42], characterizing their bivariate and trivariate decompositions
and illustrating how in general negative PID terms can occur as a consequence of the information
identity criteria underlying the synergy axioms (Sections 4.4 and 5.2). The comparison between the
two axioms allows us to discuss the implications of using an information identity criterion that, in the
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presence of deterministic target-source dependencies, identifies pieces of information in the target by
assuming that their identity is related to specific sources. More generally, we discuss how our results
constitute a further step to more explicitly address the role of information identity in the quantification
of information (Sections 4.5, 4.6 and 5.3).

2. A Review of the PID Framework

The seminal work of [33] introduced a new approach to decompose the mutual information into
a set of nonnegative contributions. Let us consider first the bivariate case. Assume that we have a
target X formed by one variable or by a set of variables and two variables (primary sources) 1 and 2
from which we want to characterize the information about X. The work in [33] argued that the mutual
information of each variable about the target can be expressed as:

I(X; 1) = I(X; 1.2) + I(X; 1\2), (1)

and similarly for I(X; 2). The term I(X; 1.2) refers to a redundancy component between variables 1 and 2,
which can be obtained either by observing 1 or 2 separately. The terms I(X; 1\2) and I(X; 2\1) quantify
a component that is unique to 1 and to 2, respectively, that is, the information that can be obtained from
one of the variables alone, but that cannot be obtained from the other alone. Furthermore, the joint
information of 12 can be expressed as:

I(X; 12) = I(X; 1.2) + I(X; 1\2) + I(X; 2\1) + I(X; 12\1, 2), (2)

where the term I(X; 12\1, 2) refers to the synergistic information of the two variables, that is
information that can only be obtained when combining the two variables. Therefore, given the
standard information-theoretic chain rule equalities [45]:

I(X; 12) = I(X; 1) + I(X; 2|1)
= I(X; 2) + I(X; 1|2),

(3)

the conditional mutual information I(X; 2|1), that is the average information that 2 provides about X
once the value of 1 is known, is decomposed as:

I(X; 2|1) = I(X; 2\1) + I(X; 12\1, 2), (4)

and analogously for I(X; 1|2). Conditioning removes the redundant component, but adds the synergistic
component so that conditional information is the sum of the unique and synergistic terms.

In this decomposition, a redundancy and a synergy component can exist simultaneously. The work
in [33] showed that the measure of co-information [30] that previously had been used to quantify
synergy and redundancy, defined as:

C(X; 1; 2) = I(i; j)− I(i; j|k) = I(i; j) + I(i; k)− I(i; j, k) (5)

for any assignment of {X, 1, 2} to {i, j, k}, corresponds to the difference between the redundancy and
the synergy terms of Equation (2):

C(X; 1; 2) = I(X; 1.2)− I(X; 12\1, 2). (6)

More generally, [33] defined decompositions of the mutual information about a target X for any
multivariate set of variables S. This general formulation relies on the definition of a general measure of
redundancy and the construction of a redundancy lattice. In more detail, to decompose the information
I(X; S), [33] defined a source A as a subset of the variables in S and a collection α as a set of sources.
They then introduced a measure of redundancy to quantify for each collection the redundancy between
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the sources composing the collection, and constructed a redundancy lattice, which reflects the relation
between the redundancies of all different collections. Here, we will generically refer to the redundancy
of a collection α by I(X; α). Furthermore, following [46], we use a more concise notation than in [33]:
for example, instead of writing {1}{23} for the collection composed by the source containing variable 1
and the source containing variables 2 and 3, we write 1.23, that is, we save the curly brackets that
indicate for each source the set of variables and we use instead a dot to separate the sources. We will
also refer to the single variables in S as primary sources when we want to specifically distinguish them
from general sources that can contain several variables.

The work in [34] argued that a measure of redundancy should comply with the following axioms:

• Symmetry: I(X; α) is invariant to the order of the sources in the collection.
• Self-redundancy: The redundancy of a collection formed by a single source is equal to the mutual

information of that source.
• Monotonicity: Adding sources to a collection can only decrease the redundancy of the resulting

collection, and redundancy is kept constant when adding a superset of any of the existing sources.

The monotonicity property allows introducing a partial ordering between the collections, which is
reflected in the redundancy lattice. Self-redundancy links the lattice to the joint mutual information
I(X; S) because at its top there is the collection formed by a single source including all the variables
in S. Furthermore, the number of collections to be included in the lattice is limited by the fact that
adding a superset of any source does not change redundancy. For example, the redundancy between
the source 12 and the source 2 is all the information I(X; 2). The set of collections that can be included
in the lattice is defined as:

A(S) = {α ∈ P(S)− {∅} : ∀ Ai, Aj ∈ α, Ai * Aj}, (7)

where P(S)− {∅} is the set of all nonempty subsets of the set of nonempty sources that can be formed
from S. This domain reflects the symmetry axiom in that it does not distinguish the order of the sources.
For this set of collections, [33] defined a partial ordering relation to construct the lattice:

∀ α, β ∈ A(S), (α � β⇔ ∀B ∈ β, ∃A ∈ α, A ⊆ B), (8)

that is, for two collections α and β, α � β if for each source in β there is a source in α that is a
subset of that source. This partial ordering relation is reflexive, transitive, and antisymmetric. In fact,
the consistency of the redundancy measures with the partial ordering of the collections, that is
that I(X; α) ≤ I(X; β) if α � β represents a stronger condition than the monotonicity axiom. This is
because the monotonicity axiom only considers the cases in which α is obtained from β adding more
sources (e.g., α = 1.2.3 and β = 1.2), while the partial ordering comprises also the removal of variables
from sources (e.g., α = 1.2 and β = 1.23, or α = 1 and β = 12.13).

The mutual information multivariate decomposition was constructed in [33] by implicitly defining
partial information measures ∆(X; α) associated with each node α of the redundancy lattice, such that
redundancy measures are obtained from the sum of partial information measures:

I(X; α) = ∑
β∈↓α

∆(X; β), (9)

where ↓ α refers to the set of collections lower than or equal to α in the partial ordering, and hence
reachable descending from α in the lattice. The partial information measures are obtained inverting
Equation (9) by applying the Möbius inversion to the terms in the lattice [33]. Redundancy lattices for
S being bivariate and trivariate are shown in Figure 1. As studied in [46], a mapping exists between
the terms of the trivariate and bivariate PIDs, as indicated by the colors and labels.
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Figure 1. Redundancy lattices of [33]. The lattices reflect the partial ordering defined by Equation (8).
(A) Bivariate lattice corresponding to the decomposition of I(X; 12). (B) Trivariate lattice corresponding
to the decomposition of I(X; 123). The color and label of the nodes indicate the mapping of partial
information decomposition (PID) terms from the trivariate to the bivariate lattice; in particular,
nodes with the same color in the trivariate lattice are accumulated in the corresponding node in
the bivariate lattice.

An extra axiom, called the identity axiom, was later introduced by [35] specifically for the bivariate
redundancy measure:

• Identity axiom: For two sources A1 and A2, I(A1 ∪ A2; A1.A2) is equal to I(A1; A2).

The work in [35] pointed out that with the original measure of redundancy of [33] a nonzero
redundancy is obtained for two independent variables and a target being a copy of them, while a
measure quantifying the amount of qualitatively common information and not the quantitatively equal
amount of information should be zero in this case. The work in [38] has specifically differentiated
between the identity axiom, which states the form of redundancy for any degree of dependence
between the primary sources when the target is a copy of them, and a more specific property, namely
the independent identity property:

• Independent identity property: For two sources A1 and A2, I(A1; A2) = 0 ⇒ I(A1 ∪ A2;
A1.A2) = 0.

This means that the independent identity property is fulfilled when the identity axiom is fulfilled,
but the fulfilling of the independent identity property does not necessarily imply fulfilling the
identity axiom. Several alternative measures have been proposed that fulfill the identity axiom [35–37].
The properties of the PID terms have been characterized, either based on the axioms and the structure of
the redundancy lattice [46,47], or also considering the properties of specific measures [37,41,42,44,48,49].
However, only for specific cases such as multivariate Gaussian systems with univariate targets, it has
been shown that several of the proposed measures are actually equivalent [50,51].

3. Stochasticity Axioms for Synergistic Information

In this section, we analyze the consequences of information identity criteria that in the presence
of deterministic target-source dependencies identify pieces of information in the target by assuming
that their identity is related to specific primary sources. As a first step, we formulate two axioms that
impose constraints on synergistic information due to the presence of identity associations between
variables within the target and the primary sources. Both axioms assume that, when a subset X(Sk) of
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the target X can be completely determined by one primary source Sk from the set of primary sources
S = {S1, ..., Sn}, the identity of the bits of X(Sk) is associated with Sk. This target-source identity
association between X(Sk) and Sk then imposes constraints on the synergistic information that Sk can
provide about X combined with the other variables in S, because Sk alone already can provide all the
information about X(Sk). That is, the amount of synergy is constrained by the degree of stochasticity of
the target variables with respect to the sources. The strength of the synergy constraints varies between
the two axioms, as we will describe below, and we distinguish them as the weak and strong axiom.
We start formulating the constraints that each axiom imposes on synergy conceptually, and subsequently,
we will propose concrete constraints for the PID synergistic terms following from these axioms.

Weak axiom on stochasticity requirements for the presence of synergy: Any primary source Sk that
completely determines a subset X(Sk) of variables of the target X does not provide information about X(Sk)

synergistically, since Sk alone provides all the information about X(Sk).

Strong axiom on stochasticity requirements for the presence of synergy: Any primary source Sk that
completely determines a subset X(Sk) of variables of the target X does not provide information about X(Sk)

synergistically, since Sk alone provides all the information about X(Sk). Furthermore, Sk can only provide
synergistic information about the rest of the target, X − X(Sk), to the extent that there is some remaining
uncertainty in both X− X(Sk) and Sk after determining X(Sk).

Both axioms impose a common conceptual constraint on the presence of synergy, and the strong
axiom imposes an extra constraint. The difference between the two axioms, as we will see in Section 4,
can be understood in terms of the order in which Sk is used to obtain information about the target.
According to the weak axiom, there are no constraints on the synergistic contributions of Sk to the
information about X − X(Sk). Oppositely, the logic of the strong axiom is that, because Sk already
provides alone the information associated to the entropy H(X(Sk)), only if H(X− X(Sk)|X(Sk)) > 0
and H(Sk|X(Sk) > 0), then Sk can still provide some extra information about X, and only in this case
can this information possibly be synergistic.

The axioms constrain synergy on the basis that an identity is assigned to the bits of information
related to the uncertainty H(X(Sk)) as corresponding to source Sk. In general, in the presence of
dependencies between the variables constituting the target, bits cannot be associated univocally to
specific variables within the target. Therefore, the identification of the bits of H(X(Sk)) with source Sk
does not follow univocally from the joint distribution of the variables. The assignment of an identity to
the different pieces of information determines the assessment of whether different sources provide
the same information and thus determines the quantification of redundant, unique, and synergistic
information. This means that this quantification will also in general depend on the criterion used to
assign identity, and will not be reducible to an analysis of the dependencies that are present in the
joint distribution.

For simplicity, we will from now on refer to the axioms as the weak or strong stochasticity axioms,
or simply the weak or strong axiom. In order to render these axioms operative, we have to formalize
their conceptual formulation into sets of constraints imposed on the synergistic PID terms. We now
propose the concrete formalization of the axioms. For the weak axiom, we will propose constraints on
synergistic PID terms resulting from the existence of functional dependencies of target variables on
primary sources (Section 3.1). For the strong axiom, we will also propose constraints resulting from
these general functional dependencies, and moreover, we will propose extra constraints specific for
the case in which some of the sources themselves are contained in the target (Section 3.2). Finally, we
will briefly discuss the motivation to study these axioms in our subsequent analyses, namely as a way
to examine how information identity criteria determine the PID terms (Section 3.3).

3.1. Constraints on Synergistic PID Terms That Formalize the Weak Axiom

We propose the following constraints to formalize the weak axiom:
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Constraints imposed by functional dependencies of target variables on primary sources: For a target
X and a set of n variables (primary sources) S = {S1, ..., Sn}, consider the subsets X(Si) of X, i = 1...n, such
that X(Si) can be determined completely by the single primary source Si. Define X′ =

⋃
i X(Si) as the subset of

X determined by single primary sources, then:

∆(X; α) = ∆(X− X′; α) ∀α /∈
⋃
i∈S
↓ i, (10)

where ↓ i indicates the collections reachable by descending the lattice from node i, corresponding to primary
source Si.

The above means that the synergy about X is equal to the synergy in the lattice associated with
the decomposition of the mutual information I(X− X′; S) about a target X− X′ that does not include
the variables in X′ determined by single primary sources alone. This implies that the primary sources
cannot have synergistic information about a part X′ of the target that is deterministically related to any
of them. However, if we define S′ as the subset of S comprising any primary source Sk that determines
some of the target variables (i.e., Sk having a nonempty X(Sk)), the weak axiom does not constrain
that the variables in S′ may provide information about other parts of the target in a synergistic way.
Conversely, the strong axiom imposes that the variables in S′ can only provide synergistic information
to the extent that they are not themselves deterministically related to the variables in X′.

3.2. Constraints on Synergistic PID Terms that Formalize the Strong Axiom

We propose the following constraints as a formalization of the strong axiom. First, we propose
general constraints for any system with functional dependencies of target variables on primary sources:

Constraints imposed by functional dependencies of target variables on primary sources: For a target
X and a set of n variables (primary sources) S = {S1, ..., Sn}, consider the subsets X(Si) of X, i = 1...n, such
that X(Si) can be determined completely by the single primary source Si. Define X′ =

⋃
i X(Si) as the subset of

X determined by single primary sources, then:

∆(X; α) = ∆(X− X′; α|X′) ∀α /∈
⋃
i∈S
↓ i. (11)

That is, the synergy about X is equal to the synergy in the lattice associated with the decomposition
of the mutual information I(X− X′; S|X′) that S has about X− X′ conditioned on X′. Note that the
PID of I(X− X′; S|X′) is the same as the one of I(X; S|X′), and thus, ∆(X− X′; α|X′) = ∆(X; α|X′).

Comparing Equations (10) and (11), we can outline an important difference of the PIDs derived
from each axiom. Define X′′ as the variables in X − X′ that can be determined as a function of X′.
Because in Equation (11) the synergistic PID terms are related to the decomposition of I(X; S|X′),
given the conditioning on X′, these terms are invariant to a transformation of the target that removes
from it all variables X′′, i.e., ∆(X; α) = ∆(X − X′′; α). Note that I(X; S|X′) and also I(X; S) are
themselves invariant to this transformation. Oppositely, according to Equation (10), the synergistic
PID terms are related to the decomposition of I(X− X′; S), which is not invariant to the removal of
X′′ from X − X′. As we will discuss in detail in Section 4.6, the invariance, or lack thereof, to this
transformation plays an important role in the characterization of the notion of redundancy that
underpins the PIDs, and in particular determines the sensitivity of the PID terms to the overall
composition of the target, comprising semantics aspects beyond the statistical properties of the joint
distribution of the target variables.

In general, Equation (11) only expresses the synergistic terms of the PID of I(X; S) in terms of
the synergistic terms of the PID of I(X − X′; S|X′). However, these latter PID terms are themselves
only specified after the definition of particular measures to implement the PID. However, in the more
specific case where the primary sources in S′ are in fact contained in the target (i.e., X′ = S′), the
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logic of the conceptual formulation of the strong axiom leads to more specific constraints on the
synergistic terms. In particular, because X(Sk) = Sk, then H(Sk|X(Sk)) = 0, and the primary sources
in S′ cannot provide other information about the target than the information about themselves. Since
such information is already available without combining the sources in S′ with any other source,
this implies that the primary sources in S′ do not provide any information about X synergistically.
Therefore, we propose the following extra constraints for the synergistic PID terms specifically for the
case in which X′ = S′.

Constraints imposed by copies of the primary sources within the target: For a target X and a set of n
variables (primary sources) S = {S1, ..., Sn}, consider the subset X′ formed by all variables in X, which are a
copy of one of the primary sources. Similarly, consider the subset S′ formed by all primary sources with a copy
within the target, i.e., X′ = S′. Then:

∆(X; α) = 0 ∀α /∈
⋃
i∈S
↓ i : ∃A ∈ α, S′ ∩ A 6= ∅. (12)

That is, there is no synergy for those nodes whose collection α has a source A containing a variable
Sk from S′.

Since we have separately proposed the constraints of Equations (11) and (12) from the conceptual
formulation of the strong axiom, they constitute, for the case of X′ = S′, complementary requirements
that should be fulfilled by a PID to be compatible with the strong axiom. However, we will show
that for those previously proposed measures that at least for some class of systems comply with
Equation (12), [35,36,43], Equation (11) is consistently fulfilled (Appendix D). More generally, the
constraints of Equation (12) can be derived from Equation (11) in the case of X′ = S′ if an extra
desirable property is imposed to construct the PIDs (Appendix A). This extra property requires that
the PID of I(X; S|S′) is equivalent to the PID of I(X; S− S′|S′).

Furthermore, although the distinction between a weak and a strong axiom is motivated by the
fact that the strong axiom conceptually imposes an extra requirement for the presence of synergy,
this hierarchical relation is not conferred by construction to the concrete constraints imposed to
the synergistic PID terms. The PIDs depend on the specific definition of the measures used to
construct them, and these measures are expected to comply with one or the other axiom, so that
PIDs complying with the axioms cannot be compared on the same measures. However, in agreement
with the conceptual formulation, synergistic PID terms are expected to be smaller under the strong
axiom because, in ∆(X − X′; α|X′) (Equation (11)), for primary sources Sk with a nonempty X(Sk),
the synergy that other primary sources may have with Sk will already be partially accounted by the
combination of these other primary sources with X(Sk), which is part of X′. See Appendix A for
further details on the effect of conditioning on X′ for the specific case of X′ = S′.

3.3. Using the Stochasticity Axioms to Examine the Role of Information Identity Criteria in the Mutual
Information Decomposition

In this work we will study how, based on the constraints imposed to the synergistic PID terms
following the two stochasticity axioms, bivariate and trivariate PIDs are affected by deterministic
relations between the target and the primary sources. Before focusing on that analysis, we complete
the general formulation of the axioms with some considerations about their role in this work and
their generality.

Regarding their role, we remark that we do not introduce the stochasticity axioms per se, to propose
that they should be added to the set of axioms that PID measures should satisfy. Instead, the axioms
are introduced to study the implications of identifying different pieces of information based on the
target-source identity associations that result from deterministic target-source dependencies. The final
objective is to better understand the role of information identity criteria in the quantification of
redundancy. As we will see, these axioms are instrumental to characterize how the underlying
information identity criterion can lead to negative PID terms. This characterization is also relevant in
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relation to previous studies because we prove that several previously proposed measures conform to
the strong axiom generally [36] or at least for a wider class of systems [35,43] than the one concerned
by the identity axiom.

Since our intention is not to formulate these axioms in their most general form, we have only
considered their conceptual formulation, and propose concrete constraints to synergistic PID terms
following from them, for the case in which there exist functional relations of target variables on
single primary sources, that is, X(Sk). The same logic could be applied to formulate the axioms more
generally and propose further constraints regarding functional relations of target variables on a subset
of S. The PID terms affected by these other functional relations differ from the ones involved in
Equations (10)–(12). For example, the existence of a functional relation X(1, 2) depending on sources 1
and 2, would constrain the synergy of 12 with other variables, but not the synergy between 1 and 2.
We will not pursue this more general formulation of synergy constraints. Conversely, to further
simplify the derivations, we will focus on cases where the target X contains some of the primary
sources themselves, that is, when the target overlaps with the sources as X′ = S′. The more general
formulation that considers target variables determined as a function of primary sources leads to
the same main qualitative conclusions. All the general derivations in the rest of this work follow
from the relations characteristic of the redundancy lattice (Equation (9)) and from the constraints
to synergistic PID terms proposed following the axioms (Equations (10)–(12)). We do not need to
select any specific measure of redundant, unique or synergistic information. For simplicity, from now
on we will not distinguish between the conceptual formulation of the axioms and the constraints to
synergistic PID terms proposed following from them, and we will refer to them as the weak and strong
stochasticity axioms.

4. Bivariate Decompositions with Deterministic Target-Source Dependencies

We start with the bivariate case. Consider that the target X may have some overlap X ∩ 12 with
the sources 1 and 2. Following the weak stochasticity axiom (Equation (10)), synergy is expressed as:

I(X; 12\1, 2) = I(X− 12; 12\1, 2). (13)

On the other hand, the strong stochasticity axiom (Equation (12)) implies that:

I(X; 12\1, 2) =

{
I(X− 12; 12\1, 2) if X ∩ 12 = ∅

0 if X ∩ 12 6= ∅
. (14)

From these expressions of the synergistic terms, we will now derive how deterministic relations
affect the other PID terms.

4.1. General Formulation

For both forms of the stochasticity axiom, we will derive expressions of unique and redundant
information in the presence of a target-source overlap. These derivations follow the same procedure:
First, given that unique and synergistic information are related to conditional mutual information by
Equation (4), the synergy stochasticity axioms determine the form of the unique information terms.
Second, once the unique information terms are derived, their relation to the mutual information
together with the redundancy term (Equation (1)) allows identifying redundancy. For both unique and
redundant information terms this procedure separates the PID term into stochastic and deterministic
components. These stochastic and deterministic components quantify contributions associated with
the information that the sources provide about the non-overlapping part of the target, X− 12, and the
overlapping part, X ∩ 12, respectively. However, how these components are combined depends on the
order in which stochastic and deterministic target-source dependencies are partitioned. In particular,
using the chain rule [45] of the mutual information, we can separate the information about the target
in two different ways:
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I(X; 12) = I(X− 12; 12) + I(X ∩ 12; 12|X− 12) (15a)

= I(X ∩ 12; 12) + I(X− 12; 12|X ∩ 12). (15b)

The first case considers first the stochastic dependencies and after the conditional deterministic
dependencies. In the second case, this order is reversed. We will see that for each axiom only one of
these partitioning orders leads to expressions that additively separate stochastic and deterministic
components for each PID term. Oppositely, the other partitioning order leads to cross-over components
across PID terms, in particular to some PID terms being expressed in terms of the stochastic component
of another PID term.

4.1.1. PIDs with the Weak Axiom

We start with the PID of I(X; 12) derived from the weak axiom (Equation (13)). Consider the
mutual information partitioning order of Equation (15a), which can be re-expressed as:

I(X; 12) = I(X− 12; 12) + H(X ∩ 12|X− 12), (16)

that is, the second summand corresponds to the conditional entropy of the overlapping target variables
given the non-overlapping ones. We now proceed analogously for the PID terms. Since conditional
mutual informations are the sum of a unique and a synergistic information component (Equation (4)),
we have that:

I(X; 1\2) = I(X; 1|2)− I(X; 12\1, 2)

= I(X− 12; 1|2) + I(X ∩ 12; 1|2, X− 12)− I(X− 12; 12\1, 2).
(17)

The first equality indicates that unique information is conditional information minus synergy.
The second equality uses the chain rule to separate the conditional mutual information stochastic and
deterministic components, and applies the stochasticity axiom to remove the overlapping part of the
target in the synergy term. Using again the relation between conditional mutual information and
unique and synergistic terms (Equation (4)), but now, for the target X− 12 we get:

I(X; 1\2) = I(X− 12; 1\2) + H(X ∩ 1|2, X− 12), (18)

where we also used that I(X ∩ 12; 1|2, X − 12) equals the entropy H(X ∩ 1|2, X − 12). Accordingly,
the unique information of 1 can be separated into a stochastic component, the unique information
about target X− 12, and a deterministic component, the entropy H(X ∩ 1|2, X− 12). This last term is
zero if the target does not contain source 1. If it does, it quantifies the entropy that only 1 as a source can
explain about itself as part of the target, which is thus an extra contribution to the unique information.

Once we have identified the stochastic and deterministic components of the unique information
we can use Equation (1) to characterize the redundancy. Combining Equations (1) and (18), we obtain:

I(X; 1.2) = I(X− 12; 1.2) +

{
0 if X ∩ 12 = ∅

I(1; 2|X− 12) if X ∩ 12 6= ∅
. (19)

Therefore, it suffices that one of the two primary sources overlaps with the target so that their
conditional mutual information given the non-overlapping target variables contributes to redundancy.
Note that when X ∩ 12 = ∅ then X = X− 12; hence, the axiom has no effect on the redundancy.

Following the same procedure, it is possible to derive expressions for the unique and redundant
information terms, but applying the other mutual information partitioning order of Equation (15b).
The resulting terms can be compared in Table 1 and are derived in more detail in Appendix B, where we
also show the consistency between the expressions obtained with each partitioning order. We present
in the upper part of the table the decompositions into stochastic and deterministic contributions
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for each PID term and for the two partitioning orders. To simplify the expressions, their form is
shown only for the case of X ∩ i 6= ∅. With the alternative partitioning order, both the expressions
of unique information and redundancy contain a cross-over component, namely the synergy about
X − 12, instead of being expressed in terms of the unique information and redundancy of X − 12,
respectively. Furthermore, the separation of the deterministic and stochastic components is not additive.
This indicates that, while the chain rule holds for the mutual information, it is not guaranteed that
the same type of separation holds separately for each PID term. Only for a certain partitioning order,
when stochastic dependencies are considered first, unique and redundant information terms derived
from the weak axiom can both be separated additively into a stochastic and a deterministic component
without cross-over terms. We individuate in the lower part of the table the deterministic PID
components obtained from the partitioning order for which each PID term is separated additively into
a stochastic and deterministic component.

Table 1. Decompositions of synergistic, unique, and redundant information terms into stochastic and
deterministic contributions obtained assuming the weak stochasticity axiom. For each term we show the
decompositions resulting from two alternative mutual information partitioning orders (Equation (15)),
which are consistent with each other (see Appendix B). For the partitioning order leading to an additive
separation of each partial information decomposition (PID) term into a stochastic and deterministic
component we also individuate the deterministic contributions ∆d(X; β). Synergy has only a stochastic
component, according to the axiom (Equation (13)). Expressions of unique information come from
Equations (18) and (A3), and the ones of redundancy from Equations (19) and (A5). The expressions
have been simplified with respect to the equations, indicating their form for the case X ∩ i 6= ∅.
The terms ∆d(X; β) have analogous expressions for X ∩ j 6= ∅ when a symmetry exists between i and j
and are zero otherwise.

Term Decomposition

I(X; ij\i, j) I(X− ij; ij\i, j)

I(X; i\j) I(X− ij; i\j) + H(i|j, X− ij)
H(i|j)− I(X− ij; ij\i, j)

I(X; i.j) I(X− ij; i.j) + I(i; j|X− ij)
I(i; j) + I(X− ij; ij\i, j)

Term Measure

∆d(X; ij) 0

∆d(X; i) H(i|j, X− ij)

∆d(X; i.j) I(i; j|X− ij)

4.1.2. PIDs with the Strong Axiom

The procedure to derive the unique and redundant PID terms is the same if the strong stochasticity
axiom is assumed, but determining synergy with Equation (14) instead of Equation (13). To simplify
the expressions we indicate in advance that if X ∩ 12 = ∅ each PID term with target X is by definition
equal to the one with target X− 12 and we only provide expressions derived with some target-source
overlap. In contrast to the weak axiom, with the strong axiom an additive separation of stochastic and
deterministic components is obtained with the partitioning order of Equation (15b). See Appendix B
for details about the other partitioning order. For the unique information the strong axiom implies that:

I(X; 1\2) =
{

I(X− 12; 1\2) + I(X− 12; 12\1, 2) if X ∩ 1 = ∅

H(1|2) if X ∩ 1 6= ∅
, (20)

and for the redundancy:
I(X; 1.2) = I(1; 2). (21)
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As before, we summarize the PIDs in Table 2. Comparing Tables 1 and 2, we see that the
expressions obtained with the weak and strong axiom differ because of a cross-over contribution,
corresponding to the synergy about X − 12, which is transferred from redundancy to unique
information. This is due to the synergy constraints imposed by each axiom: the strong axiom
imposes that there is no synergy, and hence this part of the information has to be transferred to
the unique information because the sum of synergy and unique information is constrained to equal the
conditional mutual information. As a consequence, redundancy is reduced by an equivalent amount to
comply with the constraints that relate unique informations and redundancy to mutual informations
(Equation (1)). Furthermore, like for the weak axiom, the chain rule property does not generally hold
for each PID term separately. This has been previously proven for specific measures. The work in [42]
provided a counterexample for the original redundancy measure of [33] (Imin) and for the one of [35]
(Ired). The work in [44] provided counterexamples for the redundancy and synergy measures of the
decomposition based on maximum conditional entropy [36]. Our results prove this for any measure
conforming to the stochasticity axioms. In particular, they show that the PID terms are consistent
with the mutual information decompositions obtained applying the chain rule, but that, depending
on the partitioning order and on the version of the axiom assumed, information contributions are
redistributed between different PID terms, and between their stochastic and deterministic components.

Table 2. Decompositions of synergistic, unique, and redundant information terms into stochastic and
deterministic contributions obtained assuming the strong stochasticity axiom. The table is analogous
to Table 1. Synergy is null according to the axiom (Equation (14)). Expressions of unique information
come from Equations (A8) and (20), and the ones of redundancy from Equations (A9) and (21). Again,
expressions are shown for the case X∩ i 6= ∅, with the corresponding symmetries holding for X∩ j 6= ∅
and with terms ∆d(X; β) equal to zero otherwise.

Term Decomposition

I(X; ij\i, j) 0

I(X; i\j) I(X− ij; i\j) + I(X− ij; ij\i, j) + H(i|j, X− ij)
H(i|j)

I(X; i.j) I(i; j|X− ij) + I(X− ij; i.j)− I(X− ij; ij\i, j)
I(i; j)

Term Measure

∆d(X; ij) 0

∆d(X; i) H(i|j)

∆d(X; i.j) I(i; j)

4.2. The Relation between the Stochasticity Axioms and the Identity Axiom

In the previous section, we derived how the two stochasticity axioms imply different expressions
for the redundancy term. We now examine how these expressions are related to the redundancy term
stated by the identity axiom [35]. It is straightforward to show that the identity axiom is subsumed by
both stochasticity axioms:

Proposition 1. The fulfillment of the synergy weak or strong stochasticity axioms implies the fulfillment of the
identity axiom.

Proof. If X = 12 then X ∩ 12 = 12 and X− 12 = ∅. If the weak stochasticity axiom holds, redundancy
(Equation (19)) reduces to I(12; 1.2) = I(1; 2). If the strong stochasticity axiom holds, Equation (21) is
already I(12; 1.2) = I(1; 2).
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Therefore, the stochasticity axioms represent two alternative extensions of the identity axiom:
First, they do not only consider a target that is a copy of the primary sources, but a target with any
degree of overlap or functional dependence with the primary sources. Second, they are not restricted
to the bivariate case but are formulated for any number of primary sources. This means that their
fulfillment imposes stricter conditions to the redundancy measures. Redundancy terms derived from
each axiom coincide for the particular case that is addressed by the identity axiom, but more generally
they differ. We will further discuss these differences below based on concrete examples.

4.3. How Different PID Measures Comply with the Stochasticity Axioms

We now investigate whether several proposed measures conform to the predictions of the
stochasticity axioms. We examine the original redundancy measures of [33] (Imin), the one based
on the pointwise common change in surprisal of [38] (Iccs), the one based on maximum conditional
entropy of [36] (SI), the one based on projected information of [35] (Ired), and the one based on
dependency constraints of [43] (Idep).

It is well-known that the redundancy measure Imin does not comply with the identity axiom [35].
Even if I(1; 2) = 0, a redundancy Imin(12; 1.2) > 0 can be obtained. Nor does Iccs comply with
the identity axiom. Since the fulfillment of the stochasticity axioms implies the fulfillment of the
identity axiom, none of these measures complies with the stochasticity axioms.

On the other hand, SI, Idep, and Ired fulfill the identity axiom. We will show that SI always
conforms to the strong stochasticity axiom. For Idep, we will show that it complies with the strong
axiom at least when some primary source is part of the target, i.e., X ∩ 12 6= ∅. We will also show that
Ired complies with the strong axiom at least for the case of X ∩ 12 = 12. This latter case is particularly
relevant to examine nonnegativity (Section 5.3).

We proceed as follows: For SI, we now prove that it complies with Equation (12) specifically
for the case in which some primary sources are also part of the target, which is the case considered
throughout this work. The longer complete proof of compliance with Equation (11) for systems
comprising any type of functional relation between parts of the target and single primary sources is
left for Appendix C. For Idep, we also provide here the proof of compliance with Equation (12) for the
case of primary sources being part of the target. Again because of length reasons, the proof for Ired
is left for Appendix C. In all cases, we also prove in Appendix D that, for those cases herein studied
in which these measures comply with Equation (12), Equation (11) is consistently fulfilled. We start
with SI:

Proposition 2. The PID associated with the redundancy measure SI [36] conforms to the synergy strong
stochasticity axiom when some primary source is part of the target.

Proof. Consider a target X and two sources 1 and 2. The redundancy measure SI is defined as:

SI(X; 1, 2) = max
Q∈∆(p)

CQ(X; 1; 2), (22)

where the co-information CQ(X; 1; 2) is maximized within the family of distributions ∆(p) that preserves
the marginals p(X, 1) and p(X, 2). We will now show that SI(X; 1, 2) conforms to Equation (21)
when X ∩ 12 6= ∅. It is a general property following from the definition of the co-information
(Equation (5)) that, if either 1 or 2 are in X, that is, ∃i ∈ {1, 2} : X ∩ i = i, then CQ(X; 1; 2) = IQ(1; 2).
Further, because ∆(p) preserves p(X, 1) and p(X, 2), it suffices that X ∩ 12 6= ∅ so that p(X, 1, 2) is
preserved. This means that p(1, 2) is preserved and IQ(1; 2) = I(1; 2) for all Q ∈ ∆(p). This leads
to SI(X; 1, 2) = I(1; 2). Given that for any valid bivariate PID one of the four PID terms already
determines the other PID terms, because they have to comply with Equations (1) and (4), this shows
that the PID equals the one derived from the strong axiom.

We now continue with the proof for Idep:
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Proposition 3. The PID associated with the redundancy measure Idep [43] conforms to the synergy strong
stochasticity axiom when some primary source is part of the target.

Proof. The work in [43] defined unique information based on the construction of a dependency
constraints lattice in which constraints to maximum entropy distributions are hierarchically added.
The unique information I(X; 1\2) is defined as the least increase in the information IQ(X; 12) when
adding the constraint of preserving the distribution p(X, 1) to the list of constraints imposed to the
maximum entropy distribution Q. This results in the following expression for I(X; 1\2), according to
Appendix B of [43]:

I(X; 1\2) = min{I(X; 1), IX1,X2(X; 1|2), IX1,X2,12(X; 1|2)}, (23)

where IX1,X2(X; 1|2) indicates the conditional mutual information for the maximum entropy
distribution preserving p(X, 1) and p(X, 2), and analogously for IX1,X2,12(X; 1|2). Now, consider that
some source is part of the target, in particular, without loss of generality, that X ∩ 1 = 1. In this case
I(X, 1) = H(1), and preserving p(X, 2) and p(X, 1) implies preserving the joint distribution p(X, 1, 2),
given that 1 is part of X. This means that IX1,X2(X; 1|2) = IX1,X2,12(X; 1|2) = I(X; 1|2). Furthermore,
I(X; 1|2) = H(1|2). Since H(1|2) ≤ H(1) the unique information is I(X; 1\2) = H(1|2), which already
determines the PID, and in particular leads to the redundancy being I(X; 1.2) = I(1; 2).

4.4. Illustrative Systems

So far, we have derived the predictions for the PIDs according to each version of the stochasticity
axiom, pointed out the relation with the identity axiom, and checked how different previously proposed
measures conform to these predictions. We now analyze concrete examples to further examine the
implications of our axioms on the PIDs. In particular, we reconsider two examples that have been
previously studied in [42,44], namely the decompositions of the mutual information about a target
jointly formed by the inputs and the output of a logical XOR operation or of an AND operation
(see Figures 2A and 3A, respectively). We first describe below the decompositions obtained, then
in Section 4.5, we will discuss these decompositions in the light of the underlying assumptions
on how to assign an identity to different pieces of information of the target. The deterministic
components for these examples are derived without assuming any specific measure of redundancy,
unique, or synergistic information. The stochastic components have already been previously studied
and some of the terms depend on the measures selected to compute the PID terms. We will indicate
previous work examining these terms when required.

4.4.1. XOR

We first examine the XOR system. Consider an output variable 3 determined through the operation
3 = 1 XOR 2, resulting in the joint probability displayed in Figure 2A. We also indicate the values of
the information-theoretic measures needed to calculate the PID bivariate decompositions studied here
and that will also serve for the trivariate decompositions addressed in Section 5.2. We want to examine
the decomposition of I(123; 1, 2), where the target is composed by the three variables. For each version
of the stochasticity axiom we will focus on the mutual information partitioning order that allows
separating additively a stochastic and a deterministic component of each PID term.

Since X− 12 = 3, for the weak axiom the PID (Figure 2B) can be obtained by implementing the
decomposition of I(3; 12) and separately calculating the deterministic PID components ∆d(123; β) as
collected in Table 1. As indicated in [37], the decomposition of I(3; 12) for the XOR operation can be
derived without adopting any particular redundancy measure, just using Equations (1) and (4) and
the axioms of [34] described in Section 2. Furthermore, the same value is obtained with Iccs, which
does not fulfill the nonnegativity axiom. There is no stochastic component of redundancy or unique
information because I(3; i) = 0 for i = 1, 2, and synergy contributes one bit of information. Regarding
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the deterministic components, redundancy has 1 bit because I(1; 2|3) = 1. The deterministic unique
information components are zero because H(i|jk) = 0 for i = 1, 2, and according to the axiom, there is
no deterministic component of synergy.

In the case of the strong axiom (Figure 2C), since both primary sources overlap with the target,
only deterministic components are larger than zero in the decomposition when selecting the partitioning
order that additively separates stochastic and deterministic contributions, as indicated in Table 2.
By assumption, there is no synergy. Since I(1; 2) = 0, the redundancy is also zero and all the
information is contained in the unique information terms. As pointed out for the generic expressions,
the two decompositions differ in the transfer of the stochastic component of synergy to unique
information, which in turns forces an equivalent transfer from redundancy to unique information.

A 

B 

    1     2    3 P(123) 

    0     0    0     ¼ 

    0     1    1     ¼  

    1     0    1     ¼  

    1     1    0     ¼  

3 = 1 XOR 2 

=
  

+  

1 =0 2 =0 

1.2 =1 

12 =1 

stochastic deterministic 

I(3;1\2)=0 I(3;2\1)=0 

I(3;1.2)=0 

I(3;12\1,2)=1 

H(1|23)=0 H(2|13)=0 

I(1;2|3)=1 

0 

Weak axiom: 

1 =1 2 =1 

1.2 =0 

12 =0 
Strong axiom: 

=
  

deterministic 

H(1|2)=1 H(2|1)=1 

I(1;2)=0 

0 

C 

H(1|23)=0 I(1;2)=0 I(1;2|3)=1 I(3;12 \1,2)=1 

H(2|13)=0 I(2;3)=0 I(2;3|1)=1 I(1;23 \2,3)=1 

H(3|12)=0 I(1;3)=0 I(1;3|2)=1 I(2;13 \1,3)=1 

Figure 2. Bivariate decomposition of I(123; 12) for the XOR system. (A) Joint distribution of the inputs 1
and 2 and the output 3 for the XOR operation. We also collect the value of the information-theoretic
quantities used to calculate this bivariate decomposition and the trivariate decomposition I(123; 123)
in Section 5.2. (B) Bivariate decomposition derived from the weak stochasticity axiom. Stochastic
and deterministic components are separated in agreement with Table 1. (C) Bivariate decomposition
derived from the strong axiom. Only deterministic components are present, following Table 2.

4.4.2. AND

As a second example, we now consider the AND system. Following the weak axiom, again the
decomposition can be obtained by implementing the PID of I(3; 12) and separately calculating the
deterministic PID components from Table 1, using the joint distribution of inputs and output displayed
in Figure 3A. The PID of I(3; 12) for the AND operation has also been already characterized and
coincides for Imin [33], Ired [35], and SI [36]. However, in contrast to the XOR case, this decomposition
depends on the redundancy measure used and for example differs for Iccs. Each PID term contributes
half a bit to I(123; 12). Unique contributions come exclusively from the deterministic components.
Each unique information amounts to half a bit because the output and one input determine the
other input only when not both have a value of 0. Redundancy is also 0.5 bit, but it comes in
part from a stochastic component and in part from a deterministic one. The stochastic component
appears intrinsically because of the AND mechanism, even if the inputs are independent. This type
of redundancy has been called mechanistic redundancy [35]. The deterministic component appears
because, although the inputs are independent, conditioned on the output I(1; 2|3) > 0. The synergy
I(3; 12\1, 2) = 0.5 was also previously determined [33,35,36]. This PID differs from the one obtained
with the weak axiom for the XOR example. Conversely, with the strong axiom the decomposition
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is the same as for the XOR example, because it is completely determined by I(1; 2) = 0. This latter
decomposition is again in agreement with the arguments of [42,44] based on the identity axiom.
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H(1|23)=0.5 H(2|13)=0.5 
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1 =1 2 =1 
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deterministic 

H(1|2)=1 H(2|1)=1 

I(1;2)=0 
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C 

    1     2    3 P(123) 

    0     0    0     ¼ 

    0     1    0     ¼  

    1     0    0     ¼  
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Figure 3. Bivariate decomposition of I(123; 12) for the AND system. The structure of the figure is
analogous to Figure 2. (A) Joint distribution of the inputs 1 and 2 and the output 3 for the AND
operation. (B) Bivariate decomposition derived from the weak stochasticity axiom. (C) Bivariate
decomposition derived from the strong axiom.

4.5. Implications of Target-Source Identity Associations for the Quantification of Redundant, Unique, and
Synergistic Information

Each version of the stochasticity axiom implies a different quantification of redundancy. We now
examine in more detail how these different quantifications are related to the notion of redundancy as
common information about the target that can be obtained by observing either source alone. The key
point is how identity is assigned to different pieces of information in order to assess which information
about the target carried by the sources is qualitatively common to the sources. In particular, the logic
of the strong axiom is that if a source is part of the target it cannot provide other information about
the target than the information about itself. As a consequence, if the other source does not contain
information about the former source, this information is unique. This logic rests on the assumption
that when there is a copy of a primary source in the target we can identify and separate the bits of
information about that copy from the information about the rest of the target. The idea of assigning an
identity to bits of information in the target by associating them with specific variables also motivated
the introduction of the identity axiom. Although this axiom was formulated for sources with any
degree of dependence, its motivation [35] was mainly based on the case of independent sources, that is,
the particular case considered by the independent identity property. For that case, we can identify
the bits of information associated with variable 1 and the ones with variable 2, and thus redundancy,
that should quantify the qualitatively equal information that is shared among the sources and not only
common amounts of information, has to be null.

However, assigning an identity to pieces of information in the target is in general less
straightforward. For example, in the XOR system, with target 123 and sources 1 and 2, we have two
target-source identity associations, namely between each source and its copy in the target. However,
the two bits of 123 cannot be identified as belonging to a certain variable, because of the conditional
dependencies between the variables. The only information identity criterion that seems appropriate in
this case to identify the two bits is the following: the bit that any first variable provides alone, and
the bit that a second variable provides combined with the first. This lack of correspondence between
pieces of information and individual variables is incompatible with the identification of the pieces of
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information based on the target-source identity associations that are formalized by the stochasticity
axioms. To show this, we now consider different combinations of mutual information partitioning
orders for I(123; 1) and I(123; 2) and show how, if the assignment of identity to the bits in the target 123
is based on target-source identity associations, the interpretation of redundant and unique information
is ambiguous. First, consider that we decompose the information of each primary source as follows:

I(123; 1) = I(1; 1) + I(2; 1|1) + I(3; 1|12) = I(1; 1) = H(1)

I(123; 2) = I(2; 2) + I(1; 2|2) + I(3; 2|12) = I(2; 2) = H(2).
(24)

If we assume that we can identify the bit of information carried by each primary source about the
target using the target-source identity associations, these decompositions would suggest that there
is no redundant information. This is because each source only carries one bit of information about
its associated copy within the target and I(1; 2) = 0 for the XOR system. However, keeping the same
decomposition of I(123; 1), we can consider alternative decompositions of I(123; 2):

I(123; 2) = I(3; 2) + I(1; 2|3) + I(2; 2|13) = I(1; 2|3) = H(1) (25a)

= I(1; 2) + I(3; 2|1) + I(2; 2|13) = I(3; 2|1) = H(3). (25b)

The redundancy and unique information terms should not depend on how we apply the chain
rule to I(123; 2). However, in contrast to Equation (24), the first decomposition of Equation (25a)
suggests, based on the target-source identity associations, that there is redundancy between sources 1
and 2. In particular, I(123; 2) = I(1; 2|3) in Equation (25a) can be interpreted as information that
source 2 provides about the copy of source 1 within the target, thus redundant with the information
I(123; 1) = I(1; 1) in Equation (24) that source 1 has about its copy. The second decomposition in
Equation (25b) further challenges the interpretation of redundancy and unique information based
on the assignment of an identity to bits of information in the target given their association with the
overlapping target variables. Given I(123; 2) = I(3; 2|1), source 2 provides information about 3.
However, the bit of 3 is shared with the copies of 1 and 2 within the target, given the conditional
dependencies of the XOR system. Moreover, the information in I(3; 2|1) is information that source 2
provides about 3 after conditioning on the copy of source 1 within the target, so that the target-source
identity association of 1 suggests that both sources are combined to retrieve this information. Note that
for both I(1; 2|3) and I(3; 2|1) in Equation (25), we expressed the information in terms of the entropy
of the target variable, 1 and 3, respectively, because it is the identity of the pieces of information within
the target what determines their assignment to a certain PID term.

In summary, when using the target-source identity associations to identify pieces of information,
different partitioning orders of the mutual information ambiguously suggest that the same information
can be obtained uniquely, redundantly, or even in a synergistic way. These problems arise because,
in contrast to the case of I(12; 1, 2) with independent sources, in the XOR system the two bits of 123
cannot be identified as belonging to a certain variable, and thus the target-source identity associations
between the variables cannot identify the bits unambiguously.

The differences in the quantification of redundancy with each stochasticity axiom are related to the
alternative interpretations of identity discussed for Equations (24) and (25). A notion of redundancy
compatible with the weak axiom considers the common information about the target that can be
obtained by observing either source alone or conditioned on variables in the target, which means that
redundancy depends on the overall composition of the target. Indeed, the deterministic component
of redundancy comprises the conditional dependence of the sources given the rest of the target,
I(1; 2|X− 12), when there is a target-source overlap, and thus fits to Equation (25a), where the term
I(1; 2|3) appears. Conversely, with the strong axiom, when there is a target-source overlap, redundancy
equals I(1; 2) independently of X− 12, in agreement with Equation (24). We will now further discuss
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the implications of this independence or dependence of redundancy on the overall composition
of the target.

4.6. The Notion of Redundancy and the Identity of Target Variables

We showed above that enforcing the identification of the bits of 123 based on target-source identity
associations between the variables leads to ambiguous interpretations of whether this information
is retrieved redundantly, uniquely, or synergistically, depending on the partitioning order used to
decompose the target. That is, the ambiguity arises because we consider 1, 2, and 3 as three separate
variables within the target, which furthermore can be observed sequentially in any order, and not only
simultaneously. The possibility to separately observe these variables is not relevant to quantify their
entropy H(123) or the mutual information I(123; 1, 2), but, as we will argue below, it is potentially
relevant to determine the PID terms.

In particular, for both the XOR and AND systems, 3 is completely determined by 12, so that
H(123) = H(12) and I(123; 1, 2) = I(12; 1, 2). That is, the entropy and mutual information do not
depend on whether we consider 3 as a separate variable or it is removed from the target. We can then
ask how the assignment of the two bits to the PID terms depends on reducing the target 123 to 12.
We repeat the comparison of different partitioning orders of I(123; 1) and I(123; 2) of Section 4.5 but
now after this reduction. For I(12; 1) the only possible partitioning orders are:

I(12; 1) = I(1; 1) + I(2; 1|1) = I(1; 1) = H(1)

= I(2; 1) + I(1; 1|2) = I(1; 1) = H(1),
(26)

and analogously for I(12, 2). Since I(1; 2) = 0, in all cases each source retrieves information about its
associated copy in the target, and thus all information is contained in the unique information terms.
Therefore, with the reduction of 123 to 12, the decompositions obtained are consistent with the ones
derived from the strong axiom, which effectively also reduces 123 to 12 since the decomposition is
independent of X− 12 when 12 is part of the target. Indeed, [44] derived for the AND system the same
decomposition as with the strong axiom using the measure SI and the reduction of 123 to 12.

The consistency between the strong axiom and the reduction of 123 to 12 is also reflected in the
equality between the PIDs derived from the strong axiom for the XOR and AND systems. This is
because the distributions of the targets 123 of these systems are isomorphic, i.e., one can be mapped
to the other by relabeling the states, and are indistinguishable after the reduction to 12. However,
the decompositions of the XOR and AND systems differ when derived with the weak axiom, and are
not consistent with the reduction of 123 to 12. This is because with the weak axiom the PID terms have
components in which 12 is explicitly separated from 3, in particular the redundancy contains the terms
I(1; 2|3) and I(3;1.2) (Table 1).

Therefore, an important difference between the redundancy measures derived from the two
stochasticity axioms regards their invariance to transformations of the target consisting on the
removal of the variables within it that are completely determined by copies of the primary sources
contained in the target. We will in general call this type of invariance as TSC (target to sources copy)
reduction invariance. Because the removal of these variables does not alter the entropy of the target,
the mutual information is TSC reduction invariant. The lack of TSC reduction invariance implies that the
redundancy depends on semantic aspects of the joint probability distribution of the target, related to
the identity of the variables. The reason why the redundancy measure following from the weak axiom
depends on these semantic aspects, while the measure following from the strong axiom does not, can
be understood from how the identification of pieces of information based on the target-source variables
associations is later used to constrain synergy in each case. With the weak axiom, the bits of H(X(Sk))

identified with the primary source Sk due to the presence of X(Sk) within the target, are constrained to
be non-synergistic in nature when the primary sources provide information about X(Sk). Oppositely,
the weak axiom imposes no restriction on synergy about X − X(Sk). However, if there is some
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dependence between the variables X(Sk) and X − X(Sk) (i.e., I(X(Sk); X − X(Sk)) > 0), part of the
bits of X(Sk) are shared by the variables X− X(Sk). This means that the same bits that are constrained
to be non-synergistic in nature when the primary sources provide information about X(Sk) are still
allowed to be synergistic when the primary sources provide information about X− X(Sk). Therefore,
it is the identity of the variables about which the primary sources provide information what determines
whether the same bits are subjected to the synergy constraints or not. The dependence of synergistic
terms on the semantic aspects of the probability distribution determines that also redundancy terms
inherit this dependence, because of their relation as terms of the PID. Oppositely, in the case of the
strong axiom, once the identity of the bits of H(X(Sk)) is associated with the primary source Sk due
to the presence of X(Sk) within the target, the fact that due to I(X(Sk); X− X(Sk)) > 0 these bits can
also be associated with X− X(Sk) is not considered, and they are constrained to be non-synergistic
in nature without any consideration of the identity of the target variables about which the primary
sources provide information.

The fact that redundancy is invariant or not to the TSC reduction has implications to determine
other properties of the PIDs. In particular, it plays a crucial role in the counterexamples provided
by [42,44] to prove that nonnegativity and left monotonicity are not compatible with the independent
identity property. We will address in detail the counterexample of nonnegativity after studying
trivariate PIDs with the stochasticity axioms, in Section 5. With regard to left monotonicity, it is useful
to remind that [44] assumed the invariance of SI when reducing 123 to 12 to prove that left monotonicity
is violated in the decomposition of I(123; 1, 2) of the AND system, because SI(3; 1.2) > SI(123; 1.2).
As can be seen in Figure 3, although we have that I(3; 1.2) > I(123; 1.2) with the strong axiom, the opposite
holds with the weak axiom, for which the invariance under reduction of 123 to 12 does not hold.

More generally, the TSC reduction is just one type of isomorphism of the target to which entropy
and mutual information are always invariant. The comparison of the decompositions obtained with
the two stochasticity axioms raises the question of whether we should expect the PIDs to be invariant
to isomorphisms of the target, as the entropy and mutual information are. This question is intrinsically
related to the role assigned to information identity in the notion of redundancy. Two aspects of this
notion would justify a lack of invariance. First, the assessment of redundancy implies assigning an
identity to pieces of information, and this identity can change depending on the variables included
in the target. For example, for the target 123 in the XOR and AND systems, if 1, 2, and 3 are taken
as variables that can be observed separately and sequentially, the bits of 123 cannot be identified as
belonging to a certain variable, because of the conditional dependence I(1; 2|3). However, after the
reduction of 123 to 12, the two bits can be associated each to a single variable of the target because
I(1; 2) = 0. Second, mechanistic redundancy can only be assessed when explicitly considering the
mechanism of the input-output deterministic relation generating 3 from 12. This mechanism is not
preserved under isomorphic transformations, and the information about it is lost when reducing 123
to 12 for the XOR and AND systems. These two arguments highlight the role of information identity
to quantify redundancy, and indicate that requiring or not that the redundancy measures should be
invariant to target isomorphisms implies further specifications of which is the underlying notion of
redundancy that is quantified.

5. Trivariate Decompositions with Deterministic Target-Source Dependencies

We now extend the analysis to the trivariate case. This is particularly relevant because, in contrast
to the bivariate case, it has been proven that, in the multivariate case, the PIDs that jointly comply with
the monotonicity and the identity axioms do not guarantee the nonnegativity of the PID terms [42].
In particular, [42] used the XOR example we reconsidered above as a counterexample to show that
PID terms can be negative. The work in [41] reexamined this counterexample indicating that the
independent identity property, which is a weaker condition than the identity axiom, already implies
the existence of negative terms. Therefore, we would like to be able to extend the general formulation
of Section 4.1 to the trivariate case, and thus apply it to further examine the XOR and AND examples
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by identifying each component of the trivariate decomposition of I(123; 123) and not only of the
decomposition of I(123; 12).

5.1. General Formulation

While in the bivariate lattice there is a single PID term that involves synergistic information,
in the trivariate lattice of Figure 1B, all nodes that are not reached descending from 1, 2, or 3 imply
by definition synergistic information, and the nodes of the form i.jk too. This is because these nodes
correspond to collections containing sources composed by several primary sources, and hence quantify
information only obtained by combining primary sources. The weak and strong axioms impose
constraints on these terms given Equations (10) and (11), respectively.

5.1.1. PIDs with the Weak Axiom

We begin with the weak stochasticity axiom, for a target X and three primary sources 1, 2, and 3.
Expressing the general constraints of the weak axiom (Equation (10)) particularly for the trivariate case,
and separating stochastic and deterministic components of the PID terms as in Table 1, that is,
as ∆(X; α) = ∆(X− X′; α) + ∆d(X; α), Equation (10) can be expressed as:

∆d(X; α) = 0 ∀α /∈
⋃

i=1,2,3

↓ i. (27)

To characterize the remaining deterministic contributions to PID terms, analogously to the
bivariate case, we apply the mutual information chain rule to separate stochastic and deterministic
dependencies. Again we focus on the partitioning order that considers first the stochastic dependencies,
since only this order leads to an additive separation of stochastic and deterministic components for
each PID term. With this partitioning order, we obtain:

I(X; 123) = I(X− 123; 123) + I(X ∩ 123; 123|X− 123)

= I(X− 123; 123) + H(X ∩ 123|X− 123).
(28)

Following derivations analogous to the ones of Section 4.1 (see Appendix E), if a certain primary
source i does not overlap with the target, the nodes that can only be reached descending from its
corresponding node will not have a deterministic component. Accordingly, deterministic contributions
are further restricted by:

∆d(X; α) = 0 ∀α /∈
⋃

i∈X∩{1,2,3}
↓ i. (29)

This can be understood examining the term H(X ∩ 123|X− 123) in Equation (28). For example,
suppose that the target includes 1 and 2 but not 3. Then the entropy in Equation (28) is H(12|X− 123),
corresponding to I(12; 123|X− 123). The PID terms that can be reached descending from 3 and not
from 1 or 2 are ∆(X; 3) and ∆(X; 3.12) (see Figure 1B). The first quantifies information that can only be
obtained from 3, and not from 12. The second is information that can be obtained from 3 or from 12,
but not from 1 or 2 alone. However, the information I(12; 123|X− 123) can be obtained from either 1
or 2 alone, so there is no information exclusive of 12. This means that ∆(X; 3) and ∆(X; 3.12) do not
contribute to the decomposition of H(12|X− 123).

Using the condition of Equation (29), we can use the same procedure as in Section 4.1 to derive
the expressions of all the deterministic PID trivariate components. These terms are collected in Table 3
and we leave the detailed derivations and discussion for Appendix E. Their expressions are indicated
for the case in which variable i is part of the target and are symmetric with respect to j or k when this
symmetry is characteristic of a certain PID term, or vanish otherwise, consistently with Equation (29).

The first two terms ∆d(X; i) and ∆d(X; i.jk) are nonnegative, the former because it is an entropy
and the latter because according to the axiom adding a new source can only reduce synergy.
However, for the terms ∆d(X; i.j) and ∆d(X; i.j.k) it is not guaranteed that they are nonnegative.
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For ∆d(X; i.j), we will see examples of negative values below. For ∆d(X; i.j.k), the conditional
co-information can be negative if there is synergy between the primary sources when conditioning
on the non-overlapping target variables, and this can happen when there is no synergy about the
target, leading to a negative value. Therefore, following the weak stochasticity axiom, the PID cannot
ensure the nonnegativity of all terms when deterministic target-source dependencies are in place.
We will further discuss this limitation after examining the full trivariate decomposition for the XOR
and AND examples.

Table 3. Deterministic components of the PID terms for the trivariate decomposition derived from the
weak stochasticity axiom. All terms not included in the table have no deterministic component due to
the axiom. These expressions correspond to the case in which the primary source i overlaps with the
target. If i does not overlap, ∆d(X; i) and ∆d(X; i.jk) are zero, while the other terms depend on their
characteristic symmetry for the other variables j and k, and vanish if none of the variables with the
corresponding symmetry overlaps with the target. See the main text and Appendix E for details.

Term Measure

∆d(X; i) H(i|jk, X− ijk)

∆d(X; i.jk) I(X− jk; jk\j, k)− I(X− ijk; jk\j, k)

∆d(X; i.j) I(i; j|k, X− ijk)− [∆d(X; i.jk) + ∆d(X; j.ik)]

∆d(X; i.j.k) C(i; j; k|X− ijk) + ∆d(X; i.jk) + ∆d(X; j.ik) + ∆d(X; k.ij)

5.1.2. PIDs with the Strong Axiom

With the strong axiom, not only deterministic but stochastic components of synergy are restricted.
There cannot be any synergistic contribution that involves a source overlapping with the target.
Equation (12) can be applied with S = 123. Furthermore, since synergistic terms have to vanish not
only for the terms ∆(X; α) of the trivariate lattice but also of any bivariate lattice associated with it,
given the mapping of PID terms between these lattices (Figure 1), this implies that in the trivariate
lattice also the PID terms of the form i.jk are constrained. There is only one case in which synergistic
contributions can be nonzero if there is any target-source overlap for the trivariate case, and this is
when only one variable overlaps. Consider that only variable 1 is part of the target. Since there cannot
be any synergy involving 1, all synergistic PID terms contained in I(X; 1|2), I(X; 1|3), or I(X; 1|23)
have to vanish, and also ∆(X; 2.13) and ∆(X; 3.12). It can be checked that this includes all synergistic
terms except ∆(X; 23) and ∆(X; 1.23). The former quantifies synergy about other target variables and
the latter synergy redundant with the information of 1 itself. With more than one primary source
overlapping with the target all synergistic terms have to vanish for the trivariate case.

Like for the weak axiom, we now leave the derivations for Appendix E. The PID deterministic
terms are collected in Table 4, again for simplicity showing their expressions for the case in which i
overlaps with the target. The form of the expressions respects the symmetries of each term. For example,
if j instead of i overlaps with the target then ∆d(X; i.j) = I(i; j|k)− ∆d(X; j.ik). Note however that,
because ∆d(X; j.ik) = 0 when i overlaps, if both i and j overlap then ∆d(X; i.j) = I(i; j|k).
See Appendix E for further details.

In comparison to the deterministic components derived from the weak axiom there are two
differences: First, the lack of conditioning on X− ijk is due to the reversed partitioning order selected.
Like for the bivariate case, the deterministic PID components are independent of the non-overlapping
target variables when adopting the strong stochasticity axiom. Second, assuming the strong axiom the
terms ∆d(X; i.jk) can only be nonzero if j and k are not contained in the target and when more than
one source overlaps all terms of the form ∆d(X; i.jk) vanish. In that case it is clear that ∆d(X; i.j.k) can
be negative, since the co-information can be negative. Therefore, also the PID derived from the strong
axiom does not ensure nonnegativity. We will now show examples of negative terms for both PIDs.
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Table 4. Deterministic components of the PID terms for the trivariate decomposition derived from
the strong stochasticity axiom. All terms not included in the table have no deterministic component
due to the axiom. Again, the expressions shown here correspond to the case in which the source i
overlaps with the target. For ∆d(X; i.jk) we further consider that neither j nor k overlap with the target,
and otherwise this term vanishes. If i does not overlap, ∆d(X; i) is zero, while the other terms depend
on their characteristic symmetry for the other variables j and k and vanish otherwise. See the main text
and Appendix E for details.

Term Measure

∆d(X; i) H(i|jk)

∆d(X; i.jk) I(i; jk\j, k)

∆d(X; i.j) I(i; j|k)− ∆d(X; i.jk)

∆d(X; i.j.k) C(i; j; k) + ∆d(X; i.jk)

5.2. Illustrative Systems

We now continue the analysis of the XOR and AND examples by decomposing I(123; 123).
Since now X− 123 = ∅ the decompositions are completely deterministic and are obtained calculating
the PID components described in Tables 3 and 4. Accordingly, given that deterministic and joint PID
terms are equal, we will use ∆(X; β) instead of ∆d(X; β) to refer to them. As discussed in Section 4.4,
the decompositions of the XOR system can be derived without assuming any particular redundancy
measure. For the AND system, according to Tables 3 and 4, only the terms ∆d(X; i.jk) require selecting
a particular measure. As before we assign to these terms the value that is equally obtained with Imin,
Ired, and SI.

5.2.1. XOR

We start with the XOR example and the decomposition derived from the weak stochasticity axiom
(Figure 4A). We show the trivariate decomposition of I(123; 123) and also again the decomposition
of I(123; 12), now indicating the mapping of the nodes with the trivariate decomposition. For the
trivariate lattice we only show the nodes lower than the ones of the primary sources because for all
others the corresponding terms are zero (Equation (27)). The PID terms are calculated considering
Table 3 and the information-theoretic quantities displayed in Figure 2A.

The trivariate terms ∆(X; i) are all zero, because any two variables determine the third. This is
also reflected in the terms ∆(X; i.jk) having 1 bit. The terms ∆(X; i.j) are all equal to −1 bit.
These terms should quantify the redundant information between two variables, which is unique
with respect to the third, but their interpretation is impaired by the negative values. Furthermore,
∆(X; i.j.k) = 2, so that not only negative values exist but also the monotonicity axiom is violated,
since I(X; i.j.k) > I(X; i.j). However, it can be verified that the values obtained are consistent from the
point of view of the constraints linking PID terms and mutual informations (Equation (9)). Similarly,
the calculated PID components are consistent between the bivariate and trivariate decompositions.
In particular, the sum of the nodes with the same color or label in the trivariate lattice equals the
corresponding node in the bivariate lattice. This equality holds for the joint bivariate lattice, and not
for the deterministic lattice alone, even if in the trivariate case the lattice is uniquely deterministic.
This reflects a transfer of stochastic synergy in the bivariate case to deterministic redundancy in the
trivariate case (see yellow nodes labeled with d).

We now consider the decomposition derived from the strong axiom (Figure 4B). In this case also
∆(X; i) are all zero because any two variables determine the third, but now also ∆(X; i.jk) are zero. This is
because the axiom assumes that there is no synergy involving any of the primary sources overlapping
with the target. ∆(X; 3.12) = 0 is consistent with the lack synergy for the decomposition of I(123; 12),
as indicated by the mapping of the yellow nodes labeled with d. Furthermore, the mapping of all other
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PID terms is consistent. In particular, the 1 bit corresponding to the unique informations of the bivariate
decomposition is contained in the terms ∆(X; i.j) = I(i; j|k) of the trivariate one. In comparison to the
decomposition from the weak axiom, these terms are not negative, but instead, a negative value is
obtained for ∆(X; i.j.k). Therefore nonnegativity is neither fulfilled for this decomposition.
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Figure 4. Trivariate decompositions of I(123; 123) for the XOR system. (A) Decomposition derived
from the weak stochasticity axiom. The trivariate redundancy lattice is displayed only for nodes lower
than the single source nodes because all upper PID terms are zero. The bivariate decomposition of
I(123; 12) is shown again now indicating the mapping of the PID terms with colors and labels as
in Figure 1. In particular, nodes with the same color in the trivariate lattice are accumulated in the
corresponding node in the bivariate lattice. (B) Same as (A) but for the decomposition derived from
the strong axiom.

We mentioned in Section 4.5 that, due to conditional dependencies, the only information identity
criterion that seems appropriate for target 123 of the XOR system is to identify the two bits as
follows: the bit that any first variable provides alone, and the bit that a second variable provides
combined with the first. Oppositely, on one hand, the strong axiom assumes that each source alone can
uniquely provide a bit, corresponding to its own identity, as reflected in the decomposition of I(123; 12)
(see Figure 4B). On the other hand, with the weak axiom, the second bit is classified as synergy,
consistently with the idea that retrieving it requires the combination of two variables (Figure 4A).
However, because the weak axiom still assumes that any information about an overlapping variable
has to be redundant or unique, it imposes that the synergy is contained in the terms ∆(X; i.jk) in the
trivariate decomposition and not in terms corresponding to nodes above the ones of single variables.
Therefore, the weak axiom is still not compatible with that identification of the two bits as the one that
can be obtained from a single variable and the one that can only be obtained from the combination of
two variables.

5.2.2. AND

We present the AND decomposition as a further example (Figure 5). All PID terms are derived
using the information-theoretic quantities of Figure 3A in combination with Tables 3 and 4. Like
for the XOR case, the mapping of trivariate to bivariate decompositions is consistent. Again, both
trivariate decompositions contain some negative term. With the strong axiom, while the bivariate
decompositions for the XOR and AND example are equal because of the invariance reducing target 123
to 12, the trivariate PID terms differ substantially, reflecting the different symmetries of each operation.



Entropy 2018, 20, 169 25 of 41

This is because in the trivariate decomposition 3 explicitly appears as a primary source and cannot be
removed even if determined by 12.
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Figure 5. Trivariate decompositions of I(123; 123) for the AND system. The structure of the figure is the
same as in Figure 4. (A) Decompositions derived from the weak stochasticity axiom. (B) Decompositions
derived from the strong axiom. Nodes with the same color in the trivariate lattice are accumulated in
the corresponding node in the bivariate lattice.

5.3. PID Terms’ Nonnegativity and Information Identity

The decomposition of I(123; 1, 2, 3) for the XOR system was used by [42,44] as a counterexample to
show that with more than two sources there is no decomposition that can simultaneously comply with
the monotonicity axiom and the identity axiom and also lead to global nonnegativity of the PID terms.
The work in [41] recently pointed out that negative terms appear just when assuming the independent
identity property, and not necessarily the identity axiom. However, the existence proofs in [41,42,44]
only indicate that a negative term exists, without finding exactly which is the negative term and
without determining all the PID terms (see Appendix F for more details).

Our results complement their proofs because the combination of the stochasticity axioms with
the relations of the form of Equation (9) allows us to derive the complete PIDs, as shown in Tables 3
and 4. The negative terms can be explained as a consequence of the deterministic components of the
PID terms, which result from deterministic target-source dependencies. This is particularly relevant
because, as proven in Section 4.3 and in the Appendix C, several proposed measures (i.e., SI, Ired,
and Idep) comply with the strong axiom (at least) when the primary sources are part of the target.
Furthermore, the derivations from the stochasticity axioms relate the existence of negative terms
to specific assumptions made to assign an identity to different pieces of information (Sections 3
and 4.5). In more detail, the stochasticity axioms enforce that certain pieces of information are
attributed to redundancy or unique information terms because of the target-source identity associations.
As a consequence, deterministic components of the decomposition are bounded to the non-synergistic
part of the redundancy lattice, which leads to negative terms in order to conform to the lattice
structure and to the relations between PID terms and mutual informations (Equation (9)). Furthermore,
as argued by [41], if the PID terms are to depend continuously on the probability distributions, the same
problem of obtaining negative PID terms is expected to occur not only when deterministic target-source
dependencies exist, but also in the limit of strong dependencies tending to be deterministic.

More generally, it is important to identify the minimal assumptions that, when added to the
original core ingredients of [33,34], can lead to negative PID terms. These original ingredients are
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the three axioms of symmetry, self-redundancy, and monotonicity, and the relations of the measures
in the redundancy lattice (Equation (9)). The work in [42,44] found that negative terms follow from
adding the identity axiom, and [41] showed that they already follow from the weaker independent
identity property. Furthermore, the comparison of the two stochasticity axioms and the discussion of
information identity criteria (Section 4.6) allow a deeper appreciation of an extra assumption used in
the proofs of [41,42,44] (see Appendix F), namely the TSC reduction invariance discussed in Section 4.6.
This invariance was assumed, but not motivated in terms of what is expected from the notion of
redundancy. Instead, it was assumed as inherited from the mutual information.

These two additional assumptions are less restrictive than adding the strong axiom, because the
fulfillment of the strong axiom is a sufficient condition to fulfill the independent identity property
(Section 4.2) and also to fulfill the TSC reduction invariance (Section 4.6). In contrast, the weak
axiom does not imply this invariance. However, the decomposition of the XOR system derived
from this axiom (Figure 4A) shows that it leads to negative terms, but also that it contradicts the
monotonicity axiom. Therefore, if we want to preserve the original ingredients of the PID framework,
the minimal additional assumptions that lead to negative terms are the independent identity property
and the TSC reduction invariance.

We now assess these two assumptions in the light of the discussion of the role of information
identity in the quantification of redundancy. Regarding the TSC reduction invariance, in Section 4.6, we
indicated that this reduction can affect the identity of the pieces of information and remove information
about the mechanisms that would result into mechanistic redundancy. This provides some arguments
suggesting that the TSC reduction invariance should not be imposed to the redundancy measure.
Regarding the independent identity property, when the target is a copy of two independent sources,
the bits of information can be identified with each variable within the target and the target-source
identity associations can be applied to assess that there is no redundancy. In fact, for the more general
case of dependent sources, the identification of the bits is also consistent with the identity axiom.
The bits are shared by the copies of the two sources in the target, and the target-source identity
associations can be used to assess that redundancy equals the mutual information between the sources.
Therefore, the considerations about information identity suggest that both the independent identity
property and the identity axiom should be required. Altogether, this suggests that, from the two
assumptions, only the independent identity property, and more generally the identity axiom, should
be preserved.

We now review how several proposed redundancy measures comply or not with these two
assumptions. SI, Ired, and Idep follow both assumptions (see [35,36,43], Section 4.3, and Appendix C).
This leads to negative PID terms in the multivariate case. Oppositely, for the measures Imin [33] and its
simplification II [42], it is straightforward to check that they fulfill the TSC reduction invariance,
and nonnegativity has been proven [33], but they do not comply with the identity axiom [35].
This means that they only quantify common amounts of information, but not information that is
qualitatively common to the sources. Furthermore, Iccs complies with the TSC reduction invariance,
which it inherits from the co-information, but this measure was not defined to be nonnegative.
Therefore, none of all these proposed redundancy measures complies with the independent identity
property and does not comply with the TSC reduction invariance.

If the redundancy lattice and the axioms of [33,34] are to remain as the backbone of a nonnegative PID,
we would require a new information identity criterion compatible with the identity axiom but leading
to different assumptions about how deterministic target-source dependencies constrain the synergistic
terms. The common assumption of the weak and strong axioms that information about an overlapping
variable can only be redundant or unique may be too restrictive. As mentioned above, the analysis
of how negative terms originate from the stochasticity axioms shows that they are produced by the
accumulation of deterministic PID components in non-synergistic terms due to the constraints imposed
based on target-source identity associations. Since the TSC reduction invariance only holds for the
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strong axiom, we expect that an information criterion that further relaxes these constraints can be
compatible with the PID terms being non-TSC-invariants.

6. Discussion

6.1. Implications for the Theoretical Definition of Redundant, Synergistic and Unique Information

The proposal of [33] of decomposing mutual information into nonnegative redundant, unique, and
synergistic components has been a fruitful and influential conceptual framework. However, a concrete
implementation consistent with a set of axioms formalizing the notions for such types of information
has proven to be elusive. The main difficulty stems from determining if redundant sources contain
the same qualitative information, which requires assigning an identity to pieces of information in the
target. The work in [35] pointed out that the redundancy defined by [33] only captures quantitatively
the common amounts of information shared by the sources. They introduced the identity axiom to
ensure that two independent variables cannot have redundant information about a copy of themselves.
The lack of redundancy for this particular case has been enunciated as the independent identity
property by [38]. However, Ref. [42] provided a counterexample showing that nonnegativity of the
PID terms is not ensured when the identity axiom is assumed. This counterexample also involved a
target constituted as a copy of the primary sources, in particular as the inputs and output variables of
the XOR logical operation.

Although the identity axiom provides a necessary condition to capture qualitatively common
information in the redundancy measure, previous studies have not directly examined how to assign an
identity to different pieces of information in order to assess which information is redundant between
sources. Since systems with deterministic target-source dependencies have been investigated for the
introduction of the identity axiom [35] and to prove its incompatibility with the nonnegativity of the
PID terms [36], here we systematically studied how specific information identity criteria constrain
the PIDs of such systems. In particular, we examined the PIDs resulting from two information
identity criteria that impose constraints on synergistic terms based on identity associations between
the target and source variables. These associations result generically from deterministic target-source
dependencies and, more concretely for the case we mainly studied, from the overlap between the target
and the primary sources. We enunciated (Section 3) two stochasticity axioms that impose constraints
of different strength on the synergistic terms. The weak axiom states that there cannot be synergistic
information about the overlapping target variables. The strong axiom further constrains synergy
assuming that the overlapping sources cannot provide other information than about themselves,
and thus cannot contribute synergistic information about the non-overlapping part of the target.

We derived (Section 4.1) general formulas for the PID terms in the bivariate case, following each
version of the stochasticity axiom. We showed that the PID terms can be separated into a stochastic
and a deterministic component, which account for the information about the non-overlapping and
overlapping target variables, respectively. We indicated that the stochasticity axioms subsume the
identity axiom and provide two alternative extensions to characterize redundancy for any multivariate
system with any degree of target-source overlap (Section 4.2). We showed that several previously
proposed measures conform to the strong axiom either in general [36] or at least for classes of
systems with target-source overlaps [35,43] wider than the ones considered by the identity axiom
(Section 4.3). We then examined (Section 4.4) two concrete examples based on the XOR and AND
logical operations, with variables 1 and 2 as inputs and variable 3 as output, calculating the PID of the
mutual information I(123; 12).

Using these examples, we showed how the identification of pieces of information based
on target-source identity associations leads to an ambiguous determination of redundancy and
unique information. This ambiguity is reflected in the possible selection of the two alternative
stochasticity axioms, and is associated with different partitioning orders of the mutual information
(Section 4.5). When using the weak axiom, each source can be combined with some target variables
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to provide information about other target variables, even in the presence of a target-source overlap.
Conversely, the strong axiom assumes that any overlapping variable only provides information
about itself, and thus redundant information is equal to the mutual information between the
primary sources when there is some target-source overlap, independently of the non-overlapping
target variables.

Therefore, a crucial difference between redundancy derived from the two axioms is its invariance
to isomorphisms of the target. In the XOR and AND examples, since the output variable is completely
determined by the inputs, the mutual information is invariant under the isomorphic reduction of the
target 123 to 12, which we called the TSC (target to sources copy) reduction. This invariance of the
mutual information holds without imposing any constraint on how the target variables are observed,
either simultaneously or sequentially. However, it has been already shown that the PID terms can
be sensitive to properties of the joint probability distribution of the target and sources to which the
mutual information is not [52]. Here, we discussed two ways in which the overall composition
of the target may affect redundancy (Section 4.6). First, the addition of new target variables can
change the identity of the pieces of information associated with the previous variables by introducing
new conditional dependencies. Second, the TSC reduction invariance is not compatible with the
quantification of mechanistic redundancy [35], which has been recognized as the origin of redundancy
between independent sources (e.g., [35,36,38,43]). This is because, in examples such as the XOR
and AND systems with target 123, the TSC reduction erases the information about the mechanism
generating the output variable 3, which is necessary to assess mechanistic redundancy. This means
that the notion of redundancy itself depends on whether all the target variables can be observed
separately or not. If it is accepted that redundancy should depend on the overall composition of the
target, the corresponding redundancy measure cannot comply with the TSC reduction invariance and
will depend on semantic aspects of the joint probability distribution of the target related to the identity
of the variables.

In Section 5.1, we extended the general derivations to the trivariate case. This allowed us to
understand what originates negative PID terms. While with the identity axiom the counterexample
of [42] provides a proof of the existence of negative terms, under the stricter conditions of the
stochasticity axioms, we could derive the complete PIDs, showing that several PID terms have a
deterministic component that is not non-negatively defined (Section 5.2). This analysis is particularly
relevant for the previously proposed measures that comply with the strong axiom for the XOR and
AND systems with target 123 (Section 4.4). We have thus exposed the relation between the assumptions
on information identity and the lack of nonnegativity. In particular, imposing that certain pieces of
information can only be attributed to redundancy or unique information terms, based on the premise
that their identity is associated with the sources, enforces that deterministic components of the mutual
information are bounded to the non-synergistic part of the redundancy lattice. This leads to negative
terms in order to conform to the lattice structure and to the lattice inherent relations between PID
terms and mutual informations.

Although the notion of redundancy as information shared about the same pieces of information
is intuitive in plain language, its precise implementation within the information-theoretic framework
is not straightforward. The measure of mutual information has applications in many fields, such as
communication theory and statistics [45]. Accordingly, a certain decomposition in terms of redundant,
unique, and synergistic contributions may be compatible only with one of its interpretations. Indeed,
if information is understood in the context of a communication channel [53], nonnegativity is required
from its operational interpretation as the number of messages that can be transmitted without errors.
Furthermore, semantic content cannot be attributed, and thus, information identity should rely only on
the statistical properties of the distribution of the target variables. For example, in the case of the target
composed by two independent variables, identity is assigned based on independence. Alternatively,
if mutual information is used as a descriptor of statistical dependencies [54], nonnegativity is not
required since locally negative information, or misinformation [55], simply reflects a certain change
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in the probability distribution of one variable due to conditioning on another variable. With this
interpretation of information based on local dependencies, a criterion of information identity can
introduce semantic content in association with the specific value of the variables, and common
information of two sources can be associated with dependencies that induce coherent modifications of
the probability distribution of the target variables [38]. These local measures of information may be
interpreted operationally in terms of changes in beliefs, or in relation to a notion of information more
associated with ideal observer analysis than with communication theory [55,56]. In this work, we have
not considered local versions of mutual information, and we adopted the premise that nonnegativity
is a desirable property for the PID terms.

With this aim, we identified the minimal extra assumptions that when added to the original
axioms [33,34] lead to negative PID terms. Combining our analysis of the stochasticity axioms and the
counterexample of [41,42,44], we pointed out that negativity appears due to the combined assumption
of TSC reduction invariance and of the independent identity property (Section 5.3). Following our
discussion of the role of information identity in the quantification of redundancy, we suggested that
only the latter should be preserved in the search of a desirable redundancy measure.

6.2. Implications for Studying Neural Codes

Determining the proper criterion of information identity to evaluate when information carried by
different sources is qualitatively common is essential to interpret the results of the PID in practical
applications, such as in the analysis of the distribution of redundant, unique, and synergistic
information in neural population responses. For example, when examining how information about a
multidimensional sensory stimulus is represented across neurons, the decomposition should identify
information about different features of the stimulus, and not only common amounts of information.
The PID terms should reflect the functional properties of the neural population so that we can
properly characterize the neural code. On the other hand, nonnegativity of the PID terms facilitates
their interpretation not only as a description of statistical dependencies, but as a breakdown of the
information content of neural responses, for example to assess the intersection information between
sensory and behavioral choice representations [20,47,57].

The underlying criterion of information identity for the PID is also important when examining
information flows among brain areas because, only if redundant and unique information terms
correctly separate qualitatively the information, we can interpret the spatial and temporal dynamics of
how unique new information is transmitted across areas. It is common to apply dynamic measures
of predictability such as Granger causality [58] to characterize information flows between brain
areas [21]. The effect of synergistic and redundant information components in the characterization
of information flows with Granger causality has been studied [59,60], and ref. [61] applied their
PID framework to decompose the information-theoretic measure of Granger causality, namely
Transfer entropy [62,63], into terms separately accounting for state-independent and state-dependent
components of information transfer. Furthermore, they also indicated which terms of the PIDs can
be associated with information uniquely transmitted at a certain time or information transfer about
a specific variable, such as a certain sensory stimulus [64]. These applications of the PID framework
identify meaningful PID terms based on the redundancy lattice, and thus can be applied for any
actual definition of the measures, but our considerations highlight the necessity to properly determine
information identity in order to fully exploit their explanatory power.

Furthermore, our discussion of how the interpretation of information identity depends on the
dependencies between the variables composing the target indicates that the analysis of how redundant,
unique, and synergistic information components are distributed across neural population responses
can be particularly useful in combination with interventional approaches [20,65]. In particular,
the manipulation of neural activity with optogenetics techniques [66,67] can disentangle causal effects
from other sources of dependencies such as common factors. Although this work illustrates the
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principled limitations of current PID measures, their combination with these powerful experimental
techniques can help to better probe the functional meaning of the PID terms.

6.3. Concluding Remarks

We investigated the implications for the quantification of redundant, unique, and synergistic
information of information identity criteria that, in the presence of deterministic target-source
dependencies, assign an identity to pieces of information based on identity associations between
the target and sources variables. Our analysis suggests that, if the redundancy lattice of [33] is to
remain as the backbone of a nonnegative decomposition of the mutual information, a new criterion
of information identity should be established that, while conforming to the identity axiom, it is less
restrictive in the presence of deterministic target-source dependencies than the ones herein studied.
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Appendix A. The Relations between the Constraints to Synergy Resulting from the Strong Axiom for
the General Case of Functional Dependencies and for the Case of Sources Being Part of the Target

In Section 3, we argued that when any primary source Sk that deterministically explains a subset
X(Sk) of the target is in fact part of the target (i.e., X′ = S′), the conceptual formulation of the strong
axiom implies extra constraints that cancel certain synergistic terms (Equation (12)). These constraints
specific of the case X′ = S′ were not derived as a subcase of the general constraints associated with
the strong axiom for any type of functional dependence (Equation (11)). Oppositely, we separately
proposed these specific constraints following the logic of the strong axiom that indicates that any
source that is part of the target cannot be involved in synergistic contributions because it can only
contribute to provide the information about itself and it can do so without being combined with
any other. We here examine the consistency of Equation (12) with Equation (11), showing that, if
imposing an extra desirable property to the PID terms, Equation (12) can be derived from Equation (11).
Without this further condition, the fulfillment of Equation (11) and of Equation (12) can be seen as
separate requirements that should be fulfilled by a PID compatible with the strong axiom.

In general, Equation (11) only establishes a relation between the synergistic terms of the PID
of I(X; S) and the synergistic terms of the PID of I(X − X′; S|X′), or equivalently of I(X; S|X′),
as indicated in Section 3. When X′ = S′, the synergistic terms of the decomposition of I(X; S)
are expressed in terms of the synergistic terms of the decomposition of I(X− S′; S|S′), or I(X; S|S′).
Both decompositions have to comply with the relations between mutual informations and partial
informations of Equation (9). However, without any further assumption on how the PID terms should
be defined, we cannot further specify the form of the PID terms ∆(X; S|S′). We will now show under
which further conditions imposed to the PID terms ∆(X; S|S′) Equation (12) is obtained as a subcase
of Equation (11).

Before addressing the general case, we start with an example to understand the constraints
that Equation (9) imposes to the decomposition of I(X; S|S′). In particular, consider three primary
sources 1, 2, and 3 and a target X = {X− X′, 3}, that is X′ = S′ = 3. In this case, Equation (11) links
the decomposition of I(X; 123) to the decomposition of I(X; 123|3). In Figure A1A,B, we show the
redundancy lattices of I(X; 123) and I(X; 123|3), respectively. The PID terms of both lattices should



Entropy 2018, 20, 169 31 of 41

be consistent with the equations that relate them to mutual information quantities (Equation (9)).
In particular, using the chain rule to break down I(X; 123|3), we have that:

I(X; 123|3) = I(X; 12|3) + I(X; 3|12, 3) = I(X; 12|3) + 0 (A1a)

I(X; 13|3) = I(X; 1|3) + I(X; 3|1, 3) = I(X; 1|3) + 0 (A1b)

I(X; 23|3) = I(X; 2|3) + I(X; 3|2, 3) = I(X; 2|3) + 0 (A1c)

I(X; 3|3) = 0. (A1d)
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Figure A1. Redundancy lattices of the decomposition of I(X; 123) (A) and of I(X; 123|3) (B). (A) Black
nodes correspond to PID terms decomposing I(X; 3). Colored labeled nodes correspond to the
decomposition of I(X; 12|3). Nodes labeled with a contribute to the redundancy I(X; 1.2|3), labeled
with b to the unique information I(X; 1\2|3), with c to the unique information I(X; 2\1|3), and with d
to synergy I(X; 12\1, 2|3). (B) Colored labeled nodes correspond to the decomposition of I(X; 12|3).
Colors and labels indicate the mapping to the same decomposition in the lattice of (A). Black nodes
correspond to PID terms involved in the constraints of Equation (A1a–d). The bold letters refer to the
subequations constraining each node.

Note that the mutual information quantities in which 3 appears both as a source and as a target
variable can only be related to the decomposition of I(X; 123|3), while the others are related to both
decompositions. In particular, given Equation (9), we should be able to recover, as sums of PID terms
from any of the lattices, the measures I(X; 12|3), I(X; 1|3), and I(X; 2|3). The other measures are only
related to the PID of I(X; 123|3). Because of the conditioning on the target variable 3, the source 3
cannot contribute any information, since H(3|3) = 0. This is reflected in the fact that I(X; 3|12, 3),
I(X; 3|1, 3), I(X; 3|2, 3), and I(X; 3|3) are all zero. Given Equation (9), this imposes four constraints on
the PID terms ∆(X; α|3), as sums of terms that should cancel.

Without any further assumption on the properties of these PID terms these constraints cannot
determine the PID terms, since the cancellation could be achieved by a combination of positive and
negative PID terms. However, if we assume the nonnegativity of the terms ∆(X; α|3), this implies
that all PID terms summed by Equation (9) to obtain I(X; 3|12, 3), I(X; 3|1, 3), I(X; 3|2, 3), or I(X; 3|3)
should vanish. In Figure A1B we indicate the PID terms that vanish with black colored nodes and
with bold letters referring to the set of sub-equations of Equation (A1) that imply their cancellation.
For example, from Equation (9), the fact that I(X; 3|1, 3) = 0 implies that PID terms of Figure A1B
associated with the nodes in (↓ 13)− (↓ 1) have to vanish. These are the nodes that can be reached
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descending from 13 but that cannot be reached descending from 1. Similarly, I(X; 3|12, 3) = 0 indicates
that the terms associated with nodes in (↓ 123)− (↓ 12) have to vanish. Each of the four constraints
cancels a set of PID terms identified as (↓ {W, 3})− (↓W), where W ⊆ S− S′.

Altogether, given the constraints of Equation (A1), only the PID terms related to nodes 1.2, 1,
2, and 12 of the lattice decomposing I(X; 123|3) can be nonzero. This is consistent with the fact
that I(X; 123|3) = I(X; 12|3). The resulting decomposition of I(X; 123|3) is in fact equivalent to
the decomposition of I(X; 12|3), which has only four terms. This is a desired property for the
decomposition of I(X; 123|3) because source 3 has no information after conditioning on target
variable 3, and thus it has no information that can be classified as redundant, unique, or synergistic.
Therefore, instead of assuming the nonnegativity of the terms ∆(X; α|3), we can alternatively directly
impose that the PID of I(X; 123|3) should equal the PID of I(X; 12|3), as a desirable property of
the PID terms. This already implies the fulfillment of the constraints of Equation (A1). This extra
requirement is specific of the case X′ = S′, since for the case I(X; 123|X(3)), with X(3) a part of the
target functionally determined by 3, we have H(3|X(3)) > 0. The logic of imposing the equivalence
between the decomposition of I(X; 123|3) and I(X; 12|3) can be further understood examining the
mapping of the four PID terms that can be nonzero (1.2, 1, 2, and 12) of the decomposition of I(X; 123|3)
(Figure A1B) to the PID terms of the decomposition of I(X; 123) (Figure A1A). These four terms are
mapped to different sums of terms that represent all the information other than I(X; 3), which is
not available after the conditioning on 3. Finally, the only synergistic term that can be nonzero in
Figure A1B is 12, which is consistent with Equation (12), since the collection 12 is the only above the
nodes corresponding to single primary sources such that none of its sources contains 3. There is no
synergy between any source W ⊆ S− 3 and the primary source 3 because W ⊆ S− 3 already can
provide, in combination with the conditioning copy of 3 from the target, any information obtained by
jointly having {W, 3}. Furthermore, also the terms 2.13 and 1.23 vanish in Figure A1B. This is consistent
with the expression of ∆d(X; i.jk) in Table 4, although Equation (12) does not concern these terms.

We can now resume the general case. In general, the equality of Equation (11) between the
synergistic terms of I(X; S) and I(X; S|X′) cannot be further specified. For the case of X′ = S′,
I(X; S|X′) = I(X; S|S′). In this case, since I(X; S|S′) = I(X; S− S′|S′), we can impose as a desirable
property of the PID of I(X; S|S′) that it is equivalent to the PID of I(X; S− S′|S′). This is because
H(S′|S′) = 0, and thus the sources in S′ have no information after conditioning on their target
copies. We can now see that this extra condition guarantees the consistency of the constraints of
Equation (11) and Equation (12) proposed following the conceptual formulation of the strong axiom.
Because the sources in S’ do not appear as sources in I(X; S− S′|S′), the PID of I(X; S|S′) can only
be equal to the one of I(X; S− S′|S′) if all PID terms ∆(X; S|S′) corresponding to a collection with
a source A containing Si ∈ S′ vanish. This corresponds to the condition ∃A ∈ α, S′ ∩ A = ∅
of Equation (12). Accordingly, since ∆(X − S′; S|S′) = ∆(X; S|S′), Equation (12) is subsumed by
Equation (11). The equivalence of the PID of I(X; S− S′|S′) and the PID of I(X; S|S′) is also consistent
with the constraints of the form of Equation (A1) related to Equation (9). This is because, as shown
for the example above, given the partial ordering relations of Equation (8), canceling the PID terms
of all collections containing a source A such that S′ ∩ A = ∅ is equivalent to canceling the PID of
all collections within (↓ {W, S′})− (↓ W), for any W ⊆ S− S′. Altogether, although in Section 3,
we proposed the constraints of Equation (11) and of Equation (12) as separately following from the
conceptual formulation of the strong axiom, if imposing as a further desirable condition to the PID of
I(X; S|S′) its equivalence to the PID of I(X; S− S′|S′), Equation (12) can be derived from Equation (11).

Appendix B. Alternative Partitioning Orders for the Bivariate Decomposition with Target-Source
Overlap

We here derive in more detail the alternative expressions for the unique and redundant
information terms collected in Table 1, which are obtained applying the other mutual information
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partitioning order of Equation (15b). Using the relation decomposing conditional mutual information
into unique information and synergy, we get:

I(X; 1\2) = I(X; 1|2)− I(X; 12\1, 2)

= I(X ∩ 12; 1|2) + I(X− 12; 1|2, X ∩ 12)− I(X− 12; 12\1, 2).
(A2)

This leads to express the unique information of 1 as:

I(X; 1\2) =
{

I(X− 12; 1\2) if X ∩ 1 = ∅

H(1|2)− I(X− 12; 12\1, 2) if X ∩ 1 6= ∅
. (A3)

In this case, the unique information is separated into nonadditive terms and involves the
synergy about X − 12. This cross-over may seem at odds with the expression obtained with the
other partitioning order (Equation (18)), but on the contrary it reflects the internal consistency of the
relations between the information-theoretic quantities: Equations (18) and (A3) coincide if 1 is not part
of the target. For X ∩ 1 6= ∅, their equality:

H(1|2)− I(X− 12; 12\1, 2) = I(X− 12; 1\2) + H(X ∩ 1|2, X− 12) (A4)

is consistent with the definition I(X − 12; 1|2) = H(1|2)− H(1|2, X − 12), taking into account that
conditional information is the sum of the unique and synergistic components.

Proceeding as with the other partitioning order, once we have the expression of the unique
information we can use the relation with the mutual information to determine redundancy:

I(X; 1.2) =

{
I(X− 12; 1.2) if X ∩ 12 = ∅

I(1; 2) + I(X− 12; 12\1, 2) if X ∩ 12 6= ∅
. (A5)

Also here, internal consistency with Equation (19) holds. In particular, the equality:

I(1; 2) + I(X− 12; 12\1, 2) = I(X− 12; 1.2) + I(1; 2|X− 12) (A6)

reflects that:

C(X− 12; 1; 2) = I(1; 2)− I(1; 2|X− 12)

= I(X− 12; 1.2)− I(X− 12; 12\1, 2)
(A7)

because the co-information is invariant to permutations (Equation (5)) and also corresponds to the
difference of the redundancy and synergistic PID components.

Also following the strong axiom the alternative partitioning order, in this case the one considering
first stochastic dependencies with the non-overlapping target variables, can be derived. With overlap,
Equation (14) implies that I(X; 1\2) = I(X; 1|2). For the unique information, we get:

I(X; 1\2) = I(X− 12; 1\2) + I(X− 12; 12\1, 2) + H(X ∩ 1|2, X− 12), (A8)

and for the redundancy:

I(X; 1.2) = I(X− 12; 1.2) + I(1; 2|X− 12)− I(X− 12; 12\1, 2). (A9)

Like with the weak axiom, internal consistency holds for the expressions obtained with the two
partitioning orders.
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Appendix C. The Fulfillment of the Strong Axiom by the Measures SI, and Ired

We first show that the maximum conditional entropy-based decomposition of [36] conforms to
the strong axiom:

Proposition A1. The PID associated with the redundancy measure SI [36] conforms to the synergy strong
stochasticity axiom for any system with a target X containing a subset {X(1), X(2)} of variables that are
completely determined by one of the primary sources 1 or 2.

Proof. Consider a target X and two sources 1 and 2. The measure of synergy associated to SI is
defined as:

CI(X; 1, 2) = I(X; 1, 2)− min
Q∈∆(p)

IQ(X; 1, 2), (A10)

where information is minimized within the family of distributions ∆(p) that preserves the marginals
p(X, 1) and p(X, 2). Define X(i), as the subset of variables in X that are completely determined by the
source i ∈ {1, 2}. Define X∗ = X− {X(1), X(2)}. We can now re-express CI(X; 1, 2) as:

CI(X; 1, 2) = I(X∗X(1)X(2); 1, 2)− min
Q∈∆(p)

IQ(X∗X(1)X(2); 1, 2),

= [I(X(1)X(2); 1, 2) + I(X∗; 1, 2|X(1), X(2))]− min
Q∈∆(p)

[
IQ(X(1)X(2); 1, 2) + IQ(X∗; 1, 2|X(1), X(2))

]
.

(A11)

We now show that IQ(X(1)X(2); 1, 2) = I(X(1)X(2); 1, 2) ∀Q ∈ ∆(p):

IQ(X(1)X(2); 1, 2) = IQ(X(1); 1, 2) + IQ(X(2); 1, 2|X(1))

= IQ(X(1); 1) + IQ(X(1); 2|1) + IQ(X(2); 2|X(1)) + IQ(X(2); 1|2, X(1))

= IQ(X(1); 1) + IQ(X(2); 2|X(1)) = I(X(1); 1) + I(X(2); 2|X(1)),

(A12)

where the last equality holds because p(X(1), 1) and p(X(2), 2, X(1)) are preserved in ∆(p). This means
that Equation (A11) can be further simplified to:

CI(X; 1, 2) = I(X∗; 1, 2|X(1), X(2))− min
Q∈∆(p)

IQ(X∗; 1, 2|X(1), X(2))

= CI(X∗; 1, 2|X(1), X(2)).
(A13)

This corresponds to the synergy of the bivariate decomposition of I(X∗; 1, 2|X(1), X(2)),
in agreement with the strong axiom formulated in Equation (11).

We now show that the measure Ired also complies with the strong axiom, at least for a wider class
of systems than the one concerned by the identity axiom:

Proposition A2. The PID associated with the redundancy measure Ired [35] conforms to the synergy strong
stochasticity axiom for any system with a target X containing both primary sources 1 and 2.

Proof. Consider a target X and two sources 1 and 2. The work in [35] defined the measure of
redundancy based on information projections in the space of probability distributions. The projection
of p(X|2) in the space of distributions of p(X|1), named p2↘1(X|2), is defined as the distribution

q(X) = ∑
1

α(1)p(X|1) (A14)

with α(1) being a probability distribution optimized such that p2↘1(X|2) = arg min
q

KL(p(X|2); q(X)).

That is, p2↘1(X|2) minimizes the Kullback-Leibler divergence with p(X|2) in the space of the
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probability distributions defined by Equation (A14). The corresponding projected information of
2 onto 1 with respect to X is defined as:

I2↘1(X; 2) = ∑
x,2

p(x, 2) log
p2↘1(x|2)

p(x)
. (A15)

Redundancy is then defined as I(X; 1.2) = min{I2↘1(X; 2), I1↘2(X; 1)}.
We now examine I2↘1(X; 2) for the case in which 1 is part of X. In particular define X = {Y, 1}.

For this case the distributions q(X) correspond to:

q(X) = ∑
1′

α(1′)p(Y, 1|1′) = α(1)p(Y|1). (A16)

The KL-divergence is then:

KL(p(Y, 1|2); q(Y, 1)) = ∑
y,1

p(y, 1|2) log
p(y, 1|2)

α(1)p(y|1)

= ∑
1

p(1|2)∑
y

p(y|12) log
p(y|12)
p(y|1) + ∑

1
p(1|2) log

p(1|2)
α(1)

.
(A17)

The first summand does not depend on α(1) and is thus constant in the minimization space.
The second summand is zero if α(1) = p(1|2), which minimizes the divergence. Accordingly,
with this value of α(1) into Equation (A16), p2↘1(X|2) = p(1|2)p(Y|1). Plugging this distribution into
Equation (A15) for X = {Y, 1}, we have:

I2↘1(Y, 1; 2) = ∑
y,1,2

p(y, 1, 2) log
p(1|2)p(y|1)

p(y, 1)
= ∑

1,2
p(1, 2) log

p(1|2)
p(1)

= I(1; 2). (A18)

Now, for the case considered in this proposition, both 1 and 2 are part of X. We can thus repeat
the derivation above to find that I2↘1(X; 2) = I1↘2(X; 1) = I(1; 2), and hence I(X; 1.2) = I(1; 2).
This proves that for this case the PID is equal to the one obtained with the strong axiom.

Note that the proof presented above for Ired only contemplates the case in which both primary
sources are part of the target, a more specific case than for the proofs presented for SI and Idep in
Section 4.4, which show that those measures comply with the strong axiom whenever one of the
primary sources is part of the target. This is because, when 1 is part of X, the information projection
I2↘1(X; 2) = I(1; 2), but the information projection I1↘2(X; 1) is in general not equal to I(1; 2) unless 2
is also part of X. Despite of its more reduced scope, the proposition for Ired encompasses relevant
systems as the ones involved in the reduction of target 123 to 12 when 3 is a deterministic function of
the primary sources 1 and 2.

Appendix D. The Relation between the Constraints of Equations (11) and (12) for SI, Idep, and Ired

In Section 4.3, we have shown that SI and Idep fulfill Equation (12) when X ∩ 12 6= ∅, and in
Appendix C that Ired fulfills Equation (12) when X ∩ 12 = 12. We now show that in these cases
Equation (11) is consistently fulfilled. We start with SI:

Proposition A3. In the case of X ∩ 12 6= ∅, the PID associated with the redundancy measure SI fulfills
Equation (11) consistently with Equation (12).

Proof. It suffices that X ∩ 12 6= ∅ so that the joint distribution p(X, 1, 2) is preserved within the
family of distributions ∆(p). Given Equation (A13), this implies that the synergy CI(X; 1, 2) vanishes,
in agreement with Equation (12).
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We now prove this consistency for Idep:

Proposition A4. In the case of X ∩ 12 6= ∅, the PID associated with the redundancy measure Idep fulfills
Equation (11) consistently with Equation (12).

Proof. Consider X′ = X ∩ 12 like in Equation (11) for the case that X′ = S′. If X ∩ 12 6= ∅, following
the definition of unique information of [43] described in Section 4.3 (according to Appendix B of [43]),
the unique information of 2 with respect to 1 in the PID decomposing I(X; 12|X′) can be expressed as:

I(X; 2\1|X′) = min{IX2,1(X; 2|X′), IX2,12(X; 2|X′), IX1,X2(X; 2|X′), IX1,X2,12(X; 2|X′)}, (A19)

where IX1,X2(X; 2|X′) indicates the conditional mutual information for the maximum entropy
distribution preserving p(X, 1) and p(X, 2), and analogously for the other mutual informations.
If 1 ∈ X′, p(X, 1, 2) is preserved for all the maximum entropy distributions. If 2 ∈ X′, all the mutual
informations vanish. Accordingly, it suffices X ∩ 12 6= ∅ so that I(X; 2\1|X′) = I(X; 2|X′). Because,
from Equation (4), I(X; 2|1, X′) = I(X; 2\1|X′)+ I(X; 12\1, 2|X′), this implies that I(X; 12\1, 2|X′) = 0
in agreement with Equation (12).

We now prove this consistency for Ired:

Proposition A5. In the case of X ∩ 12 = 12, the PID associated with the redundancy measure Ired fulfills
Equation (11) consistently with Equation (12).

Proof. Given Equation (6), the synergistic term of the PID of I(X; 12|X′) can be expressed as:

I(X; 12\1, 2|X′) = I(X; 1|2, X′)− I(X; 1|X′) + I(X; 1.2|X′). (A20)

For X′ = X ∩ 12 = 12, both I(X; 1|2, X′) and I(X; 1|X′) vanish. From the definition
of the projected information of 2 onto 1 with respect to X conditioned on X′, analogous to
Equation (A15), I2↘1(X; 2|X′) = 0 for X′ = 12. Similarly, also I1↘2(X; 1|X′) vanishes. Accordingly,
also I(X; 1.2|X′) = 0, and hence I(X; 12\1, 2|X′) vanishes in agreement with Equation (12).

Appendix E. Derivations of the Trivariate Decomposition with Target-Source Overlap

We here derive in more detail the trivariate deterministic PID components. We start with the
derivations following the weak stochasticity axiom. If we consider the unique information of one
primary source with respect to the other two, for example I(X; 3\12), we have that:

I(X; 3\12) = ∆(X; 3)

= I(X; 3|12)− [∆(X; 123) + ∆(X; 13) + ∆(X; 23) + ∆(X; 13.23)] .
(A21)

The weak axiom imposes for the trivariate case that synergy deterministic components upper than
the single source nodes have to be zero (Equation (27)). Accordingly, any deterministic component of
I(X; 3|12) has to be contained in ∆(X; 3). Decomposing this conditional mutual information with the
partitioning order that considers first the dependencies with the non-overlapping target variables:

I(X; 3\12) = I(X− 123; 3\12) + H(X ∩ 3|12, X− 123), (A22)

and thus in general:
∆d(X; i) = H(X ∩ i|jk, X− ijk). (A23)

We now consider the conditional information of two primary sources given the third, for example:

I(X; 23|1) = I(X− 123; 23|1) + H(X ∩ 23|1, X− 123). (A24)
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The deterministic part H(X ∩ 23|1, X − 123) again can only be contained in the PID terms
contributing to I(X; 23|1) that are lower than the single source nodes. This means that it has to
be contained in the terms:

∆d(X; 2) + ∆d(X; 3) + ∆d(X; 2.3) + ∆d(X; 3.12) + ∆d(X; 2.13). (A25)

Furthermore, this conditional entropy can be decomposed considering explicitly the part of the
uncertainty associated with conditional entropies of the form of Equation (A23):

H(X ∩ 23|1, X− 123) = H(X ∩ 3|1, X− 123) + H(X ∩ 2|1, X ∩ 3, X− 123)

= H(X ∩ 3|12, X− 123) + I(2; X ∩ 3)|1, X− 123) + H(X ∩ 2|1, X ∩ 3, X− 123).
(A26)

Accordingly, using the definition of the terms ∆d(X; i) in Equation (A23) and combining
Equations (A24) and (A25), we get the following equalities. First,

∆d(X; i) + ∆d(X; i.j) + ∆d(X; i.jk) + ∆d(X; j.ik) = H(i|k, X− ijk) if X ∩ i 6= ∅, (A27)

and second:
∆d(X; i.j) + ∆d(X; i.jk) + ∆d(X; j.ik) = I(i; j|k, X− ijk) if X ∩ i 6= ∅. (A28)

Like in the expressions of the deterministic PID components in the tables of Sections 4.1 and 5.1, we
here for simplicity indicate the equalities that hold when the primary source i overlaps with the target.
The symmetries of each ∆d(X; β) term indicate when it can be nonzero. For example, ∆d(X; i.j) is
constrained by an equality of the form of Equation (A28) both if i or j overlap with the target.

Finally, we consider also how an unconditional mutual information is decomposed in PID terms.
For example, again using the partitioning order that considers first stochastic target-source
dependencies, we have:

I(X; 3) = I(X− 123; 3) + I(X ∩ 123; 3|X− 123)

= I(X− 123; 3) + H(X ∩ 3|X− 123) if X ∩ 3 6= ∅.
(A29)

When 3 is part of the target the deterministic part of this information has to be contained in the
nodes reached descending from 3, and thus in general:

∑
β∈↓i

∆d(X; β) = H(i|X− ijk) if X ∩ i 6= ∅. (A30)

Combining Equation (A30) with Equation (A27), we get that:

∆d(X; i.j) + ∆d(X; i.j.k)− ∆d(X; k.ij) = I(i; j|X− 123) if X ∩ i 6= ∅

= H(i|X− 123)− H(i|j, X− 123).
(A31)

Altogether, from Equations (A23), (A27), (A28), (A30), and (A31), we can proceed to obtain
expressions of the PID terms as a function of mutual informations and entropies. Doing so, the rest
of PID terms remain as a function also of the terms ∆d(X; i.jk). These terms can be understood by
comparing the trivariate decomposition and a bivariate decomposition with only sources j and k.
For the latter, if i is part of the target, I(i; jk\j, k) quantifies a stochastic synergistic contribution,
because i is not a source. Conversely, in the trivariate decomposition i is a source and this information
is now redundant with the information provided by variable i itself. This means that we can identify
∆d(X; i.jk) by comparing synergy between these two decompositions. For example, for the bivariate
decomposition of I(X; 12), 3 is not a source and according to the weak axiom synergy can provide
information about the non-overlapping part of the target, which can comprise 3. Moving to the
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trivariate case by adding 3 as a source this synergy stochastic component becomes redundant to
information source 3 has about itself, and thus:

I(X; 12\1, 2) = I(X− 12; 12\1, 2)

= I(X− 123; 12\1, 2) + [I(X− 12; 12\1, 2)− I(X− 123; 12\1, 2)] .
(A32)

In general, this means that these types of PID terms can be quantified as:

∆d(X; i.jk) = I(X− jk; jk\j, k)− I(X− ijk; jk\j, k). (A33)

These terms are non-negatively defined, because according to the axiom adding a new source
can only reduce synergy. After calculating these terms we can obtain all the expressions collected
in Table 3.

For the strong stochasticity axiom, instead of repeating all the derivations we proceed by arguing
about what has to change with respect to the decomposition obtained for the weak axiom. Changes
originate from the difference in the constraints that both versions of the axiom impose on the existence
of synergistic components and from the alternative mutual information partitioning order that leads
to an additive separation of stochastic and deterministic PID components depending on the axiom.
With the strong axiom this additive separation is reached using the partitioning order that first
considers deterministic target-source dependencies. This means that the conditioning of entropies
and mutual informations on X − ijk will in this case not be present. Moreover, since the strong
axiom restricts also synergy with the non-overlapping target variables, even a stochastic component
of I(X; 12\1, 2) can only be nonzero if 3, but neither 1 or 2, overlap with the target. Since once
further adding 3 to the sources any synergistic component should be zero, the expression of the
terms ∆d(X; i.jk) in Equation (A33) is reduced to I(i; jk\j, k) when only i overlaps with X, and to zero
otherwise. Implementing these two modifications, the expressions of Table 4 are obtained from the
ones of Table 3.

Appendix F. The Counterexample of Nonnegativity of Bertschinger et al. (2012), Rauh et al. (2014),
and Rauh (2017)

We here describe in more detail the previous proofs of existence of negative terms for the trivariate
PID of I(123; 1, 2, 3), with 3 being the output of the XOR systems and 1 and 2 the inputs. These proofs
show that, if preserving the original axioms of [34], it suffices to add the identity axiom, or even
just the independent identity property, to originate negative terms. In these previous studies the
terms I(123; i.j) were calculated assuming that redundancy is invariant to the reduction of 123 to 12,
that is, that I(123; i.j) = I(ij; i.j). This invariance was not motivated in terms of what is expected
from the notion of redundancy, but was accepted as inherited from the fact that it holds for the
mutual information. We have now indicated that, given its implications regarding the assignment
of information identity, it should be considered as an assumption at the same level of the ones more
explicitly discussed in the proofs.

Given the equality I(123; i.j) = I(ij; i.j), by the independent identity property I(ij; i.j) = I(i; j) = 0
because all three variables of the XOR system are independent. Furthermore, the terms I(123; i.jk)
were determined by the monotonicity axiom [41] as I(123; i.ijk) = I(123; i) = 1, or by the identity
axiom [44] as I(i, jk; i.jk) = I(i; jk) = 1. This means that the minimal extra assumptions, apart from
the original axioms, are the independent identity property, as pointed out by [41], and the invariance
under the reduction of 123 to 12.

Accordingly, from the nodes reachable descending from I(123; 12.13.23), all redundancies are
determined except I(X; 1.2.3) and I(123; 12.13.23) itself. Because the objective of the proof was only
to show that a negative term has to exist, and not to actually calculate each PID term, [41,42,44]
considered that I(X; 1.2.3) vanishes, which preserves the monotonicity of I(X; 1.2.3) ≤ I(X; i.j) = 0.
Given that, they determined a bound I(123; 12.13.23) ≤ −1. In fact, one may argue that I(X; 1.2.3) can
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be negative, which still preserves the monotonicity of I(X; 1.2.3) ≤ I(X; i.j) = 0, and already would
lead to the existence of a negative term. In particular, I(X; 1.2.3) can be negative if it is compensated by
the terms ∆(X; i.j) being positive and of equal magnitude, so that I(X; i.j) = 0. This is actually what
we find in Figure 4B with the strong axiom, and this decomposition is completely compatible with
the values I(X; i, j) = 0 and I(X; i.jk) = 1 determined in these proofs using the axioms as described
above. Taking this into account, we see that these proofs work as proofs of existence of at least one
negative term, but this negative term can either be ∆(X; 1.2.3) or ∆(123; 12.13.23).
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