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Abstract  

In assessment of the structure-based reliability, there are two levels of reliability required to 

consider including (1) structural member reliability and (2) system reliability. The former is 

originated through the failure of a particular component that partial local reliability in a 

structural system might possibly cause loss of serviceability. However, it is argued by many 

researchers that structural system is often designed to possess a high level of redundancy 

making its collapse to occur most likely because of the combined effect of several different 

failure modes rather than only one particular member. For this reason, it is important to 

consider both structural member and system reliability in forming any problems related to the 

structural failure. 

Regardless of this statement, literature in the field of structural reliability are focused on the 

structural member reliability leaving the system reliability to received very little attentions. 

Although recently, some researches devoted to considering system reliability, the accuracy of 

this assessment has been considered as a serious issue, which is driven from the fact that these 

models developed to assess reliability are often assumed to be in linear or weakly nonlinear 

performance functions. For this reason, the objective of this paper is to propose the approach 

employed Monte Carlo Simulation and Neural Network to effectively calculate the system 

reliability of the structural system. 

In order to determine the structural system reliability, the proposed method contains the two 

main stage. In the first stage, the β-unzipping method is employed to determine reliability 

analysis of structural systems at different level such as Level 0 (on the basic of a single 

structural element), Level 1 (considering the structural system as a series system), Level 2 (on 

the basic of a series system where the elements are parallel systems each - with critical pairs of 

failure elements), and Level 3 (on the basic of a series system where the elements are parallel 
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systems each - with critical triples of failure elements). In the second stage, the Monte Carlo 

Simulation with Importance Sampling is first employed to general the sample population, 

which will be then used to trained, test and predict the system reliability of the structure by 

Back-Propagation Neural Network Algorithm. 

The proposed method was validated against the conventical β-unzipping method to estimate 

the structural system reliability. The results indicate the closed and yet more accurate reliability 

index and failure probability of the structural system in consideration of its system reliability 

analysis. This study is thus moving further by demonstrating the whole process of application 

of Monte Carlo Simulation with the Importance Sampling Techniques and Neural Network 

with Back-Propagation Algorithm towards the case study of a 10-bar truss structure. The 

promising results indicate the potential of employing the proposed method to solve the complex 

problem of the structural system reliability. 

The proposed was then applied to assess the structure system reliability employed for a CFTA 

girder under blast loading and the obtained results were compared against current Eurocodes 

guidelines for the structure in the event of extreme loading like explosion. The results prove 

the possibility of employing the proposed method to solve the complex problem of the 

structural system reliability assessment under explosion in consideration of the loading 

uncertainties that the application of the proposed method.  
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1 Introduction 

1.1 Research Background 

In assessment of the structure-based reliability, there are two levels of reliability required to 

consider including (1) structural member reliability and (2) system reliability. The former is 

originated through the failure of a particular component that partial local reliability in a 

structural system might possibly cause loss of serviceability. However, it is argued by many 

researchers that structural system is often designed to possess a high level of redundancy 

making its collapse to occur most likely because of the combined effect of several different 

failure modes rather than only one particular member. For this reason, it is important to 

consider both structural member and system reliability in forming any problems related to the 

structural failure. Regardless of this statement, almost all contributions of literature in the field 

of structural reliability are focused on the structural member reliability leaving the system 

reliability to received very little attentions (Chun, Song and Paulino, 2015; Okasha, 2016). 

System reliability is defined as the probability that a system remains available or functional 

despite the likelihood of component failures, considerable work has been conducted in this area 

(Der Kiureghian 2006). Specifically, since Moses (1982); Fu and Moses (1988) highlighted 

two major limitations occurred in structural design code developments utilizing reliability 

theory; firstly upon the significant difference of the notional system reliabilities and calibrated 

component reliabilities, and secondly upon the fact that actual failures are are not reflected in 

most code formats at that time. However, the probabilistic analysis of structural system requires 

the evaluation of the probability of union of several events. Here, it is assumed that the 

probability P(Ei) of each event Ei, the bi-section probability P(Ei ∩ Ej) between the 

events Pi and Pj and the tri-section probability P(Ei ∩ Ej ∩ Ek) are available. For simplicity and 

convenience, P(Ei), P(Ei ∩ Ej) and P(Ei ∩ Ej ∩ Ek) will be termed Pi, Pij and Pijk, respectively. 



18 
 

As the evaluation of the exact probability of a system is a formidable task, if not an impractical 

one (Ramachandran, 2004). Accordingly, system reliability analysis of structures is a rather 

complex subject and so far it has been mostly developed for idealized structures, and still there 

is a need for research in this area.  

With the development of the structural reliability theory, many approaches for the structural 

system reliability analysis have appeared in the literature, e.g. branch and bound method, β-

unzipping method and load incremental method. All of these methods place emphasis on 

modelling the structural system with the combination of different failure paths, and then 

calculating the system failure probability. The difficulty encountered in these studies lies 

mainly in the lack of knowledge of identifying the critical failure paths. The critical failure 

paths are those which give a remarkable contribution to the system failure probability. Lack of 

this kind of knowledge will cause the combination explosion phenomenon of the failure path 

which then makes the system reliability analysis impractical. 

For the last four decades, there have been active research efforts to overcome the challenges in 

structural system reliability analysis. Der Kiureghian (2006) revisited the topic in early 20002 

and built the critical pathways to next-generation structural system reliability methods, in 

which, this paper provides a new insight and perspective towards the structural system 

reliability and demonstrated it as a crucial research topic, especially, in consideration of system 

reliability formulation, system reliability updating, component importance measure along with 

other field such as parameter sensitivity of structural system reliability as well as system 

reliability itself as a complex combination of components that their failures are seen as 

stochastic process or at significant level of statistical dependence. With reflect to this review, 

there have been a wide range of researches took a deeper look into different aspects of structural 

system reliability and accordingly, there have been a wide range of SSR methods developed in 

purpose bridging the gaps in application of computational resources.  
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Byun and Song (2017) followed up this report and provided a critical review on a variety of 

new research activities, which eventually reloaded the research community with new SSR 

technologies reflected the recent growth of computational capabilities to address challenges 

and needs in risk management of real-world systems.  In order to evaluate the different methods 

existing in literature, this study identified a list of essential needs for structural system 

reliability method namely: (1) Generality: there is a desire towards the application of SSR 

methods in general systems; (2) Flexibility: there is need to improve the current capability of 

SSR methods in analysing the complex system of components with special regards to the issues 

of incorporating inequality or incomplete information; (3) Inference: the conditional 

probabilities and the identification of importance components in an entire system should be 

also taken into account through SSR analysis; (4) Sensitivity: there is an open field of 

facilitating decision-making process with results from system reliability analysis, which might 

possibly requires a parameter sensitivity analysis of system reliability through  one may wish 

to compute parameter sensitivities of system reliability through an SSR analysis; (5) 

Efficiency: there is a desire to increase the computational efficiency level of current SSR 

methods in order to perform better result of system reliability analysis; and (6) Scalability: in 

order to reflect the real structural system (which often seen as large scale of structures), there 

is a need to develop SSR methods that can handle a large number of components, in which, the 

application of big data techniques should be well consideration.  

Up to recent, there have been four most used and influenced structural system reliability 

methods namely Bounds on System Reliability by Linear Programming (LP Bounds) proposed 

by Song and Der Kiureghian (2003); Matrix-Based System Reliability (MSR) Method 

proposed by Kang, Song and Gardoni (2008); Sequential Compounding Method (SCM) 

proposed by Kang and Song (2010); and Cross-Entropy-Based Adaptive Importance Sampling 

(CE-AIS) proposed by Rubinstein and Kroese (2013). In critical of its strengths and limitation, 



20 
 

Table below indicated a considerable development in terms of computational capability of 

current SSR methods that is expected to produce a closer and more efficient system reliability 

analysis. However, practical systems are often too large and far complex with requirement of 

taking into account a relative huge number of data that needs a higher power of computational 

system to be analytically examined. Under consideration of limited information on hand, there 

is a must for SSR methods to propose suitable strategies to overcome these challenges in order 

to employ efficient analysis scheme and introduce proper approximation scheme in analysing 

structural reliability as a system of complex components.  

Table 1-1 Evaluation of SSR methods 

  Generality Flexibility Inference Sensitivity Efficiency Scalability 

LP Bounds F F F F F NF 

MSR F NF F F F NF 

SCM F NF IF F F F 

CE-AIS F NF IF NF F F 

Note: F represents for fulfilment, IF stands for indirect fulfilment and NF means non fulfilment  

 At higher efficiency level of computing structural system performance – system level 

performance, it is much depended on the determination of the complex relationship of its own 

components as well as their arrangement in the whole system, in which the interaction between 

the states of components in turn will decide the patterns of system failures or survivals. While 

it is relative hard to observe the patterns of the entire structural system failure or even the 

patterns of the combination of several component events for a redundant system, it is thus 

crucial to identify a small number of critical components, which would possibly cause the 

prompt system failure.  In this sense, Byun and Song (2017) identified three essential needs for 

effective structural system reliability analysis of complex systems: (1) handling cascading 
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failure in system-level performance with special reflect the sequential failure or progressive 

collapse of multiple component failure events that cause the failure of the entire system; (2) 

focusing on identifying critical failure modes through cutting and linking sets with dominant 

contribution to the failure of structural system; and (3) obtain updated or conditional 

probabilities for inference. To satisfy these demands in structural analysis is not only to provide 

a better estimation of structural system reliability, a closer investigation into the real 

complexity of the structure but also give a deeper look into the structural performance of the 

entire system. Such information will definitely benefit both practitioners and researchers in 

order to design and maintain of structural systems.  

In literature, there have been three most acceptable and widely used to analysis namely: 

Selective Recursive Decomposition Algorithm (S-RDA) proposed by Liu and Li (2009); 

Branch-and-Bound Method Employing System Reliability Bounds (B3 Method) proposed by 

Lee and Song (2011); and Genetic-Algorithm-Based Selective Search for Dominate Failure 

Modes proposed by Kim et al. (2013). With their strengths and limitation indicated in the Table 

below, it can be seen that there is a significant computational cost relived in the current 

technological reload, leading to a broader application of SSR analyses in the field of structural 

system reliability. Such achievement has given a new insights and perspective in regards of 

SSR methods as well as gain better supports for the basic of decision making with matters 

related to structural system. On the other hand, the current literature also opens zoom for more 

application of modern technologies into SSR analysis by revealing the gap between what 

information can achieve through SSR analysis and what critically needed for risk-based 

assessment in practical decision making. It is not to mention the fast growing of technological 

demand from the society in many aspects of the structure complexity as well as safer 

assessment in guidance of codes and regulations. Accordingly, Adrees (2017) strongly 

indicated the desire in reloading SSR methods in order to take advantages of rapid growths of 
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computational powers, unprecedented amount of available data and statistical learning 

algorithms to support (near) real-time inference using monitoring and sensor data, and 

systematic decision-making scheme on complex systems and networks based on SSR. 

Table 1-2 Evaluation of SSR methods for SSR analysis of complex systems 

  
Cascading 

failure 

Critical failure 

modes 

Updating/ 

Inference 

S-RDA NF F F 

B3 method F F F 

GA-based 

selective Search 
F F NF 

Note: F represents for fulfilment and NF means non fulfilment 

Despite all of the difficulties mentioned above, system reliability is an important factor in 

reliability evaluation of structures as the overall system reliability of a structure can be 

significantly different form the component reliabilities (Byun and Song, 2017). For example, 

due to the existing of multiple failure modes, there is need to take into account the influence of 

each failure mode on the structural system reliability in consideration of simplifying the system 

model and improving the performance of the system (Lu and Li, 2018). Even if the potential 

failure modes are known or can be identified, the computational assessment of system 

reliability of structures has remained a challenge in the field of reliability engineering, because 

available analytical methods require determination of the sensitivity of performance functions, 

information on mutual correlations among potential failure modes, and determination of design 

points (Zhao and Ang, 2003).  

Added to this, the competition between failure modes should take failure consequences, or 

failure costs, into account. Considering the progressive collapse of hyper-static structures in 
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system reliability based-design optimization formulation often results in isostatic optimal 

structures. As pointed in Lee, Choi and Gorsich (2010), failure costs can be differentiated w.r.t. 

primary failure of hyper-static or redundant members, and ultimate failure of isostatic 

members. Failure cost differentiation reflects the fact that redundant member failures provide 

warning before final collapse, whereas isostatic member failures provide no warning. It is 

shown herein that when failure consequences are differentiated, optimal solutions include 

hyper-static structures. However, very few methods and benchmark examples involving 

optimal design considering system behaviour with progressive failure can be found in the 

literature. Among others, Beck, Tessari and Kroetz (2019) provide a simple and yet inclusive 

academic example of a hyper-static six-member truss and bar numbers, to demonstrate the main 

features of probabilistic analysis of progressive collapse. Such examples are extremely 

important in civil engineering, considering the current trend to incorporate robustness concepts 

in design standards. Results obtained herein show that, having the failure of a redundant 

member as a warning, before eventual collapse, leads to lower optimal system reliability, and 

allows the structure to be cheaper. Results presented herein were obtained for an academic 

benchmark example, but they are relevant within the modern trend for robust structural design 

considering progressive collapse. 

Furthermore, the issue of system reliability can also arise when the repair optimization of a 

structure. The need to design and construct structural systems throughout the life of the 

structure with adequate levels of reliability and redundancy is widely acknowledged along with 

optimization to provide safer and more economical maintenance strategies (Frangopol and 

Estes, 1997). However, treating both system reliability and redundancy as criteria in the 

lifetime optimization process can be highly rewarding. The complexity of the process, 

however, requires the automation of solving the optimization problem, although some 

researchers have put in effort to solve these obstacles. Ghodoosi et al. (2018) develop a rational 
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method of an innovative combination of reliability analysis, nonlinear finite-element 

modelling, and genetic algorithms optimization that predicts the most cost-effective 

intervention schedule for bridges. Okasha and Frangopol (2009) introduced genetic algorithms 

(to obtain solutions to the multi-objective optimization problems considering system reliability, 

redundancy and life-cycle cost to provide the optimization program the ability to optimally 

select what maintenance actions are applied, when they are applied, and to which structural 

components they are applied. However, up to recent, an integral risk-based optimization 

procedure for entire structural systems is not available; existing risk-based inspection methods 

are limited to optimizing inspections component by component (Luque and Straub, 2019). The 

challenges to an integral approach lie in the large number of optimization parameters in the 

inspection-repair process of a structural system, and the need to perform probabilistic inference 

for the entire system at once to address interdependencies among all components.  

For the above-mentioned reasons, there has been a pressing research need for formal and 

accurate treatment of system reliability as the concept and importance of safety. However, in 

accordance to Byun and Song (2017), there are innumerable roadblocks for effective system 

reliability analysis especially because systems are becoming more complex and larger as the 

technological demands from the societies increase rapidly. Moreover, in such complex 

systems, there exist significant statistical dependence between component failure events 

characterized in terms of physical members, failure modes, failure locations, and time points 

of failure occurrences. These technical challenges make system reliability analysis more and 

more difficult.  

1.2 Research Aim and Objectives 

According to the logical relationship of the failure modes of structures, structural systems can 

be divided into three types: series system (referred to as the weakest link or chain system 
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because the system failure is caused by the failure of any one component), parallel system 

(referred to as a redundant system because the system fails only if all components fail. The 

hybrid system is a mixed system comprising the series and parallel systems), and hybrid (is a 

mixed system comprising the series and parallel systems). Since the analytic estimation of the 

system probability of failure involves multi-dimensional integration over the overall failure 

domain, it is numerically very difficult to evaluate (Bjerager, 1990; Thoft-Christensen and 

Murotsu, 2012). Many efforts have been made to improve this situation but it still cannot deal 

efficiently with the complicated combination of external loads (Byun and Song, 2017). Added 

to this, Pan et al. (2019) recently highlighted the lacks of the probability background towards 

the process to obtain the failure paths in this method lacks the probability background.  

One of the most commonly used method to overcome this problem in literature is the branch 

and bound method introduced by McLeavey and McLeavey (1976), which has been employed 

to solve the system failure probability for plane and space truss structures. For example, Lee 

and Song (2011) demonstrated by numerical example of a three-dimensional offshore structure. 

Biabani and Kalatjari (2018) performed system reliability analysis for truss structures through 

branch-and-bound method. It is worth to note that wide bound estimation is simple to estimate 

since it only considers the component probability of failures; however, the bounds can be very 

wide, which could yield a system probability of failure estimation that is too conservative 

(Zhao, Liu and Jiao, 2017). For the narrow bound method, Ditlevsen’s first-order upper bound 

(Ditlevsen, 1979), which is the summation of component failure probabilities, can be used as 

the system probability of failure (Cho, 2013; Low and Tang, 2007; Ramachandran, 2004), or 

Ditlevsen’s second-order upper bound by considering the joint probability of failure can be 

used (Xiao and Mahadevan, 1994; Liang Mourelatos and Nikolaidis, 2007; Haldar and 

Mahadevan, 2000). However, the branch and bound process, which is used to seek the failure 
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paths is complicated and it is difficult to use the computer program to generate the failure paths 

automatically (de Santana Gomes, 2019).  

Another method that is considered at the same time simple to use and reasonably accurate was 

thus introduced by Thoft-Christensen and Murotsu (1986). The β-unzipping method is a 

method by which the reliability of structures can be estimated at a number of different levels. 

This method is quite general in the sense that it can be used for two-dimensional and three-

dimensional framed and trussed structures, for those with ductile or brittle elements and also 

in relation to a number of different failure mode definition (Thoft-Christensen and Murotsu, 

2012). The process to generate the failure paths in the β-unzipping method is very similar to 

that of state-space search in the problem-solving methods in artificial intelligence (Salehi and 

Burgueno, 2018). Thus the concept of the heuristic state-space search method mentioned by 

Zhang (1989) can be employed in the traditional β-unzipping method. In regards of de Santana 

Gomes (2019), the solving graph in the problem-solving method can then be taken as the 

critical failure paths. Chen, Zhang and Huang (1996) is among the first researchers put efforts 

on this problem by giving simple examples of a single frame and a typical transversal frame of 

a large oil ship. Biabani and Kalatjari (2018) employed an Artificial Intelligent agent to identify 

and control the repeated failure paths to avoid the use of extra computational time. Zhao et al. 

(2020) is the most recent publication on this field for three-dimensional jacket structures 

(simplified as a series-parallel system) employed the β-unzipping technique to determine 

critical failure components, and a trained artificial neural network (ANN) to reduce 

computational effort for searching failure components and failure paths.  

Added to this the β-unzipping method can be combined with the response surface method 

(Shen, Zhang and Fan, 2018; Daghigh and Makouie, 2003; Zhao et al., 2020; Jia et al., 2016) 

and other reliability analysis methods, such as simulation (Shao and Murotsu, 1999; Liu and 

Tang, 2004; Lee, 2012) or sampling methods (Engelund and Rackwitz, 1993; Dubourg, Sudret 
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and Deheeger, 2013; Hurtado, 2007; Xu and Dang, 2019) for the actual calculation of the 

system probability of failure. In this regard, it is believed that the response surface method 

combined with simulation or sampling methods may have an accuracy problem that results in 

an error in the system probability of failure estimation. Accordingly, the objective of this 

research is: to propose the approach employed Monte Carlo Simulation and Neural Network 

to effectively estimate the system reliability of the structural system. It is considered as an 

attempt to bridge the existing gap in practice by combining not only β-unzipping method with 

the technique of problem solving in Artificial Intelligence but also other sampling techniques 

such as response surface method and Monte Carlo Simulation along with simulation by FE 

Model. The concept of critical failure probability is established and used as the path value, i.e. 

the heuristic information to identify the critical failure paths in the structural system. A 

computer program procedure is developed to generate the system reliability analysis model 

automatically for the space frame structures. In order to assess efficiency of the proposed 

method and the accuracy of the program procedure, the proposed method is employed and 

calculated for some typical structures and the results are compared with those in the existing 

literature. 

The second objective of this research is to consider an application of the proposed approach 

considering the different parameters of the reflected blast loading into the structural system 

reliability that has been a very limited research in the existing literature. The selection of 

variables is in regards to Campidelli, Razaqpur and Foo (2013) involving three principal 

components: threat, vulnerability, and consequences assessment. The load factors for structural 

system reliability assessment are considered in accordance to Ellingwood (2006) that a partial 

load factor should be equal to the one that of other abnormal loads. This principle is adopted 

in the Eurocode 0 in respect to the UK National Annex (BSI, 2002) as well as design guidance 

such as Eurocode 1 (1994), CEN (1998) or BIS (2006) for accidental actions like explosions. 
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Furthermore, to determine the compliance of a structural system to a prescribed limit state, the 

random variables involved in the design, i.e., loads and resistances, must fall within a range 

determined according to the tolerable probability of failure. If the probability distribution of all 

random variables is known, the probability of failure pf can be approximately related to the so-

called reliability index (or safety index) β, which is a measure of the reliability of the design; 

the larger the β, the smaller the pf . On this basic, the general format for deriving reliability-

based load and resistance factors is produced. However, in the context of blast resistant design, 

there are insufficient data available from carefully executed blast tests or actual blast events to 

quantify the statistical variation of the properties of construction materials subjected to the high 

strain rates caused by a blast event (Campidelli, Razaqpur and Foo, 2013). Therefore, it is 

currently not possible to derive realistic resistance factors. For this reason, the third objective 

of this study is to present such data and to demonstrate how they can be used to derive the 

appropriate load factors in the event of blast. The obtained results are then compared against 

the current specifications, standards and guidelines for component reliability analysis. 

1.3 Thesis Structure 

The transfer report is structured as following: 

Chapter 1: Introduction – This chapter provides an overview on the research background of 

related issues such as reliability analysis and structure behaviour under blast loading upon 

which the research problem identified to propose the research aim and objectives.  

Chapter 2: Literature Review – This chapter presents an exclusive literature review on the 

theoretical concepts towards the research topic of structural reliability analysis and structural 

response under blast loading.  The basic theories of structure system modelling and system 

reliability assessment are introduced. Moreover, learning process, transfer function and 

algorithm are given. In terms of the structural analysis, the basic concepts of structural 
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behaviour in event of explosion are also presented with special reflection to the probability of 

progressive collapse cause by blast loading. Added to this, the general knowledge of Neural 

Networks such as its architecture, learning process, transfer function and algorithm as well as 

Monte Carlo Simulation (in system reliability) are also given.  

Chapter 3: Research State of Art – This chapter represents the current development in the field 

of structure system reliability and reliability assessment under explosion. The existing 

techniques developed in an effort of solving the complex problem of system reliability are 

critically reviewed with a highlight of its challenges in computing power. The limitation of 

Monte Carlo Simulation and Neural Network in assessing the system reliability is also pointed 

out in this section; along with the research gap in system reliability considered progressive 

collapse under blast loading.  

Chapter 4: Proposed Monte Carlo Simulation – Neural Network for Structural System 

Reliability (MCS-NN SSR) – This chapter presents into details the proposed method of 

employing Monte Charlo Simulation and Neural Network in order to assess the structural 

system reliability. The selected model is mechanism modelling for structure system that 

enables to estimate the structural system reliability at different level – demonstrated in this 

study level 0, level 1, level 2 and level 3. The interval Monte Carlo Simulation is considered 

to generate the sample population with the importance sampling of the reliability indexes 

obtained earlier. Mean-Interactive Neural Networks proposed by the author in earlier research 

is used to train and test as well as eventually estimate the structural system reliability.   

Chapter 5: Validation and Application – This chapter presents an application of the proposed 

MCS-NN SSR is to estimate the structural system reliability index for a 10-truss bar structure. 

The result obtained from this analysis is compared against what obtained from the conventional 

β-unzipping method in order to validate the proposed method.  
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Chapter 6: System Reliability for CFTA Girder – This chapter demonstrates the application of 

the proposed MCS-NN SSR for the real structural system under blast loading. The obtained 

results are compared with what has been given in the Eurocode guideline in order to provide 

further modification in the current code and standards with reflection to the system reliability 

under extreme events.  
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2 Theoretical Background 

2.1 Structural System Reliability 

2.1.1 Modelling of Structural Systems 

There is no doubt that the complexity of a real structural system makes it relatively impossible 

to direct calculating the exact probability of structural system failure (Chassiakos and Masri, 

1996). It is due to the fact that if considering all the possible different failure modes, such 

number would be too large to be all been taken into account and even if they could, a very 

powerful computational system needed to calculate the exact probability of system failure. 

Therefore, it is a must in idealising the structure in purpose of managing the estimation of the 

system reliability. Thoft-Christensen and Murotsu (2012) added the need of not only to idealise 

the structure itself but also the loading system employed to such structure. Bearing these 

idealisations in the structural system and applied loading, any estimations such as probability 

of system failure or structural system failure modes are related to the idealised system or model 

of structural system rather than the real structural system itself. However, it is expected that 

the modelling of the structural system will reflect most of its critical actual behaviour, there is 

a must to carefully select the most suitable model for structural analysis. With specific 

reflection on the main objective of a reliability analysis of structure system is to enable 

designing process to minimise the probability of failure within the requirements of the recent 

regulations, the most important failure modes for either consequential failure or progressive 

failure must be carefully chosen that is reflected the real structure behaviour. For this reason, 

this section will discuss about the modelling of structural system in purpose of estimating the 

system probability.  
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2.1.1.1 Fundamental Systems 

Current applications of modelling of structural system is based on the basic of Thoft-

Christensen and Murotsu (1986) with the basic assumption that it is possible to accurately and 

sufficiently estimate the total reliability of the structural system through first dominating 

considerations of a finite number of failure modes and then combining such modes into a 

complex reliability systems. It is critical by Thakkar (2020) that to sufficiently model of 

structural system, it is critical to identifying the dominant or significant failure modes, which 

has become of the main problem of structural system modelling. In accordance to Graves et al. 

(2010), when assessing system reliability using system, subsystem and component-level data, 

assumptions are needed towards the form of the system structure in purpose of utilising the 

lower-level data. It is required to consider modelling forms that allow for assessment and 

modelling of possible discrepancies between reliability estimates based on different levels of 

data. Of which, the two most fundamental types of systems are series system and parallel 

system, which will be presented in this section. It is believed by many researchers that such 

fundamental systems play a dominant role in respect to how structural system is modelled and 

in turn, how its reliability is estimated (Yalaoui et al., 2005; Suykens et al., 2012; Kim et al., 

2013; Gaspar et al., 2011; Gao and Li, 2017; Li et al., 2018). 

The series system is symbolised and shown in Figure 2-1. In consideration of a statically 

determinant (non-redundant) structure with total structural elements of n with an assumption 

of only one failure element for each structural element. The total number of failures is thus 

determined as equal to n. Accordingly, the failure of the entire structural system is occurred as 

soon as there is a failure of any structural element.  
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Figure 2-1 Series system 

 

The series system is seen by Thoft-Christensen and Murotsu (1986) as a weakest-link system 

and no difference is made when the failure of single element is either ductile or brittle. It is 

noted that the series system demonstrated in Figure 2-1 is employed only for the purpose of 

showing relation to failure interaction intending to show an idea of how the failure interacts 

between the component elements.  

The parallel system is symbolised and shown in Figure 2-2, of which the main difference 

towards the series system is that failure in a single structural element for a statically 

indeterminant (redundant) structure not always cause the failure of the entire system. It is due 

to the fact that in an event of one single element failure, there might cause a redistribution of 

the load on the remaining structural elements that enable the system in sustaining the external 

loading. Accordingly, a failure of a parallel system occurs only in an event that all of its 

elements fail. For the entire statically indeterminant structure to fail, there is often required for 

not just only one structural element to fail but more elements’ failures take place. In this sense, 

Wei et al. (2018) acknowledged the importance of understanding what is defined as total failure 

of a structural system.  

In consideration of forming towards a mechanism, a failure mode is understood as failure in a 

set of failure elements formed a mechanism. In this respect, there is a need to simultaneously 

generate failures in a number of elements’ failures in forming a failure mode of the entire 

structural system. However, it is a matter of fact that in reality, there is relatively high number 

of failure models generated from a practical redundant structure making it quite difficult to 

generate the exact number of system reliability. Rather, Thoft-Christensen and Murotsu (1986) 

proposed a method to model each failure mode as a parallel system and such parallel systems 
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(represented different failure modes) are combined in a series system. In this sense, the failure 

of the entire structure is determined in case the weakest failure mode (parallel system) fails as 

shown in Figure 2-3. Accordingly, it is suggested that the structural system reliability should 

be generated by estimating on a model defined through a series system, in which, its elements 

are parallel system. Failure modes are thus considered as the single parallel systems and a 

failure mode of the entire system is defined as a mechanism.   

 

Figure 2-2 Parallel system 

 

Figure 2-3 Failure mode 

2.1.1.2 System Modelling at Level N 

At a basic level, for some structures, the system failure can be appropriately defined as failure 

of any failures of its elements. Accordingly, the structural system reliability can then be 

generated on the basic of failure of any single failure of any structural element by defining the 

highest probability of failure amongst the probabilities of failure of all elements. Although such 

estimation is not actually based on a modelling of the system as a complexity of its elements 
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(or not in fact being a system reliability modelling) but rather an element reliability modelling, 

at a system modelling, such generation is considered based on the system modelling at level 0 

and the reliability generated is called the structural system reliability at level 0. It is noted that 

this level of system modelling does not take into account the failure interaction between the 

failures of the different elements to estimate the system reliability. In other words, each element 

of the entire structural system is individually considered.  

On the other hand, a system modelling at level 1 is viewed as a better estimation of the 

structural system reliability as it obtains the correlation between the probabilities of failures of 

any failure elements. As shown in Figure 2-4, the system is modelled with series system where 

its elements are failure elements, such modelling is considered as a more natural and more 

satisfactory generation to model the system reliability. Similar to the probability of failure of 

the structural system at level 0, at level 1, this probability is also estimated on the basic of the 

probability of failure of each failure of the individual element; however, it also takes into 

account the correlation between the safety margins of the failure elements. Although the 

estimation is done by simply finding the highest probability amongst those of failure elements, 

such performance is seen as satisfactory and accuracy enough for some structures (Gao and Li, 

2017). Each dominant failure elements modelled in the system modelling at level 1 is called 

critical failure elements in purpose of indicating that their significances and importance are 

included in terms of performing an estimation towards the system probability failure.  

 

Figure 2-4 System modelling at Level 1 
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At a higher level of system modelling – level 2, it is relatively not acceptable for some 

structures to assume its system failure taken place in only one failure but rather in two failure 

elements. In other words, the failure of such structures is considered in a state of failure, as 

thus, it should be estimated through an assumption that its failure mode is a parallel system. 

Accordingly, the reliability modelling is seen as Figure 2-5, of which, it contains a series 

system where each element is parallel system of two failure elements. In principle, there is 

must to include all combinations of two random failure elements as failure modes (parallel 

system) in the series system to generate the structural system reliability. However, considering 

the relatively large number of failure elements in a real structure, there would be an extreme 

large number of possible combinations required a high computational power. To solve such 

problem, Thoft-Christensen and Murotsu (1986) propose to include failure modes with high 

probabilities of failure to estimate the system probability of failure at level 2. Gao and Li, 

(2017) believed such performance is satisfactory and accuracy enough for some structures. 

Similar to system modelling at level 1, each dominant failure modes at level 2 is called critical 

pair of failure elements in purpose of indicating that their significances and importance are 

included in terms of performing an estimation towards the system probability failure. It is also 

noted that a selection of critical pair of failure elements has a significant influence on the 

accuracy of probability of failure generated for a structure at level. For this reason, what method 

used to identify such critical pair will be discuss later in the next section – Method of system 

reliability computing.  

 

Figure 2-5 System modelling at Level 2 
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Similar to what approaches for system modelling at level 2, the system reliability at level 3 is 

generated on the basic of a series system where each of its element (failure mode) is critical 

triples of failure elements (as shown in Figure 2.5). By continuing in this approach, the system 

modelling at level N, where N = 4, 5, 6 ...can be developed by finding the critical group of four, 

five elements, respectively, amongst failure elements. In this sense, it is also noted that a 

selection of critical pair of failure elements has a significant influence on the accuracy of 

probability of failure generated for a structure at level. For this reason, what method used to 

identify such critical pair will be discuss later in the next section – Method of system reliability 

computing. 

 

Figure 2-6 System modelling at Level 3 

2.1.1.3 System Modelling at Mechanism Level 

The most frequently used definition of systems failure for elasto-plastic structures is formation 

of a mechanism. In the line with this definition, a mechanism is seen as a failure mode that is 

modelled by a parallel system where each of its elements are the yield hinges in correspondence 

to the mechanism. These failure modes are then combined in a series system to define the 

system modelling at mechanism level as shown in Figure 2-3. It is noted that for a real structural 

system, considering the large number of mechanisms, including all possible mechanisms in the 

series system possible cause too much effort in computation in order to generate the system 

reliability. It is therefore recommended by Thoft-Christensen and Murotsu (1986) to only 

employ only the most dominant mechanisms (depending on its probability of occurrences) (to 

be called as significant mechanisms), what applied in the system modelling at different levels 
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presented earlier. As other mechanisms have a relatively small probability of occurrence, such 

performance is satisfactory and accuracy enough (Gao and Li, 2017). 

2.1.2 System Reliability Assessment  

Consider a structural system for which several failure modes may be defined, and assume that 

each failure mode is represented by a safety margin,  

 

Equation 2-1 

With 

• Gi, i= 1, 2, … m, the limit state function that defines the safety margin  

• Mi as a function of a vector X = [X1,..., Xn]T of n basic random variables.  

It is noted by Gaspar et al. (2014) that the limit state function Gi can be a rather complicated 

function of the random vector X. In some cases, a closed-form equation is not known and the 

evaluation of Gi requires computationally demanding numerical models, e.g., non- linear finite 

element structural models.  

Failure in the mode i of the system is assumed to occur when Mi = Gi (X)≤ 0. For a basic system 

of m failure modes in series the system failure probability is defined by,  

 

Equation 2-2 

while for the parallel case it is,  
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Equation 2-3 

These are the elementary cases considered in structural systems reliability analysis (Thoft-

Christensen and Murotsu, 2012), which are here introduced as an example. In general, any 

system can be formulated as a series combination of parallel subsystems. To overcome the 

computational cost typically involved in the estimation of the failure probability of a system of 

failure modes, the method proposed in Naess et al. (2009) formulates the system safety margins 

in the following way:  

 

Equation 2-4 

where Mi is a system safety margin, given by Equation 2-4, and µi=E [Mi] is the mean value of 

Mi. µi is generally unknown a priori, but it is estimated with high accuracy as part of the method. 

The parameter λ  assumes values in the interval 0 ≤ λ ≤  1 and its effect on the system failure 

probability may be interpreted as a scale factor. The original system is obtained for λ = 1, and 

for λ = 0 the system is highly prone to failure, as the mean value of the system safety margins 

is E[Mi (0)] = 0.  

The system failure probability as a function of the λ parameter is obtained substituting Equation 

2-4 in Equation 2-2 and Equation 2-3 above. Analysing the behaviour of pf (λ) we may conclude 

that this function decreases monotonically from a high value at k λ = 0 to a typically small 

target value at λ = 1. It was shown in Thoft-Christensen and Murotsu (2012) that this function 

can be approximated by,  
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Equation 2-5 

where q(λ) is a slowly varying function compared with the exponential function exp{-a(λ -

b)c}. For practical applications it can be implemented in the following form (Thoft-Christensen 

and Murotsu, 2012) 

 

Equation 2-6 

for a suitable value of λ0, with the function q(λ) replaced by a constant q. An important part of 

the method is therefore to identify a suitable λ0 so that the right hand size of Equation 2-5 

represents a good approximation of pf (λ) for λ∈ [λ0, 1].  

The functional form assumed in Equation 2-5 is strictly speaking based on an underlying 

assumption that the reliability problem has been transferred to normalized Gaussian space 

where a FORM/SORM or similar type of approximation would work for the transformed limit 

state functions. However, when the basic random variables have “exponential” type of 

distributions (e.g., Weibull, normal, lognormal, and Gumbel) there is no need to make a 

transformation to normalized Gaussian space. One can instead work in the original space and 

adopt Equation 2-5 there. This is the procedure adopted in this paper.  

The practical importance of the approximation provided by Equation 2-5 is that the target 

failure probability pf = pf (1) can be obtained from values of pf (λ) for λ < 1. This is the main 

concept of the estimation method proposed in Thoft-Christensen and Murotsu (2012), as it is 

easier to estimate the failure probabilities pf (λ) for λ < 1 accurately than the target value, since 

they are larger and, hence, require less simulations and therefore less computational cost. 
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Fitting the approximating function for pf (λ) given by Equation 2-6 to the estimated values of 

failure probability obtained by Monte Carlo simulation with λ < 1, will then allow to provide 

an estimate of the target failure probability by extrapolation.  

2.2 Probability of Progressive Collapse  

2.2.1 Measure of Structure Redundancy  

Ellingwood (2006); Ellingwood et al. (2009) suggested that the probability of structural 

collapse, P(C), due to different damage scenarios, L, caused by multiple hazards, E, be 

expressed as:  

 

Equation 2-7 

wn which, P(E) stands for the probability of occurrence of hazard E; P(LE) stands for 

probability of local failure, L, given the occurrence of E, and P(CLE) stands for the probability 

of structural collapse given the occurrence of a damage scenario L resulting from hazard, E. 

The probability of collapse will be obtained by summing over all possible hazards and all 

possible load failure scenarios. The conditional probability of collapse term P(CLE) is related 

to the analysis of the response of the structure to a given damage scenario independently of 

what hazards have led to the damage. Equation 2-17 assumes independence between the 

conditional probabilities of failure P(CLE) calculated for different local failures. This 

assumption is not strictly speaking correct since we are dealing with the same structure even if 

it is subjected to different local damage scenarios following the occurrence of multiple hazards 

and collapse may be due to different failure modes.  



42 
 

The probability of structural collapse must be limited to an acceptable level of risk expressed 

in terms of a target probability level Pthreshold which can be determined based on a cost-benefit 

analysis or based on previous experience with successful designs. This can be represented as  

 

Equation 2-8 

In some cases, the data may be insufficient to define P(E). In such cases, Equation 2-8 can be 

replaced by  

 

Equation 2-9 

To this date, the only known studies that provided non-subjective and quantifiable definitions 

of bridge redundancy along with specific criteria for assessing bridge redundancy are those of 

Ghosn and Moses (1998) in The National Cooperative Highway Research Program 

(NCHRP)  NCHRP 406 which based their criteria on the performance of typical bridge 

configurations that have shown in the past adequate levels of redundancy. In which, the 

reliability index βmember=3.5 as the basic member safety criterion as established during the 

calibration of the AASHTO LRFD specifications (AASHTO 2002). The redundancy is defined 

in terms of the difference between the reliability index of the bridge system and the reliability 

index of the weakest components. The approach includes checking the redundancy of intact 

bridges under the effect of overloads as well as evaluating the risks to damaged bridges that 

have been subjected to local failures but have survived these failures.  
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According to NCHRP 406, four limit states are defined to ensure adequate bridge redundancy 

and system safety as well as functionality. These four limit states include: a) Member failure; 

b) Ultimate limit state; c) Functionality limit state; and d) Damaged condition limit state. Figure 

2-7 gives a conceptual representation of the behaviour of a structure and the different levels 

that should be considered when evaluating member safety, system safety and system 

redundancy. For example, the solid line labelled “Intact system” may represent the applied load 

versus maximum vertical displacement of a ductile multi-girder bridge superstructure or the 

lateral load versus lateral displacement of a bridge bent or combined superstructure-

substructure system. In this case, the load is incremented to study the behaviour of an “intact 

system” that was not previously subjected to any damaging load or event.  

 

Figure 2-7 Representation of typical behavior of bridge systems  

As an example, for the analysis of superstructures under vertical loads, assuming that the 

vertical live load applied has the configuration of the AASHTO HS-20 vehicle. The bridge is 

first loaded by the dead load and then the HS-20 load is applied. Usually, due to the presence 

of safety factors, no failure occurs after the application of the dead load plus the HS-20 load. 

The first structural member will fail when the HS-20 truck weight is multiplied by a factor LF1. 

LF1 would then be related to member safety. Note that if the bridge is under-designed or has 
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major deficiencies, it is possible to have LF1 less than 1.0. Generally, the ultimate capacity of 

the whole bridge is not reached until the HS-20 truck weight is multiplied by a factor LFu. LFu 

would give an evaluation of system safety. Large vertical deformations rendering the bridge 

unfit for use are reached when the HS-20 truck weight is multiplied by a factor LFf. LFf gives 

a measure of system functionality. A bridge that has been loaded up to this point is said to have 

lost its functionality.  

If the bridge has sustained major damage due to the brittle failure of one or more of its 

members, its behaviour is represented by the curve labelled “damaged system”. A damaged 

bridge may be a bridge that has lost one of its members due to a collision by a truck or due to 

major degradation of the member capacity due to corrosion. Other damage scenarios may 

include the failure of a member due to a fatigue fracture or if some extreme event led to shearing 

off of the member. In this case, the ultimate capacity of the damaged bridge is reached when 

the weight of the HS-20 truck is multiplied by a factor LFd. LFd would give a measure of the 

remaining safety of a damaged system. As noted earlier, the ability of a damaged system to 

continue to carry load has been defined by some researchers as structural robustness. According 

to that definition, LFd would provide a measure of bridge robustness.  

The comparisons between the load multipliers LFu, LFf, LFd and LF1 would provide non-

subjective and quantifiable measures of system redundancy. Thus, NCHRP 406 defines three 

deterministic measures of the system’s capacity as compared to the most critical member’s 

capacity:  

 

Equation 2-10 
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Where Ru =system reserve ratio for the ultimate limit state, Rf=system reserve ratio for the 

functionality limit state, Rd= system reserve ratio for the damage condition.  

The load multipliers, LFi, provide deterministic estimates of critical limit states that describe 

the safety of a structural system. These load multipliers are usually obtained by performing an 

incremental nonlinear Finite Element Analysis of the structure. Because of the presence of 

large uncertainties in estimating the parameters that control member properties, the bridge 

response, and the applied loads, the safety of the bridge members or system may be represented 

by the probability of failure, Pf, or the reliability index, β.  

Both Pf and β can be evaluated for each of the four critical limit states identified in Figure 4-2. 

Assuming that the structural system or member capacity beyond the ability to carry the dead 

load expressed in terms of R’, as well as the applied load, P, follow lognormal probability 

distributions, the relationship between the reliability index and the load multipliers, LF, for a 

bridge superstructure subjected to HS-20 truck loading can be approximated by:  

 

Equation 2-11 

where LF is the load multiplier obtained from the incremental analysis, LL×HS20 is the 

expected maximum live load that will be applied on the superstructure within the appropriate 

return period. HS20 is the load effect of the nominal HS-20 design truck. VLF is the coefficient 

of variation of the bridge resistance defined as the standard deviation divided by the mean 

value. VLL is the coefficient of variation of the applied live load. Both the resistance and the 
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applied live load are expressed as a function of the HS-20 truck load effect which can then be 

factored out. 

Equation 2-11 lumps all the random variables that control the load carrying capacity of a bridge 

structure into the load multipliers, LF. Advanced methods for evaluating the system reliability 

are available and have been implemented as described by Miao and Ghosn (2016).  

Equation 2-11 or similar models for other probability distributions can be used to determine 

the reliability index, β, for any member or system limit state. The reliability indices 

corresponding to the load multipliers LF1, LFf, LFu or LFd of Figure 4-2 may be expressed 

respectively as βmember, βfunctionality, βultimate, and βdamaged. The relationship between these four 

reliability indices can be investigated by studying the differences between them represented by 

∆βu, ∆βf, ∆βd which are respectively the relative reliability indices for the system’s ultimate, 

functionality and damaged limit states and are defined as:  

 

Equation 2-12 

According to these criteria, a bridge will have an adequate level of redundancy and robustness 

when the differences between the system reliability index and the member reliability index 

under four critical limit states (member capacity, ultimate system capacity, system 

functionality, damaged condition) are higher than a set of target values that were determined 
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based on bridge configurations which are known to provide adequate levels of safety and 

redundancy.  

Bridges that do not satisfy the set criteria will have to be strengthened to increase their system 

reliability levels or else the bridge topology may be changed to meet the proposed criteria. It is 

noted that increasing member strength will not lead to higher redundancy level but will ensure 

higher overall member and system safety.  

Following the criteria set by Ghosn and Moses (1998), the evaluation of the redundancy of a 

bridge system requires the calculation of the reliability index under the previously listed four 

limit states if probability of failure P(F) can be accurately calculated. However, the criteria 

proposed were based on current practice in the safety evaluation of bridge structures established 

using simplified analyses models that considered pre-identified single modes of failure. The 

simplified methods were used in the recent past due to the difficulties encountered in using 

existing reliability methods to analyse realistic models of structural systems.  

2.2.2 Progressive Collapse  

Progressive collapse occurs if a local structural damage causes a chain reaction of structural 

elements failures, disproportionate to the initial damage. According to ASCE 7-05 (ASCE 

2005), Progressive Collapse is defined as the spread of an initial local failure from element to 

element resulting, eventually, in the collapse of an entire structure or a disproportionately large 

part of it.  

The Ronan Point collapse in England in 1968, initiated the interest of building engineers in the 

subject of progressive collapse. The Eurocode has also provided general comments about 

designing structures to prevent damage to an extent disproportionate to the original abnormal 

loading event (Eurocode8 1994). More recently, both the General Services Administration 

(GSA) (GSA, 2000) and the Department Of Defence (DOD) (Stevens et al., 2011) have issued 
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guidelines which provide general information about the approach and method for performing 

a progressive collapse analysis. In addition, non-mandatory commentary of the American 

ASCE 7-10/ANSI A58 standard recommends several general approaches to design against 

progressive collapse (ASCE, 2010).  

Progressive Collapse includes two types of loadings (Marjanishvili, 2004): The primary load 

which causes a structural element to fail, and the secondary loads which are generated due to 

the structural motions caused by the sudden brittle failure of the element. External abnormal 

loads, such as blast pressures due to explosive attacks, could cause primary loads, while 

secondary loads result from the internal static and dynamic forces that are caused by sudden 

changes in the load path through the structure’s geometry. Although estimation of the primary 

loads is important, most analyses of progressive collapse have focused on the effects of the 

secondary loads. Focusing on the secondary loads makes the progressive collapse analysis 

process independent of the hazards that cause the sudden loss of the identified damage initiating 

elements.  

Starossek and Haberland (2009) gave a good illustration of this formula together with assigned 

appropriate terms (see Figure 2-8). Considering the above Equation 2-7 and Figure 2-8, the 

probability of progressive collapse can be minimised in three ways, namely by: controlling 

abnormal events, controlling local element behaviour and/or controlling global system 

behaviour. Controlling abnormal events by structural engineers is normally very difficult. 

However, engineers can influence the local and global system behaviour e.i. P(D|H) and 

P(C|DH).  
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Figure 2-8 Terms in the context of progressive collapse  

2.3 Neural Network 

A Neural Network has two main advantages: (1) its massively parallel distributed structure; 

and (2) its ability to learn and therefore generalize (Rojas, 2013). Karayiannis and 

Venetsanopoulos (2013) considered a trained Neural Network as an “expert” in categorising 

information that is given to be analysed. This expert can then generally be employed in 

providing projections given new situations of interest and answer “what if” questions. In 

general, the following properties and capabilities of Neural Network have been employed in 

many fields of researches as presented by Müller, Reinhardt and Strickland (2012):  

• Nonlinearity 

A Neural Network itself is non-linear as it made up of an interconnection of non-linear neurons. 

This is viewed as a highly important property, particularly if the underlying physical 

mechanism responsible for generation of the input signal is inherently nonlinear.  

• Input-output mapping 

A Neural Network involves a modification of the synaptic weights through employing a set of 

labelled training examples or task examples that each of these examples consists of a unique 

input signal and a corresponding desired response. This mapping process starts by randomly 

picking up an example from the given set and then it modifies the synaptic weight (free 

parameters) of the network in purpose of minimizing the difference between the actual output 
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produced by the network (for the input signal in regard to an appropriate statistical criterion) 

and the desired response. This process is repeated until no further significant changes observed 

in the synaptic weights, in other words, the network achieves a steady state. By doing so, the 

network learns from the examples given in the data set to construct an input-output mapping to 

solve the assigned task. Such input-output mapping is seen as a popular paradigm of learning 

namely supervised learning or learning with a teacher. 

• Adaptively 

A Neural Network does not only have a capability to map input-output through a given date 

set of examples or initial experiences, adaptability is also another important property of a 

Neural Network as their synaptic weights can be changed in accordance to the surrounding 

environment. Accordingly, a Neural Network trained for operation in one specific environment 

can easily be retrained to adapt minor changes in other environmental conditions of operations. 

Moreover, in practices, it is possible to design a Neural Network to adapt its synaptic 8 weights.  

• Self-Organisation  

A NN can create its own organisation or representation of the information it receives during 

learning time. 

• Real Time Operation 

 NN computations may be carried out in parallel, and special hardware devices are being 

designed and manufactured which take advantage of this capability. 

• Fault Tolerance via Redundant Information Coding 

Partial destruction of a network leads to the corresponding degradation of performance. 

However, some network capabilities may be retained even with major network damage. 
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2.3.1 Architecture of Neural Networks computing  

In accordance to Rojas (2013), the architecture of Neural Network is classified into three 

fundamental categories as following:  

1) Singer-Layer Feed-forward Networks demonstrated in Figure 2-9  

With only one hidden layer, such network allows signals to travel only one way - from input 

to output. As there is no feedback (loop) existed in this network, there is no corresponding 

influences of one to another output layer. In other words, this type of Neural Network 

architecture tends to observed as straight forward networks that the inputs are directly in 

association with the outputs without any other influences. Accordingly, it is extensively useful 

in terms of pattern recognition.  

 

Figure 2-9 A single layer of neurons 

2) Multilayer Feed-forward Networks demonstrated in Figure 2-10 

With two or more hidden layers, this system allows signals to travel in both directions through 

the application of loops. Multilayer Feed-forward is considered as dynamic networks, as their 

“state” is continuously changed until an achievement of an equilibrium point that is remained 

while inputs are changing until a new equilibrium reached. Although such architecture of 

Neural Network is considered to be very powerful, it can sometimes get extremely complicated 

that required to be carefully designed in practices.  
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Figure 2-10 Fully connected feed-forward 

3) Recurrent Neural Networks demonstrated in Figure 2-11 

Not only allow the signals to travel in both directions as multilayer feed-forward, a recurrent 

Neural Network also comprise of at least one feedback that involves the use of particular 

branches composed of unit-delay element resulted in a nonlinear dynamical behaviour. 

Moreover, unlike other architectures that assumed all inputs and outputs are independent of 

each other, the idea behind recurrent neural networks is to make use of sequential information 

that it perform the same task for every element of a sequence, with the output being 

depended on the previous computations – so called “recurrent”. 

 

Figure 2-11 A simple recurrent network 

2.3.2 Learning Processes 

Learning is considered as one of fundamental components of an intelligent system; however, 

literature has not given a precise definition of learning process. Anthony and Bartlett (2009) 

defined the learning process of a Neural Network as the process to adjust the weighted 
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connection found between neurons in the network that effectively emulates the strengthening 

and weakening of the synaptic connections found in our brain, which enables the network to 

learn. In other words, learning typically happens in a Neural Network in a specific training 

phrase under a combination of learning paradigms, learning rules, and learning algorithms. 

Learning algorithms are extremely useful when it comes to certain problems, as the learning 

process within artificial neural networks is a result of altering the network’s weights, with some 

kind of learning algorithm. The objective is to find a set of weight matrices which when applied 

to the network should map any input to a correct output. In accordance to Anthony and Bartlett 

(2009), there are many different algorithms that can be used when training artificial neural 

networks, each with their own separate advantages and disadvantages; however, they can be 

categorised into three major learning paradigms: 

1) Supervised learning 

This is a learning process that the majority of practical machine learning uses recently. In the 

supervised learning, there are input variables (x), an output variable (Y) and an algorithm to 

learn the mapping function from the input to the output. The goal is to approximate the mapping 

function to predict the output variables (Y) for the new input data (x).  

Y = f(X) 

Supervise learning incorporates an external teacher, so that each output unit is told what its 

desired response to input signals ought to be that the algorithm iteratively makes predictions 

on the training data and is corrected by the teacher. Learning stops when the algorithm achieves 

an acceptable level of performance. In supervised learning, error-correction learning, 

reinforcement learning and stochastic learning are considered paradigms to solve an important 

problem of error convergence, i.e. the minimization of error between the desired and computed 

unit values. Some popular examples of supervised machine learning algorithms are: Linear 
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regression for regression problems, random forest for classification and regression problems, 

and support vector machines for classification problems. 

2) Reinforcement Learning 

Reinforcement learning is similar to supervised learning in that some feedback is given, 

however instead of providing a target output a reward is given based on how well the system 

performed. The aim of reinforcement learning is to maximize the reward the system receives 

through trial-and-error. This paradigm relates strongly with how learning works in nature, for 

example an animal might remember the actions it's previously taken which helped it to find 

food (the reward). 

3) Unsupervised learning 

Unlike supervised learning, this type of learning process does not use external teacher rather it 

only bases upon local information that is generally referred as self-organisation by mean that 

it self-organises data presented to the network and detects their emergent collective properties. 

In other words, there is only input data (x) in unsupervised learning leaving no corresponding 

output variables. As there is no correct answer and there is no teacher, the gold for unsupervised 

learning is to model the underlying structure or distribution in the date in purpose of learning 

more about the date. Some popular examples of unsupervised learning algorithms are k-means 

for clustering problems and Apriori algorithm for association rule learning problems that are 

left to their own devises to discover and present the interesting structure in the data. There are 

two. In unsupervised learning, a Neural Network learns off-line if the learning phase and the 

operation phase are distinct; while it learns on-line if it learns and operates at the same time. 

Usually, supervised learning is performed off-line, whereas unsupervised learning is performed 

on-line. 



55 
 

2.3.3 Transfer Function 

In determining the behaviour of a Neural Network, apart from the weights, the input-output 

function or transfer function specified for the units is also considered as an essential factor. 

Transfer functions should provide maximum flexibility of their contours with small number of 

adaptive parameters. Large networks with simple neurons may have the same power as small 

networks with more complex neurons. According to Müller, Reinhardt and Strickland (2012), 

activations transfer function are needed for hidden layer of the Neural Network to introduce 

nonlinearity. Without them NN would be same as plain perceptions. If linear function were 

used, NN would not be as powerful as they are. 

Activations transfer function is generally categorised into three main groups: (1) linear (or 

ramp), in which the output activity is proportional to the total weighted output; (2) threshold, 

in which the output is set at one of two levels, depending on whether the total input is greater 

than or less than some threshold value; and (3) sigmoid, in which units bear a greater 

resemblance to real neurones than do linear or threshold units, but all three must be considered 

rough approximations.  

2.3.4 Learning Algorithm 

In purpose of training a Neural Network to perform an assigned task, it is a must of adjusting 

the weights of each unit in the way to minimise the error between the desired response and the 

actual output produced by the learning process. This process requires that through the learning 

algorithm, the neural network compute the error derivative of the weights (EW) that are the 

error changes as each weight is increased or decreased slightly. Literature has indicated back-

propagation (Figure 2-12) as the most popular Neural Network algorithms (Karayiannis and 

Venetsanopoulos, 2013) that is broken by Rojas (2013) into four main steps: (1) Feed-forward 

computation; (2) Back propagation to the output layer; (3) Back propagation to the hidden 

layer; and (4) Weight updates. After choosing the weights of the network randomly, the back-
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propagation algorithm is used to compute the necessary corrections. The algorithm is stopped 

when the value of the error function has become sufficiently small. This is very rough and basic 

formula for back-propagation algorithm. There is some variation proposed by other scientist 

but Rojas definition seem to be quite accurate and easy to follow. The last step, weight updates 

is happening throughout the algorithm.  

The back-propagation algorithm could be easily expressed in case all the units in the network 

are linear. In this regard, the four steps of back-propagation learning algorithm can be 

demonstrated as following: 

• Step 1: It calculate the rate at which the error changes as the activity level of a unit is 

changed (EA).  

• Step 2: For the output layer, the EA is simply calculated as the difference between the 

actual output produced by the learning process and the desired response.  

• Step 3: For the hidden layer, it is first identified all the weights between that hidden and 

the output units to which it is connected; then it is to multiply those weights by the EAs 

of those output units and add the products. This sum equals the EA for the chosen 

hidden unit. After calculating all the EAs in the hidden layer just before the output layer, 

we can compute in like fashion the EAs for other layers, moving from layer to layer in 

a direction opposite to the way activities propagate through the network. This is what 

gives back propagation its name.  

• Step 4: Once the EA has been computed for a unit, it is straight forward to compute the 

EW for each incoming connection of the unit. The EW is the product of the EA and the 

activity through the incoming connection. 
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Figure 2-12 Structure of back-propagation NNs 

2.4 Monte Carlo Simulation 

2.4.1 Basic concept 

The Monte Carlo simulation (MCS) method is a powerful modelling tool for the analysis of 

complex systems, due to its capability of achieving a closer adherence to reality. It may be 

generally defined as a methodology for obtaining estimates of the solution of mathematical 

problems by means of random numbers. By random numbers, we mean numbers obtained 

through a roulette-like machine of the kind utilized in the gambling Casinos of the Monte Carlo 

Principate: then, the name of the method. The random sampling of numbers was used in the 

past, well before the development of the present computers, by skillful scientists. The first 

example of what we would now call a MCS method seems to date back to the French naturalist 

Buffon (1707–88) who considered a set of parallel straight lines a distance D apart onto a plane 

and computed the probability P that a segment of length L\D randomly positioned on the plane 

would intersect one of these lines (Zio, 2013). The theoretical expression he obtained was: 

       

Equation 2-13 
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Nowadays, MCS seems to be emerging unchallenged as the only method that can yield 

solutions to complex multi-dimensional problems. For about three decades it was used almost 

exclusively, yet extensively, in nuclear technology. Presumably, the main reason for this 

limited use was the lack of suitable computing power as the method is computer memory and 

time intensive for practical applications. Yet, with the increasing availability of fast computers 

the application of the method becomes more and more feasible in the practice of various fields. 

Indeed, the present power of computers allows uses of MCS otherways unimaginable. The 

underlying tasks common to the various applications are:  

• Simulation of random walks in a naturally stochastic environment or for the solution of 

equations, both differential and integral;  

• Adoption of variance reduction methods for improving the efficiency of MCS 

calculations.  

The advantage of the MCS approach comes from the fact that it allows taking into account, in 

a realistic manner, the many phenomena that can occur, without additional complications in 

the modelling and in the solution procedure. The principal disadvantage in the use of MCS in 

practice is the use of relevant calculation times, which diverge with the required accuracy. This 

disadvantage is decreasing thanks to the rapid development of computing power and to the 

availability of a number of techniques for efficient simulation, some of which will be illustrated 

in details in this book. Also, parallel computers are particularly useful for MCS because the 

various histories that contribute to the estimate of the solution are independent of each other 

and can thus be processed in parallel. On this account, in the future it can be foreseen that in 

many disciplines MCS will take the place of the more traditional numerical methods. 



59 
 

2.4.2 System Reliability Analysis by Monte Carlo Based Method 

The solution of realistic structural system reliability problems is generally difficult to obtain 

through conventional reliability methods as the first-order reliability method (FORM) or the 

second-order reliability method (SORM). The main reason is the high number of limit state 

functions and basic random variables that may be required to define the problem. The system 

failure event in a realistic case may be defined by a complex combination of failure modes, in 

general as a combination of series and parallel systems. The failure criteria are very often 

associated with nonlinear structural behavior, requiring computationally demanding numerical 

approaches such as the nonlinear finite element analysis to accurately assess the structural 

capacity.  

At least in principle, the reliability of complex structural systems can be accurately predicted 

through Monte Carlo simulation. With this method the system failure criterion is relatively 

easy to check, almost irrespective of the complexity of the system and the number of basic 

random variables. However, the system failure probabilities are typically of rather small 

magnitude and therefore the computational cost involved in the Monte Carlo simulation may 

be prohibitive. If numerical approaches such as the one above mentioned are used to assess the 

structural capacity, the problem may be intractable if efficient. In regards to Gaspar et al. (2014) 

and Naess, Leira and Batsevych (2009) this section explains further concept approached for 

system reliability estimation and this system based Monte Carlo Simulation.  

2.4.2.1 System Reliability Estimation 

Consider a structural system for which several failure modes may be defined, and assume that 

each failure mode is represented by a safety margin,  

     

Equation 2-14 
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with Gi, i =1,…, m, the limit state function that defines the safety margin Mi as a function of a 

vector X = [X1,…, Xn]T of n basic random variables. The limit state function Gi can be a rather 

complicated function of the random vector X. In some cases a closed-form equation is not 

known and the evaluation of Gi requires computationally demanding numerical models, e.g., 

nonlinear finite element structural models. Failure in the mode i of the system is assumed to 

occur when Mi = Gi(X) ≤ 0. For a basic system of m failure modes in series the system failure 

probability is defined by, 

     

Equation 2-15 

These are the elementary cases considered in structural systems reliability analysis (Thoft-

Christensen and Murotsu, 2012), which are here introduced as an example. In general, any 

system can be formulated as a series combination of parallel subsystems. To overcome the 

computational cost typically involved in the estimation of the failure probability of a system of 

failure modes, the method proposed in Naess, Leira and Batsevych (2009) formulates the 

system safety margins in the following way: 

    

Equation 2-16 

where Mi is a system safety margin, given by Equation 2-14, and µi=E[Mi] is the mean value 

of Mi. µi is generally unknown a priori, but it is estimated with high accuracy as part of the 

method. The parameter λ assumes values in the interval 0 ≤ λ ≥ 1 and its effect on the system 

failure probability may be interpreted as a scale factor. The original system is obtained for λ = 
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1, and for λ = 0 the system is highly prone to failure, as the mean value of the system safety 

margins is µi=E[Mi]. For small to intermediate values of k the increase in the system failure 

probability is sufficiently high to get accurate estimates of the failure probability by Monte 

Carlo simulation with moderate computational cost. 

The system failure probability as a function of the λ parameter is obtained substituting Equation 

2-16 in Equation 2-14 and Equation 2-15 above. Analyzing the behavior of pf(λ) we may 

conclude that this function decreases monotonically from a high value at λ = 0 to a typically 

small target value at λ = 1. This function can be approximated by, 

   

Equation 2-17 

where q(λ) is a slowly varying function compared with the exponential function exp{-a(λ - 

b)c}. For practical applications it can be implemented in the following form: 

  

Equation 2-18 

for a suitable value of λ0, with the function q(λ) replaced by a constant q. An important part of 

the method is therefore to identify a suitable λ0 so that the right hand size of Equation 2-17 

represents a good approximation of pf(λ) for λ Є[λ0,1]. The functional form assumed in 

Equation 2-17 is strictly speaking based on an underlying assumption that the reliability 

problem has been transferred to normalized Gaussian space where a FORM/SORM or similar 

type of approximation would work for the transformed limit state functions. However, when 

the basic random variables have “exponential” type of distributions (e.g., Weibull, normal, 
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lognormal, and Gumbel) there is no need to make a transformation to normalized Gaussian 

space. One can instead work in the original space and adopt Equation 2-17 there. This is the 

procedure adopted in this paper.  

The practical importance of the approximation provided by Equation 2-17 is that the target 

failure probability pf= pf(1) can be obtained from values of pf(λ) for λ < 1. This is the main 

concept of the estimation method proposed in Ref. [1], as it is easier to estimate the failure 

probabilities pf(λ) for λ < 1 accurately than the target value, since they are larger and, hence, 

require less simulations and therefore less computational cost. Fitting the approximating 

function for pf(λ) given by Equation 2-18 to the estimated values of failure probability obtained 

by Monte Carlo simulation with λ < 1, will then allow us to provide an estimate of the target 

failure probability by extrapolation. 

2.4.2.2 System Reliability Based Monte Carlo Simulation 

To find the four parameters q, a, b, and c in Equation 2-18 that define the optimal fit between 

these function and the estimated values of failure probability obtained by Monte Carlo 

simulation, an optimized fitting procedure was suggested in Naess, Leira and Batsevych 

(2009).  

For a sample of size N of the vector of basic random variables X = [X1,…, Xn]T, let Nf(λ) 

denote the number of samples for which failure of the system is verified. An empirical estimate 

of the failure probability is then given by, 

       

Equation 2-19 

The coefficient of variation of this estimator is, 
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Equation 2-20 

which for small failure probabilities can be approximated by, 

     

Equation 2-21 

A fair approximation of the 95% confidence interval for the value pf(λ) can be obtained as: 

 

where  

    

Equation 2-22 

Considering now that we have obtained empirical estimates of the failure probability using 

Equation 2-19 for a suitable set of λ values, the problem then becomes one of finding the 

optimal fit between the proposed approximating function for the failure probability given by 

Equation 2-18 and the empirical estimates obtained. This optimal fit can be carried out by 

minimizing the following mean square error function with respect to the four parameters q, a, 

b, and c in Equation 2-18 at the log level: 
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Equation 2-23 

where λ0 ≤ λ1 ≤ λ2 ≤ …λM < 1 denotes the set of λ values where the failure probability is 

empirically estimated and wj denotes a weight factor that puts more emphasis on the more 

reliable data points. The choice of the weight factors is to some extent arbitrary. The following 

definition was suggested: 

     

Equation 2-24 

with θ = 1 or 2, combined with a Levenberg-Marquardt least squares optimization method. This 

has proved to work well provided that a reasonable choice of the initial values for the 

parameters is made. In this study θ = 2 is adopted for the optimized fitting. Note that the 

definition adopted for wj puts some restriction on the use of the data. Usually, there is a level 

λj beyond which wj is no longer defined. Hence, the summation in the mean square error 

function given by Equation 2-24 has to stop before that happens. Also, the data should be 

preconditioned by establishing the tail marker λ0 in a sensible way.  

Although the Levenberg-Marquardt least squares method as described above generally works 

well, it may be simplified by exploiting the structure of the mean square error function F. It is 

realized by scrutinizing Equation 2-23 that if b and c are fixed, the optimization problem 

reduces to a standard weighted linear regression problem. That is, with both b and c fixed, the 

optimum values of a and log q are found using closed-form weighted linear regression formulas 

in terms of  

 and  

It is obtained that the optimal values of a and q are given by the relations:  
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Equation 2-25 

and 

      

Equation 2-26 

where 

 

 

The Levenberg-Marquardt method may now be used on the function 

  

to find the optimal values b* and c*, and then the corresponding a* and q* can be calculated 

from Equation 2-25 and Equation 2-26. For estimation of the confidence interval for a predicted 

value of the failure probability provided by the optimal curve (i.e., for the probability given by 

Equation 2-18 with optimal parameters q*, a*, b*, and c* evaluated at λ = 1), the empirical 

confidence band given by Equation 2-22 is reanchored to the optimal curve. The range of fitted 

curves that stay within the reanchored confidence band will determine an optimized confidence 

interval of the predicted value. This is obtained by constrained nonlinear optimization. As a 
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final point, it was verified that the predicted value is not very sensitive to the choice of the tail 

marker λ0 provided that it is chosen with some care. A suitable initial value for the tail marker 

is λ0 = 0.3, however slightly different values can be considered. 
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3 Research State of Art 

3.1 Technical Challenges in System Reliability Analysis 

Over the last four decades, structural system reliability (SSR) has been an active research topic 

as engineering systems including structures and infrastructure networks become more 

complex, and the computational power has been remarkably advanced (Zio, 2013; Hu and 

Mahadevan, 2016; Coit and Zio, 2019). Although researchers desire to evaluate system 

reliability accurately and efficiently over the years, Youn and Wang (2009) provided an 

exclusive literature review and concluded that little progress has been made on system 

reliability analysis. Up to now, bound and β-unzipping method methods for system reliability 

prediction have been dominant (Stern, et al., 2017). However, two primary challenges are as 

follows: (1) Most numerical methods cannot effectively evaluate the probabilities of the second 

(or higher)–order joint failure events with high efficiency and accuracy, which are needed for 

system reliability evaluation and (2) there is no unique system reliability approximation 

formula, which can be evaluated efficiently with commonly used reliability methods. 

Moreover, in such complex systems, there exist significant statistical dependence between 

component failure events characterized in terms of physical members, failure modes, failure 

locations, and time points of failure occurrences (Zang et al., 2018). Truong and Kim (2017) 

indicated that main problem of advanced techniques has generated the complex challenges for 

structural system reliability that is far more difficult comparing to a component event. In 

purpose of overcoming such these challenges, there is a need for SSR methods to be developed 

on a basic of suitable strategies that can consider limited information on hand, employ efficient 

analysis schemes, and introduce proper approximation schemes (Zhang et al., 2019). In Chapter 

2, there was an introduced of two most commonly used theoretical approach for system 

reliability analysis namely β-unzipping method and the branch-and-bound methods. This 
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section aims to review the current state of art towards the efforts to solve the complexity of the 

problem in the structural system reliability including: 

• Bound on system reliability: The failure of a structural system is usually governed by 

multiple failure criteria, all of which are to be taken into consideration for reliability 

estimation. If all the uncertain parameters are defined as random variables, then the 

system reliability can be estimated accurately by using existing techniques. However, 

when modelling variables with limited information as intervals with upper and lower 

bounds, the entire range of these bounds should be explored while estimating the system 

reliability. The computational cost involved in estimating reliability bounds increases 

tremendously because a single reliability analysis, which is a computationally 

expensive procedure, is needed for each configuration of the interval variables. To 

reduce the computational cost involved, high quality function approximations for 

individual failure functions and the joint failure surface are in need to consider in regard 

to their accuracy and efficiency. For this reason, the first technical challenges reviewed 

in this section is towards bounds on system reliability and its most common approach 

of linear programming.  

• Framework to facilitate analytical evaluation: The methods of structural reliability 

analysis provide a systematic framework that introduces simplifying assumptions in the 

evaluation of failure probability with an aim to treat the difficulties outlined above. The 

present review covers topics that include reliability index-based techniques, simulation 

based methods that include variance reduction strategies, system reliability analysis, 

time variant reliability analysis, probabilistic model reduction and importance 

measures, random field modelling and stochastic finite element methods, critical load 

models, convex models of uncertainty and robust reliability, and nonlinear structural 

behaviour.  
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• Computational cost: A system reliability analysis is that there often exist innumerable 

failure modes, i.e. possible combinations or sequences of component failures, because 

real structures are highly redundant and the failure of a member redefines the limit-

states of the remaining members (e.g. stress re-distribution caused by a member failure). 

Therefore, it is infeasible in most cases to enumerate all the possible failure modes for 

system reliability analysis. This challenge becomes even greater for complex structures 

with a large number of structural elements. In order to overcome this difficulty, there 

is a need to focus on the possibility of using only dominant failure modes with 

significant likelihood, instead of using all possible failure modes, specifically, to 

identify dominant failure modes by evaluating their probabilities in an event tree. The 

system failure probability is then computed based on the probabilities and statistical 

dependence of the identified failure modes. While evaluating the contributions of 

individual failure modes to the system failure probability during the search process, 

component and system reliability analyses need to be performed repeatedly, which may 

entail huge computation time cost especially for large structures with a high level of 

redundancy. 

3.1.1 Bounds on System Reliability  

The probabilistic analysis of any system (structural, geo-technical, water networks) requires 

the evaluation of the probability of union of several events. Here, it is assumed that the 

probability P(Ei) of each event Ei, the bi-section probability P(Ei ∩ Ej) between the events Pi 

and Pj and the tri-section probability P(Ei ∩ Ej ∩ Ek) are available. For simplicity and 

convenience. P(Ei). P(Ei ∩ Ej) and P(Ei ∩ Ej ∩ Ek) will be termed Pi, Pij  and Pijk, 

respectively. As the evaluation of the exact probability of a system is a formidable task, if not 

an impractical one, bounds on this probability are usually sought.  
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Ding et al. (2017) pointed out the two issues in the current investiment and development of 

probability bounds. First, we have to get a set of upper and lower bounds for the union of events 

for a given ordering of events. Second, re-order the events or re-formulate these bounds, so that 

optimal or near-optimal bounds could be obtained. Note that separate re-ordering or re-

formulation is necessary for upper and lower bounds. Kounias (1968) tried to achieve an 

optimal bound in a single operation using optimisation techniques (linear programming) but 

failed to make much progress owing to the exponential increase in computational effort with 

the number of events. Since then much improved elegant methods have been produced by 

Ditlevsen (1979), Ramachandran (1990; 2004) and Greig (1992) to obtain better bounds. This 

article gives a simple method of deriving first-, second- and third-order bounds, so that direct 

formulations of optimal bounds can be made. Methods are given to obtain higher-order bounds; 

however, fourth- and higher-order bounds have very little use in structural reliability problems. 

Among later efforts on solving this problem, it is worth to mention Song and Der Kiureghian 

(2003), who propose Bounds on System Reliability by Linear Programming (LP Bounds) as 

presented in Figure 3-1.  

 

Figure 3-1 Illustration of LP bounds method 

Table 3-1 Coefficients ci of the object functions for three-component Systems 
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The probability of any intersection of the component events is given as the sum of the 

probabilities of the basic MECE events that constitute the intersection event.  

 

Equation 3-1 

In most system reliability problems, the uni-, bi- and sometimes tri-component probabilities 

are known or can be computed. In that case, the above expressions provide linear equality 

constraints on the variables p in the form of  

 

Equation 3-2 

Any Boolean function of the component events can also be considered as being composed of a 

subset of the basic MECE events. It follows that the probability of the system event Esystem can 

be written in the form P(E system)= cT p, where c = a vector whose elements are either 0 or 1. 
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Table 3-1lists the elements of the vector c for example systems with n = 3 components. Included 

are series, parallel, and general systems, the latter represented by both cut-set and link-set 

formulations. It is seen that in all cases the system probability is a linear function of p. It is 

clear from the above analysis that the system reliability problem can be cast in the form of an 

LP problem.  

Although LP has previously been used in the context of structural system reliability by Nafday 

(1987) and Corotis and Nafday (1989). However, they used LP for the purpose of identifying 

the most critical failure mode for a structural system, not for computing the system probability. 

The LP bounds developed by Song and Der Kiureghian are applicable for any type of system 

and any level of information regarding the component probabilities (Jimenez-Rodriguez and 

Sitar, 2007). Equally important, these bounds are the narrowest possible bounds that one can 

obtain for a system for any specified information regarding the component probabilities. Using 

the LP bounds method, the bounds on various quantities such as component importance 

measures (Song and Der Kiureghian 2005), conditional probabilities given observed events 

and parameter sensitivities of the system failure probability (Der Kiureghian and Song 2008) 

can be calculated as well.   

In the same line with this research achievement, many other researchers have put their efforts 

in overcoming the scalability issue of the LP bounds method, of which, a multi-scale analysis 

approach was combined with the LP bounds method to reduce the size of LP problems in Der 

Kiureghian and Song (2008); Kang et al. (2012). Furthermore, Chang and Mori (2013; 2014) 

employed a relaxed linear programming (RLP) bounds method through an introduction of a 

universal generating function. Added to this, Wei et al. (2013) proposed a small-scale linear 

programming (SSLP) based boundary theory which can sufficiently reduce the scale of the 

linear programming model involved. This approach was applied to a structural system with 
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multiple failure modes where both random and fuzzy inputs are present as what presented in 

Wei et al. (2018).  

3.1.2 Framework to facilitate analytical evaluation 

3.1.2.1 Matrix-Based System Reliability (MSR) Method 

Another approach to solve the problem towards estimating the structural system reliability is 

called Matrix-Based System Reliability (MSR) Method that provides a systematic framework 

to facilitate analytical evaluation of general system reliability (Kang et al. 2008) and their series 

of Kang and Song (2009); Kang et al. (2012) as shown inFigure 3-2. 

Consider a system whose ith component has si distinct states, i=1,…,n. The sample space can 

be divided into m=Πi=1
nsi mutually exclusive and collectively exhaustive events named as the 

“basic” MECE events and denote them by ej, j=1,…,m. One can describe any event by 

identifying the basic MECE events that belong to it. Therefore, a general system event can be 

represented by an “event” vector c whose jth element is 1 if ej belongs to the system event and 

0 otherwise. Let pj=P(ej), j=1,…,m, denote the probability of ej. Due to the mutual 

exclusiveness of ej's, the probability of a system event, Esys, i.e., P(Esys) is simply the sum of the 

probabilities of ej's that belong to the system event. Where p is the “probability” vector that 

contains pj's, the system failure probability is computed by a simple vector calculation  

 

Equation 3-3 

That can be generalized to compute the probabilities of multiple system events under multiple 

conditions of component failures by a single matrix multiplication 
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Equation 3-4 

where ci, i=1,…,Nsys, is the event vector of the ith system event; pj, i=1,…,Ncond, denotes the 

probability vector for the jth condition; and Psys is the matrix whose element at the ith row and 

the jth column is the probability of the jth system event under the jth condition. 

 

 

Figure 3-2 Main calculation procedures and outputs of the MSR method 

In regard of Nale et al. (2019); Song and Kang (2009), comparing to the LP method, the MSR 

method has the following merits over existing system reliability methods.  

• The complexity of the system reliability computations is not affected by that of the 

system event definition because the reliability of a system event is calculated by a single 

matrix multiplication regardless of the system definition.  

• The matrix-based formulation allows us to identify/handle the system events 

conveniently and compute the corresponding probabilities efficiently.  
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• If one has incomplete information on the component failure probabilities or their 

statistical dependence, the matrix-based framework enables us to obtain the narrowest 

possible bounds on any general system event. This is equivalent to the LP bounds 

method (Song and Der Kiureghian, 2003) 

• One can calculate the conditional probabilities and various importance measures (Song 

and Der Kiureghian, 2005) using the MSR method without introducing further 

complexity.  

• The recent developments of matrix-based computer languages and software including 

MATLAB® and Octave rendered matrix calculations more efficient and easier to 

implement.  

• The MSR method can be extended for evaluating various system reliability metrics such 

as average connectivity loss or service flow reduction (Dueňas-Osorio et al., 2006) by 

describing the average or exceedance probability of such a metric in terms of C and P. 

The MSR method is applicable to a wide range of system types, i.e. series, parallel, cut set, and 

link set systems, which satisfies the needs for Generality. This general applicability has been 

demonstrated by many examples of not only structural systems, e.g. truss systems, a bridge 

pylon system, a combustion engine, a hardware system of train and Daniels systems but also, 

infrastructure networks, e.g. bridge networks, a gas distribution system, complex slopes.  

In this line, other researchers have put efforts to extend the usage of the MSR methods to 

system, whose performance is evaluated in terms of a continuous measure. Song and Kang 

(2009) presents a further develop on the MSR method it in terms of statistical dependence and 

parameter sensitivity of system reliability that uses the MSR method for systems with 

statistically dependent components; and the correlation coefficients between the basic random 

variables or the component safety margins are represented by a Dunnett–Sobel 



76 
 

class correlation matrix to identify the source of the statistical dependence and to make use of 

the matrix-based procedure developed for independent components. This study provided two 

numerical examples of structural systems: (1) the system fragility of a bridge structure; and (2) 

the collapse of a statistically indeterminate structure subjected to an abnormal load. Kang et al. 

(2012)  introduced two further developments of the MSR method: (1) for efficient evaluation, 

the integral in the CSRV space is performed using the first- or second-order reliability methods; 

(2) a new matrix-based procedure to compute the sensitivity of the system failure probability 

with respect to the parameters that affect the correlation coefficients between the components. 

This study also demonstrated two examples for a three-storey Daniels system structure, and a 

bridge pylon system. Nguyen et al. (2010) proposed a single-loop system reliability-based 

design optimization (SRBDO) approach using the recently developed matrix-based system 

reliability (MSR) method to eliminate the inner-loop of SRBDO that evaluates probabilistic 

constraints that can apply to general systems including series, parallel, cut-set, and link-set 

system events. Currently, Byun et al. (2017) extended the MSR method to k-out-of-N systems 

by modifying the formulations of event and probability vectors that can incorporate statistical 

dependence between component failures for both homogeneous and non-homogeneous k-out-

of-N systems; and compute measures related to parameter sensitivity and relative importance 

of component. This study also provided two numerical examples: (1) hypothetical systems each 

consisting of series, parallel and k-out-of-N subsystems, and (2) a simplified high-speed train 

system modelled by multiple k-out-of-N subsystems.  

3.1.2.2 Sequential Compounding Method (SCM) 

System reliability analysis often requires efficient and accurate evaluation of a multivariate 

normal integral. Despite recent advances in system reliability analysis methods, it is still a 

challenging task especially when the definition of the system event is complex; the system has 

a large number of components; and/or the component events have significant statistical 
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dependence. Kang and Song (2010) presented a sequential compounding method (SCM) as a 

new method developed for evaluating multivariate normal integrals defined for general system 

events including series, parallel, cut-set and link-set systems. The method compounds two 

components coupled by union or intersection sequentially until the system becomes a single 

compound event. Efficient numerical procedures are developed for obtaining the reliability 

index of the new compound event, and the correlation coefficients between the compound 

event and the remaining component events, at each step of the sequential compounding. The 

SCM sequentially compounds a pair of component events in the system until the system is 

merged into one super-component as illustrated by an example in Figure 3-3.  

 

 

Figure 3-3 Example of sequential compounding by SCM 

For a parallel or series system, the procedures introduced in Figure 3-3 can be applied to 

adjacent components sequentially until it becomes a single compound event. For a cut-set or 

link-set system, one can first compound components in each cut-set or link-set until the system 

becomes an equivalent series or parallel system, respectively. Then, the compound components 

in the series or parallel system are compounded sequentially again. One can follow alternative 

orders of compounding as long as it is compatible with event operation rules (e.g. associative 

rule and commutative rule). Although each compounding process requires solving the 

nonlinear equation of compounding two components coupled by intersection or by union as 

followed:  

If coupled by intersection 
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Equation 3-5 

 

Equation 3-6 

 

 

Equation 3-7 

in which, ϕ denotes for the PDF of the standard normal distribution 

If coupled by union 

 

Equation 3-8 

 

Equation 3-9 

numerically for all remaining components, the proposed procedure is efficient because it does 

not involve sampling or expensive multi-fold numerical integrations. It is also noteworthy that 
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the proposed approach can be used to quantify the statistical dependence between sub-systems, 

e.g., cut-sets or link-sets by the equivalent correlation coefficients between the compound 

events. 

An important merit of the SCM method is that one can quantify the statistical dependence 

between sub-systems by the equivalent correlation coefficients between compound events. Its 

accuracy and efficiency for series, parallel, cut-set and link-set systems are demonstrated 

through comparison with other existing methods such as the PCM method and MSR method. 

For example, Johari and Lari (2016) predicted the system reliability indices and corresponding 

probabilities of failure from the SCM method and compared against those of the Monte Carlo 

simulation (MCs). The results of sensitivity and parametric analyses show that the water 

pressure parameters are the most effective parameters in rock wedge stability. It is also 

confirmed by Johari and Rahmati (2019) that the accuracy of the method is not significantly 

affected by the large number of components in a system.  

An alternative approach to the SCM method was later developed by Kang and Kliese (2014) 

that proposed a rapid reliability estimation method for node-pair connectivity analysis of 

lifeline networks especially when the network components are statistically correlated. 

Recursive procedures are presented to compound all network nodes until they become a single 

super node representing the connectivity between the origin and destination nodes. The 

proposed method was applied to numerical network examples and benchmark interconnected 

power and water networks in Memphis, Shelby County. The connectivity analysis results show 

the proposed method is reasonable accuracy and remarkable efficiency as compared to the 

Monte Carlo simulations. It is noted by Byun and Song (2017) that the SCM also satisfies the 

criteria of Efficiency and Scalability since the proposed sequential compounding processes are 

straightforward and computationally efficient even for large-scale systems. Recently, Chun et 

al. (2019) proposed a new SCM method to incorporate constraints on the first-passage 
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probability into reliability-based optimization of structural design or topology. For efficient 

evaluations of first-passage probability during the optimization, the failure event is described 

as a series system event consisting of instantaneous failure events defined at discrete time 

points. The probability of the series system event is then computed by use of a system reliability 

analysis method termed as the sequential compounding method. The adjoint sensitivity 

formulation is derived for calculating the parameter sensitivity of the first-passage probability 

to facilitate the use of efficient gradient-based optimization algorithms.  

3.1.2.3 B3 method 

In risk-informed design, maintenance and retrofit for such structural systems, it is essential to 

quantify the risk of fatigue-induced sequential failures and identify critical sequences of local 

failures. When a series of component failures are observed, their sequence is generally an 

important factor that characterizes the system failure. Particularly for an indeterminate 

structure, the failures of certain members cause re-distribution of forces in the structural 

system, which affects the likelihood and sequence of the cascading failures. Different 

contributions of preceding failed members affect whether the structure would be able to 

withstand more external impacts or would collapse. There is a need for a reliability analysis 

method to reflect the importance of the sequence of events.  

There have been many research efforts for quantifying such system-level risk in consideration 

of sequential failures. Monte Carlo simulation (i.e., repeating computational simulations for 

many scenarios based on randomly-generated values of uncertain parameters) is the most 

straightforward and widely-used method; however, when structural analysis demands time-

consuming computational simulations or when the failure probabilities are low, the 

computational and time costs required for converged results can be exceedingly large. For such 

a reliability analysis concerning fatigue-induced cascading failures, a branch-and-bound 

method employing system reliability bounds, termed B3 method was developed (Lee and Song 



81 
 

2011). Based on a recursive formulation of the limit-state functions of fatigue- induced failures, 

a system failure event is formulated as a disjoint cut-set system event. A new search scheme 

identifies critical fatigue-induced failure sequences in the decreasing order of their probabilities 

while it systematically updates both lower and upper bounds on the system failure probability 

without additional system reliability analyses. As a result, the method can provide reasonable 

criteria for terminating the branch-and-bound search without missing critical failure sequences 

and reduce the number of computational simulations required to obtain reliable estimates on 

the system risk. Error! Reference source not found. illustrates the search scheme of the B3 

method and how the system reliability bounds are narrowed as the search process proceeds.  

 

 

Figure 3-4 Procedure in B3 method 

The main difference between the B3 method and existing branch-and- bound-based methods is 

that the proposed method describes a system event by use of mutually exclusive (or disjoint) 

failure sequences. By contrast, when a branch-and-bound method uses a non-disjoint cut-set 

formulation, the probability of a failure sequence is computed without considering the 

likelihoods of specific orders. For example, the probability of a sequence {1  2  ..  N} 

would be computed as: 
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Equation 3-10 

This is simplified as  

 

Equation 3-11 

Compared to the corresponding formulation of the B3 method, this probability is easier to obtain 

because one can compute this probability by a component reliability analysis rather than a 

system reliability analysis. However, the identified failure paths are non-disjoint and 

correlated, so the lower bound on the system failure probability should be computed by a 

system reliability analysis for the union of all identified failure paths, i.e.,  

Plow = 𝑃𝑃�⋃ 𝐸𝐸𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖
𝑖𝑖=1 � 

Equation 3-12 

where Ei is the occurrence of the i-th identified system failure sequence (i = 1,..., Nid) that 

appears in Eq. (19), and Nid is the total number of system failure sequences identified by the 

branch-and- bound search. By contrast, the B3 method updates the lower bound just by adding 

the probability of newly identified system failure sequences to the current bound. Moreover, 

the B3 method can provide the upper bound as well, which helps provide reasonable termination 

criteria for the search process.  

The B3 method was later combined with finite-element-based reliability analysis for 

applications to continuum structures, in which, the limit-state formulations are modified to 

incorporate crack-growth analysis using an external software package, and an additional 

search-termination criterion is introduced. Lee and Song (2013) also proposed an inspection-
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based reliability updating scheme using B3 method for both discrete and continuum structures. 

Quintana et al. (2014) employed the B3 method to combine system reliability analysis, and 

“failure mode effects and criticality analysis” (FMECA) for quantitative classification of 

structural hot spots. The method is considered to have inference capability as well since the 

updating method can compute conditional probabilities given information obtained from the 

inspections, both equality and inequality-type events.  

In the existing methods, even though a branch-and-bound method can identify critical failure 

sequences in the decreasing order of their probabilities (unless heuristic or problem-dependent 

truncation rule is introduced), the changes in the lower bound caused by newly identified 

system failure sequences are not decreasing monotonically. This is due to the statistical 

dependence between the failure sequences. However, in the B3 method, the increments of the 

lower bound are the same as the probabilities of the identified system failure cases, which are 

found in the decreasing order. Therefore, the increments on the lower bound diminish 

monotonically, which helps terminate the search process without performing more searches 

than necessary. To achieve the aforementioned merits of the disjoint cut-set formulation, the 

B3 method needs to perform more component and system reliability analyses than conventional 

branch-and-bound methods. Considering the efficiency in the search process and accuracy in 

system failure probability calculations, this additional task is worthwhile especially when the 

computational cost of the structural or finite element analysis is dominant. The component 

reliability analysis method used in the B3 method should be able to identify the statistical 

dependence between the component events such that a system reliability analysis can be later 

performed with the dependence fully considered. The system reliability analysis method should 

be able to compute the probability of parallel systems accurately. In particular, the method 

should be able to handle parallel systems with a large number of component events because 

the number of component events quickly increases as the search process proceeds.  
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Although the B3 method was originally developed for fatigue-induced failures in a system, the 

search scheme can be extended to other types of cascading failure phenomena by re-

formulating the reliability calculations of the failure sequences. 

3.1.3 Computational effort 

3.1.3.1 Importance Sampling 

Structural reliability analysis frequently requires the use of sampling-based methods, 

particularly for the situation where the failure domain in the random variable space is complex. 

Although the Monte Carlo Simulation (MCS) is the most straightforward approach applicable 

to all system problem, the computational cost is sometimes overwhelming, especially, when 

the probability of the event is low. Typically, MCS focuses on finding the failure probability 

estimate and the variability associated with that estimate, but not on identifying the design point 

or important areas in the failure domain. One of the most efficient and widely utilized methods 

to remedy these issues is to use in such a situation is importance sampling (Melchers and Beck, 

2018). Importance sampling (IS) has been developed to alleviate the computational cost of 

simulation by using a more efficient sampling density located at relatively important regions, 

which are usually identified by additional reliability analysis.  

When implementing IS, one must specify an alternative sampling density that is expected to 

reduce the variability of the sampled estimates and thus the associated computational cost. One 

example of such alternative densities is a Gaussian density whose mean vector is located at the 

design point found from a First-Order Reliability Method (FORM) analysis (Engelund and 

Rackwitz, 1993); nevertheless, this approach does not completely address the aforementioned 

issues for structural reliability problems with (1) multiple design points (Der Kiureghian and 

Dakessian, T.), which might result in significant errors, or (2) numerical issues that make a 

non-sampling-based analysis difficult, including numerical noises in the limit-state function. 

https://www.sciencedirect.com/science/article/pii/S0167473013000131?casa_token=oaunokDmXKgAAAAA:6QpWA_qTnctVwm8LgrzY89C7TIHGHVaJx7uf3wCbC5JuFXfIaaekfgALyfxIf6WFwGKAYOGaZw#eq0001
https://www.sciencedirect.com/science/article/pii/S0167473013000131?casa_token=oaunokDmXKgAAAAA:6QpWA_qTnctVwm8LgrzY89C7TIHGHVaJx7uf3wCbC5JuFXfIaaekfgALyfxIf6WFwGKAYOGaZw#eq0002
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For series system reliability problems, there have been some attempts to combine multiple 

sampling densities cantered at the design points identified from FORM analyses of the 

component limit-state functions. However, it is difficult to optimally determine the relative 

weights of those densities (Fu et al., 1988) or filter non-critical ones (Tomasson and Söder, 

2016). For parallel systems, it is desirable to sample around the joint design point, which can 

be found by mathematical programming (Xia et al., 2020). However, the approach may 

introduce significant computational cost in addition to that required for FORM analysis. For 

general system reliability problems, i.e. neither series nor parallel, no general procedure is 

available to find an effective importance sampling density based on the results of FORM 

analysis. 

To identify an effective IS density, various adaptive IS procedures have been suggested, which 

are categorized into two major approaches. One approach focuses on updating the sampling 

density function based on intermediate results or pre-sampling while the other focuses more on 

updating a surrogate representation of the limit-state function. Many have made hybrids of 

these two approaches. Bucher (1988) proposed an adaptive IS approach in which the sampling 

density is updated based on statistical moments estimated by pre-samples. Ang et al. (1991) 

used an IS density found by constructing kernel models based on samples generated in the 

failure domain. Ching and Hsieh (2007) used subset simulations coupled with a maximum 

entrophy optimization to find a local approximation of the limit state for given design values. 

The maximum entropy approach selects a probability density function (PDF) that maximizes 

its entropy subject to moment constraints from sample data. Dubourg and Deheeger (2011) 

used a variance minimizing IS with a surrogate meta-model based off of a Kriging procedure. 

Grooteman (2011) used an adaptive directional IS approach to improve the efficiency of 

directional IS approaches by finding the most important directions and sampling the rest using 
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a response surface. This method is most recently updated by Zhang et al. (2020) with an 

adaptive Kriging oriented importance sampling (AKOIS) approach 

Several other methods have been suggested, but most of these falls within similar veins of the 

aforementioned methods. Another notable adaptive IS approach is to find a near-optimal IS 

density by minimizing the Kullback–Leibler cross entropy (CE) (Rubinstein and Kroese, 2013) 

through a few rounds of small-size pre-sampling. In this methodology, CE is used as a measure 

of the “distance” between the absolute best sampling density function (Binder et al., 2012) and 

the current IS density model; however, the suggested probability density function distributions 

in this work are based on unimodal distribution models of statistically independent random 

variables. This unfortunately limits the breadth of structural reliability problems the 

methodology can address; nevertheless, such a CE-based IS approach is largely absent from 

general use in the field of structural reliability, although various approaches do perform entropy 

maximization, as discussed previously.  

Recently, in Rubinstein and Kroese (2013), the adaptive importance sampling approach is 

further developed by incorporating a nonparametric multimodal probability density function 

model called the Gaussian mixture as the importance sampling density. This model is used to 

fit the complex shape of the absolute best sampling density functions including those with 

multiple important regions. An efficient procedure is developed to update the Gaussian mixture 

model toward a near-optimal density using a small size of pre-samples. The proposed cross-

entropy-based adaptive importance sampling (CE-AIS) needs only a few steps to achieve a 

near-optimal sampling density and shows significant improvement in efficiency and accuracy 

for a variety of component and system reliability problems. The method requires far less 

samples than both crude Monte Carlo simulation and the cross-entropy-based adaptive 

importance sampling method employing a unimodal density function; thus achieving relatively 

small values of the coefficient of variation efficiently. The computational efficiency and 
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accuracy of the proposed method are not hampered by the probability level, dimension of 

random variable space, and curvatures of limit-state function. Moreover, the distribution model 

parameters of the Gaussian densities in the obtained near-optimal density help identify 

important areas in the random variable space and their relative importance.  

Kurtz and Song (2013) proposed to adopt a Gaussian mixture as a sampling density model in 

the CE-AIS approach and developed closed-form updating rules to find the near-optimal 

sampling density by a few rounds of small pre-sampling. Figure 3-5 demonstrates how 

Gaussian mixture models converge to near-optimal sampling densities by the CE-AIS-GM 

algorithm. The black lines in the figures represent the limit-state surface of a series system 

problem. The contours in the far-left figures represent the initial GM sampling densities, and 

after few rounds of pre-sampling, the sampling densities converge into critical regions as noted 

in the far-right figures in Figure 3-5. Although CE-AIS-GM is not able to directly estimate 

conditional probabilities, the criterion of Inference is considered to have been partially fulfilled 

in a sense that the GM model parameters obtained during pre-sampling process are helpful in 

identifying important areas in random variable space. As strongly stated by Barkhori et al. 

(2019), CE-AIS employing a Gaussian mixture (CE-AIS-GM) has proved to be efficient and 

accurate by numerical examples including a parabola limit-state function and reliability 

analyses of systems such as parallel, series and general systems, i.e. requiring far less samples 

to achieve the target coefficient of variation than crude MCS or CE-AIS using a unimodal 

distribution model for seismic reliability analysis (Choi and Song, 2017) and time-dependent 

reliability of structural system (Yang et al., 2015). It is noted that the method is yet able to 

incorporate available information in a flexible manner or evaluate parameter sensitivities. 

While CE-AIS-GM shows good performance for systems including up to about 50 random 

variables, the method does not work well in the random variable spaces with higher 
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dimensions. This is because most of the probability volume is highly concentrated around the 

surface of the hypersphere with a certain radius in a high dimension random variable space.  

To be able to sample in the so-called “important ring” region, later on, Wang and Song (2016) 

developed a cross-entropy-based adaptive importance sampling technique that employs a von 

Mises-Fisher mixture (CE-AIS-vMFM) as the sampling density model. By small-size pre-

samplings, the proposed approach first finds a near-optimal sampling density by minimizing 

the Kullback–Leibler cross entropy between a von Mises-Fisher mixture model and the 

absolute best importance sampling density. Three numerical examples are investigated in this 

study to test and demonstrate the proposed importance sampling method; and their obtained 

results show that the proposed approach, applicable to both component and system reliability 

problems, has superior performance for high dimensional reliability analysis problems with 

low failure probabilities. The performance of CE-AIS-vMFM was successfully demonstrated 

by reliability analyses of both component and system events which included up to 300 random 

variables.  

There has been another effort to resolve the difficulty in high-dimensional systems by 

integrating CE-AIS with Markov chain Monte Carlo methods (Wang, 2017) nesting a specially 

optimized partially collapsed Gibbs sampler to help in avoidance of locally trapped Markov 

chain samples which may be encountered by traditional cross-entropy methods. RTS-79 is 

utilized for illustrating the superiority of the proposed method, termed E-MICEM, against its 

parent method, i.e., the Markov chain Monte Carlo-integrated cross-entropy method. Two 

traditional indices including loss of load probability and expected demand not supplied are 

comparatively evaluated and the simulation results suggest that the E-MICEM is superior in 

the efficiency of estimating the two indices.  



89 
 

Recently, Geyer et al. (2019) investigated the suitability of the multivariate normal distribution 

and the Gaussian mixture model as importance sampling densities within the cross entropy 

method; and compared the performance of the cross entropy method to sequential importance 

sampling, another recently proposed adaptive sampling approach, which uses the Gaussian 

mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. 

Accordingly, this study prosed a modified version of the expectation-maximization algorithm 

that works with weighted samples. To estimate the number of distributions in the mixture, the 

density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to 

the use of weighted samples. The performance of the different methods was compared in 

several examples, including component reliability problems, system reliability problems and 

reliability in varying dimensions. The obtained results show that the cross-entropy method 

using a single Gaussian outperforms the cross-entropy method using Gaussian mixture and that 

both distribution types are not suitable for high dimensional reliability problems. It is 

noteworthy that even when an excessive number of sampling densities are originally employed 

in the Gaussian mixture model, densities tend to merge to form a Gaussian mixture model 

concentrating only on the important areas. 
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Figure 3-5 Illustration of Cross-Entropy-Based Adaptive Importance Sampling (CE-AIS) 

 

3.1.3.2 Genetic-Algorithm-Based Selective Search  

The B3 method presented earlier analytically tracks down dominant failure modes in an event-

tree setting. Therefore, the approach may become computationally intractable as the number of 

failure sequences increases exponentially as the number of components increases. By contrast, 

Kim et al. (2013) proposed a new simulation-based selective searching technique namely a 

multi-scale matrix-based system reliability (MSR) method to identify dominant failure modes 

in the space of random variables, and then perform system reliability analysis to compute the 

system failure probability. Lower-scale MSR analyses evaluate the probabilities of the 

identified failure modes and their statistical dependence. A higher-scale MSR analysis 

evaluates the system failure probability based on the results of the lower-scale analyses. The 

advantages of this approach are: (1) the separation of the failure mode identification and 

probability evaluation processes can prevent the computational cost of the repeated structural 

reliability from increasing exceedingly with the complexity of a structure. Therefore, this 

approach can be applied effectively to a large structure with a high-level of redundancy such 

as cable-supported bridges.; (2) the modified simulation-based searching technique can capture 

multiple failure modes, which enables identifying all modes observed in Monte Carlo 

simulations, while the β-unzipping method may miss some dominant failure modes and the 

branch-and-bound method possibly requires excessive number of component and system 

reliability analyses for a large structure. Moreover, its searching performance is significantly 

improved through genetic-algorithm-based selective search compared to Monte Carlo 

simulations; (3) The multi-scale MSR method can skilfully account for the statistical 

dependence among components as well as among dominant failure modes; (4) The multi-scale 

MSR method estimates the failure probabilities of the dominant failure modes and the system 
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reliability efficiently. Figure 3-6 shows the domain of a failure mode in the two-dimensional 

standard normal space. The dotted lines show the limit-state surfaces of component events 

while the solid lines represent that of the failure mode. Note that the term “component” in this 

paper does not mean a physical member, but a failure event that can occur to members under a 

given load distribution. 

In literature, the GA-based selective searching scheme has been applied to several practical 

problems. For example, Kurtz (2011) proposed method uses a multi-objective genetic 

algorithm, called Non-dominated based Sorting Genetic Algorithm II (NSGA II) to perform 

many FORM analyses simultaneously to generate a Pareto Surface of design points. The 

applicability of this approach is shown through two numerical examples. The first example is 

a general situation with few random variables. The second example analyses a statically 

indeterminate truss subjected to cyclic loading. Both numerical examples are validated with 

crude-MCS results and show that the method can find a full Pareto Surface, which provides 

reliability analysis results at a range of performance levels along with the probability 

distribution of the performance quantity. Moreover, Coccon et al. (2017) provided an extensive 

application of this method to the offshore structural systems. Following to this study, the main 

advantage of the proposed method is that the identification process of dominant failure modes 

is decoupled from the evaluation process of the probabilities of failure modes and the system 

failure event. The identification phase consists of a multi-point parallel search employing a 

genetic algorithm, and it is followed by the evaluation phase, which performs a multi-scale 

matrix-based system reliability analysis where the statistical dependence among both 

components and failure modes is fully considered.  
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Figure 3-6 Failure mode in standard normal random variable space. 

Since the events generated by GA-based selective search represent the potential failure modes 

and the probability of each of them is identified during the analysis, criteria related to cascading 

failures and critical failure modes are dealt with by this methodology. Since the method is a 

sampling-based approach, it is applicable to a wide class of structures and failure phenomena 

as long as a proper computational simulation is feasible for the cascading failure of interest. 

Compared to event-tree-based search approaches such as the B3 method, the GA-based search 

method is more scalable to systems with a large number of components. 

3.2 Limitation of MCS and NNs Application in System Reliability Analysis 

The feasibility towards application of Monte Carlo Simulation in the reliability analysis of 

complex structural systems have been well documented in literature as an accurate method 

(Zhang, Mullen and Muhanna, 2010; Xu, Zhang and Sun, 2016). Researchers have highlighted 

many attractive features of Monte Carlo Simulation in analysing structural system reliability 

that the most important one is its capability to check almost irrespective of the complexity of 

the system through the system failure criterion. However, the burden in cost and time of 

computation involved in the simulation may be prohibitive for highly reliable structural 

systems. For this reason, up-to-date, there are not many researches that have been employed 



93 
 

the system reliability based Monte Carlo Simulation. Among others, there are three main 

researches worth to mention to demonstrate the feasibility of employing Monte Carlo 

Simulation to accurately predicted the system reliability of complex structures through four 

test cases namely Naess, Leira and Batsevych (2009; 2012) and Gaspar et al. (2014).  

The two important examples (a portal frame and 13-member truss structure) were presented in 

Naess, Leira and Batsevych (2009) that all basic random variables are concerned with simple 

explicit limit state functions. For this reason, there was only minor or even no efforts in terms 

of the computational time and cost during the process of investigating the structural system 

reliability that is expressed in Equation 3-13 as the failure probability of the targeted systems:  

     

Equation 3-13 

in which, Mj = Gj(X1,...,Xn), j = 1,...,m denotes for a set of m given safety margins expressed in 

terms of n basic variables. The extended class of safety margins then become Mj(λ) = Mj - µj(1 

- λ), where µj = E[Mj]. 

Naess, Leira and Batsevych (2012) provided another example on a 3D beam system (grillage) 

with a grid of 40 × 40 equidistant and intersecting main beams. The random variables are 

included (1) a set of loading system – vertical load at each of the intersections; (2) a set of 

cross-section property – dimension and length of bean, yield stress. In particular, because initial 

yield is considered, there are three critical stresses considered as random variables namely 

vertical shear stress, torsion share stress and yield stress that all of them are fully correlated for 

a given cross section. It is noted that all the selected random variables are lognormal 

distribution.  
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In general, it is observed from the study of Naess, Leira and Batsevych (2009; 2012) that the 

proposed method provides good estimates for the reliability of large structural systems with a 

moderate computational effort. On the basic of such results, Gaspar et al. (2014) applied Monte 

Carlo Simulation into system reliability analysis for the estimation of the buckling collapse 

strength reliability of a ship hull girder stiffened panel represented by a nonlinear finite element 

structural model. In this study, the buckling collapse strength reliability assessment of the 

stiffened panel using the Monte Carlo based reliability estimation method were performed 

through two analyses: (1) reliability analysis for each individual component; and (2) reliability 

assessment for the entire system as a whole. In the former case, it was considered only one 

stiffener with attached plating, the probability of failure in this case was thus estimated as the 

probability of buckling collapse failure of that component. In the latter case, it was considered 

all the stiffeners with attached plating in the stiffened panel in formulating the system reliability 

problem. It is noted that the failure of the structure system – the stiffened panel – in case any 

of its stiffeners with attached plating fails due to buckling collapse. This failure criterion 

corresponds to a local failure of the stiffened panel and was modelled as a system of failure 

modes in series. Accordingly, the author first defined the buckling collapse strength limit state 

of each stiffener with attached plating in Equation 3-14 

    

Equation 3-14 

with m is the number of the structural components, i= [1,m] is an index that identifies each 

stiffener with attached plating or system’s component; σxu,i denotes for the ultimate 

compressive strength and σx,hg denotes for the axial compressive load induced by the hull girder 

vertical bending.  
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It is noted that the failure of each component of the structural system due to buckling collapse 

is defined in terms of its ultimate compressive strength that is either equal or lower than the 

applied axial compressive load. These conditions are identified by a negative or zero value of 

the limit state function or safety margin given by Equation 3-14, respectively. Of which, the 

ultimate compressive strength of each component of the system is defined by the maximum 

value of the corresponding average stress-strain curve for axial compression as shown in 

Equation 3-15 functioned by four main conditions: (1) the welding-induced initial 

imperfections such as residual stresses and initial distortions; (2) the boundary conditions; (3) 

the loading system; and (4) the geometry and material properties of the stiffener and attached 

plating. 

    

Equation 3-15 

The predicted failure probabilities and corresponding reliability through application of Monte 

Carlo Simulation is shown good estimates of the reliability of structural systems by the 

application of Monte Carlo Simulation with low to moderate computational effort. Moreover, 

it is observed that the failure probability of each individual component in terms of buckling 

collapse is always smaller than that of the systematic probability. Such observation was in the 

line with the general assumption towards the failure criterion in the system reliability analysis.  

In the structural design in regard to reliability analysis and index, it is a must for the structural 

designer in verifying the serviceability and ultimate conditions of the structure within a 

prescribed safety level (Markova and Holicky, 2017). This statement is generally expressed by 

Sd < Rd, where Sd stands for the action effect and Rd stands for the resistance. Under the 

guidance of the Eurocode 1 (1994), Eurocode 3 (1992), the available methods to deal with the 
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intrinsic random nature of material properties and actions can be classified into three main 

levels as following: 

• Level 1 methods or Semi-probabilistic: This is considered as the most common used 

method in practice, in which the failure probability of the structure is indirectly 

considered trough the definition of characteristic values and the applications of partial 

safety indexes;  

• Level 2 methods or Approximate probabilistic: These methods are generally formed as 

the first order or second order reliability methods (FORM/SORM), in which the 

probability of failure is based on the reliability index β (Hasofer and Lind,1974);  

• Level 3 methods or Exact probabilistic: This is in regards to current developments of 

computational models to compute the probability of failure from the joint probability 

distribution of the random variables associated with the actions and resistances.   

The simulation method employed Monte Carlo Simulation falls within the Level 3 – Exact 

probability that offers the following features in regards of reliability analysis for structures: (1) 

it is possible to apply in cases of many different problems in practices; (2) it allows the direct 

considerations of any distribution type for the random variables considered in probability; (4) 

it enables the capability in computing the failure probability in regards to the desired precisions; 

and (4) it is relatively easy in simple in implementation (Zio, 2013; Rubinstein and Kroese, 

2016). However, up to recent, the application of Monte Carlo Simulation has not yet 

widespread in the field of structural system reliability comparing to Level 2 method - 

Approximate probabilistic- due to the fact it requires a great number of structural analyses, one 

for each sample of the set of random variables (Cardoso et al., 2008). A simple expression of 

this burden in computational cost was demonstrated by Shooman (1968) that: with the normal 

values of failure probability in association with the ultimate limit states between 10−4 and 10−6, 
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there is a general need of at least 1.6×107 to 1.6×109 numbers of analyses performed to ensure 

a 95% likelihood, which accounted for 5% of the computed one in analysing the actual 

probability. The finite elements codes are generally employed in order to perform such analyses 

making the relatively high computational time, particularly, in cases of non-linear structural 

behaviour or the complex numerical model. In purpose of eliminating such drawback, 

Papadrakakis, Papadopoulos and Lagaros (1996) was first to propose the use of Neural 

Networks by means for performing function approximation to reduce the computational efforts 

in estimating structural response for system reliability analysis. With the help of Neural 

Networks learning and training process, it is possible to fasten the computing progress to 

approximate the structural responses. As strongly indicated by Chojaczyk et al. (2015), one it 

is trained properly, such technique enables to determine the structural responses with a 

relatively very small number of operations leading to a very little efforts in the corresponding 

structural analyses. Such feature is essential for the process to analyse the structural system 

reliability-based Monte Carlo Simulation as it enables the feasibility of such method for great 

complexity systems that would not be possible without.  

Nevertheless, due to the complexity of the proposed methods that combines the developments 

of systematic reliability analysis, Monte Carlo Simulation and Neural Network, up to recent, 

there are only three papers that have discussed the related issues. This section aims to preview 

the results obtained from these three main researches of Papadrakakis, Papadopoulos and 

Lagaros (1996); Hurtado and Alvarez (2001); Cardoso et al., (2008).  

Papadrakakis, Papadopoulos and Lagaros (1996) proposed a new method employing both 

Monte Carlo Simulation and Neural Network to approximate the ‘exact’ prediction of the 

critical load factor and thus the exact probability of system failure (pf). It is noted by 

Papadrakakis, Papadopoulos and Lagaros (2002) that the prediction of pf is depended not only 

on the accuracy of the predicted critical load factor but also on the sensitivity of pf in respect 
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to a slightly modified sample space of resistances. As shown in Figure 3-7 as the shaded area, 

the sensitivity is refined through the probability density distribution and the failure function on 

the unsafe side. In other expression, it is the ratio of the shaded area over the total area. It is 

noted that influencing by this sensitivity, there is always an error occurred in the analysing 

process, which is more pronounced in terms of low probability estimations. In this case, the 

low probability of failure is represented through the higher ratio of the shaded area in 

comparison to the total area. For this reason, it is often considered Importance Sampling 

techniques to decrease such ratio or to substantially reduce the error in the sensitivity making 

sure that the sampling is performed in an area with high probability.   

 

Source: Papadrakakis, Papadopoulos and Lagaros (1996) 

Figure 3-7 Sensitivity of ρf prediction to different sample space of resistance 

The proposed methodology includes the following features: 

• The probability of failure is estimated using the Monte Carlo Simulation upon the data 

set produced with Importance Sampling technique 

• The Neural Network model employed owns the back-propagation learning algorithm.  
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• The random variables are the loads act on the structure followed a Log-normal 

probability density function as well as yield stresses and plastic moduli associated with 

material and section properties followed a normal probability density function.  

• The failure condition is when the entire structure collapses because of the successive 

formation of plastic nodes.  

• Limit state analyses are considered ‘exact’ and are employ in producing the training 

pairs required for the Neural Network simulation.  

In order to illustrate the feasibility of this methods in reliability analysis, there were three 

simple numerical case studies employed in this study – one plane frame and two space frames. 

All of these examples were investigated under the following limit state function expressing the 

limit state function as G(X), where X = (X1, X2 … Xn,) is the vector of the basic random 

variables:  

  

Equation 3-16 

in which fx(X) is the joint probability and G(X) is an irregular domain with highly non-linear 

boundaries. Following the law of large numbers, an unbiased estimator of the probability of 

failure is given by: 

 

Equation 3-17 

in which I(Xi) is an indicator defined as: 
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Equation 3-18 

In this regard, if considering N as independent random samples of a specific probability density 

function of the vector X, the failure function is computed for each sample Xi. In case, G(Xi) ≤ 

0, a successful simulation is counted and thus, Monte Carlo Simulation is performed in 

estimating the failure probability Pf in terms of sample mean in Equation 3-19, in which NH is 

the number of successful simulations and N is the total number of simulations 

 

Equation 3-19 

Papadrakakis, Papadopoulos and Lagaros (1996) gave three examples to express his ideas. The 

first test example is the five-storey plane frame with a unit load applied at the top and the load-

displacement curve. The basic random variables are including external load (Load), yield stress 

of steel (σy) represented for the properties of the frame, and the plastic moduli of beams (Zb,) 

and columns (Zc,) are considered to be independent random variables. The second test example 

is the six-storey space frame Similar to the test case 1, the basic random variables are included 

external load (Load), yield stress of steel (σy), and the plastic moduli of five different types of 

beams and column (Z1 to Z5). The results for various number of simulations of Neural Network 

approximation under different neutrons of hidden layer are is measured against the difference 

between the predicted value and “exact” value, the smaller the error the better the architecture 

of training and learning networks. According, it is once again evidenced that the performance 

of the reliability analysis is much better in case of employing Importance Sampling. The third 

test example is the twenty-story space frame showing a more realistic problem in order to 
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validate the efficiency of the proposed approach of Monte Carlo Simulation and Neural 

Network in structural reliability analysis in regards of its accuracy and computing effort. 

Similar to the two previous examples, the results obtained from the analysis used Monte Carlo 

Simulation and Neural Network that indicates a remarkable agreement or minor errors between 

‘predicted values of critical load factor produced by learning and training process and “exact” 

value. In other word, the probability of failure of the twenty-storey space frame is relatively 

calculate with a very good agreement to the “exact” values. Such results evidence the earlier 

claim that the application of Monte Carlo Simulation based Neural Network to predict the 

structure failure probability is feasible regardless of the type and the scale of the structure as 

well as on the smoothness of the load displacement curve. This methodology thus can be 

implemented to accurately predict the probability of failure for even large and complex 

structural systems at a fraction of computing time.  

Citing the work of Papadrakakis, Papadopoulos and Lagaros (1996) as the main reference to 

prove the feasibility of employing the Monte Carlo Simulation and Neural Network in 

structural reliability analysis, Hurtado and Alvarez (2001) provided further evidence on the 

application of this methodology in practice towards scomparisons with respect to the following 

issues: Network types: (1) multi-layer perceptrons (MLP) and (2) radial basis functions 

classifiers (RBF); Learning algorithm: (1) back-propagation with variable learning rate and 

momentum (BPX), (2) Gauss-Newton-Levenberg-Marquardt (GNLM), (3) Newton-Raphson- 

Levenberg-Marquardt (NRLM) with employment of (1) exact algebraic (EA) and (2) least 

squares (LS); Cost functions: (1) sum of square errors (SSE) and cross-entropy (CE); Sampling 

procedure:  (1) random number generation from the actual distribution functions of the basic 

variables (CDF) and (2) from uniform distributions of the basic variables with k standard 

deviation about the mean (UN); Purpose of NN use: (1) functional approximation (FA) and 

data classification (DC). The comparative study was performed over four examples as: a single 
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and explicit nonlinear limit state function; a multiple, linear and explicit limit state function; 

an implicit, nonlinear limit state function for an elastic frame; and an implicit, nonlinear limit 

state function for a plastic plane structure under dynamic load. It can be observed that the use 

of Neural Network for data classification (DC) is more prone to error than the functional 

approximation (FA) option. It can be seen that the networks based on the former are not as 

accurate as those using the SSE error function. Accordingly, it can be concluded that the use 

of Neural Network for functional approximation (FA) seems to be better in performance rather 

than the approach inspired by pattern recognition tasks. The performance of radial basic 

function (RBF) network is clearly superior to multi-layer perceptions (MLPs) network on the 

basic of not only their accuracy but also their stability. In fact, the errors of the RBF algorithm 

are several orders of magnitude lower than those of the MLPs. The RBF network with the last-

squares (LS) approach requires much more computation time in comparison to that with the 

exact algebraic (EA) algorithm. Moreover, the superiority of the GNLM method for training 

over the BPX is also confirmed. For all network models, the sum of training and production 

times is much less than the time required by standard Monte Carlo Simulation to calculate the 

failure probability. This support the proposal of Papadrakakis, Papadopoulos and Lagaros 

(1996) about the possibility of remaining several networks for applying the procedure sketched 

above without serious increase of the total computation time. Moreover, if this is not desired 

and a single network were to be used, the relative advantage over standard Monte Carlo would 

be much higher in this respect. Moreover, this study also supported the claim of Papadrakakis, 

Papadopoulos and Lagaros (1996) towards the application of Importance Sampling Technique 

as an effective variance reduction method, not only as an independent technique, but also in 

combination with other strategies, such as DC and as a basic for building more sophisticated 

ones intended to cope with multiple limit states. In accordance to Hurtado and Alvarez (2001), 

The difference between the IS and RBF methods lies in that, while the former is aimed at 
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sampling with a localized density, whose position and parameters require an exploratory 

sampling, the RBF technique privileges the points located near each centre, which can be 

located anywhere. This suggests that a good combination for further reducing the number of 

finite element solver calls is to combine these two methods by establishing a further privilege 

to those RBF centres having a high probability content in the failure region, as the IS method 

does. 

Further developed the work of Papadrakakis, Papadopoulos and Lagaros (1996) and Hurtado 

and Alvarez (2001), Cardoso et al. (2008) provide a verification towards the case study of the 

single bay steel frame in regards of the systematic reliability analysis. Applied actions (dead 

load, live load and wind) are defined according to the Eurocode 1 (1994), and the steel structure 

is designed according to the Eurocode 3 (1992). The Neural Network used in this study is multi-

layer perceptron’s (MLPs) with the structure of input, hidden and output layers namely s0, s1 

and s2 respectively. The number of input neurons is equal to the number of random variables 

that influence structural response. For each limit state function considered, the corresponding 

probability of failure was compared to that obtained using conventional MCS (without NN), 

with computation of internal forces by finite elements for each sample of the set of random 

variables. These probabilities were also evaluated using FORM and SORM methods, built in 

the program COMREL-TI (1992). The results for all alternative techniques show a very good 

agreement between the methodology proposed by the authors and the other procedures 

considered. For this example, the application of conventional MCS took 6524 seconds, which 

is much longer than the values when NN were adopted. However, it is important to stress that 

a substantial amount of time involved in a NN based procedure is spent in the training phase. 

Consequently, a comparison based uniquely in the time consumed during the simulation phase 

can be misleading. 
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These three papers present the evidences towards the feasibility of applying Monte Carlo based 

Neural Networks to the reliability analysis of large and complex structural systems at a fraction 

of computing time. In summary, the entire concept has the following features as reported by 

Papadrakakis et al. (1996).:  

• The use of Neural Networks can practically eliminate any limitation on the scale of the 

problem and the sample size used for Monte Carlo Simulation provided that the 

predicted critical load factors, corresponding to different simulations, fall within 

acceptable tolerances. 

• A Back Propagation Neural Network algorithm is successfully used to produce 

approximate estimates of the critical load factors, regardless the size or the complexity 

of the problem, leading to very close predictions of the probability of failure. Moreover, 

training samples, required to train the Neural Network, appear to be independent on the 

type of structure or the type of the required analysis. 

• The use of Monte Carlo Simulation with Importance Sampling leads to considerable 

improvement in Neural Network prediction of the probability of failure. This is due to 

the fact that using the Importance Sampling technique the sensitivity of pr with regard 

to the modified sample space of critical load factors, displayed by Neural Network 

predictions, is reduced leading to more accurate estimates. 

It is therefore clearly stated that the methodology presented could be implemented for 

predicting accurately and at a fraction of computing time the probability of failure of large and 

complex structures. However, the examples given in the literature has been seen as relatively 

simple that does not reflect the real structure behaviour. Taking interests into the field, the 

proposed study aims to update the current work by provide a further evidence to support the 
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application of Monte Carlo Simulation based Neural Network with Importance Sample in the 

system reliability analysis  

3.3 Research Gap in System Reliability Analysis under Blast Loading 

Blast load due to accidents or terroristic attacks cannot be forecasted in a deterministic way. 

The effects of blast loading on structures can be very dangerous, damages and failures are 

expected with serious treats to structural safety and human life (Low and Hao, 2002; Shi and 

Stewart, 2015; Acito et al., 2011). Therefore, design procedures that consider explosion load 

must take into account the randomness of the threatening and of the load scenario. Added to 

this, Du and Li (2009) pointed that materials stresses and strains are often pushed to the limit 

and the modelling of these phenomena can be very complex. In this sense, it is not possible to 

assess the mechanical characteristics of materials in a deterministic way, thus, in consideration 

of the randomness of these parameters, the structural response assumes a probabilistic nature, 

making it necessary to look at reliability analysis (GuhaRay et al., 2018; Wu et al., 2020). The 

probabilistic approach to structural reliability in the case of a blast load is a current topic in 

structural engineering. 

As it is difficult to predict the probability of occurring and the magnitude of extreme events, it 

is neither practical nor possible to design a structure against them through the traditional 

methods for conventional loads (Stochino, 2016; Charitha et al., 2018). Present-day design 

standards instead try to minimise the risk and provide a minimum level of control over 

progressive collapse by incorporating in the codes the design concept of robustness as the 

insensitivity of a structure to local damage. By contrast, the insensitivity of a structure to 

abnormal events is referred to as collapse resistance. According to this concept, no action is 

taken against the extreme event itself, as this risk cannot be eliminated, but the aim is rather to 

control its consequences. 
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Analysis methods used to evaluate the possibility of progressive collapse vary widely, ranging 

from the simple two-dimensional linear elastic procedure to complex three-dimensional 

nonlinear time history analysis (Rajkumar et al., 2020). The alternate load path method requires 

an assessment of the capacity of a frame to redistribute load away from damaged members. 

Accordingly, there is a requirement for the engineer to consider the most suitable analytical 

procedure, model complexity and design assumptions within the constraints of expense, 

computing power and time. In literature, there are five procedures used to perform such an 

analysis namely (1) linear static analysis using dynamic load factors; (2) non-linear static 

analysis using dynamic load factors; (3) non-linear static pushover analysis (energy balance 

procedure); (4) linear dynamic analysis; (5) non-linear dynamic analysis. In regards of Byfield 

et al. (2014), linear methods require the material response to remain in the elastic range and 

second-order (P – delta) effects and instabilities to be ignored. This limits their use to small 

displacements and often leads to conservative design in order to prevent invalidating the 

assumptions. Non-linear methods include material plasticity and are able to account for 

geometric non-linear effects as they become more significant; they also have the potential to 

allow for the development of alternative load path mechanisms, such as arching action or 

catenary action (Figure 3-8).  
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Figure 3-8 Non-linear response in beams subjected to double span loading following loss 

of support to a column  

The US General Service Administration guidelines (GSA, 2003) advise the use of three-

dimensional analytical models subject to a linear elastic or static analysis procedure, but two-

dimensional models may also be used. An additional guide for preventing progressive collapse 

is the US Department of Defence (DoD, 2009) that incorporates flow charts to check if the 

structure requires progressive collapse design, the level of which is related to the occupancy 

category of the structure. If it is found necessary to design for progressive collapse, numerous 

methods are outlined which employ tying forces, alternative load paths, enhanced local 

resistance or a combination of all three. Both the DoD and GSA guidelines use the load and 

resistance factor design approach with factors obtained from the ASCE/SEI design guidance 

to aid designers in avoiding progressive collapse; however, the DoD guidance also provides a 

tie force procedure to allow large deformations through catenary action (Ellingwood et al., 

2009).  

In this context, Grierson et al. (2005a; 2005b) presented a progressive‐failure analysis 

procedure to evaluate the performance of a building framework after it has been damaged by 

unexpected abnormal loading that its computational model allows the incremental analysis to 
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proceed beyond loading levels at which structural instabilities occur, including the formation 

of plastic collapse mechanisms and the disengagement of members from the building 

superstructure. Fu (2013) proposed a 3-D numerical model with the direct simulation of blast 

load to investigate the corresponding dynamic response of structure in purpose of studying the 

real behaviour of a 20-storey tall building under the blast loading of a typical package bomb 

charge of 15 kg was detonated on the 12th floor. Kim and Kim (2009) investigated the 

progressive collapse-resisting capacity using alternate path methods recommended in the GSA 

and the Department of Defense (DoD) carried out both linear static and nonlinear dynamic 

analysis. The obtained results show that linear procedure provided more conservative decision 

for progressive collapse potential of model structures. This study added as the nonlinear 

dynamic analysis for progressive collapse analysis does not require modelling of complicated 

hysteretic behaviour, it may be used as more precise and practical tool for evaluation of 

progressive collapse potential of building structures. Similar research was done by 

Marjanishvili and Agnew (2006) that compared four methods for progressive collapse analysis 

by analysing a nine-story steel moment-resistant frame building, employing increasingly 

complex analytical procedures: linear-elastic static, nonlinear static, linear-elastic dynamic, 

and nonlinear dynamic methodologies. This study demonstrated that dynamic analysis 

procedures not only yield more accurate results, however, are also easy to perform for 

progressive collapse determination. In addition, the results, show that current GSA 

performance limits for linear analysis procedures are unconservative, meaning that a structure 

designed with acceptable linear evaluation criteria may exceed allowable ductility and rotation 

limits when nonlinear dynamic analysis is performed on the same structure. Similar approach 

was employed by Cai et al. (2012) specifically for a case study of a cable-stayed structure. The 

results indicate that for static and dynamic analyses, there is large difference between the results 

obtained from simulations starting with either a deformed or a nondeformed configuration at 
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the time of cable loss. The static results are conservative in the vicinity of the ruptured cable, 

but the dynamic effect of the cable loss in the area farther away from the loss-cable cannot be 

considered. Moreover, the dynamic amplification factor of 2.0 is found to be a good estimate 

for static analysis procedures, since linear static and linear dynamic procedures yield 

approximately the same maximum vertical deflection. Byfield et al. (2014) provided an 

exclusive literature review on progressive collapse and summarised their advantages and 

disadvantages in Table 3-2. Abdelwahed (2019) noted that the simplest analysis methodology 

is static linear elastic analysis, and the most exhaustive procedure is nonlinear dynamic 

analysis, which yields more accurate results. Added to this, linear static and dynamic analysis 

cost the least time, compared to nonlinear static analysis; yet, linear elastic methods are 

notoriously inaccurate to describe the response of a damaged system. Instead, researchers have 

generally favoured the use of nonlinear static models and accounted for the dynamic effects 

that result from the sudden release of energy using a very conservative dynamic amplification 

factor applied on the total loads.  

Table 3-2 Comparison of progressive collapse procedure capabilities   

 

Moreover, Adam et al. (2018) pointed out an inadequacy of current design methods for 

progressive collapse resistance. For example, current design codes are based on the 

consideration of local instead of global failure. Global structural safety against the collapse of 

the entire system or a major part of it is a function of the safety of all the elements against local 
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failure. The second shortcoming of current design methods is that low-probability events and 

unforeseeable incidents are not taken into account. And most importantly, the probabilistic 

concept requires the specification of acceptable failure probabilities. Up to recent, the target 

failure probabilities of probabilistic design codes have been derived from previous 

deterministic design codes. Taking into account that a potential progressive collapse can entail 

huge losses, it would be difficult to reach consensus from the society on acceptable value for 

the probability of progressive collapse.  
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4 Proposed System Reliability Analysis using MCS and NNs   

In reliability assessment of structures, there are two levels of reliability analysis required to 

consider including (1) structural members reliability and (2) system reliability. The former is 

originated through the failure of a particular component that partial local reliability in a 

structural system might possibly cause loss of serviceability. However, it is argued by many 

researchers that structural system is often designed to possess a high level of redundancy 

making its collapse to occur most likely because of the combined effect of several different 

failure modes rather than only one particular member (Byun and Song, 2017). For this reason, 

it is important to consider both structural member and system reliability in reliability analysis 

of the structural failure.  

Almost all existing literature in the field of structural reliability are focused on the structural 

member reliability with little attention paid to the system reliability (Chun, Song and Paulino, 

2015; Okasha, 2016). Although recently, there have been some research devoted to system 

reliability, the accuracy of their assessment is not satisfactory, which is due to the fact that 

these models developed to assess reliability are often assumed to be in linear or weakly 

nonlinear performance functions (Chang and Kopsaftopoulos, 2015).  

For this reason, the objective of this paper is to propose an approach employing Monte Carlo 

Simulation and Neural Network to effectively calculate the system reliability of the structural 

system, which is considered as the first approach ever proposed to solve the problem of 

structural system reliability.  

In order to determine the structural system reliability, the proposed method contains the two 

main stage. In the first stage, the β-unzipping method (introduced by Thoft-Christensen and 

Murotsu, 1986) is employed to determine reliability analysis of structural systems at different 

level such as Level 0 (focusing on  single structural element), Level 1 (considering the 
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structural system comprises of   serial   structural members), Level 2 (on the basic of a system 

where the elements are parallel to each other- with critical pairs of failure elements), and Level 

3 (on the basic of a system where the elements are parallel systems each - with critical triples 

of failure elements). In the second stage, the Monte Carlo Simulation with Importance 

Sampling is first employed to general the sample population, which will be then used to train, 

test and predict the system reliability of the structure using machine learning approach based 

on Back-Propagation Neural Network Algorithm.  

The proposed method was validated against the estimation using conventional β-unzipping 

method. The results indicate the closed and yet more accurate reliability index and failure 

probability of the structural system in consideration of its system reliability analysis. This study 

is thus moving further by demonstrating the whole process of application of Monte Carlo 

Simulation with the Importance Sampling Techniques and Neural Network with Back-

Propagation Algorithm towards the case study of a CFTA girder. The promising results indicate 

the potential of employing the proposed method to solve the complex problem of the structural 

system reliability. 

In summary, the proposed method of applying Monte Carlo Simulation into the estimation of 

structural system reliability has the following stages: 

• Stage 1: Developing a computerised method for the system reliability analysis  

• Stage 2: Estimating the structural system reliability at different level – demonstrated in 

this study level 0, level 1 and level 3 

• Stage 3: Generating the sample population by Monte Carlo Simulation with the 

response surface of the reliability indexes obtained from Step 2. The probabilistic 

constrains check is also performed in this step. 



113 
 

• Stage 4: Training and testing the population formed in Step 3 using Neural Networks 

using Back-Forwards algorithm.  

• Stage 5: Integrating data collected from Step 4 in respect to the current codes and 

standards  

 

Figure 4-1 Research stage 

4.1 Modelling of Structure 

The modelling of structure to estimate its system reliability used in this study is based on a 

basic assumption that it is possible to accurately and sufficiently estimate the total reliability 

of the structural system through first dominating considerations of a finite number of failure 

modes and then combining such modes into a complex reliability systems. β-unzipping method 

is used as the primary method to identify the dominant (or significant) failure modes. Added 

to this, only truss and frame structures (two-dimensional – plane - as well as three-dimensional 

– space - structures) are considered, although the methods used can be extended to a broader 

class of structures.  

Stage 1
•Developing a 
computerised 
method 

Stage 2
•Structural 
system 
reliability at 
different level

Stage 3
•Generating 
the sample 
population 

Stage 4
•Training and 
testing the 
population 

Stage 5
•Integrati
ng data 
collected 
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Another assumption in modelling of structure system is that it contains a finite number of bars 

and beams those are connected to each other’s by a finite number of joints. Accordingly, the 

structural system reliability is generated through modelling the failure elements with their 

connections to the structural elements (bar, beam and joint). In this respect, Figure 4-2 

demonstrates the model for each of structural elements with its number of different failure 

modes including failures due to bending at its left end, midpoint and right end as well as failure 

in tension/compression caused by the axial force and failure due to large deflection at the 

midpoint.  

 

Figure 4-2 Modelling of element  

Each failure mode results in element failure, but systems failure will in general only occur 

when a number of simultaneous element failures occur. With above-mentioned assumptions, 

the structural system reliability is generated through modelling the entire system as a series 

system, where each of its elements are critical failure modes, in which, each of the failure 

modes is modelled as parallel system. 

The modelling used in this study for system reliability analysis is considered a certain 

uncertainty namely: 

• Physical uncertainty such as loads, material properties, and dimensions, which is 

always be associated with a certain variability. In this study, due to the unexpected 

explosion, only blast loading with its own variables is considered as physical 

uncertainty.   
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• Statistical uncertainty mostly reflects the sample data such as distribution parameters. 

In this study, the statistical uncertainty is considered when employing Monte Carlo 

Simulation to generate the sample population from analytical data achieved through 

Finite Element Model.  

• Model uncertainty due to difference between mathematical modelling of a structural 

system and the real structure as result of a number of simplifications and idealizations. 

In this study, the model uncertainty is not taken into account  

It is well acknowledged in this study that there are several failure modes obtained for each 

structural element and thus, each element of the structural system possibly has several falure 

elements. It is also well noted that the structural system reliability depends on the fact that its 

elements are either brittle or ductile element (or having some third characteristic). However, 

this study considers the behaviour of the structure system at the mechanics level and thus, in 

which the mechanical behaviour e.g. the constitutive relations is the most importance in 

estimation of the structural system reliability is the mechanical behaviour (Thoft-Christensen 

and Murotsu, 2012). Accordingly, this study assumes the two main type of failure elements: 

perfectly brittle failure element and perfectly ductile failure element as shown in Figure below.  

 

(a) Perfectly brittle failure element 
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(b) Perfectly ductile failure element 

 

Figure 4-3 Assumption on the failure of element  

This study modelled the real structure through two fundamental types of systems, namely series 

systems and parallel systems. The reliability of a structural system is estimated on the basic of 

a modelling by a series system where the elements in the series system are parallel systems as 

shown in Figure 4-4. 

 

 

 

Figure 4-4 Modelling of structural system 

In the first stage presented earlier for the proposed method - developing a computerised method 

for the system reliability analysis, there are four modules required to be developed in order to 

computerise the system reliability at different levels namely: the general intact structure 

module, damaged structure module, reliability analysis module, and system reliability analysis 

module. In the process of estimating the structural system reliability, these modules are actually 

linked to each other, in the sense that results obtained from one module will be exported to 

another module as its input data to be performed, as clearly demonstrated in Figure 4-5 



117 
 

 

Figure 4-5 Flowchart for a computerised system reliability analysis 

• General intact structure module: this module plays a central hub as illustrates from the 

Figure linking to other modules to receive and send data to/from other modules. As it 

is where the undamaged structure is defined, the general intact structure module 

includes all structural related information such as geometrical definitions, structural 

components and its variables (node, element, resistance, boundary condition) as well as 

their orientations, along with internal and external forces etc. The finite element 

analysis represented the structure is performed using the general intact structure module 

in purpose of finding the critical elements on the basic of providing unzipping criteria. 

Accordingly, the bounds to determine the system reliability is defined as well as the 

correlation matrix between the equivalent safety margins of the elements of the parallel-

series system is developed.  

• Damaged structure module: in a process of identifying the structural system reliability, 

there is a need to develop a modified structure by removing the most critical failure 

elements from the structure and replacing them with the equivalent fictious loads in 

consideration of its post-failure capacity. The damaged structure module is developed 

in order to serve this purpose to respect the damaged state of the structure. To model a 

certain structural damaged state, it is to insert the axial hinges as well as to replace the 
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failed element by its post-failure capacity. Accordingly, the axial hinge is modelled on 

the basic of the failure types and modes of the failure elements.  

• Reliability analysis module: this module is used to estimate the reliability on the basic 

of those data collected either from the damaged modules or the general intact structure 

modules. In this study, the FORM reliability analysis method is selected to perform the 

reliability analysis. It is noted that the reliability analysis module is also employed to 

estimate the system reliability analysis at a component level.    

• System reliability module: this module is employed in purpose of calculating the system 

reliability modelled as a series system that each of its elements is a parallel system. As 

each parallel system is formed through two (pair) or three (triple) critical elements, the 

data needed to collect from the general intact structure module for this system reliability 

module is included the reliability index values and the sensitivity coefficients. 

Accordingly, the results obtained from such module are expected as the reliabilities of 

each individual parallel system and its equivalent safety margin (equivalent sensitivity 

factors) 

4.2 Structural System Reliability 

Stage 1 in the proposed method of estimating structural system reliability analysis is to estimate 

the structural system reliability at different levels – demonstrated in this study level 0, level 1 

and level 3. To obtain this target, the following procedure is outlined with the application of 

those designed modules discussed in the previous section.  

• Step 1: Analysing the intact structures as well as calculating the reliability indices for 

each individual component (failure element) of the structures.  

• Step 2: Defining a set of critical elements through a consideration of those elements 

with their reliability indices within the lower and upper bounds. To be specific, it should 
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be within the interval [βmin, βmin + ∆β1] that ∆β1 stands for a value (arbitrarily selected) 

and βmin stands for the smallest reliability index amongst the group of the failure 

elements obtained through intact structures observed in earlier step. 

• Step 3: Removing the most critical failure elements from the structure and replacing 

them with the equivalent fictious loads in consideration of its post-failure capacity. It 

is noted that in case of brittle elements, there is no fictitious to be added into the 

modified structure.  

• Step 4: Performing a stochastic finite element analysis of the modified structure defined 

in the previous step and calculating the reliability indices for the structure at its new 

modified position.  

• Step 5: Repeating Step 2 in defining a second set of critical failure with the reliability 

values within the internal [βmin , βmin + ∆β2 ] that ∆β1 stands for a value (also arbitrarily 

selected) and βmin stands for the smallest reliability index amongst the group of the 

failure elements obtained through the modified structure.. 

• Step 6: Pairing the critical failure elements found in Step 5 with those obtained from 

Step 2 in purpose of forming a set of parallel systems 

• Step 7: Repeating the process from Step 3 to Step 6 for the rest of the critical failure 

elements determining from Step 2 in purpose of obtaining more critical pairs of failure 

elements  

• Step 8: Obtaining a calculation of the system probability for each of individual critical 

pairs of failure elements found earlier in Step 7 as well as estimating the corresponding 

safety margin 

• Step 9: Determining the correlations between different set towards the estimated safety 

margins of the critical pairs of failure elements (expected outcome is the correlation 

matrix of coefficients for the elements of the series system)  
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• Step 10: Calculating the system reliability if the series system with data found in Step 

8 and Step 9 to define the upper and lower bounds suggested by Ditlevsen 

 

Figure 4-6 Steps taken in Stage 1 

The following section will detail these 10 steps in estimating structural system reliability by 

the structure modelling at different levels.  
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4.2.1 Probability of Failure in Structural System 

This research attempt to analyse the reliability of the structure using the non-linear response 

surface method introduced by Thoft-Christensen and Murotsu (2012), which was found 

efficient to obtain the probability of failure as non-probabilistic reliability theory.  

To illustrate the systems reliability analysis considered a structural element or structural system 

with two potential failure modes defined by safety margins M1= f1(X1,X2) and M2= f2(X1,X2), 

where X1 and X2 are standardized basic variables. The corresponding failure surface and 

reliability indices β1  and β2  are shown in Figure below.  

Realizations (x1,x2) in the dotted area ωf will result in failure, and the probability of failure Pf 

is equal to:  

 

Equation 4-1 

where ϕX1,X2 is the bivariate normal density function for the random vector X = (X1,X2). Let β2 

< β1 , and assume that the reliability index β for the considered structural element or structural 

system is equal to the shortest distance from the origin 0 to the failure surface, i.e. β = β2. 

Estimating the probability of failure by the formula 

 

Equation 4-2 

will then correspond to integrating over the hatched area (the right of the tangent t2). Clearly 

the approximation will in many cases be very different from the exact Pf calculated. It is 
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therefore of great interest to find a better approximation of Pf , and then define a reliability 

index β by  

 

Equation 4-3 

 

Source: Thoft-Christensen and Murotsu (2012) 

Figure 4-7 Corresponding failure surface and reliability indices 

Let the random variable Ri be the strength of the series system in Figure 2-1, and let Ri be a 

random variable describing the strength of failure element i, where i = 1, ... , n. Further, let a 

load r on the series system result in a load effect ri in failure element i, i = 1, ... , n and let FR 

be the distribution function for the random variable R, i = 1, ... , n. Then the distribution 

function FR for the random variable R is given by  
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Equation 4-4 

where it is assumed that the strengths Ri, i = 1, ... , n, are independent random variables. 

Let the series system be loaded by a random load S with the density function fs. Then the 

probability of failure Pf for the series system is: 

 

Equation 4-5 

where the same notation as in previous equation has been used. A formal reliability index βs 

for the series system can now be calculated by: 

 

Equation 4-6 

If each elements of the parallel system defined in  Figure 2-2 is ductile then the strength R of 

the fibre bundle (the parallel system) is simply determined by  

 

Equation 4-7 

where the random variable Ri is the strength of fibre i, i = 1,2, ... , n. Note that when the random 

variables Ri are independent and normally distributed N(µi,σi) then R is also normally 

distributed N(µi,σi) with  
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Equation 4-8 

However, even when Ri, i =1,2, ... , n is non-normally distributed the distribution of R will 

according to the central limit theorem be close to normal, if n is not too small.  

In a real structure with low degree of redundancy, it is likely that brittle failure of one structure 

element will result in subsequent failure of other elements. The estimate of the reliability of a 

structural system should consist of the following steps: 

• Evaluating the probability of failure of each parallel system 

• Evaluating the correlations between the parallel systems by introducing an equivalent 

linear safety margin for each parallel system  

• Evaluating the probability of failure of the series system  

Probability of Failure Pf,i of Failure Element i   

Assume that a transformation ( )Z T X=  by which the basic variables X  = (X1,...,Xn) are 

transformed into independent standard normal variables Z  = (Zl ,...,Zn) exists so that  

( ) ( )( ) ( )( )( ) ( )1
, 0 0 0 ( ) 0f i i i i iP P M P f X P f T Z P h Z−= ≤ = ≤ = ≤ = ≤  

Equation 4-9 

where hi  is defined by (15). An approximation of Pf,i can then be obtained by linearization of  

hi in the design point  
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( ) ( ), ( ) 0 0T
f i i i iP P h Z P Zα β= ≤ ≈ + ≤  

Equation 4-10 

where iα  is the unit normal vector in the design point and iβ  the reliability index. The equation 

(16) can be written  

( ) ( ), 0 ( )T T
f i i i i i iP P Z P Zα β α β β≈ + ≤ = ≤ − = Φ −  

Equation 4-11 

  

where Φ  is the standard normal distribution function.  

 

Probability of Failure 
sfP  of a Series System  

Consider a series system with n elements. Then, with the same notation as above, the 

probability of failure of this series system can be estimated in the following way  
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Equation 4-12  

where the same transformation T  as in probability of failure element is used and where 

T
ij i jρ α α= . nΦ  is the n-dimensional standardized normal distribution function.  

Probability of Failure 
pfP  of a Parallel System  
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Consider a parallel system with n elements. Then, with the same notation as above, the 

probability of failure of this parallel system can be estimated in the following way  

{ } { } ( )( ){ }

{ } { } { }
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    

Equation 4-13  

where the same transformation T  as in probability of failure element is used and where 

T
ij i jρ α α= . 

4.2.2 System Reliability Analysis 

The β-unzipping method is employed in this the study as to help to overcome the high load of 

computational efforts by identifying only failure elements with high element probabilities of 

failure or so-called critical failure elements. The β-unzipping method is a method by which the 

reliability of structures can be estimated at a number of different levels. The aim has been to 

develop a method which is at the same time simple to use and reasonably accurate. The β-un-

zipping method is quite general in the sense that it can be used for two-dimensional and three-

dimensional framed and trussed structures, for structures with ductile or brittle elements and 

also in relation to a number of different failure mode definitions. 

This study follows what was suggested by Ditlevsen and Kounias for upper and lower bounds 

of that is so-called Ditlevsen bounds. At the level of random variables, the treatment of non-

Gaussianity is well known: thus, the classical Rosenblatt transformations to handle multi-

variate non-Gaussian random variables have been discussed in detail. Non-Gaussian random 

variable models for system parameters in the context of single degree of freedom (sdof) 
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dynamical systems or individual structural elements of built-up vibrating structure have been 

consider. Added to this, Ditlevsen has indicated the usefulness of Bayesian decision theory for 

treatment of mechanical model uncertainties. Ditlevsen pointed out that a best criterion is not 

sufficient as the basis for choosing distribution models for reliability analysis. Instead, it is 

argued that standardizations of distribution types need to be imposed on alternative designs if 

estimated reliabilities need to be compared. 

It is noted that in this study, to reduce the computational effort, the estimation of the failure 

probability for the series system with n elements is done by only taking into account some of 

the failure elements, those are with the smallest reliability indices. For a structure with n failure 

elements, it is considered as sufficient accuracy at system modelling level 1. At level 2, the 

system modelling is presented with a series system, where each of its elements is presented as 

a parallel system of two failure elements on its own. The estimation of the system reliability 

analysis at this level is done by removing the most critical elements, those with the reliability 

indices within the unzipping interval) from the structure one at a time and then replacing such 

elements with a set of fictitious loads represented their post-failure capacities (in this study 

considered as ductile or semi-ductile failure). 

Any system reliability analysis performed in this study is under a basic assumption of normal 

distribution for all the input basic random variables. Accordingly, to define load and resistance 

(yield moment, tension/compression strength), there is a need to take into account not only 

mean and standard deviation of all basic variables along with the correlation coefficients. 

Moreover, there is a must to also identify potential yield hinges and structural elements, where 

failures in tensions/compressions occurred as shown:  
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Figure 4-8 Failure elements and sign convention for axial forces and bending moments  

Added to this, all geometrical quantities are presumed as deterministic in consideration that 

any geometrical uncertainty is negligible comparing to variables of loading and strengths. For 

the purpose of validating the proposed approach, only static behaviour is performed as the 

structures are considered as a fixed point; adding with an assumption that all elasticity 

coefficients are deterministic. Later in this study, the dynamic behaviour of the structure 

(CFTA girder) is considered. It is noted that the β-unzipping method presented in this study is 

applied for only truss and frame structures but can possibly be employed for other types of 

structures with reasonable modifications. For the statistic behaviour of structural systems, 

either failures of pure tensions or compressions or failures or failures of pure bending are 

assumed for the failure of the structural elements. The β-unzipping method employed is also 

to take into account the combined failure criteria. It is noted that to reduce the computational 

work, it is importance to keep the number of these so-called failure elements (checking points) 

as low as possible but still guarantee the accuracy in performing the structural system analysis.  

Following Thoft-Christensen and Murotsu (1986), the structural system modelling of this study 

is presented at different levels – mainly level 0, level 1 and level 2. At system modelling level 

0, each element is considered individually that with n failure elements and the probability of 

each corresponding element is Pfi, i = 1, 2, …, n. The probability of failure at level 0 is: 

 

and the reliability of the structural system at level 0 is: 

R = 1 – Pfs 
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At level zero the system reliability is assumed to be equal to the reliability of a component with 

the lowest reliability index. This means that only a component-level reliability analysis of the 

intact structure is required.  

The structural system reliability analysis using β-unzipping method starts by determining the 

coefficient of influence of each individual relevant force and moment. Assuming that the 

structural forces are the concentrated loads presented by Pj, j = 1, 2, ... , k and a stochastic 

variables described the load-effect (force or moment) of each individual element is presented 

by Pi, i = 1, 2, ... , k.  

 

Equation 4-14 

where the coefficients of influence aij are determined by a linear-elastic analysis, which in this 

study is performed using the finite element method. For failure element i, R and Ri stand for 

stochastic variables described the (yield) strength capacity in tension (used in this study 

indicating a tensile force or a positive moment) and compression (used in this study indicating 

a compressive force or a negative moment). In general, Ri
+ = Ri

-. With Mj stands for the safety 

margin of failure element i, it is calculated as:  

 

Equation 4-15 

Accordingly, the safety margin in connection with failures of tensions or compressions 

depending on what is most likely. In general, reliability indices βi+ and βi- are in 

correspondence to the safety margin Mi+ = Ri+ - Sj as well as the calculation of Mi- = Ri- + Sj 
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is depended on the smallest one chosen. Alternative way is when performing the reliability 

analysis, it is to include both safety margins Mi+ and Mi- but then double the number of safety 

margins. By doing so, the failure criterion for failure element i is then: 

0 ≥ Mi 

and the corresponding reliability index βi can be calculated as:  

 

Equation 4-16 

The corresponding safety margin Mi is given by: 

 

Equation 4-17 

In this case the failure criterion is 0 ≥ Mi and 

 

Equation 4-18 

Where µMi is the mean value of Mi and σ Mi is the standard deviation of Mi 

 

Equation 4-19 

The most primitive estimate of the reliability index βs for the structural system is then: 
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Equation 4-20 

in which, n is the number of failure elements. βs is not actually a system reliability estimation, 

though, rather it is the estimation of the reliability of the most heavily loaded failure element 

and therefore not a system reliability estimation. However, considering the systematically 

reasons expedient of the system modelling at level 0, it is called as the system reliability at 

level 0.  

At system modelling level 1, a structure is modelled by n failure elements. The systems 

reliability is estimated as the reliability of a series system with n elements – the n failure 

elements. With Fi, i = 1, 2, ... , n stands for the events, where the failure occurrences take place 

by failure of failure element i. Then 

 

Equation 4-21 

Practically, Fi and Fj, i ≠ j, often in correlation because of the fact that safety margins Mi and 

Mj, i ≠ j is correlated. The covariance Cov[Mi, Mj] between the safety margins Mi and Mj, I ≠ 

j, can be calculated as following: 

 

Equation 4-22 

in which, the safety margins are assumed by the following: 
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Equation 4-23 

This study follows what was suggested by Ditlevsen and Kounias for upper and lower bounds 

of Pf that is so-called Ditlevsen bounds. if P(Fi), i = 1, 2, ... , n stands for the probability of 

event Fi and P(Fi n Fj) stands for the probability of the intersection of Fi and Fj, i ≠ j. Then the 

Ditlevsen bounds are presented by following:  

 

Equation 4-24 

In order to calculate the Ditlevsen bounds, it is required an estimation of the probability of 

intersection of Fi and Fj, i.e, in which numerical integration is often been used to calculate 

P(Fi∩Fj).  

It is noted that to achieve a very good approximations for Pf, the safety margins Mi, i = 1, … , 

n, are seen as an almost perfect correlation (in other words, the correlation coefficient ρjj 

between any pair of safety margins is nearly one), otherwise, the very small correlation between 

any pair of safety margins is considered (ρjj ~ 0). In the former, (ρjj ~ 1), the probability takes 

the lower bound  
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Equation 4-25 

and in the latter case (σjj ~ 0), the probability takes the upper bound 

 

Equation 4-26 

For normally distributed and linear safety margins 

 

Equation 4-27 

Where ϕn and φn are the n-dimensional density and distribution function for n standardized 

normal variables . When all correlation coefficients are equal ρjj = ρ > 0 then 

 

Equation 4-28 

When the correlation coefficients ρjj are unequal a simple approximation for Pf can be obtained 

from this equation by putting: 

 

Equation 4-29 
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Let the structure be modelled by n failure elements and let the number of critical failure 

elements at level 1 be n1. Assuming element e is the critical failure element as having the lowest 

reliability index β amongst the group of critical failure elements. Accordingly, the failure 

occurrence is assumed for critical failure element e. A modification of the structure is done 

accordingly by a removal of the corresponding failure element as well as a pair of so-called 

fictitious loads Fe (normal forces or moments) are added to the modified structure. Figure 4-9 

demonstrates the structure after modification, in which the left the event with failure in 

compression is presented on the left, while the failure in bending is presented on the right.  

 

Figure 4-9 Fictitious loads 

If the removed failure element is brittle, then no fictitious loads are added. However, if the 

removed failure element e is ductile then the fictitious load Fe is a stochastic load given by 

 

Equation 4-30 

where Re is the load-carrying capacity of failure element e and where 0 < γe < 1.  

The modified structure with the loads P1... Pk and the fictitious load Fe (normal force or 

moment) is then reanalysed and influence coefficients aij with respect to P1, …, Pk and aie with 

respect to Fe are calculated. The load effect (force or moment) in the remaining failure elements 
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is then described by a stochastic variable. The load effect in failure element i is called Sie (load 

effect in failure element i given failure in failure element e) and  

 

Equation 4-31 

 

Equation 4-32 

where Ri+ and Ri- are the stochastic variables describing the (yield) strength capacity intension 

for failure element i. In the following Mie will be approximated by either Ri+ - Sje and Ri- + Sje 

depending on the corresponding reliability indices. The reliability index for failure element I, 

given failure in failure element e, is  

    Equation 4-33 

By doing so, new reliability indices are obtained for all failure elements (with exception for 

those elements with assumed failures) and βmin stands for the smallest β-value. The failure 

elements with β-values in the interval [βmin, βmin + ∆β2], where ∆β2 stands for a prescribed 

positive number. A failure tree is formed by combining ∆β2 with failure element e and a number 

of parallel systems. Figure 4-10 illustrates the critical pairs of failure elements on the basic of 

the critical failure element, in the event that r, s, t are selected as three failure elements (the 

parallel system), which in turn, are included in the series system as each of its own elements.  
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Figure 4-10 Identification of critical pairs of failure elements  

After that, there is a need in evaluating the failure probability (as well as its corresponding 

generalised reliability index) for each critical pair of failure elements (the parallel system 

demonstrated in Figure 4-10). Taking into consideration the failure elements e and r amongst 

the parallel systems. In the process of estimating the reliability analysis at level 1, the safety 

margin Me for failure element e is obtained as well as the safety margin Mre for failure element 

r has formed through Equation 4-32. From these safety margins the reliability indices β1 = βe 

and β2 = βre and the correlation coefficient ρ = ρr, re can easily be calculated in accordance to 

Equation 4-22. Accordingly, the probability of failure for the parallel system is presented as 

following: 

 

Equation 4-34 

Once again, Ditlevsen bounds are employed in estimating of Φ2. It is noted that that for ρ > 0  
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Equation 4-35 

where 

 

Equation 4-36 

Accordingly, the average of the lower and upper values in Equation 4-35 is employed in 

estimating of Pf  through the following calculation 

 

Equation 4-37 

The bounds Equation 4-35 are considered as relatively easy to be employed. In the event of the 

too wide gap between the lower and upper bounds, there is a need to consider another method 

that provides a more accurate evaluation of Pf.  

It is noted that at system modelling level 1 presented earlier, the initiation of the β-unzipping 

is done through an assumption of failure with respect to the critical failure element e (that has 

the lowest β-value amongst the group of critical failure elements). Resulting from such 

reanalysis, a number of critical pairs of failure elements are found for the structural system as 

shown in Figure 4-10.  

The same procedure is then in tum used for all critical failure elements and further critical pairs 

of failure elements are identified. In this way the total series system used in the reliability 

analysis at level 2 is determined. The corresponding failure tree is shown in Figure 4-11.  
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Figure 4-11 Failure tree at level 2 

The next step is then to estimate the probability of failure for each critical pair of failure 

elements and also to determine a safety margin for each critical pair of failure elements. When 

this is done generalized reliability indices for all parallel systems and correlation coefficients 

between any pair of parallel systems are calculated. Finally, the probability of failure Pf for the 

series system is estimated.  

The so-called equivalent linear safety margin introduced by Gollwitzer and Rackwitz is 

considered for approximating safety margins for the parallel systems. In general case with m 

correlated basic variables (load and strength variables) Xi, i = 1, ... , m, the performance in 

determinising equivalent linear safety margins is demonstrated as followed, in which, Mi, i = 

1, ... , k stands for the linear safety margin for failure element i can be calculated as: 

 

Equation 4-38 

With a parallel system of k elements, βi stands for the corresponding reliability indices and Pf 

stands for the probability of failure of a parallel system presented in Figure 4-12. Pf  is estimated 

as following: 
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Equation 4-39 

 

Figure 4-12 Parallel system with k elements 

in which, β = (β1, … , βK) and Y = (Y1 , ... , Ym ) stands for a vector of uncorrelated standard 

normal variables. ρ stands for a correlation matrix, in which, the element ρij is the correlation 

coefficient between the safety margins Mi and Mj  

 

Equation 4-40 

In this equation, Cgh stands for an element in the covariance matrix CX for the basic variables 

X; while the k-dimensional standard normal distribution function is presented by φk. With X 

stands for the correlated normally distributed basic variables and Y stands for the uncorrelated 

normally distributed variables. The transformation from X  Y is estimated as following:  
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Equation 4-41 

 

Equation 4-42 

 

Equation 4-43 

Increasing Y by a (small) vector e is the main basic idea in determining the equivalent safety 

margin. Accordingly, a correspondingly generalized reliability index e(e) dependent on βe(e) 

is possibly calculated as following:  

  

Equation 4-44 

With Me stands for the equivalent safety margin, a vector αe and a number βe will define Me in 

uncorrelated standard normally distributed variables Y by increasing e results in the same βe(e). 

For the equivalent safety margin - Me one gets corresponding to the previous equation. 

 

Equation 4-45 

In such way, the vector αe as well as the reliability index βe for the equivalent safety margin 

Me is calculated as following:  
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Equation 4-46 

 

Equation 4-47 

Figure 4-13 illustrates the case with m = 3, the y coordinate system αe and βe that forms a 

hyperplane, what is so-called the equivalent failure plane for the parallel system Figure 4-12. 

In approximating correlation coefficients between parallel systems, the corresponding 

equivalent safety margin Me is employed as an approximation for calculating. Me is therefore 

calculated through the vector αe and the reliability index βe as following:  

 

Equation 4-48 

 

Equation 4-49 

 

Equation 4-50 
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Figure 4-13 Equivalent failure plane  

Taking into consideration the fully correlation occurred amongst some of the variables X = 

(Xl,... , Xn), there is a reduction in the dimension of X. By doing so, there is negligible of any 

remaining variables, those are are fully correlated. Accordingly, an elimination of in d 

corresponding elements are removed and their variables are then eliminated.  

With system modelling at level 2, the estimation of the structural system reliability is obtained 

on the basic of a series system, in which, each of its elements is parallel system with 2 failure 

elements – what is so-called critical pairs of failure elements. Similarly, with system modelling 

at level 3, the reliability of a structural system is estimated on the basic of so-called critical 

triple of failure elements – a set of three failure elements. The β-unzipping method is also used 

to identify the critical triples of failure elements that will form a parallel system with three 

failure element and then each of this triple will become a member of a series system. 

Eventually, the structural system reliability is estimated at level 3 through forming the parallel 

and series systems.  

For a structure with n failure elements, n1 critical failure element at level 1 and n2 critical pair 

of failure elements at level 2, it is assumed that the lowest reliability index βe,m of all critical 

pairs of failure elements is (e, m) - the critical pair of failure elements and the failure elements 

of (e, m) is where the failure taken place. Accordingly, the modification of the structure system 
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is to remove the corresponding failure elements (e, m) and to add each of them a pair of so-

called fictitious loads Fe and Fm (normal forces or moments). The loads P1, ... , Pk and the 

fictitious loads Fe and Fm will then formed the modified structure system and being reanalysed. 

The influence coefficients with respect to P1, .. , Pk and Fe and Fm are then obtained. With Si,em  

stands for load effect in failure element i given failure in failure elements e and m, the load 

effect (either forces or moments) in each of the remaining failure elements is presented through 

a stochastic variable Si,em is as following:  

 

Equation 4-51 

The corresponding safety margin is then 

 

Equation 4-52 

where Ri+ and Ri- are the stochastic variables describing the (yield) strength capacity in tension 

and compression for failure element i. In the following Mi,em will be approximated by either 

Ri+ - Sje or Ri- + Sje depending on the corresponding reliability indices. The reliability index 

for failure element i, given failure in failure elements e and m, is then given by 

 

Equation 4-53 

In this way new reliability indices are calculated for all failure elements (except e and m) and 

the smallest β-value is called βmin. These failure elements with β-values in the interval [βmin, 
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βmin + ∆β3] where ∆β3 is a prescribed positive number, are then in tum combined with failure 

elements e and m to form part of a failure tree and a number of parallel systems. Figure 4-14 

illustrates the event, in which three selected failure elements r, s, t. This figure clearly shows 

the parallel systems with three failure elements identified by the above-mentioned procedure 

 

Figure 4-14 Identify of critical triples of failure 

The final step in estimating the system reliability is evaluating the failure probability (and the 

corresponding generalized reliability index) for each of the critical triple of failure elements 

(the parallel system in Figure 4-14). In consideration of the parallel system with failure 

elements e, m, and r, the determination of the safety margin Me for failure element e is done by 

the system modelling at level 1 or the reliability analysis at level 1, while the determination of 

the safety margin Mme for the failure element m is done by the system modelling at level 2 or 

the reliability analysis at level 2. With Mr,me stands for the safety margin for safety element r, 

it can be calculated. Accordingly, their corresponding reliability indices can be obtained as β1 

= βe , β2 = βme and β3 = βr,me. Finally, the correlation matrix ρ can be easily estimated and the 

probability of failure for the parallel system is then determined as following:  
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Equation 4-54 

An estimate of Φ3 can be calculated by e.g. the Ditlevsen bounds. If the gap between the lower 

and upper bounds is too wide a more accurate method to evaluate Pf should be used.  

4.3 Design of Learning Function 

4.3.1 Importance Sampling Algorithm  

Based on a numerical optimization procedure to locate the most probable failure point, the 

distance from the origin to the probable failure point in the standard Normal space is used to 

measure the safety margin of a performance function. The utility of the reliability index to 

quantify the structural failure probability is sufficiently mature and widely accepted. Yet, the 

numerical accuracy depends largely on the truncation order of the investigated performance 

function while searching for the probable failure point result. The line sampling method relies 

on a direction from the origin to the probable failure point for an estimation result of the 

structural failure probability. A sample moving along the direction will cross the limit-state 

surface, and the numerical interpolation method was used to determine the reliability index 

result. Besides, an assembly of several simulation results allows capturing the nonlinearity of 

the performance function near the probable failure point. To avoid numerical interpolations 

embedded in the line sampling method, the importance sampling and subset simulation 

schemes can be alternatively used. 

For employing machine learning in the process of analysing the system reliability employed in 

this study, the CE-based IS algorithm is presented as following in consideration of a numerical 

integration:  
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Equation 4-55 

in which, H(x) is a general function of random variables x, and f(x; u) is the joint probability 

density function (PDF) of x with parameters u. For structural reliability analysis, in which the 

failure event of concern is usually indicated by the negative sign of the limit-state function g(x), 

one can compute the probability of the failure event using Equation 4-55 by setting H(x) to be 

the binary indicator function I{g(x)≤0}, which gives “1” if the limit-state function g(x) is 

negative or zero, and “0” otherwise. To compute a statistical moment using Equation 4-55, one 

can set H(x) to be the corresponding polynomial function. 

When the integration in Equation 4-55 is performed by a sampling approach, one can improve 

the efficiency by introducing an alternative sampling density, i.e. 

 

Equation 4-56 

where h(x; v) is an alternative sampling density with parameters v, Ev[·] is the mathematical 

expectation with respect to the density h(x; v), and xi is the ith sample generated from h(x; v), 

i = 1, …, N. The performance of this “importance sampling” (IS) approach is optimal when the 

variance of the estimate in Equation 4-56 is minimized. The “best” IS density minimizing the 

variance is derived as Rubinstein and Kroese (2016) 
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Equation 4-57 

However, one cannot use the best IS density in Equation 4-57 because the denominator is 

practically equivalent to computing It in Equation 4-55 and exactly the same if H(x) is non-

negative as in structural reliability problems. Nevertheless, one can still improve the efficiency 

by choosing a near-optimal IS density whose shape is similar to that of p*(x) in Equation 4-57. 

One can find a near-optimal IS density by minimizing a measure of the difference between 

p*(x) and h(x;v), such as the Kullback–Leibler CE 

 

Equation 4-58 

Since the IS density parameter v appears in the second term only, one can find a near-optimal 

IS density h(x; v) by maximizing the second integral in Equation 4-58. For structural reliability 

analysis, it is noted that H(x) is non-negative, and thus from Equation 4-57, p*(x) is 

proportional to H(x)f(x; u). Substituting this to Equation 4-58, one finds 

 

 

Equation 4-59 

where Eu[·] denotes the mathematical expectation with respect to the original joint PDF f(x; u). 

For purposes of evaluating the expectation in Equation 4-59 more efficiently, an alternative 

sampling density h(x; w) is introduced, i.e. 
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Equation 4-60 

where Ew[·] denotes the mathematical expectation with respect to the density function h(x; w), 

and W(x; u, w) is the likelihood ratio, f(x; u)/h(x; w). By estimating the expectation in Equation 

4-60 by IS with h(x; w), one can obtain a near-optimal density approximately by 

 

Equation 4-61 

where xi is the ith sample generated using the density h(x; w), i = 1, …, N. The IS density 

h(x; w) introduced to estimate the expectation in Equation 4-61 employs different parameters 

w to decouple the parameters of the optimization process, i.e. v from those used for the 

sampling. In most applications, the function in Equation 4-61 is concave and differentiable 

with respect to v (Rubinstein and Kroese, 2013); therefore, the values of the parameters v that 

makes h(x; v) a near-optimal density can be obtained by setting the gradient of Equation 4-61 

to be zero, i.e. 

 

Equation 4-62 

It is noted that if a member of the exponential family of distributions is used for h(x; v), the 

applied logarithm ensures that each parameter has an explicit updating rule. Rubinstein and 
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Kroese (2013) derived such explicit updating rules for selected distribution models so that one 

can find a near-optimal density function by a few rounds of pre-sampling, and then perform 

the final IS until the target level of convergence is achieved. For example, Figure 4-15 shows 

the limit-state surface, the two design points and the contour plots of a function proportional to 

the best IS density. Figure 4-16 shows the limit-state surface, and contour plots of a function 

proportional to the best IS density  

 

 

Source: Rubinstein and Kroese (2013) 

Figure 4-15 Limit-state surface, design points and contours of a function proportional to 

the best importance sampling density for parabolic limit-state function with two design 

points. 
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Source: Rubinstein and Kroese (2013) 

Figure 4-16 Limit-state surface and contours of a function proportional to the best 

importance sampling density for parabolic limit-state function with many failure points 

with similar likelihoods. 

4.3.2 Interval Monte Carlo Simulation  

Uncertainties in parameter estimates are modeled by interval bounds constructed from 

confidence intervals. Reliability analysis needs to consider families of distributions whose 

parameters are within the intervals. Consequently, the probability of failure will vary in an 

interval itself. To estimate the interval failure probability, an interval Monte Carlo method has 

been developed which combines simulation process with the interval analysis. 

This study adopts the Interval Monte Carlo Simulation to represent the unknown parameters 

presented by Zhang et al. (2010). In Monte Carlo simulation illustrated by Melchers and Beck 

(2018), the probability of failure is approximated as 

 

Equation 4-63 
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where N is the total number of simulations conducted xj represents the jth randomly simulated 

vector of basic variables, and I[ ] is the indicator function, having the value 1 if [ ] is ‘true’ and 

the value 0 if [ ] is ‘false’. 

Let θ represent the unknown parameters. Let Φ denote the confidence intervals, and θ∈Φ is a 

generic (arbitrary) element. The basic Monte Carlo simulation formula can be extended to the 

case when is a probability box with fx(x). When θ varies in intervals, the randomly simulated 

basic variables xj vary in intervals accordingly. The limit state function G(xj) becomes a 

function of θ as well, i.e., G(xj,θ) . If the minimum and the maximum values of G(xj,θ) can be 

determined 

 

Equation 4-64 

Then  

 

Equation 4-65 

Applying Equation 4-64 and Equation 4-65  

 

Equation 4-66 

Thus, Equation 4-66 provides an interval estimate for pf  
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Equation 4-67 

The first step in the implementation of interval Monte Carlo simulation is the generation of 

intervals in accordance with the prescribed probability boxes. The inverse transform method is 

often used to generate random numbers. Consider a random variable X with CDF F(X). If (u1, 

u2, …, un) is a set of values from the standard uniform variate, then the set of values  

 

Equation 4-68 

will have the desired CDF F(X). The inverse transform method can be extended to perform 

random sampling from a probability box. Suppose that an imprecise CDF F(X) is bounded as 

shown in Figure 4-16. For each ui in Equation 4-68, two random numbers are generated as 

 

Equation 4-69 

such a pair of xi form an interval, which contains all possible simulated numbers from the 

ensemble of distributions for a particular ui  
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Figure 4-17 Generation of random number from distribution with interval parameters  

The computational effort of the interval Monte Carlo simulation is contingent on the efficiency 

of computing the range (max. and min.) of structural responses through FE analyses when the 

simulated basic variables vary in intervals. This task can be performed by using the interval 

FEM. In this study, the interval FE analysis is formulated as an interval analysis problem. The 

interval analysis and interval FE formulation is briefly introduced as following.  

Interval analysis concerns the numerical computations involving interval numbers. The four 

elementary operations of real arithmetic, namely addition (+), subtraction (-), multiplication 

(x) and division (:) can be extended to intervals. Operations O∈{+,−,x,:} over interval numbers 

x and y are defined by the general rule presented by Neumaier and Neumaier (1990); Moore et 

al. (2009).  

 

Equation 4-70 

in which x and y denote generic elements x and y.  
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For a real-valued function f(x1, x2, …, xn), the interval extension of f( ) is obtained by replacing 

each real variable xi by an interval variable xi and each real operation by its corresponding 

interval arithmetic operation. From the fundamental property of inclusion isotonicity (Moore 

et al., 2009), the range of the function f(x1, x2, …, xn) can be rigorously bounded by its interval 

extension function  

 

Equation 4-71 

Equation 4-71 indicates that f(x1, x2, …, xn) contains the range of f(x) 

The system equation in the interval FEM takes the following form  

 

Equation 4-72 

where K is the interval stiffness matrix, u is the interval displacement vector, p is the interval 

load vector, and Q is the deterministic penalty matrix. Equation 4-72 can be transformed into 

a fixed point equation  

 

Equation 4-73 

in which R is a nonsingular preconditioning matrix, and u0 is an approximate deterministic 

solution. It can be verified that 

 

Equation 4-74 
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Based on Equation 4-73, interval fixed point iteration is constructed: 

 

 

 

Equation 4-75 

The iteration converges when  

 

 

Equation 4-76 

This guarantees to contain the exact solution set of Equation 4-72. The original interval fixed 

point iteration implicitly assumes that the coefficients of K vary independently between their 

bounds. This assumption is not valid for the system equations that arise in the interval FEM. 

Special formulation has to be developed to remove coefficient-dependence in the algorithm. 

By using the EBE technique, it is possible to decompose the interval stiffness matrix K into two 

parts  

 

Equation 4-77 
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in which S is a deterministic matrix and D is an interval diagonal matrix whose diagonal entries 

are the interval variables associated with each element (e.g., interval modulus of elasticity). 

The term Z in Equation 4-76 can then be reintroduced as  

 

Equation 4-78 

 

It must be noted that in Equation 4-78 Du0 is introduced as Mδ in which M is a deterministic 

matrix and d is an interval vector. The components of δ are the diagonal entries of D with the 

difference that every interval variable occurs only once in δ. This treatment eliminates the 

coefficient-dependence in Z, which is critical for obtaining a tight bound.  

The interval fixed point iteration converges if and only if  

 

Equation 4-79 

That is the spectral radius of the absolute value of the iterative matrix C. To achieve a small 

result obtained from Equation 4-79. The choice 

 

Equation 4-80 

is made such that  
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Equation 4-81 

Numerical tests have shown that fast convergence (within 10 iterations) generally can be 

achieved by using the above modified iterative algorithm.  

4.3.3 Mean-Interactive Neural Network  

Convergence characteristics change if population size changed or an adaptive mutation method 

was used, but no comparison has been made as to whether their method provides any faster 

convergence than back propagation or its variants. Training using genetic algorithms was 

substantially faster than back propagation. However, lack of description on the specific back 

propagation method and its parameters, and inaccessibility to their task domain. To improve 

the convergence in the process of training and testing Neural Network, a mean-interactive 

algorithm is used in this study.  

This study employs the Mean-Interactive Neural Network (MINN) proposed by Vu et al. 

(2010). The general procedure of a new iterative algorithm approaches for parameter model 

updating loop based on mean-iterative network is shown in Figure 4-18.  
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Figure 4-18 Flow chart of mean-iterative neural network  

Mean-iterative neural network strategy is divided into two stages: First, the initial defect profile 

from numerical analysis is trained by neural network in order to identify “origin” structural 

parameters; the trained neural networks are then used in an iterative algorithm to estimate the 

parameters given the measurement signals. Mathematically, each of the neural networks 

approximates the function mapping the input to the output, and as long as the test data is similar 

to the training data, the network can interpolate between the training set points to obtain a 

reasonable prediction. Desired parameter estimation can be found by iteratively minimizing an 

objective function. It is marked that, for the presented method, after each loop getting the 

estimated values; the mean of “origin” structural parameters is calculated and the given 

estimated values to be a new training data for the next loop. By doing so, the chosen parameters 

will jump up and down, but not progressively step up in the course of the iterations, as regular 
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neural network. As a consequence, the identified values for model updating are kept similar 

during iteration. Better approximation in the solution of the equations is achieved, and therefore 

the convergence is speeded up. In process, the mean is required after each loop called mean-

iterative and thus, the new strategy is named mean-iterative neural network. 

In this study Multilayer Perceptron Networks with its simplest processing unit represented by 

the single neuron as indicated by Figure 4-19 is used.  

 

Figure 4-19 Single neuron unit processor  

The neuron is the most basic unit of a neural network and, as a processing unit, will receive 

inputs (xi) via axons connections. Then, some transformation will be processed to the inputs in 

order to obtain a desired output. This transformation is carried out in two stages. First, a linear 

combination of all the inputs to obtain a scalar, called NET, is usually used. The coefficients 

of the linear transformation are called “weights” and they are denoted by wi. In a second stage, 

a linear or non-linear transformation is applied to the scalar NET. The linear or non-linear 

function is called “activation function” and is denoted by f. As in a natural neuron behaviour, 

the activation function will decide when, how and whether the neuron output (i) will take place.  

As indicated in Figure 6-5, there is an input with constant value (x0=+1) and its respective 

weight (w0), which is related to a parameter in the activation function called “threshold”. For 

convenience, the threshold is considered as an unknown in the equation, which gives the 
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corresponding output. The threshold defines a shift of the original activation function. This 

process can be written as: 

 

Equation 4-82 

 

There are several kinds of activation functions used for the transformation such as linear 

[f(x)=x], signal [f(x)=SIGN(x)], sigmoid [f(x)=1/(1+e–x)], unit step function [f(x)=H(x–x0)], 

hyperbolic tangent [f(x)=tanh(x)], etc. This single processing units can connect each other to 

generate the so-called Neural Network. The ways the neurons are connected and the ways they 

operate are very different originating a great variety of neural networks. 

The employed Multilayer Perceptron Network architecture consists on a layered network fully 

connected, i.e., all neurons belonging to a layer are, each one, connected to the previous and 

the next layer. The number of input vector followed by the number of neurons on each layer 

indicates such architecture (e.g. 1:12:1 represents a Neural Network with one input vector 

followed by one layer with 12 neurons and an output layer with one neuron). Obviously, the 

input layer and the output layer only “put” or “receive” data from the network. The number of 

hidden layers and the number of hidden units in each layer needs to be determined. It depends 

on the complexity of the system being modelled. For a more complex system, a larger number 

of hidden units are needed. In this study, the optimal number of hidden units is determined by 

trial and error. 

In the training process of neural networks, for an input pattern xpi (where index p means 

“pattern” and index i means an input neuron), the weights (wpi) adjustment will take place in 
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the links of the neural network in order to get a desired output or, in the special case of this 

work, the value of the limit state function for this specific sample, ypo (where index p means 

“pattern”, and o means an output neuron). After this first adjustment is achieved, the network 

will pick up another pair of xpi and ypo, will again adjust weights for this new pair. In a similar 

way, the process will go on till all the input–output pairs are considered. Finally, the network 

will have a single set of stabilized weights satisfying all the input-output pairs. 
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5 Validation and Application 

This application of the proposed method-based Monte Carlo Simulation and Neural Networks 

to estimate the structural system reliability index is used in order to validate the results against 

the study of Hashemolhosseini (2013). The structure is shown in Figure 5-1 with the dimension 

of the horizontal spans and its height; as well as two applied forces F1 (290kN) and F2 (232kN), 

respectively. The properties of each sections (steel hollow section) of the ten-bar truss structure 

is shown in Table 5-1. Considering the fact that only one load effect variable is considered, it 

is assumed that the internal load of the truss component can be either pure tension or pure 

compression. It is also noted that in this study, the structure is considered as having two degrees 

of redundancy or in other words, statically indeterminate to degree of 2. Accordingly, this 

section will present the resistance and load effect in details as following.  

 

Figure 5-1 10-bar truss structure 

Table 5-1 Section properties  
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Table 5-2 Internal force and resistance of members 

 

Table 5-3 Limit state function for structural component 

 

5.1 Reliability Assessment using β-unzipping Method 

The member forces together with their resistance are given at Table 5-2 . It is noted that the 

following estimation is based on an assumption that no failure is occurred at the truss 

connection as well as no failure mode of the fracture of the net section is considered for tension 

members. In this context, the limit state function represented the resistance elements illustrates 
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that a factor χ (that further reducing the capacity of the compression member in purpose of 

including the buckling effect) is used to differ the tension member from compression member. 

Table 5-3 demonstrates the limited state functions employed for each element namely tension 

element and compression element. The structural reliability analysis of the truss structure at 

component level is estimated using the Finite Difference-Based FORM reliability analysis with 

the result is shown as following:  

Table 5-4 Reliability indices and probability of failure for each component  

 

As presented earlier in Chapter 4, the proposed research approach assumes a normal 

distribution for all of its input basic variables in the process of estimating the system reliability.  

At level zero, the system modelling does not take into account the failure interaction between 

the failures of the different elements to estimate the system reliability. In other words, each 

element of the entire structural system is individually considered and the lowest reliability 

amongst to those of all components is considered as the system reliability at this level. 

Accordingly, the result needed from the intact structure is only a component-level reliability 

analysis of the intact structure is required. In regard to Table 5-4, the reliability of the system 

at level zero is:  

β0= min βi = β7 = 3.0797 
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(a) Failure of Element 7 and is replaced by R7 

 

(b) Failure of Element 2 and is replaced by R2 

 

© Failure of Element 10 and is replaced by R10 

Figure 5-2 Scenario 1: Failure of each critical element  

However, the system modelling at level 1 obtains the correlation between the probabilities of 

failures of any failure elements. The system is modelled with series system where its elements 
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are failure elements. Similar to the probability of failure of the structural system at level 0, at 

level 1, this probability is also estimated on the basic of the probability of failure of each failure 

of the individual element; however, it also takes into account the correlation between the safety 

margins of the failure elements. The critical element is defined by those components with the 

reliability values in the interval [βmin, βmin + ∆β], that is used in forming a series system, in 

which, the failure of the structure system is caused by the failure of any of the components – a 

series system. The first method of Ditlevsen Bounds is used in this study in purpose of 

calculating the system reliability. The lower bound suggested by Ditlevsen bound is in 

correspondence with the event in which the full correlations are assumed for all the elements; 

whereas, the upper bound suggests an event in which the full uncorrelations are assumed for 

all the elements. The following bounds are defined by Ditlevsen for the structural system:   

0.001036 < Pf < 0.003969  

∆β = 1 is assumed for this study, which defines the lower bound of 3.0797 and the upper bound 

of 4.0797. Accordingly, the critical elements are obtained as member 1, 2, 5, 6, 7, and 10 as its 

component reliability index falls between the internal [3.0797, 4.0797]. These elements will be 

further considered to form a series system. Followed the β-unzipping method, each of these 

elements will be removed from the ten-bar truss structure and is replaced by fictitious loads in 

that it is assumed as ductile failure. The whole scenario is shown in Figure 5-2. Following the 

procedure shown in Section 4.1.2.2 System Reliability Analysis, the reliability indices of each 

elements in the different scenarios of failure of critical elements is presented in Table 5-5. 

Table 5-5 Member reliability indices – failure of critical element 
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©  

(a) Failure of element 7 

 

(b) Failure of element 2 

 

(c) Failure of element 10 

If comparison needed, the correlation matrix for the series system is calculated with the 

requirement of data obtained from the sensitivities analysis (finding the sensitivity factor for 

each random variable in each individual component’s safety margin – limit state function). In 

consideration the fact that all random variables are normal, the FOSM reliability method is 
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used to perform such computations. With respect to the limit state functions presented in Table 

5-3 (the limit state function represented the resistance elements illustrates that a factor χ), the 

following equations are used to calculated the sensitivity factor and the reliability for each 

element as well as its corresponding resistance and load effect.  

    Equation 5-1 

Once the value of the sensitivity factors is calculated for each limit state functions, it is possible 

to compute the correlation matrix using the following equation:  

   Equation 5-2 

where is the vector of directional cosines (sensitivity factors) for each 

safety margin in the system. Using the aforementioned equation, the sensitivity factors were 

calculated.  

At the next stage – system reliability index at level three, the most critical pairs are identified 

and removed from the structure replacing by a set of fictious loads represented their post-failure 

capacity. The whole scenario is shown in Figure 5-3. Following the procedure shown in Section 

4.1.2.2 System Reliability Analysis, the reliability indices of each elements in the different 

scenarios of failure of critical elements is presented in Table 5-5. 
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(a) Failure of pair 7 – 10                                                    (b) Failure of pair 7 - 2 

         

(c) Failure of pair 1 – 10                                                    (d) Failure of pair 1 – 2 

 

(2) Failure of pair 2 – 5 

Figure 5-3 Scenario 2: Failure of pair of critical elements  

Table 5-6 Member reliability indices – failure of pair of critical elements 
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(a) Failure of pair 7 – 10 

 

(b) Failure of pair 7 – 2 

 

(c) Failure of pair 1 – 10 
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(d) Failure of pair 1 – 2 

 

(e) Failure of pair 2 – 5 

5.2 Machine Learning  

In summary, there are nine cases of the two-scenario mentioned that the reliability index of 

each element for each scenario showed previously is shown as following, of which 0 stands for 

element failure and 1 stands for elements working in its full capacity. This data will be used as 

primary data for training using Neural Networks, of which, the working capability of each 

elements (either in full or failure) is selected to be inputs; accordingly, there are 10 inputs of 

the deep learning machine. Whereas, the reliability index of ten elements in each case is 

selected to be outputs along with the estimated reliability index of the whole structural system 

in each case; accordingly, there are 11 outputs in totals towards the training process. It is well 
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known that the success of a NN design often depends on a fortunate set of random initial 

weights and a reasonable value for the number of hidden nodes.  

In this study, the data set contains only nine cases is considered as relatively lack of efficiency. 

In order to address the problem regarding convergence and consistency, application of iterative 

NN based on Vu et al. (2012) model is performed. The key of this technique is to update the 

model during iteration in a faster and more accurate way. At the beginning, as usual, the 

analysis results (origin values) are used to train NN. Then mean solution starts from the second 

outer iteration until convergence occurs. That is, the parameter values are created by taking 

mean of previous estimated and origin ones. For example, at iteration i , training data is made 

by taking mean of identified parameters at iteration ( -1)i and origin values. Accordingly, 

estimated parameters fluctuate to some values different from zero, not from the value used in 

the first outer iteration but the origin parameters instead. In this way, the identified parameters 

are moved up and down relative to one determined value. As a consequence, the updated 

parameters for model updating are kept similar during iteration. Furthermore, it is performed a 

better approximation for model updating as well as a faster achievement in convergence. 

Table 5-7 Data set for deep learning machine  
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In which, Ei represents for scenario i of failure investigated earlier in Section 5.1 when critical 

element fails. For example. E1 is scenario 1 of failure when critical element 1 removed and 

replaced by fiction loads as well as elements 10 and element 2 fail. Similarly, E10 is scenario 

10 of failure when critical element 10 removed and replaced by fiction loads as well as elements 

7 and element 1 fail. Betaj represents the reliability indexes of either element or critical pairs 

in Ei scenario.   

The back-propagation algorithm (Figure 2-12) is designed with the following information and 

the process was coded in Neural Networks as following:  

• Si - size of ith layer, for Nl layers contains of two layers, of which, the input layer 

contains 20 notes and the output layer contains 11 notes.  
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• TFi - transfer function of ith layer – is set as default,  

• BTF - backprop network training function – is Levenberg – Marquardt   

• BLF - backprop weight/bias learning function, is set as default  

• PF  - performance function, is set Mean Squared Error   

The typical performance is shown in Figure 5-4.  

 

Figure 5-4 Typical performance of machine learning  

Iterations are calculated based on the values of MiniBatchSize, epochs mentioned in the 

trainingOptions and the number of training samples. An iteration is one step taken in the 

gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch 

is the full pass of the training algorithm over the entire training set. Gradient means the rate of 

inclination or declination of a slope. 

Iterations per epoch = Number of training samples ÷ MiniBatchSize i.e.,  
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In how many iterations in an epoch the forward and backward pass takes place during training 

the network.  

Iterations = Iterations per epoch * Number of epochs 

If number of epochs is = n then it means that the network is trained with same data n times.  

5.3 Validation 

The estimated results from the deep machine learning Neural Networks is compared against 

the expected values of the outputs as shown in Figure 5-6 with the mapping results 

demonstrated in Figure 5-6. After only four interaction, the convergence is achieved with the 

reliability indices for each case presented in Figure 5-7, which reflects that the proposed 

method is promising of a better result in convergence by being faster, more accurate as well as 

more stable. In addition, to verify the effectiveness and accuracy of the proposed method, the 

comparison between estimated reliability indices obtained from β-unzipping method and deep 

machine learning can be found in Table 5-8.  

It is observed that the errors between simulated and estimated reliability indices for each 

different element in different cases of two scenarios are mostly less than 3% with some are 

event achieved at almost no differences, the proposed method is validated against the β-

unzipping method presented in Hashemolhosseini (2013). It is noted the relatively high training 

error for the Element 2 with 6.62% and Element 10 with 5.82%. The reason is given due to the 

lack of primary data set that possibly cause some error in mapping the population and thus 

giving the testing output of Neural Networks not accurate. However, considering the fact that 

they are all less then 10%, which is relatively accepted in deep machine learning with small 

input data, the proposed method proved their competences and operatives in practice. 
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(a) Interaction 1                                                                   (b) Interaction 2 

                            

(c) Interaction 1                                                               (d) Interaction 2 

Number 1 to 11 represents reliability indexes of represents the reliability indexes of either 

element or critical pairs in Ei scenario. Each column in Number i represents the results obtained 

from interaction j until there is a converge in training process. 

Figure 5-5 Comparison of Predicted and Calculated Outputs  

Gradient descent is an iterative optimization algorithm used in machine learning to find the 

best results (minima of a curve). The algorithm is iterative means that we need to get the results 

multiple times to get the most optimal result. The iterative quality of the gradient descent helps 

under-fitted graph to make the graph fit optimally to the data. The Gradient descent has a 

parameter called learning rate. Initially the steps are bigger that means the learning rate is 

higher and as the point goes down the learning rate becomes more smaller by the shorter size 
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of steps. Also, the Cost Function is decreasing, or the cost is decreasing. One Epoch is when 

an entire dataset is passed forward and backward through the neural network only once. As the 

number of epochs increases, more number of times the weight are changed in the neural 

network and the curve goes from underfitting to optimal to overfitting curve.  

                                     

(a) Interaction 1                                                                   (b) Interaction 2 

                                      

(c) Interaction 3                                                               (d) Interaction 4 

Figure 5-6 Data Mapping of 1st Epoch   
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(a) Case 1       (b) Case 2 

    

(c) Case 3       (d) Case 4 

   

(e) Case 5       (f) Case 6 
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(g) Case 7       (h) Case 8 

 

(i) Case 9 

Figure 5-7 Fluctuation of NN-outputs 

Table 5-8 Differences between NN-outputs and β-unzipping estimation (%) 

 

The final estimation of reliability index for each element of convergence is presented below. 

According to this estimation, the structural system reliability analysis is Min (βi) = 3.2013. 

Comparing against the structural system reliability analysis of Hashemolhosseini (2013), the 

difference is only 3.46% – 3.95% at level 0 to level 2, respectively. It is interesting that the 
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error is only 0.03% at Level 3, which is relatively excellent. For this reason, this study rejected 

the claim of Thoft-Christensen and Murotsu (2012) that “the total number of mechanisms for 

a real structure is usually too high to include all possible mechanism”. Accordingly, rather than 

including only most dominant mechanisms as what has been currently done in literature, the 

propose method allows the system modelling at mechanism level as thus, it is possible to 

estimate the structural system reliability at mechanism level.     

Table 5-9 Predicted reliability indices  

Beta 1 Beta 2 Beta 3 Beta 4 Beta 5 Beta 6 Beta 7 Beta 8 Beta 9 Beta 10 Beta 

3.2887 3.2013 4.0867 5.0497 3.2263 4.1646 3.6335 3.8945 3.9139 7.4089 3.1250 

 

Table 5-10 Compared predicted results against Hashemolhosseini (2013) 
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6 System Reliability for CFTA Girder under Blast Loading 

Buildings have typically been the focus of blast damage analysis, but it is valuable to extend 

these analyses to bridge structures for several reasons (Wei et al., 2007; Quintero et al., 2007). 

The social and economic impact of removing bridges from service in the event of damage is 

significant (Rodrigue and Notteboom, 2013). In accordance to Thomas et al. (2018), bridges 

are also in most cases easily accessible, relatively unsecured, and subject to limited 

surveillance. Vehicular impact is the third leading cause of bridge damage or failure; and 

damage in vehicle-bridge impact events occurs simultaneously to the vehicle and the bridge 

element as a result of the compliance of the vehicle (Yi et al., 2014). Though short in duration, 

blast loadings are particularly catastrophic due to their high intensity. An explosive blast results 

in a very high-velocity shock wave, which is the primary cause of damage; if the charge weight 

and standoff distance are known, then it is possible to estimate the resulting damage to a 

structure. Taking interest into the field, the study employed the proposed system reliability 

assessment employed Monte Carlo Simulation and Neural Networks to examine the effects of 

blast loading on the structural reliability of a steel tubular filled concrete CFTA) girder. To that 

end, this section will discuss:  

• The structural modelling of the CFTA including its FE model and Blast Loading 

• The structural response of the CFTA girder under the investigated blast loading 

• The probability of failure for the CFTA as a structural system subjected to blast loading  

6.1 Structural Model  

6.1.1 CFTA Model 

The FE model has been developed using ABAQUS software for the CFTA comprised of four 

main components: tubular steel frame, concrete arch, PS tendon and concrete slab (Figure 6-1) 

with properties shown in Table 6-1. The shape and concept of CFTA girder are shown in Figure 
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6-2. The arch shape is constructed by concrete blocks in order to transfer the self-weight load 

to the arch rib. These blocks are filled by pumping concrete into the tubular steel frame. The 

steel frame protects the concrete blocks as well as forms the shape of CFTA girder. Inside each 

block, there is a hollow space holding the concrete creating a very efficient composite section. 

Pre-stressing force is applied on tendons in two construction stages: two inner PS tendons are 

tensioned in the first stage after constructing the arch girder and the two outer ones are 

tensioned in the next stage after pouring concrete of the slab. The second pre-stressing force is 

active after the girder is mounted on the abutment.  

Thicknesses of the steel frame were 10, 12, and 22 (mm) and modeled as shell element and 

homogeneous steel section. Pre-stressing forces for the tendons (two inside and two outside) 

were 844.57 and 441.16 (MPa), respectively. The slab was modeled as solid elements and the 

reinforcing bars were embedded as the two-node linear 3-D truss elements. The nonlinear 

mechanical properties of steel and tendon used in the simulation are presented in Table 6-2. 

For slab and arch blocks, a conventional type of concrete (Table 6-3) is considered. The 

Poisson’s ratios are 0.167 and 0.3 for steel, tendon and for concrete, respectively. The density 

values are 78.5, 80 and 25(kN/m3) for the steel, tendon and concrete, respectively. The applied 

load causes approximately the same bending moment and axial force as that caused by the 

design truckload in the experiment (at the middle of the girder). Additionally, the FE model 

accounts for the construction steps by reflecting the net displacements of three stages (two 

tensioning stages and slab casting stage), which are 37.9, 23.9 and 65.0 (mm), respectively. 
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(a) Slab (b) Filled concrete 

 

 

 
 

(c) Tendons (d) Tubular steel 

Figure 6-1 Components of CFTA girder bridge 

 

(a) Longitudinal section 

 

(b) Cross section 

Figure 6-2 Concept diagram of CFTA 

Table 6-1 Properties of CFTA components 

Component 
Element 

code 
Dimension 

Element 

type 
Note 
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Concrete 

slab 
C3D8R   Solid 

Reduced integration with 

hourglass control 

Rebar T3D2 8 in radius 

2-node 

linear 3D 

Truss 

Total 30 reinforcing bars 

Concrete 

block 
C3D8R   Solid 

Created by pumping and 

confining into steel frame 

Steel block S4R   Shell  

Homogenous steel sections 

with 10, 12 and 22 mm 

thickness 

Pre-stressed 

Tendon 
T3D2 46 in radius Beam/truss 

Pre-stress for 2 inners and 2 

outers are 844.57 and 441.16 

(MPa) 

Note:  

• Due to the fact that the clearance – distance separating two surfaces – between the concrete 

and steel must be zero, constraint contact is applied to simulate the simultaneous working 

between steel frame and filled concrete. This constrain section uses tie constrains (type 07) to 

tie together two surfaces for the duration of a simulation. This is the surface-to-surface 

constraints enforcement method in which steel plates will be the master surface while concrete 

will be the slave surfaces.  

• The two ends of all 4 tendons are constrained in the composite CFTA surfaces by the kinematic 

coupling type, with constrained U1, U2 and U3 degrees of freedom.  

Table 6-2 Properties of steel and tendon 

Material Yield stress Plastic strain 

 
MPa mm 
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Steel 

392.4 0.000 

392.4 0.018 

539.6 0.167 

Tendons 

1700 0.000 

1920 0.002 

2050 0.010 

2100 0.019 

2150 0.039 

 

Table 6-3 Properties of slab and arch block 

Compressive Behaviour (MPa) 

Concrete on slab Concrete on arch block 

Yield 

stress 

Inelastic 

strain 

Yield 

stress 

Inelastic 

strain 

15.3404 0.00000 22.5850 0.00000 

26.4416 0.00022 38.0605 0.00016 

29.5620 0.00045 43.1281 0.00034 

30.6807 0.00076 45.1701 0.00006 

29.8659 0.00109 44.2443 0.00009 
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27.2497 0.00150 40.9871 0.00124 

15.3404 0.00262 22.5850 0.00237 

2.2704 0.00521 2.1342 0.00514 

0.4023 0.01029 0.3498 0.01021 

 

Table 6-4 PS Tendon specification (mm) 

G
ir

de
r 

Width  2000  

Depth 

End of span 1750 

Middle of span 580 

Sl
ab

 

Effective width 3500 

Thickness 240 

St
ee

l P
la

te
 Thickness at the 

middle of span 

Top flange 18 

Bottom flange 18  

Web 10  

PS
 T

en
do

n 

Inners 
SWPC 7B Φ15.2 

 19 strands × 2 ducts 

Outers 
SWPC 7B Φ15.2 

 12 stands × 2 ducts 
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In this study, a FE model using ABAQUS software has been developed and validated against 

an experimental test presented by Vu et al. (2012) towards a real-scale specimen with a single 

span bridge of 30.6 m-length has been constructed at Korea Institute of Construction 

Technology (KICT), South Korea.  

6.1.2 Blast Loading 

This study uses CONWEB model that applies curve-fitting techniques to represent the data 

with high-order polynomial equations to define the blast loading applied to the structure. It is 

well accepted in literature that comparing to other methods, CONWEP takes a realistic 

approach, assuming an exponential decay of the pressure with time:  

𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 �1 −
𝑡𝑡 − 𝑡𝑡𝑎𝑎
𝑡𝑡+

� 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑎𝑎(𝑡𝑡 − 𝑡𝑡𝑎𝑎)

𝑡𝑡+
� 

The objective of this algorithm is to produce an appropriate pressure history given an 

equivalent TNT explosive weight. The quantities to be determined by the algorithm are: 

• Pinc : maximum incident pressure 

• Pref :maximum reflected pressure 

• ta : time of arrival of the shock wave 

• -t+ : positive phase duration 

• a, b : exponential decay factors (wave form numbers) for incident and reflects waves, 

respectively 

• R : range from charge location to the centroid of loaded surface, 

• cosθ : cosine of the incident angle; angle between surface normal and range unit vector.  
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6.2 Structural reliability analysis 

The framework to assess the structure system reliability employed for the CFTA girder using 

the proposed method presented earlier in Chapter 4 is a combination of the Monte Carlo 

Simulation - Neural Network, structural system reliability and progressive collapse assessment 

approach. The Monte Carlo Simulation and Neural Network is intended to predict the failure 

probability of the uncertain structural system while the progressive collapse assessment is 

employed as a deterministic analysis to check if the sample point falls into the failure region. 

One of the intrinsic characteristics of the blast loads is its high magnitude and short duration. 

For these reasons, the responses of the structural buildings under blast loads can be divided in 

two stages: 

• The direct response of structure against blast loads is mainly associated with structural 

components. Due to the large mass of floor slabs, which provide large inertia resistant 

to blast, the responses at the floor level are small.  

• If the structural member loses its load-carrying capacity, structural progressive collapse 

might be triggered due to the insufficient of structural integrity.  

Therefore, the analysis of structural system reliability under blast load involves the following 

three steps: (1) determine the blast load (2) calculate the structural member response against 

blast loads (3) post- assessment of the damaged structure; and (4) employing the proposed 

system reliability analyse using MCS and NNs.   

Terrorist scenarios of Vehicle Borne Improvised Explosive Device (VBIED) are considered to 

reflect the reality of current terrorist threat (Sapir and Giangrande, 2009). Since the main 

objective of this study is concentrated on risk of structural collapse, the blast scenarios 

considered herein is truck-size home-made Ammonium Nitrate Fuel Oil (ANFO), detonated at 

various stand-off distances from the bridge. Not only a surface but also an air blast explosion 
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is considered in this study. If any components of the CFTA girder loses its load-carrying 

capacity under the blast loads, a post-blast assessment is carried out to investigate the collapse 

behaviour of the damaged structure.  

6.2.1 Structural Response 

The applied actions are defined in accordance to the Eurocode that includes: 

• Self-weight 

• Blast load 

Blast load is employed following the CONWEP model described in Section 0 through a 

selection of an explosive charge mass (m) and/or standoff distance (r) enable the CFTA girder 

to be subjected to a range of blast load intensities as shown in Figure 6-3 and Figure 6-4. There 

are two main scenarios employed for the variation of the blast load exposed on the structure: 

(1) with the fixed standoff distance (r); and vary the intensity of loading by varying the 

explosive charge weight (m); and (2) with the fixed charge mass (m) and vary the distance from 

the explosion to the structure (r). For the former case, three analyses are carried out with centre 

detonated, TNT cylindrical charges of 100, 500 and 900 kg. For the latter cases, three more 

analyses are carried out with the standoff distance from the detonation to the slab are 1, 2 and 

3 meters. The identical set of explosions is shown in Table 6-5.  

Table 6-5 Loading scenario  

Case 

(No.) TNT (kg) Distance 

1 100 1000 

2 500 1000 

3 900 1000 
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4 100 2000 

5 500 2000 

6 900 2000 

7 100 3000 

8 500 3000 

9 900 3000 

 

  

Figure 6-3 Response surface and standoff distance of explosion    

 

Figure 6-4 Property of explosion 

In this research, the main objective is to investigate the ability of the Neural Network either to 

perform the deterministic and probabilistic constraints check or to predict the structural 

collapse loads. To achieve such purpose, it is essential to first design the appropriate Neural 
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Network to effectively and efficiently estimate the probability of failure of the targeted 

structures.   

 

 

 

 

 

6.2.2 Reliability Assessment 

This study uses the probability of structural collapse presented by Ellingwood et al. (2009), 

P(C), due to different damage scenarios, L, caused by multiple hazards, E, be expressed as:  
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Equation 6-1 

Where  

• P(E) is the probability of occurrence of hazard E;  

• P(LE) is probability of local failure,  

• L is the occurrence of E 

• P(CLE) is the probability of structural collapse given the occurrence of a damage 

scenario L resulting from hazard, E.  

The probability of collapse will be obtained by summing over all possible hazards and all 

possible load failure scenarios. The conditional probability of collapse term P(CLE) is related 

to the analysis of the response of the structure to a given damage scenario independently of 

what hazards have led to the damage. 

In according to Starossek and Haberland (2009), the probability of progressive collapse can be 

minimised in three ways, namely by: controlling abnormal events, controlling local element 

behaviour and/or controlling global system behaviour. Controlling abnormal events by 

structural engineers is normally very difficult. However, engineers can influence the local and 

global system behaviour e.i. P(D|H) and P(C|DH).  

 

The proposed method has the following process: 
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• Step 1 - Training set selection step 

• Step 2 - Deterministic constraints check 

• Step 3 – Monte Carlo Simulation step 

• Step 4 - Probabilistic constraints check 

• Step 5 - Training step 

• Step 6 - Testing step 

In accordance to the probabilistic model – Probabilistic model, the training set is built upon the 

results exported from the structural analysis by the FE model. After the selection of the 

appropriate Neural Network architecture towards the training procedure, the training process 

coded in MATLAB (shown in Appendix) is used to utilise information generated from this data 

set that consists of a number of property selected design vectors. This process includes both 

the deterministic and probabilistic constraints check through the optimization process in 

purpose of mapping the Input/Output function needed to predict the response of the structure 

upon the different set of design variables.  

Particularly, in training step – Step 5, a trained Neural Network utilise information obtained 

from a number of random variables, which are computed through the FE model of the structural 

member through the deterministic and probabilistic constraints checks during the optimization 

process. The information generated from this step is needed in purpose of obtaining the 

necessary Input/Output pairs that should be subsequently employed for predict the output of 

the testing data set generated through Monte Carlo Simulation.  

In testing step – Step 6, the Input/Output mapping function determined through Step 5 is 

employed in predict the responses of the structure through the deterministic and probabilistic 

constraints checks due to different sets of design variables. With the assigned limit state 

function, the training process is considered as successful if the estimated values resample 
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closely to the corresponding values, which are considered as “exact value”. Otherwise, as the 

function of back-propagation algorithm, the network will go back to the Step 5 – Training step 

to repeat the entire loop until the criterion are met.  

An estimation of the systems reliability at mechanism level is made from the application of 

Neural Networks Monte Carlo Simulation.  

In regard to Hurtado and Alvarez (2001), multi-layer back-propagation algorithm is used in 

this study.  

Literature has been indicated that the efficiency of a Neural Network training and learning 

process is much depended on the correct design of its learning rate, momentum and network 

architecture. However, there is a very limited number of researches and investigations guided 

on how to select these parameters. For this reason, the selection of a Neural Network used in 

this study is based on a trial and error procedure. This process comprises the following tasks: 

• Select proper training set 

• Find suitable network architecture 

• Determine appropriate values of characteristic parameters, such as learning rate and 

momentum term 

In order to achieve a good approximation of the probability of structural failure, it is a must to 

have a proper training set that consist of information covered the entire range of the 

Input/Output space. For this reason, selecting the appropriate Input/Output training data is 

considered as the important task that should take into account not only the training patterns but 

also the distribution of samples. In the present study the sample space for each random variable 

generated by Monte Carlo Simulation is divided into equally spaced distances for the 

application of the Neural Network simulation and for the selection of the suitable training pairs. 
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Moreover, the number of samples generated by Monte Carlo Simulation should be also selected 

through a trial-and-error procedure. 

It is noted that Monte Carlo Simulation requires a number of limit elasto-plastic analyses (Zio, 

2013), which are dealt independently and concurrently from the FE model under the different 

blast scenario. This process is considered as the nature of implementing Monte Carlo in 

simulation in regard to a parallel computing environment. In this study, it is done through the 

straightforward parallel implementation from assigning one limit-elasto-plastic analyses to a 

processor without any need of inter-processor communication during the analysis phase. The 

application of the properly selected and trained Neural Network in the approximate concepts 

is believed to possibly eliminate any limitation on the sample size presented in terms of Monte 

Carlo Simulation as well as on the dimensionality of the problem due to the drastic reduction 

of the needed computational cost (Cardoso et al., 2008).  

In regard to Hurtado and Alvarez (2001), the basic NN configuration employed in this study is 

selected to have two hidden layers. In term of finding suitable network architecture, the number 

of neurons in the hidden layers are also be selected through a trial and error process. This can 

be done by first starting with an increased number of the hidden layer 1 and then, after the 

desired convergence is achieved, an increased number of the hidden layer 2 will be then 

performed until it also converged. This optimization process helps to find the minimal size of 

network that is able to perform the assigned task (Hirose et al., 1991).  

6.2.3 System Reliability Estimation  

The method for reliability estimation described in the previous sections is now applied in the 

case study of CFTA girder under blast loading based on a nonlinear finite element structural 

model. As it is quite difficult to compute the probability of failure for CFTA girder using the 

conventional procedure of reliability analysis, the convergence of the training process is rather 



196 
 

controlled by the prediction error between two trials by mean of the root mean square (RMS) 

given by: 

     

Equation 6-2 

in which, NP denotes for the total number of Input/Output pairs in the training set, Nout denotes 

for the number of output units. eRMS gives a measure of the difference between predicted value 

at each Neural Network cycle against value predicted in previous Neural Network cycle. After 

the selection procedure is completed and the appropriate architecture is designed for Neural 

Network training and learning process, this network is employed in producing approximation 

of the deterministic and probabilistic check in correspondence to the different set of 

Input/Output variables. Eventually, it is used to process the reliability assessment for the target 

structures by mean of Monte Carlo Simulation in calculating the probability of failure pf and 

the reliability index βf 

The networks are trained with a training set representative of the structural response. More 

relevance is given to values situated in the upper extreme of the distribution, because it is 

important to obtain a precise approximation for those values as they influence greatly the 

probability of failure. Accordingly, the variation of nine possible values for applied blast load, 

related to the mean and the standard deviation of the probabilistic distribution of the lead is 

shown in Table 6-6.  

Table 6-6 Variables of blast code and maximum displacement of slab  

Case TNT (kg) Distance Displacement 
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(No.) 

1 100 1000 19.2874 

2 500 1000 158.049 

3 900 1000 407.045 

4 100 2000 15.806 

5 500 2000 78.3769 

6 900 2000 139.016 

7 100 3000 12.0571 

8 500 3000 42.4978 

9 900 3000 75.1271 

 

The ultimate compressive strength reliability of a deck under a loading set is assed. The 

allowable deflection under Eurocode is between L/300 to L/500, for simple analysis, this study 

assumed this number as L/500. Accordingly, the maximum displaces employed is 30,000/500 

= 60 (mm) 

In order to design the architecture of the fully connected feed-forward learning process of the 

Neural Network described in Figure 2-10, several variables of the networks were trained, each 

with a different number of neurons in the hidden layers. As for this case study, there is only 

one output layer, the number of neurons for the hidden layer 2 (S2) is one; while the number of 

neurons for the hidden layer 1 (S1) is defined through the sensitivity process starting by number 

two until when the convergence is achieved. Figure 6-5 demonstrates the performance of the 

Neural Network configuration using different numbers of hidden neurons for the hidden layer 

1 – S1. It can be seen that the convergence is reaching after a certain number of hidden units 

without any further improvements. The depicted results indicate that the selection of the best 

Neural Network is based upon the minimum error between two trials by mean of the root mean 
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square (RMS) given by Equation 6-2. Accordingly, the number of neutrons selected for the 

hidden layer 1 is eight.  

 

(a) Probability of failure 

 

(b) Safety index 

Figure 6-5 Performance of NN configuration with different hidden neurons  

Using Neural Network with S1=8, several Monte Carlo simulations are performed considering 

the probabilistic model – Case 1 presented in Section Error! Reference source not found.. 

The corresponding values of the probability of failure are shown in Table 6-7.  In a similar 

procedure and criteria to select the number of neutrons in the hidden layer, the sample size 

depicted from the obtained results is 5x105.  
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Table 6-7 Probability of failure computed with different sample size 

Sample size Probability of failure Safety Index 

5x102 8.60E-05 4.30 

5x103 8.04E-05 4.02 

5x104 8.08E-05 4.04 

5x105 8.01E-05 4.00 

5x106 8.01E-05 4.00 

 

6.3 Summary 

Once the acceptable trained Neural Network in predicting the critical load factors is obtained, 

the probability of failure for the slab of the CFTA girder is estimated by means of Neural 

Network based Monte Carlo Simulation. It is observed that the probability of failure of the 

structure, pf¸is found to be 8.01x10-5, and the corresponding reliability index β is equal to 4.00. 

It is therefore clear that the level 1 methodology prescribed in the Eurocodes produces, in this 

case, a design safer than the limit β =3.8 recommended for common structures. It has proved 

that the application of the proposed method allows a more rigorous design approach comparing 

to other methods presented in the Eurocode.  
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7 Conclusion 

To estimate the structural system reliability, the existing researches have faced the challenges 

in the two most critical issues: firstly on the evaluation of the current employed numerical 

methods in assessing the probabilities of the second or higher order joint failure events with 

high efficiency and accuracy that are in demand to evaluate system reliability; secondly, there 

is no unique system reliability approximation formula, which can be evaluated efficiently with 

commonly used reliability methods. Added to this, in consideration of complex system, there 

is the challenges in identifying the component failure events characterized in terms of physical 

members, failure modes, failure locations, and time points of failure occurrences. For these 

reasons, the problem of system reliability for the complex structure has been negligible in 

literature with little or no progress up to recent. Accordingly, this thesis proposed an approach 

employing Monte Carlo Simulation and Neural Network (MCS-NN SSR) to effectively 

calculate the system reliability of the structural system, which is considered as the first 

approach ever proposed to solve the problem of structural system reliability at higher level than 

component-based approach. The proposed MCS-NN SSR used the mechanism modelling of 

the structure to simplify the structure system behaviour. In design of the deep learning 

algorithm used to test and train, several techniques are employed namely importance sampling, 

interval Monte Carlo Simulation and Mean-Interactive Neural Network. In order to determine 

the structural system reliability, the proposed method contains several stages from developing 

a computerised method for the system reliability analysis; estimating the structural system 

reliability at different level – demonstrated in this study level 0 (focusing on  single structural 

element), level 1 (considering the structural system comprises of   serial   structural members), 

level 2 (on the basic of a system where the elements are parallel to each other- with critical 

pairs of failure elements) and level 3 (on the basic of a system where the elements are parallel 

systems each - with critical triples of failure elements) using the β-unzipping method 
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(introduced by Thoft-Christensen and Murotsu, 1986). Using such data, it is to generate the 

sample population by Monte Carlo Simulation with the response surface of the reliability 

indexes obtained that is then trained and tested the population using Neural Networks.  

7.1 Key Findings 

The proposed MCS-NN SSR was applied to estimate the structural system reliability for the 

10-bar truss structure to validate its application against the conventical β-unzipping method. 

The sensitivity analysis was also performed to observe the computing power in analysing the 

system reliability. After only four interactions, the convergence is achieved, which reflects that 

the proposed method is promising of a better result in convergence by being faster, more 

accurate as well as more stable. In addition, to verify the effectiveness and accuracy of the 

proposed method, the comparison between estimated reliability indices obtained from β-

unzipping method and deep machine learning are also obtained. It is observed that the errors 

between simulated and estimated reliability indices for each different element in different cases 

of two scenarios are mostly less than 3% with some are event achieved at almost no differences, 

the proposed method is validated against the β-unzipping method.  

After the validation, the proposed MCS-NN SSR was employed to assess the structure system 

reliability employed for the CFTA girder under the blast loading (explosion), such problem is 

also highlighted in the literature review as very challenging and up-to-recent, there has been 

no research investigated into the field. The Monte Carlo Simulation and Neural Network is 

intended to predict the failure probability of the uncertain structural system while the 

progressive collapse assessment is employed as a deterministic analysis to check if the sample 

point falls into the failure region. The analysis of structural system reliability under blast load 

involves the following three steps: (1) determine the blast load (2) calculate the structural 
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member response against blast loads (3) post-assessment of the damaged structure; and (4) 

employing the proposed system reliability analyse using MCS and NNs.   

It is observed that the probability of failure of the structure, pf¸is found to be 8.01x10-5, and the 

corresponding reliability index β is equal to 4.00. It is therefore clear that the level 1 

methodology prescribed in the Eurocodes produces, in this case, a design safer than the limit β 

=3.8 recommended for common structures. It has proved that the application of the proposed 

method allows a more rigorous design approach comparing to other methods presented in the 

Eurocode. Therefore, it is further recommended a modification in the current codes and 

standards to take into consideration of structure reliability not only as component-based 

assessment but also as mechanics-based system.  

7.2 Recommendation for Future Work 

In reliability assessment of structures, there are two levels of reliability analysis required to 

consider including (1) structural members reliability and (2) system reliability. This research 

has put an effort to solve the later problem by proposing the new method that involved Monte 

Carlo Simulation with the Importance Sampling Techniques and Neural Network with Back-

Propagation Algorithm. Although the obtained results have shown a very promising application 

of the proposed method comparing to other methods presented in the Eurocode, there are more 

investigations needed to take a closer look at its employment to estimate the structural system 

reliability, specifically, when the blast loading involved. Accordingly, future works are 

recommended to stay focus on the blast responses of structures against blast loading at both 

component and system levels, in which, progressive collapse should be taken into account.  
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Appendix 1 

Blast Loading and Blast Impacts on Structure 

Explosions caused by conventional weapons can cause severe damage to structures such as 

buildings, pipelines, bridges, vehicles etc., leading to significant loss of life and property. 

Engineers from military, automobile industry, oil and gas industry, nuclear industry, and 

several other organisations need to develop designs for blast mitigation. These designs must be 

validated either experimentally or using simulations. Experiments are expensive as they 

involve cost of material and instrumentations. Information from previous experiments is often 

not publicly available, because such tests are conducted by defence organisations or affiliated 

agencies and remain as classified information. Hence, simulations play an important role in 

validating structural designs against blast loads. Most of the simulations have been conducted 

using empirical models for blast phenomena, since detailed computational fluid dynamics 

(CFD) simulations become computationally expensive. One of the most commonly used 

models is the CONWEP model, initially developed by Kingery and Bulmash (1984). 

Simulations have been conducted using the Abaqus/Explicit software, where the blast loads 

were externally defined. Recently, this feature has been implemented as a built-in functionality 

in Abaqus/Explicit software (in version 6.10) making it convenient to subject models to diverse 

blast loads. Such simulations have been performed by several researchers such as Mougeotte 

et al. (2010); Cabello (2011); Henchie et al. (2014); Liu (2011); Kim, Vlahopoulos and Zhang 

(2012); Nikhil and Narayanan (2017); Rahimi (2015); Markose and Rao (2017); Tiwari, 

Chakraborty and Matsagar (2015). 

Conventional Weapons and Blast Phenomena 

Nuclear weapons, chemical weapons, and biological weapons are notorious for causing large 

scale mass destruction. Those weapons which do not cause large scale mass destruction and 
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yet are capable of causing significant damage to life and property are generically referred to as 

conventional weapons. In general, such explosions caused by land mine, non-nuclear bomb, 

shell, rocket, missile etc are listed as typical conventional weapons of which their threats are 

defined by Goel (2015) through two equally important factors – (1) W: the size of bombs and 

the charging weight of bombs; and (2) R: the standoff distances between the targeted subjects 

and the blast sources as demonstrated in Figure 0-1. Typical examples are explained by Ngo et 

al. (2007) that the blast occurred at the basement of World Trade Centre in 1993 has the charge 

weight of 816.5 kg TNT; Shallan et al. (2004) that the Oklahoma bomb in 1995 has a charge 

weight of 1814 kg at a standoff of 4.5m. Or the nuclear bomb deployed in the city of Nagasaki, 

Japan on August 9th of 1945 had an explosive power approximately equivalent to 21 kilotons 

of TNT (Lahiri and Ho, 2011).  

 

Source: Shallan et al. (2004) 

Figure 0-1 Blast loads on a building 

Detonation of an explosive involves chemical reactions which causes rapid heating and 

expansion of the detonated products. This rapid expansion causes abrupt compression of the 

surrounding medium, leading to a strong shock wave, commonly known as a blast wave, which 

propagates away from the source with high velocity. The state of the medium, described by its 

pressure, density, temperature, and velocity are discontinuous across the shock front. The states 
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before and after the shock are related by the conservation of mass, momentum, and energy, 

which are collectively expressed as the well-known Rankine-Hugoniot jump condition. The 

blast waves are typically supersonic (moving with a speed faster than the fastest-speed of 

propagation of any perturbation in the medium). Hence the medium remains unperturbed until 

the advent of the shock front, with the pressure just ahead of the shock (away from the source) 

remaining close to ambient pressure. The pressure just behind the shock, often referred to as 

the over pressure, propels the shock away from the source, as shown qualitatively in Figure 

0-2. 

 

Source: Lahiri and Ho (2011) 

Figure 0-2 A schematic of pressure distribution across a blast wave 

 

 

Source: Lahiri and Ho (2011) 
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Figure 0-3 Pressure distribution at different time levels  

As the shock propagates away from the source, this over pressure reduces, causing the pressure 

of a region, behind the shock, to drop below ambient pressure, which causes transport of debris 

far away from the explosion source. The pressure distribution at different time levels is 

qualitatively shown in Figure 0-3. A typical time history of the pressure inflicted by a blast 

wave at a fixed distance from the source is shown in Figure 0-4. 

 

Figure 0-4 Time history of pressure due to a blast wave at a given location 

This qualitative model has been known and developed by several researchers directly or 

indirectly working for defence organisations. Much of their work has remained classified 

information and is not available for public access (Shallan et al., 2004). Later the model 

developed by Kingery and Bulmash (1984), more commonly known as the CONWEP model, 

has been widely used for free explosions in air.  

In accordance to the CONWEP model, the shock wave caused by blast loading travel through 

(time, pressure) dimensions that highly compressed air particles exert pressures on all surfaces 

encountered. As shown in Figure 0-5, a discontinuous ‘‘jump’’ of the shock front pressure is 

occurred with the pressure rising from ambient (pa) to (ps) that is generally referencing as the 

blast overpressure – the pressure differences between (pa) and (ps). In the space is considered 
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as a fixed location, the pressure exponentially decays in regards of time and is followed by a 

negative (i.e. suction) phases. It is general observation that the blast wave pressure pulse has a 

very short time period that its typical measurement is fractions of milliseconds. For this reason, 

Shallan et al. (2004) described the free-field pressure-time response with a modified 

Friedlander equation, 

     

Equation 0-1 

where ta is the arrival time, td the time duration of the positive phase and θ the time decay 

constant. 

There are two determinants of the air blast load intensity on a targeted surface namely (1) the 

materials and the weight of the explosive devices denoted as (m); and (2) the standoff distance 

(r) between the targeted surface and the explosive devices. In regards to the CONWEP model, 

there is an approximation for the free-field peak pressure of the blast wave (P) for a given 

explosion as expressed in the equation below.  

         

Equation 0-2 

where K is an explosive material parameter defined by Cooper (1996). 
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Figure 0-5 Characteristic air blast pressure response 

when  the shock wave encounters a surface, the incident overpressure is thus reflected with 

the possible magnification of highly non-linear that much depended on the incident shock 

strengths and the angles of incidences. Of which, the resultant blast loads are doubled on 

reflection of the shock wave in the event of a weak shock; while that for a strong shock is 

reported to have reflection coefficients of 8 assumed ideal gas condition and even up to 20 

with real gas effect in consideration of dissociations and ionizations of air molecules (Baker, 

1973).  

Equation 0-3 is used to calculate the impulse load (I) delivering to the structures through the 

time integration of the employed pressure-time response within duration of the positive phase. 

In general, most researches employed the pressure and impulse loads applied to the surface of 

the structures estimated using CONWEP through a blast simulation code developed by the US 

Army Corps of Engineers (2010).  

        

Equation 0-3 

In which p denotes the incident pressure multiplied by the pressure reflection coefficient.  



229 
 

When an incident blast wave impinges on a surface, it creates a secondary wave that reflects 

from the surface, often called the reflected wave. The pressure felt by the surface is the 

combined effect of the incident wave and the reflected wave. It can be interpreted as the 

reaction force (applied by the medium on the surface) per unit area, due to the rate of change 

of momentum of the particles of the medium. To calculate the pressure felt by the surface, the 

pressure from the incident and the reflected waves are calculated separately. The combined 

pressure p(t) depends on the angle at which the shock impinges on the surface. If the angle of 

incidence (say θ) is the angle between the outward facing normal and the ray that joins the 

point on the surface to the source, then the pressure felt by the surface is related to the incident 

pressure pi(t) and the reflected pressure pr(t) as follows: 

     

Equation 0-4 

This relation has been developed by curve fitting pressure measurements from experiments. A 

detailed study on blast wave reflection can be found in the book by Smith and Hetherington 

(2003).  

In evaluation of the practical application of the CONWEP model, Bogosian, Ferritto and Shi 

(2002) compared the predictions of blast loading with this method against a number of other 

popular simplified models such as BlastX and SHOCK. This study took into account both 

reflected and incident loads from not only pressure but also impulse for both phrases – positive 

and negative, respectively. Using the data collected from literature upon a wide range of test 

spanning over the last three decades that comprised of nearly 300 individual measurements in 

total, this research has plotted such comparisons of performing blast loading analysis using 
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CONWEP against BlastX and SHOCK as shown in Figure 0-6, Figure 0-7, Figure 0-8 and 

Figure 0-9. It is noted that all of these data sets were taken at low heights above the ground that 

some on small cubicles and most of them on larger buildings. With the restricted data to a 

scaled range of 3–100 ft/lb1/3, the findings from this research indicated that the implementation 

of CONWEP towards the K-B model is accurate and verified. Further research was done by 

Remennikov and Rose (2005), in which, the CONWEP model is based on data from free-air 

explosions; hence it does not include effects of reflections due to confinement and shadow 

effects from one body on another. 

 

Source: Bogosian, Ferritto and Shi (2002) 

Figure 0-6 Reflected positive pressure and impulse comparison among models 
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Source: Bogosian, Ferritto and Shi (2002) 

Figure 0-7 Incident positive pressure and impulse comparison among models 
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Source: Bogosian, Ferritto and Shi (2002) 

Figure 0-8 Reflected negative pressure and impulse comparison among models 

 

Source: Bogosian, Ferritto and Shi (2002) 

Figure 0-9 Incident negative pressure and impulse comparison among models 

Moreover, a recent research of Miller et al. (2010) comparing the CONWEP model to a coupled 

Eulerian-Lagrangian (CEL) analysis towards a simple test case was developed involving three 

metallic plates with a 10lb spherical TNT charge centered between them (Figure 0-10). Figure 

0-11 illustrate the change in velocity at the center of mass of the lower and upper plates, 

respectively. The results indicate that since the CONWEP algorithm only considers the initial 

expansion of the shockwave, any secondary effects are lost and will not affect the system 

dynamics. 
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Figure 0-10 Test case of Miller et al. (2010) 

 

Upper plate      Lower plate 

 

Side plate 

Figure 0-11 Velocity response for test case of Miller et al. (2010) 

Structural Response to Blast Loading 
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In literature, the dynamic response of blast-loaded structures has been identified as a complex 

and complicated analysis due to the high involvement of the effects of high strain rates, the 

uncertainties of blast loading calculation, the time-dependent deformation and the non-linear 

inelastic material behaviour (Dusenberry, 2010; Syngellakis, 2013; Goel and Matsagar, 2013). 

Due to this matter, there has been a number of assumptions made in prior researches in purpose 

of simplifying such analysis in practices in regards of not only the structural responses but also 

the blast load definition. Although many research models and approaches have been proposed 

and widely accepted, the principles of such analyses are established through the two main 

assumptions: (1) the structure is converted to an equivalent  single degree of freedom (SDOF); 

and (2) the blast load is idealised through an established link between the positive duration of 

the blast load and the natural period of vibration of the structure that also simplified the 

classification of the blast loading regimes. 

Elastic SDOF Systems 

The elastic SDOF approach is considered as the simplest discretization of transient problems 

(Rigby, Tyas and Bennett, 2012). In regards to this assumption, the actual structure being 

investigated is replaced by an equivalent system defined through: (1) a concentrated mass; and 

(2) a weightless spring represented the structural resistance towards its structural deformation. 

Figure 0-12 (a) demonstrates the idealized system of the elastic SDOF approach in analysis the 

structural responses under blast loading; while Figure 0-12 (b) demonstrates the idealized blast 

load as a triangular pulse and positive phase duration.  
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Source: Ngo et al. (2007) 

Figure 0-12 (a) SDOF system and (b) blast loading 

With the structural mass, M, and the external force, F(t), the structural resistance, R, expressed 

in reflected to the vertical displacement, y(t), and the spring constant, K as well as the blast 

load expressed with a peak force, Fm, and positive phase duration, td, the forcing function is 

given in Equation 0-5; while the blast impulse is given in Equation 0-6.  

         

Equation 0-5 

         

Equation 0-6 

In regards to Biggs and Biggs (1964), for a time ranged from 0 to td within the positive phase 

duration, the motion of the un-damped elastic SDOF system is expressed in Equation 0-7 and 

its general solution can be solved through Equation 0-8.  
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Equation 0-7 

    

Equation 0-8 

in which, ωdenotes for the natural circular frequency; while T denotes for the natural period 

of the structural vibration that are reflected in Equation 0-9. 

       

Equation 0-9 

In Equation 2-8, the dynamic deflection ym of the structure under the blast load occurred at time 

tm is achived by setting dy/dt = 0 that in case, the velocity of the structure is equal to zero. In 

this regards, the DLF, dynamic load factor, is defined as the ratio of the maximum dynamic 

deflection ym to the static deflection yst that possible result from the static application of the 

peak load Fm. Accordingly, the DLF is expressed in Equation 0-10.  

    

Equation 0-10 
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As can be seen from Equation 0-10, the ratio td/T or ωtd (td/T=ωtd /2π) is the significant factor 

determining the structural response to under blast loading that in this regards, Ngo et al. (2007) 

categorized three regimes of loading system:  

• ωtd <0.4: impulsive loading regime. 

• ωtd >40: quasi-static loading regime. 

• 0.4< ωtd <0.4: dynamic loading regime 

Elasto-Plastic SDOF Systems 

Although the structural response to blast can be simply analysed by mean of the elastic SDOF 

approach, under the event of blast load or high velocity impacts, its structural components are 

expected to undergoing the large inelastic deformation. For this reason, the elastic SDOF 

system might not be possible to solve the transient problems. Rather, it is only possible to 

conduct exact analysis of dynamic structural response through step-by-step numerical solutions 

required a non-linear dynamic finite-element modelling. Nevertheless, Ngo et al. (2007) 

indicated that such problem can possibly be solved through the ideal elasto-plastic SDOF 

system proposed by Biggs and Biggs (1964). This model expresses the degree of uncertainties 

in both the determination of the loading and the interpretation of acceptability of the resulting 

deformation in a postulated equivalent ideal elasto-plastic SDOF system by the solution of the 

required ductility factor μ= ym/ye as demonstrated in Figure 0-13. The triangular load pulse is 

also defined to comprise rapid rise and linear decay with maximum value Fm and duration td. 

Accordingly, the maximum response of the structure expressed through the maximum 

displacement of the ideal bilinear elasto-plastic system presented in chart form (TM 5-1300) 

(Figure 0-14) demonstrating through a selected of Ru/Fm value and corresponding td/T value 
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(shows the required ductilityμ) with Ru (the structural resistance of the beam) and T (the 

natural period). 

 

Figure 0-13 Simplified resistance function of an elasto-plastic SDOF system 

 

Figure 0-14 Maximum response of elasto-plastic SDF system to a triangular load 

Design Guidelines for Blast-Resistant Design 

This section summarizes applicable military design manuals and computational approaches to 

predicting blast loads and the responses of structural systems. Although the majority of these 

design guidelines were focused on military applications this knowledge are relevant for civil 

design practice. 

Structures to Resist the Effects of Accidental Explosions (TM 5-1300. NAFVAC P-397, 

AFM 88-22 and updated version UFC 3-340-02). This manual appears to be the most widely 
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used publication by both military and civilian organizations for designing structures to prevent 

the propagation of explosion and to provide protection for personnel and valuable equipment. 

It includes step-by-step analysis and design procedures, including information on such items 

as (1) blast, fragment, and shock-loading; (2) principles of dynamic analysis; (3) reinforced 

and structural steel design; and (4) a number of special design considerations, including 

information on tolerances and fragility, as well as shock isolation. Guidance is provided for 

selection and design of security windows, doors, utility openings, and other components that 

must resist blast and forced-entry effects. 

A Manual for the Prediction of Blast and Fragment Loadings on Structures, DOE/TIC-

11268 (U.S. Department of Energy, 1992). This manual provides guidance to the designers 

of facilities subject to accidental explosions and aids in the assessment of the explosion-

resistant capabilities of existing buildings. 

Protective Construction Design Manual, ESLTR-87-57 (Air Force Engineering and 

Services Center, 1989). This manual provides procedures for the analysis and design of 

protective structures exposed to the effects of conventional (non-nuclear) weapons and is 

intended for use by engineers with basic knowledge of weapons effects, structural dynamics, 

and hardened protective structures. 

Fundamentals of Protective Design for Conventional Weapons, TM 5-855-1 (U.S. 

Department of the Army, 1986). This manual provides procedures for the design and analysis 

of protective structures subjected to the effects of conventional weapons. It is intended for use 

by engineers involved in designing hardened facilities. 

The Design and Analysis of Hardened Structures to Conventional Weapons Effects 

(DAHSCWE, 1998). This new Joint Services manual, written by a team of more than 200 

experts in conventional weapons and protective structures engineering, supersedes U.S. 
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Department of the Army TM 5-855-1, Fundamentals of Protective Design for Conventional 

Weapons (1986), and Air Force Engineering and Services Centre ESL-TR-87-57, Protective 

Construction Design Manual (1989). 

Structural Design for Physical Security—State of the Practice Report (ASCE, 1995). This 

report is intended to be a comprehensive guide for civilian designers and planners who wish to 

incorporate physical security considerations into their designs or building retrofit efforts. 
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