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Abstract

Engineering judgement has an important role in safety or reliability assessment. This
paper focuses on the use of engineering judgement for integrating diverse evidence into an
assessment of the safety or reliability of aproduct. In many cases of stringent safety
requirements, this form of engineering (or "expert") judgement, i.e., "informal inference
from complex evidence”, isthe crucial resource for the decision maker, for lack of more
solid, objective evidence. This dependence on judgement is especialy evident in the
assessment of the unreliability due to possible design faultsin complex products, and
computer software in particular. Although engineering judgement plays an essential role
in the assessment, there are good reasons to doubt the ability of expertsin some of the
judgement tasks in which they are usually employed. Experimental research both about
the way humans think and integrate evidence, and about the performance of expertsin
tasks similar to engineering judgement, support the idea that the ability of experts may be
overrated. This paper summarises some literature about common fallacies and ways to
guard against them, and argues for a more disciplined use of expert judgement.

Keywords: expert judgement, judgement under uncertainty, cognitive bias, probabilistic
reasoning, heuristics, dependability assessment, safety case, design faults.

1. Introduction

The problem of ensuring very high levels of safety or reliability in all kinds of engineered
productsis drawing increasing attention, driven by an increased awareness of safety
issues, increasingly stringent requirements, and technological advances (in particular, but
not only, the growing role of computer software in all kinds of products and engineering
processes) which require an evaluator to estimate the probability of design-caused
failures. In adl safety evaluation tasks, arole is recognised for "engineering judgement”, or
"expert judgement”. In cases like the evaluation of safety-critical software, where the
required levels of reliability may be so high that they cannot be practically demonstrated
by applying standard reliability evaluation methods, engineering judgement tendsto be
treated as either the ultimate or the sole basis for evaluation [Littlewood and Strigini 1993;
Strigini 1994]. (A similar de facto attitude is common in tasks like the choice of software
engineering methods for the industry in general [Fenton, 1994]. Differing positions about
the role of expert judgement exist in the risk assessment community. A taxonomy of the
problems and decisions necessary in using expert judgement is found in [Chhibber et a.
1992].

This survey considers one of the questions raised by the widespread reliance on
engineering judgement. When the role of an "expert engineer” or "expert” (as| will call
any expert of an engineering field relevant to the product being assessed - e.q., aircraft
structures, control software or chemical reactors) isto integrate disparate evidence from
the project at hand with information from the expert's own experience, how good are the
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experts and how can they best be used? More narrowly yet, if we exclude errors caused
by fatigue, dishonesty, and other well recognised causes, which causes remain that are
inherent in the way the human mind works, and how can an assessor, trying to use the
expert engineer's judgement in decision-making, guard against them?

Thisisin no way areport of origina research work in psychology. Rather, itisa
summary of afew compilations (at the level of advanced textbooks) of current knowledge,
as read by aresearcher in computer dependability, complemented with discussion and
references about its significance for dependability assessment. Itsaim isto point out, with
reference to the issue of dependability judgementsin general, but in particular for software
and other products subject to design faults: i) the relevance of some problems which are
known and already receive some limited consideration in some other specific fields (like
nuclear risk assessment and management); and ii) possible defences against these
problems.

The expert engineer's task in these cases is often one of complex statistical inference
performed in an intuitive or semi-conscious way. Examples of statements by people called
upon to evaluate safety-critical software are "Our confidence in the software stems from
the observed excellence of its development process' or "All the observed imperfectionsin
the software process could individually be seen as acceptabl e exceptions, but together they
build the impression that one cannot trust software built thisway". The assessor or the
expert engineer (often the same person) is confronted with awealth of evidence about the
details of the design, the design methods used, the quality assurance organisation, and the
results of testing, none of which by itself comes even close to proving the desired
conclusion, e.g., that a system has a certain minuscule probability of failure per hour. The
net of cause-and-effect chains, deductions and inferences which binds the evidence with
the conclusion to be reached is presumably rational, but possibly so complex as to defy
analytica description. However, it iswidely felt that people are good at deriving decisions
from such complex mazes of evidence and reasoning. Expertsin adiscipline, in particular,
are skilled in integrating the evidence, through a partially unconscious agorithm learnt
from experience, to obtain appropriate solutions. Or are they?

There are at least two rational methods for answering this question. One is to measure the
past performance of the experts, and draw inferences about how trustworthy a new
predictionis. This approach has anumber of practical problems when dealing with rare
events and small numbers of predictions. There is aso some widely quoted evidence of
dramatic failures by multiple expertsinindividual controlled experiments.

The second way of reasoning about the experts abilitiesisto try and understand how they
obtain their predictions, and whether their method isreliable, or fit for its purpose.
Researchers both in the field of "expert systems' and in branches of psychology have
found that people tend to be unaware of the algorithms they use, even in tasks where they
are remarkably successful. So, researchers need to conjecture these mechanisms and
algorithms by observing behaviour and building models of it. They have developed
models of the mechanisms by which the human mind processes information for the
various tasks to which it is applied. This research uses controlled experiments and all the
normal scientific precautions and is, in this sense, trustworthy. Much of this research
points to people not being "correct” processors of statistical evidence whenever they do
not consciously apply the rules of probability calculus (also called the "normative’
procedure). Thisis not a conclusive research result: both new experiments and re-
interpretations of previous ones have been shown to counter some of the more pessimistic
conclusions, and the opinions of scholars about the genera proficiency of humansin
intuitive statistical processing vary between optimism and pessimism. Another
consideration is, of course, that it is difficult to accept theories derived from small-sample
experiments as appropriate for humans at large, and for specific expertsin particular. On
the other hand, the theories supported by these experiments may be the best now available
about the functioning of experts minds aswell. At this stage of scientific knowledge, it
seems quite safe to conclude that a priori trust in the human ability to perform tasks of
intuitive statistical inference is unjustified: decisions should not be based on the
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judgement produced by a human in such atask unless proper scrutiny of the specifics (of
the expert and of the problem) supports trust in that individual judgement. In some cases
where engineering judgement has a crucia role, strong enough evidence for trust seems
normally to be missing.

In the following sections, | will first examine the concept of expertise, and in which sense
werely on it when relying on "engineering judgement”; then, in Section 3, | will list some
of the known biases and fallacies in human information processing and the ways they
may affect the task of engineering judgement for dependability assessments. In Section 4,
| will consider the modelling and assessment of expert judgement; in Section 5,
safeguards and precautions will be discussed.

2.  Requirementson the expert

2.1. Rolesof the expert engineer

The roles of an expert engineer in assessment (as opposed to rolesin design) may be
various. The expert may be called upon to state, e.g., one of the following opinions (or its
contrary):

- that the design methods used are appropriate for the task, based on the current
state of the art;

- that no unacceptable failure mechanism (design fault) isleft in the design;

- that a safety analysis does not contain dangerous commission errors (e.g., agate
of thewrong typein afault tree);

- that a safety analysis does not contain dangerous omissions (e.g., an input to an
OR gatein afault tree);

- that a certain value (or range of values) for an input parameter of a safety analysis,
e.g., the probability of a certain human error, isredlistic;

- that, based on the disparate evidence available about a system, a certain globa
judgement is appropriate, e.g., that a system is acceptable for use; or that the
probability of failures of a certain type isless than an established threshold (thisis
the case of most interest for this paper).

Interestingly, all these cases contain an element of probabilistic reasoning. The first three
tasks can in part be discharged by applying quasi-algorithmic tasks of proof, list-checking
and such, but of course a probabilistic element is present in answering questions like
"How confident am | that | did not omit any element in the checklist?'. This probabilistic
element ismore explicit in the last three itemsin the list. When pruning afault tree to
discard events that would make it unmanageably complex, one has to choose events whose
total probability islow enough not to cause excessive error: experts may do this by
extrapolating from their own (more or less direct) knowledge of past eventsin more or
less similar circumstances. This operation is a sub-case of the next one, estimating the
value of a probabilistic parameter. Last, the combination of disparate evidenceisthe
archetypal judgement operation. Thereisaset of inputs that relate to the issue at hand
(e.g., whether the operation of a plant should be authorised). These input data are evidence
for or against the issuance of an authorisation. The combination of evidenceistypicaly a
combination of causal (or deterministic) and probabilistic reasoning, where the |atter
seems to pose the more serious problems, while both contribute to the complexity of the
task. In therest of this paper, | will concentrate on the problems of intuitive statistical
inference: determining how much the knowledge of the past successes of adesign
organisation should contribute to the confidence in its last design, which branchesin a
fault tree are truly negligible in terms of contribution to afailure probability, etc. Diverse
tasks are involved: determining a correlation between two factors, estimating the
probability of an event, etc. The existing literature does cover such diversetasks. In
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Section 3, | will cursorily summarise interesting results, without going into much detail
regarding each task.

2.2. Thenature of expertise

The advantages of asking the opinions of experts rather than of "lay" people seem to be
twofold: i) experts know more facts about the problem of interest; and ii) experts are
accustomed to reasoning about these problems, and hence they will use the facts better.
Regarding this second presumed advantage, however, the current understanding of mental
processes seems to require some caution [Reason 1990].

Compared to non-experts, experts seem to exhibit improved performance in skill-based
and rule-based tasks (the "lower" levels of activity, where less conscious intellectual
activity isrequired; these are also the levels where errors are less frequent and more easily
detected by the author of the error) [Reason 1990]. In knowledge-based tasks (i.e., those
requiring "higher-level” intellectua activity of conscioudy analysing the problem) experts
seem to make the same kinds of mistakes as non-experts. Experts enjoy two main
advantages, in comparison with non-experts: i) they possess large collections of problem-
solving rules, stored in their minds, which are appropriate for the class of problems where
they are expert; and ii) they are able to see an individual problem in more abstract terms,
obtaining a mental model more appropriate than that of alay person for finding keysto
problem-solving rules. It can therefore be expected that an expert will apply knowledge-
based activity less often than alay person, and the expert's errors, if any, will consistin
applying awell-learned rule to the wrong situation. The question arises here of which
tasks, among those del egated to "engineering judgement”, are such that experts may be
expected to be highly reliable in performing them.

Aswe have seen, experts may be used to apply well-defined (to alarge extent procedural)
skillsto data (e.g., predict the behaviour of an electrical circuit from acircuit diagram, or
build a probabilistic model of acertain kind of accident), or to apply generic "judgement”
to insufficient data. In the former case, we worry mostly about possible mistakesin
applying a correct procedure: we should be concerned with an organisation of the job that
does not require excessive mental work before an intermediate result is recorded, abundant
chances to double-check the procedure used, aphysical presentation of the datawhichis
not stress- or error-inducing, etc.

For the task of finding errorsin adesign or analysis we can probably expect expertsto be
fairly reliable: they probably proceed (more or less consciously) by looking for cues
pointing to the existence of aflaw, and humans are good at using cues. Of course, flaws
that the expert has not encountered before may go unnoticed. This problem may be
overcome by adding to the error-seeking a more systematic analysis of the design or
argument: the simple systematic application of a known process (like mathematical
deduction) may suffice. However, thisis not usualy sufficient for checking a complex
design or argument: complexity itself getsin the way, and, furthermore, errors of omission
may make the procedure ineffective by undermining the very axioms of the reasoning
process. Errors of omission are difficult to find (afault-tree exampleisin [Slovic et a.
1982]), and yet many arguments must depend on exhaustive enumeration, e.g., of failure
casesin afault tree, or smply of the set of checksto be run on adesign. An expert's
judgement that the fault tree is complete probably depends on the expert's previous
experience about the appearance of complete (or incomplete) fault treesfor smilar
problems, the typical omissions and the lines of thought which led to finding them: unless
the expert notices "patterns of omission" that he/she has learned to recognise, some kind
of datistical inference isagain required.

For most of the tasksjust discussed, there isthus abasis for trusting expert engineersto
be effective at them, thanks to peculiarly human information-processing skills, although
not completely reliable in terms of doing a complete job. Tasks like conjecturing the
probabilities of rare events, or drawing inferences about and from the correlations among
factorsin our experience, are definitely not in this category. Many tasks in which experts
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excel seem to rely on a powerful pattern-matching mechanism which can pick up the right
cuesin the presentation of the problem, to trigger appropriate rules of reasoning or
behaviour. To trust a human expert in atask of intuitive statistical inference, we should
instead postulate an ability to automatically count and classify events (when an expert is
asked to estimate probabilities or correlations of events that he/she has observed in the
past), and to apply (or emulate) probabilistic decision algorithms (when the expert is
asked to combine evidence into a synthetic assessment).

Aswe shall see, thereis very good evidence that our mental mechanismsfor dealing with
probabilities (or the intuitive concepts that we conscioudly represent as probabilities) are
liable to serious errors, even in comparatively frequent situations: the mechanisms
themselves do not follow the formal calculus of probability; they are apparently a
reasonable approximation of it as far as producing everyday decisions which are either
correct or not catastrophically wrong, but not necessarily for producing the kind of
judgement that we are considering here. Natural selection, one may consider, must have
been most effective in iminating strongly disadvantageous behaviour, but not at fine-
tuning the capability for optimal decisions (which can give only marginal advantagein a
world where most decisions have to be taken on the basis of very uncertain data anyway).

2.3. Expertisein engineering judgement

Expertise seemsto consist in having developed the ability for intuitive solutions of
problems, i.e., an acquaintance with the patterns of evidence in a class of problem. In an
expert, observing anew problem in the class prompts areliable process of pattern
recognition leading to the recall of the right solution or solution rule. The question arises
of how one can become an expert in intuitive engineering judgement? about dependability
issues. There seem to be some necessary conditions for this kind of expertiseto be
obtained:

- aprevious exposure to a sufficiently large sample of problems from the class of
interest: the number of problems observed must be large enough both to activate
the human mechanisms for "learning from experience”, and for providing these
mechanisms with a presumably fair sasmple of the real population, and thislatter
condition seems to be the more difficult to meet of the two;

- an exposure to thelr correct solutions (or at least an indication of the errors made
by the apprentice expert). There are different ways for apprentices to learn whether
thelr solutions are correct. The intuition of how an engineering design should be
structured to produce the desired result is checked by analysing or testing the
completed design, arather reliable method. An intuition of which design is best for
its purpose is more difficult to check, asin many casesit would require an ability
to generate and check [a classification of] the relevant population of aternate
designs. A politician or a chess player may learn both through the positive and
negative reinforcement of victories and defeats (which may, however, be deceptive),
and through an anaytical comparison between the intended and the obtained
resultsin light of the existing external influences. In the case of dependability
predictions, the feedback must come from the observed outcome exhibiting
statistical properties matching the prediction; but fully informative feedback may
be difficult to obtain, e.g., in the case of ng the probability of asingle, non-
repeatable event;

- the availability of information about these problemsthat is sufficiently relevant to a
solution. If the evidence available is always very weak, it seemsthat agood

1 Asdigtinct from expertsin statistical inference. These, of course, are aresource for drawing
inference in those cases where the evidence and the inference process are made explicit. The expert
engineers themselves could become experts in statistical inference, but this is not a common situation.
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apprentice expert will only learn to correctly derive weak predictions, which will
not be of much use.

So, to trust an instance of engineering judgement of the form (familiar in the debate about
safety-critical software) "this product islikely to have a probability of failing of less than
109 per hour" on the basis of the utterer's expertise would seem to require that the latter
has observed a number of similar products which convincingly exhibited that probability
of failure. So, we will not find expertise avery solid basis for trusting such a statement.
What isworse, even trusting less extreme opinions may be difficult, if these are the results
of intuitive combination of evidence. Imagine an expert predicting an MTTF of one year;
he/she may have observed many systemswith an MTTF of one year, and is assimilating
the product under examination to one of those, ingtinctively using cues in the product's
structure and environment: how do we know that these cues are gppropriate (that the
expert isusing agood sample for hig’her prediction)? However, the one-year MTTF can
be demonstrated viarigorous procedures, which make the intuitive judgement process less
necessary. It iswhen we ask for statements which are difficult to support by empirical
evidence and rigorous reasoning that we give intuitive engineering judgement a crucia
role. When dealing with judgements of very high dependability, it is more reasonable to
trust, on the basis of expertise, someone who claimsthat a system will not be asreliable as
required, asthere is a better chance that the person has indeed observed project failures of
thiskind. Y et another problem is whether the expert has formed higher pattern-
recognition habits on the basis of valid evidence. It may well be that the evidence
practicaly available has very little predictive value. There are at |east two testsfor
recognising this danger: i) has the expert usually been right, where "usualy" must be
interpreted in terms of statistical significance (and difficult questions still remain, like"ls
an expert on safety of electro-mechanical equipment still trustworthy when judging
software-based equipment?'), and ii) even if that is not the case, is he/she able to explain
his/her use of the evidence, so that the correctness of the inference processes may be
checked independently?

3. Weaknesses in human judgement

| now list some of the mechanisms that seem to determine erroneous judgement. This
chapter is mostly based on [Kahnemann et a. 1982]. The reader should be aware that my
selection of sources thus favoursthe "pessimistic” view of human abilities. In the
presence of very scattered evidence which does not cover the sets of tasks and experts that
one hasto dea with, one should, in my opinion, consider these experimental results as
useful in two ways (similar arguments are in [Ayton 1993]). First, they are
counterexamples refuting the conjecture that human intuitive inference can generaly be
trusted: hence, to decide how much trust to giveit in anindividua case, one must consider
the details of that specific case. The second use of these resultsis as pointers to observed
fallacies and their possible causes and remedies: even if the pessmistic results of a
specific experiment did not apply to human performance in genera (because they are the
result of unrepresentative peculiarities of that experimental set-up), the decision maker
should be aware of the risk of stating an individual task for the expert in away that
reproduces those peculiarities and is likely to cause the same fallacies.

3.1. Heuristicsand common biases

Some heuristics that seem to predominate in people's application of "intuitive" inference
are

- Representativeness. The perceived probability that a given object belongsto a
certain classis highly affected by how well the object seemsto "represent” the
class. This heuristic comes into play whenever descriptive evidence is given about
the object: it can apparently be "triggered” (made to prevail over other heuristics)
smply by giving the experimental subject irrelevant but abundant evidence about
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the object. This heuristic is of course insensitive to the a priori probability of the
event of interest (proportion of the general population that belongs in the class of
interest: thisleadsin particular to the common falacy of non-regressive
predictions, which will be discussed in more detail later), to the size of samples (if
the task isto predict the outcome of some sampling process on the genera
population), and to the predictive value of the information provided about the
object (i.e., both the probability of the information being true and its correlation
with the factor to be predicted). It prompts people to put more trust in sets of
information which appear to be more consistent, including cases where the
consistent set is simply made of variables known a priori to be correlated. It
causes the layman to believe that a heads-and-tails sequence (from flipping a coin)
like HTHTTH ismore likely (because it "looks more random") than HHHTTT.

- Availability. The frequency or probability of an event isjudged by the ease of
imagining instances of it. This approximates "true" probability in many rea-life
cases, but often does not. Causes of bias may be the differencesin ease of
retrieving different instances from memory: salience (the probability of acar crash
appears higher right after we have seen one), familiarity (after being told alist of
names of celebrities, we will tend to base our estimate of how many were males
only on the better-known among them, whom we can recall more easily); and the
relative ease of different search modes (we tend to believe that a given consonant is
more likely to appear in the first than in the third position in arandom English
word, for any consonant, including those for which the reverseistrue, because it's
easier to search for words by their initial than by their third |etter). Other biases
may come from the ease of imagining representative cases: naive subjects estimate
that there are more combinations of 2 items out of 10 than of 8 items out of the
same 10, and, in general, scenarios which are difficult to construct may be
neglected (and scenarios that are easy to imagine can be overestimated) in
predicting probabilities. Y et another effect tends to confirm the subjects own pre-
conceived theories about correlations of factors, as the cases in which the
supposedly correlated factors did coexist are easier to recall than the others.

- Adjustment and anchoring. In producing estimates of numerical values, people
often produce first an initial estimate, based on some piece of the evidence
available, and then adjust it using the remaining evidence. However, this
adjustment process seems to be over-conservative: people are unwilling to change
theinitial estimate by much. So, procedures with different starting pointsyield
different estimates, each biased towardsitsinitial estimate. Among the effects of
this heuristics are the fact that people tend to overestimate the probability of events
of theform"A and B", and underestimate that of "A or B", when they start from
the probability of A and then correct to take into account that of B. Another
interesting effect is observed in the dicitation of subjective probability
distributions. Asking a subject to state the values of given percentiles of a
distribution usually produces a narrower distribution (as subjects operate by
corrections from their perceived median or mean values) than asking for the
probabilities that given vaues of the random variable are exceeded in an
experiment, although the two sets of questions are equivaent in theory.

The above observations apply mostly to "lay" people, the subjects of most controlled
studies?. Experiments on experts are obviously more difficult and expensive. However,
this body of research provides conjectures on the functioning of experts minds as well,
insofar asit indicates shortcuts which the human mind uses to "approximate” those tasks
that would be too taxing if performed rigoroudy. Furthermore, thereis disquieting
evidence of falaciesin the reasoning of real-world experts:

2 There is acommon joke to the effect that scientists have by now reached a thorough
understanding of the operation of the minds of Psychology undergraduate students.
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in terms of results (predictions). A wide body of research (summarised for
instance in [Goldberg 1986]) has shown that physicians clinical judgement
produced results which were in many studies inconsistent between physicians,
often invalid, not improving with the physicians experience nor with the amount of
information provided to them. Moving from medicine and psychology to the more
rigorousdly based disciplines of engineering or physics, one would expect good
judgement to be easier. Y et, scattered reports and anecdotes include: a
preposterous estimate of the safety of the Therac-25 cancer-treatment machine,
which killed afew patients due to unsound design [Leveson and Turner 1992]; in
the history of modern physics, the values attributed to physical constants have
oscillated, with corrections repeatedly exceeding the confidence bounds previously
believed to apply to the "best current” estimates [Henrion and Fischhoff 1986];
and in the experiment [Hynes and Vanmarcke 1976] in which a number of expert
engineers were asked to predict how high an embankment could be built before it
collapsed, the predictions had abimodal distribution, with the actual collapse
occurring a a height somewhere in between, and outside the 95% confidence
limits estimated by the two groups; in an experiment on software engineers, the
subjects consistently believed they were more effective at finding software bugs by
testing the software than by inspecting it, while the experimental 1og showed the
opposite to be true [Basili and Green 1994];

in terms of the methods used to produce predictions. Thereis evidence of a"belief
in the law of small numbers' [Tversky and Kahneman 1982]: behaviour which
would berational if small samples could be trusted to represent faithfully the
statistical characteristics of the whole population. This tendency iskept in check in
all cases where standard statistical tests are applied, but not in others. For instance,
researchers (who had published in psychology journals) were observed to decide
the sample size for an experiment without appropriate consideration of the
likelihood that the experiment would produce insignificant results: a"believer in
the law of small numbers' would "gamble his research hypotheses on small
samples, without realising that the odds against him are unreasonably high”

[ Tversky and Kahneman 1982]. When an independent experiment supported the
results of a previous one, but with lower confidence, it was seen by many asa
failure to replicate the result, rather than as confirmation (as would be the case if
the data from the two experiments were pooled together). Likewise, there was an
excessive tendency, when confronted with two contrasting experimental results, to
look for causes of the difference, even when they were quite likely to be due solely
to sampling variations. Further, investigations among clinicians have shown trust
in discredited tests, based on a"normatively wrong" interpretation of their
persona experience. In other studies, clinical decisionsfollowing test results or
about administering tests were shown to violate any rational decision theory.

A general conclusion isthat numerous statistical fallacies come naturally to people,
including experts, when they are not conscioudly applying the rules of statistics. This may
even be true when experts are reasoning informally about data which are themselves the
result of controlled experiments or of formal statistical analyses!

In more detail, some observed phenomena are:

people are quite good at building theories to explain their observations, but not as
good at refuting or improving them; we tend to have overconfidence in our
theories, and these then affect our interpretation of new data so as to become self-
reinforcing;

the propensity to theory-building, and other factors, lead us not only to predicting
more than is warranted by the data but al so to misdiagnosing new situations on the
basis of our theories;
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- we tend to attribute eventsto specia characteristics of the involved individuals (or
other factorsinindividual cases) rather than systematic, randomly operating
influences;

- we suffer from "hindsight bias', so that we believe past events to have been more
predictable than they were;

- we often reason about rare eventsviaa"smulation” heurigtic, i.e., by building
scenarios for the rare events, causing significant errorsin judgement;

- our judgement is affected (either through our recall of information or our
interpretation of it) by the focus of our attention; e.qg., especialy vivid evidenceis
given more weight than is appropriate.

Much of the experimental evidenceis still subject to different interpretations. Deviations
from "normative", "rational” inference behaviour in laboratory experiments may often be
attributed to lack of understanding, by the experimenters, of which task the subjects were
really performing (e.g., due to the subjects smply not being familiar with statistical jargon
or with problems of one-shot, optimal judgement on alimited set of evidence). The phase
in research when many results were published showing very poor human judgement were
followed by a stage of "revisionist” research trying to better bound the resulting
pessimism, in view of the apparent general success of humans in many tasks.
([dungermann 1986] contains a thorough discussion of the state of the debate at the time
of its publication. [McClelland and Bolger 1994] surveys some of the models of intuitive
probabilistic reasoning which have evolved to account for the existing body of diverse
experimental results).

To understand the effects of this uncertainty of scientific opinion on the problems
addressed here, | will discuss briefly one of the strongest "optimistic” views [ Gigerenzer
1994], which maintains that humans are actually fairly well equipped for dealing with
statistics in a frequentist fashion: the fallacies discovered in the "heuristics and biases'
line of research would be mostly due to the experimenters attempts to force the problems
and the subjects answersinto a Bayesian, single-event-oriented view of probability, so as
to determine both misunderstandings by the subjects and fallacies in the researchers
interpretation of results. Thisargument also points out that collecting statistics (counting
events) isanatural task, so natural selection would have prepared usfor it (though not for
applying Bayesian probabilistic calculus). The experimental results show that many
people will be perfectly able to reason about frequencies of an event over a(real or
hypothetical) population, and yet be totally inept at solving equivalent problems stated in
terms of probability. The archetypal problem in which this appliesisthat of judging the
probability that agiven patient has a disease, after the patient tested positive on agiven test,
knowing the false positive and negative rates for the test and the base rate of the disease
over the population. People may ignore the base rate, and thus give a completely wrong
answer, when these data are presented as probabilities, but answer correctly when they are
given as numbers of events (e.g., the number of people with the disease who test negative)
over apopulation. This observation points to away for helping people to reason
probabilistically. However, many of the dangers of which we should be wary when using
the results of engineering judgement do not seem to fall into this category of
misunderstanding probabilistic language. For instance, nature may well have equipped us
with afairly good event-counting mechanism, reasonably effective in most everyday
situations, and yet the availability bias may often affect this mechanism, as shown by
experiments.

Another problem with existing research isthat very little has been observed first-hand
about the behaviour of practitioners of different disciplines, except that wide variations
have been observed between the few categories that have been studied. However, knowing
which problems have been observed is obvioudly useful.
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The following sections consider these problemsin more detail. For each identified
problem, | have added examples of tasks in dependability assessment that it can be
conjectured to affect.

3.2. Building, improving, refuting theories

In interpreting our observations, we often seem to be overly eager to build explanatory
theories whereby every detail in the observed data is the effect of a natural law rather than
of chance. So, we can draw strong beliefs about correlation and causation from
insignificant observed samples. Another effect isan inability to consider the "regression”
effect whereby, in any series of observations, any extreme vaueislikely to be followed by
another which is closer to the mean. In an example study of real-life experts, experienced
instructors (in aflight school) were shown to believe that praising a student for agood
performance leads to poorer performance the next time. In redlity, the investigators were
able to explain the variation in performance as "noise" around a slow learning curve,
where each outstanding performance would naturally tend to be followed by less good
ones (which were then falsely blamed on the praise that followed the better performance).
This effect may well explain widespread beliefs in the value of punishment towards
improving people's performance [ Kahneman and Tversky 1982b].

Thereis aso some evidence that, besides building theories on shaky bases, we tend to
stick to them against evidence. Clinicians who had been observed to believe in "illusory
correlations’ between some test results and some clinical conditions (that is, they failed to
take into account those observations that did not support the theory of a certain
correlation) showed great difficulty in refuting the theory when prompted to re-examine
the data and even when given faked data showing negative correlation.

A hypothetical story of unwarranted theories could be as follows.

1. We observe that a certain design, obtained by using a specific design method M,
contains the defect D. We conjecture that the use of M may make it more likely for
designersto err producing defect D. This conjecture is perfectly legitimate. To become a
respectable theory it would need either a causal explanation, or an analysis of a sample of
the four categories of designs (those obtained using M and containing D, those not
obtained with M and showing D, etc.) showing a significant correlation. However, we are
likely to start applying the theory as soon as we have seen afew casesinthe"M and D"
category, without considering, e.g., whether the "non M and D" case is frequent.

2. Aswe examine new designs, cases of "M and D" or "not M and not D" naturally
reinforce our belief in the theory. For cases of "not M and D" or "M and not D" we may
be ableto: i) consider that method M was applied with some variation, or the observed
defect does not really belong in class D; or ii) observe that the design problem (or the
design team, or any other accompanying circumstance) had a certain peculiarity,
explaining why the general law did not apply in this case3; or iii) think that this
information represents a chance effect. All these procedures can be legitimately applied, if
subject to explicit scrutiny, but if they are instead applied semi-conscioudly by our built-in
mental mechanisms for "learning from experience’, they are likely to reinforce baseless
theories.

Furthermore, in many real-life decision problems we do not have the luxury of collecting
uncensored samples. " Sdlf-fulfilling prophecies' are but one example. If we decide not to
adopt M because it may cause D, and then observe that the prevalence of D in new

3 Thereis actually some evidence [Goldberg 1986] that asking a subject to formulate such
"exception rules' (which would explain an observed departure from the theory) reinforces the subject's
belief in the theory, without further critical analysis.
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projects does not increase, we have no data to confirm or refute our theory (though this
lack of datamay well strengthen our belief in the theory).4

When we do use new evidence to update a theory, and do take it into account, we seem
often to be over-conservative: the corrections we make, e.g., in estimating the probability
of an event, are smaller than prescribed by Bayes theorem. Last, although one might
expect expertsin adiscipline to be especidly able to avoid fallaciesin judgement in their
field, thereis aso reason to expect that in some cases they may be more subject than "lay-
persons' to the "confirmation bias' discussed above [Ayton 1992].

3.3. Overconfidence

Another important phenomenon is overconfidence. Generally speaking, peopl€e's
confidence in their judgement tends to be excessive: they will describetheir beliefsin
terms of distributions that are too narrow. Such predictions are not "well calibrated”. If a
"well-calibrated" person utters statements like "l am x % confident in prediction X", it
should turn out that in the class of all predictions for which the person's confidence was x,
precisely x % of these are trued.

Known experimental evidenceisimpressivein terms of the overconfidence biasthat it has
demonstrated, but it is difficult to judge its representativeness of expert performancein
real-world problems. More importantly, it is quite difficult to infer expectations about any
given expert's performance from research results. However, overconfidence has been
observed in predictions of failure rates [Chhibber et al. 1992]. So, an expert's prediction
of anarrowly distributed time to first failure, for instance, may follow from evidence
which would warrant amuch flatter, less satisfactory subjective distribution with the same
mean.

3.4. Conditional probabilitiesin causal and diagnostic roles

In estimating a conditional probability, P(X|D) (event X conditioned on data D), people
have been observed to be much more confident in predictions that follow the cause-effect
chain than in inference from effect to cause ("causal inference" is more natural than
"diagnostic inference"). For instance, people are more confident in inferring a son's height
from his father's than vice versa, athough both heights are correctly perceived to have the
same distribution (and if P(A)=P(B), then P(A|B)=P(B|A)). Between two indicators of a
third variable, people seem to predict more confidently on the basis of the indicator that is
perceived as affecting the variable more strongly in a causal sense.

4 Another known phenomenon of theory-building is the difficulty of "taking afresh look" at data
after one hasfirst interpreted them. Outside the statistical domain, a striking exampleis the likelihood
that if a plant operator, confronted with an unexpected emergency situation, initially forms awrong
diagnosis (awrong mental scenario of what is happening), he may be unable to revise the basic
assumptions of this diagnosis on the basis of new evidence, choosing instead to revise details (e.g., by
assuming that the new puzzling evidence comes from faulty sensors). A "fresh view" is needed to produce
anew diagnosis that better fits the whole set of data, but may only come from a person who did not form
the first diagnosis, e.g. an operator of the next shift.

5 In avariation of this experiment, one would ask many subjects to answer "yes or no" questions
(the answers to which are known to the experimenter), each subject adding an estimate of his/her degree of
belief in the correctness of hislher answer. By then calculating the fraction of respondents who were
correct in answers for which they had stated a same degree of confidence, and comparing this fraction with
the stated degree of confidence one can evaluate whether the sample of subjectsis collectively well
caibrated.
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3.5. Theillusion of control

It has been found that most people tend to rate their probabilities of incurring many types
of accidents (e.g. driving accidents) aslower than average. Of course some of them may
be right, but on the whole thisis abadly uncalibrated prediction.

This can be attributed to a number of causes: one's apparent immunity so far; one's
apparent prowess in avoiding accidents; the ability to identify the mistakes that led to other
people's accidents, which in hindsight seem easy to avoid; the general fact, in the end, that
we arein control, and this fact outweighs what we know about statistics for the generd
population. As anecdotal evidence that these mechanisms a so operate when we evaluate
design reliability, we can consider how frequently, after finding and fixing a program bug,
oneis (wrongly) convinced that the program is now correct.

Evidence like thisinvites us to be wary of accepting a developer's perception that the
"excellence" of his development process guarantees a certain level of accomplishment
[Hannaford et al. 1993]. Of course we do not know apriori that an individua statement of
thiskind is overoptimistic (some drivers are certainly better than average!), but we have no
apriori reason to trust it at face value. Likewise, if we fedl that a safety-critical program
should be coded in assembly language, we should probably double-check whether we are
overestimating the reliability advantage given by direct control on the low level code.

3.6. Causality

If we are naturally over-eager theory-builders, we should be wary of the way we proceed
from data to cause-effect chains. Many software engineering experts believethat it is
important to collect data about the software production process, so that organisations may
learn how to improve these processes. However, we may be prone to learning too much
from the data we have. Assume, for instance, that we observe the reliability growth
exhibited by a product during debugging. If we mark on the time axis the time some
change occurred in the devel opment organisation, and we perceive some changein the
pattern of failures after that point, we are likely to conjecture that @) the percelved change
in the pattern is an actual change, and b) the change in the organisation caused the change
in the failure pattern. Moreover, we are all too likely to treat this conjecture asavalid
theory, unless we explicitly submit it to rigorous tests.

3.7. Hindsight biases

When judging past events, people indeed behave according to the folk-psychology law
that "hindsight is 20/20". However, thisis not necessarily due to an ego-serving bias.
Rather, it may be ascribed to "creeping determinism” [Fischhoff 1982Db]: the tendency to
see aseries of events asalinear cause-and-effect chain rather than an accidental sequence.
When reviewing a sequence of events and decisions which ended in failure, we build a
theory that predicts what we already know to have been the final outcome; then, the
decisions which preceded it appear to have been wrong: we no longer recognise the dearth
of information, or the ambiguity of the information available, at the time decisons were
made.

Thisfallacy is seen by [Fischhoff 1982b], e.g., in professional historians, aswell asin
"lay" people. In the field of dependability, it may contribute to an excessive tendency to
blame accidents on "human error” when operators misdiagnose a situation, rather than
guestioning whether the design of systems or procedures was likely to cause awrong
diagnosis [Reason 1990]; the same "fundamental attribution problem", of imputing errors
to individual human defects rather than to error-prone situations and tasks, may lead to
wrong estimates of the likelihood of human error both in designing systemsand in
operating them. Last, thereis the problem [Reason 1990] of ad hoc solutions for
perceived dangerous scenarios and neglect of those scenarios that are not so easily
imagined. If a specific sequence of eventsisfound (by analysis or by observing an
incident/accident) that may cause an accident, the reaction of adesigner or decision maker

12



L. Strigini, "Engineering judgement in reliability and safety and its limits: what can we learn..."

may be to devise specific "patches’ to prevent or tolerate that specific scenario. If this
scenario was seen as an exception in a safety analysis indicating satisfactory safety, the
patch restores trust in the analysis. This response may be appropriate in asimple system
where the accident scenario in question is clearly one of the more probable ones.
However, if itisonly one of many, individually very unlikely accident scenarios,
eliminating it may be irrelevant or counterproductive (through side-effects of the design
patch on other unlikely scenarios).

3.8. Simulation heuristic for rare events

It seemslikely that when intuitively evauating the probability of arare event, we do so by
building mental scenarios, that is, plausible chains of events that would lead to the event of
interest. Our estimate of probability will grow with the ease of conjuring such scenarios
and with their number.

A dependability-related example may be the following. Checklists for discrete control
systems may include: check that the system's outputs vary as specified while we
systematically set to TRUE oneinput at atime, with the others kept at FALSE. This
procedure gives an illusion of completeness, but is obvioudy insufficient to determine that
the controller is defect-free. However, such atesting strategy is sometimes included
among the evidence of reliability without an estimate of how much it really proves, and
may be expected to lead to overly optimistic conclusions.

It may be noticed that building hypothetical scenariosis an indispensable mental tool for
exploring the space of possibilities, finding counterexamples for one's conjectures, and
building robust strategies. Once more, the problems arise from misuse of a useful tool.

3.9. Tricksof attention

The vividness of evidence has arelevant role in determining its effect on intuitive
judgement, possibly due to the "availability heuristic". Paired with the difficulty of
drawing statistical inference without explicitly applying the rules, this should probably
discourage the practice of presenting the raw results of software engineering experiments.
Such results should probably always be accompanied, and overshadowed, by explicit
indications of the conclusions that can justifiably be drawn from these results:
practitioners may otherwise be overly influenced by Statistically insignificant data, like
some extreme case observed in the sample. A similar warning probably applies to the use
of coverageindicators in software testing: 100 % success on a sample (test set) with

100 % coverage of program structure (however defined) may make us forget that a sample
(of the population of possible test cases) satisfying such coverage criteriais biased in an
unknown way.

Another problem which may be expected is similar to the observed phenomenon that, e.g.,
if adiscussion group includes only one woman among many men, sheis perceived by
observers as doing more of the discussion than she actually does. So, the parts of a
system which are most innovative, of most interest to the expert, or most subject to
controversy may be given an excessive weight in intuitive judgement. A common
discussion is whether the "most critical” part for the assessment of a complex systemis
the software, or the actuators, or whatever. While "most critica™ could be given arigorous
meaning and then the discussion could be led in scientific terms, one should guard against
the possibility that its intuitive perception biases the weights given by an expert to the
probabilities of different events.

3.10. Biasesfrom emotion rather than from heuristics

It isworth mentioning that other factors, besides those internal to the reasoning
mechanisms of the experts, may cause biases. An expert's prestige may be damaged by
admitting uncertainty, and this would lead to overconfident statements. For a medical

13



L. Strigini, "Engineering judgement in reliability and safety and its limits: what can we learn..."

doctor, high confidence in a positive prognosisimplies higher risk of a malpractice suit
than "correct” confidence. Such external causes of bias ought to be reduced.

Here it seems reasonable to consider that decisions regarding risks are made difficult by
their emotional overtones. If "engineering judgement” is required about the reliability of a
subsystem, the experts about the subsystem may know that this judgement is crucial in
deciding whether alarger system will kill people. They may then succumb to the common
reaction of denia of hazards, by neatly separating hazards in two well-separated classes:
some that are too probable, and hence should be eiminated or neutralised, and some that
are vanishingly improbable and can safely beignored. They will be likely to believe that
the hazardsin the two classes coincide with those that have been respectively avoided and
ignored in the actual design; otherwise, they would be in a severe conflict situation. So,
this defensive biasin judgement will automatically classify any system as practically
hazard-free.

Such considerations are relevant when expert judgement is used, and have been cited here
for completeness, but discussing them in detail is outside the scope of this paper.

4. Assessing expert judgement

4.1. Predictionsfrom past performance

To assess the trustworthiness of an expert's judgement (an individua statement of
prediction about a system of interest), one could start from the past predictions of the
same expert and how many of them turned out to be right. This method is available, e.g.,
for checking how good a meteorologist is, since his/her predictions can be checked every
day against reality. This"black-box" measurement of performance is more difficult when
dealing with predictions of very low probabilities. By considering the predictions of many
experts about many events, one could estimate some global goodness for all experts; but
nothing could be said about an individual prediction about an individual event, unlessthe
prediction is seen to fail dramatically. The controlled experiments which showed experts
to fail dramatically in prediction are areason for caution, but not a clear assessment. There
isnot , and there cannot be, any strong evidence of good judgement for small sets of
predictions about very rare events. And, of course, we are most interested in those
individua experts on whom we depend in each individual case, rather than in broad
categories. However, there we have even less hope. Suppose that an expert in the safety of
products of acertain class has analysed, during his’her career, twenty such products, and
judged that they al had a probability lower than € of causing an accident in the next 50
years. No one of these products has produced an accident yet. If some of them had, we
would probably trust the expert less than previously, of course (though how much less?
Analysts still disagree as to whether, or to what extent, the Three-Mile Iland incident
refuted or not the conclusions of the Reactor Safety Study). Unfortunately, the fact that no
accident has yet occurred isno great validation of the accuracy of this one expert.

Even when comparing predicted and actual outcomes givestoo little information, experts
can at least be assessed for (presumed) necessary conditions of good judgement, like
consistency (or "reliability”, asit is often called by psychologists). For instance, a good
judge should presumably judge consistently every time he/sheis presented with the same
evidence, irrespective of when thisis done and of which additional irrelevant evidence

6 Notice, however, that thisis not the easiest task when predictions are allowed to be in terms of
probabilities (40 % chance of rain tomorrow") rather than deterministic ("rain tomorrow™). The old
philosophical problem arises of defining the "true probability” of an individual, non-repeatable event. A
proposed indicator of [alikely necessary condition for] proficiency is"calibration” (cfr. footnote 5); but a
way ameteorologist could achieve "perfect” calibration is to predict the same probability of rain every
day, irrespective of observations, with the precaution of using, for the prediction, the average probability
over al the daysin the year.
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accompaniesit [Einhorn 1986]. Likewise, consistency with other judgesis often
considered a necessary condition. Predictions in terms of probabilities should presumably
satisfy the axioms of probabilities (although the language of probabilities may be
unnatural for many experts, so that alternative languages could be necessary, as discussed
in 5.2.2. One might even find judges who cannot state their beliefs consistently in terms
of any formalism for representing uncertainty, and yet prove good at predicting the actua
events - such experts may be found and their predictions used, if the events of interest are
common enough that the experts performance can be statistically measured). Last, one
might presume that unless an expert proves good at simple predictionsin his’her area of
expertise, he/she cannot be trusted for difficult predictions. So, in theory, judges could be
tested for all these necessary conditions of good judgement, on real but comparatively
easy tasks (like statistical inference about frequent dependability-related events) aswell as
on fictitious tasks related to their area of expertise.

4.2. Studying the judgement process

Rather than ng an expert as a black box, one can examine and challenge the mental
processes which produced the current prediction, to correct errors and reach a correct
prediction. Of course, the word "challenge" here does not imply any preconceived
hostility, but just the systematic scepticism which isinherent in the scientific attitude (the
experts themselves may be the "challengers"). So, we need to describe or model the
expert's reasoning. To be more precise, we can describe an expert's judgement process as
afunction from the multi-dimensiona space of evidence about the system (different
measures on the situation to be judged) to a dependability score for the system?’.

Models of experts can, however, be built at different "depths'. Any discussion of the
issuesinvolved is bound to repeat the debates within the Artificia Intelligence research
community, so | will only summarise the essential choices. At the two extremes, we may
try to reproduce:

- just the externally observed behaviour of a human expert. Such a"behavioural"
model is an input-output function from cues (evidence) to opinions, and we shall
judgeit based on how closely and reliably it reproduces (or predicts) the
behaviour of the expert. A behavioura modd israther "trained” (e.g., by linear
regression, or like aneura network) to mimic a human (experts who are not
consi stent with themselves, of course, pose problems both in training the model
and using its outputs), than "designed” to be amechanical expert. For human
experts who have proven good at their tasks, amodel like this could be both a
cheap substitute (in unimportant tasks!) and a synthetic "challenger”, telling them
when they seem to depart from their usual behaviour and prompting them to re-
examine thelr criteria. When no strong evidence exists that the experts are good,
reproducing their behaviour without understanding it may be risky; however,
building a behavioural model would alow oneto identify the important cues used
by experts and study whether they are appropriate for guiding judgement, evaluate
whether the weights used are correct, etc. All this knowledge could then help in
building amore "correct” model of how experts should behave;

- the behaviour of the expert when reasoning correctly (or, how experts should
behave). Such a"rational" model describes aformally defensible chain of
inference and deduction. When arational model disagrees with an expert, one can,
in theory, check the model's argument, and i) find logical flaws (bugsin the

7 We could also model an expert who is not consistent with himself - whose reactions to the same
set of inputs vary - by afunction from the space of evidence to adistribution of scores; but when we are
interested in synthesising a"good" expert, who is supposedly consistent, we do not need this
complication.
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model) or ii) disagree on the premises used in the argument, or iii) if neither of
these previous cases occurs, conclude that the human expert iswrong.

Intermediate levels of "depth" are possible, where some part of the algorithmsin the
model emulate logical processes and some simply mimic observable behaviour. And, of
course, one can instead aim at modelling the "real” operation of the mind or brain, with its
heuristics and biases [Reason 1990], an endeavour which, if successful, should offer a
model comparable for trustworthiness to a behavioural model.

Linear models (where the mapping from the multi-dimensional evidence to the judgement
isalinear function of the various measures used as evidence) are rather popular, and thus
deserve a brief comment. Of course, many rationa decision algorithms are non-linear. A
well-behaved function can often be approximated by alinear function only in the
immediate vicinity of a given point in the domain space. So, alinear model with weights
that are adjusted depending on the subset of the input space whereit is applied may be
appropriate. In simpler terms, the algorithm becomes: first check that you are in the
subspace X, then apply the linear model Mx. To know whether thisisareliable
procedure, we should first find atrue model of the agorithm we want, and only then we
can look for suitable approximations (in practice, of course, the discovery of alinear
statistical relationship may also be a stage on the route towards a true model). It has,
however, been observed that linear models tend, in many fields, to outperform the
individual experts who "trained" them, presumably because they capture the essence of the
expert's behaviour but apply it more consistently than humans. A more complete
explanation [Dawes 1982] is that in generd linear models, used in problems of prediction
with great inherent uncertainty (that is, where predictions are often wrong, but it is difficult
to do any better), are very robust with respect to the weights used, provided that their signs
areright. In essence, these models smply capture which cues reinforce and which weaken
the belief of the expert.

4.3. Reasonableness checks and diversity

It is often possible to apply different methods of reasoning to a problem and compare
thelr results, or check whether the consequences of a stated opinion are all reasonable if
compared with independent evidence. Such checks may also allow one to spot errors and
improve previous conclusions, and will be considered again in the next section. A very
common form of diversity isthat of employing more than one expert. When several
opinions are available, consstency between them is often considered a necessary
condition for correctness [Einhorn 1986]; the problem with thisis that, with difficult and
controversia issues, disagreement is normal, and there is no smple method (say, majority
vote) for deciding who isright. Furthermore, consensus in the conclusionsis hardly a
guarantee of correctnessin difficult problems, unless the methods used are also
scrutinised. So, disagreement can be used at least as, and probably just as, an indication
that athorough revision of the evidence and inferences used is necessary.

5. Remedies

5.1. Generalities

If one hasto use an expert'sinformal judgement as abasisfor a safety-related decision, at
least two questions are appropriate: how good (trustworthy) isthis person's judgement,
and what precautions can be taken to make it as good as possible. The former question
seems very difficult to answer, as discussed above. We have very little reason for trusting
our individua expert as an intuitive judge, and we have good evidence that other experts
(or expertsin general) are prone to well-known fallacies.

This prompts us to be cautious. Moreover, we know that the current beliefs about how the
mind works lend little support to the hope that it mimics a perfect scientist's conscious
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thought processes. This, at leat, isa clear indication: the tool of intuitive judgement is not
perfectly fit for its purpose. Unfortunately, there are tasks for which we have no other tool,
and we must use all possible precautionsto useit at its best. We will not necessarily,
through these precautions, acquire a knowledge of how good the expert is; but we will
obtain a better judgement than we would without those precautions. One may observe the
similarity with the problem of safety itself: there are waysto improveit, but beyond a
certain level of safety we no longer know how much (or even whether) we gain by
applying these methods.

Thefirst remedy is of course to substitute, whenever possible, formal scientific reasoning
for the expert's intuitive assessment. This usually calls for the expertsto be ableto list the
factsthey know, the inferences they draw from them and the deductive rules they use
based on the known laws governing the behaviour of the system to be judged, and the way
they then build their conclusions. An independent assessor (or the expert himself, of
course) can then double-check all these individual items, represent the expert's reasoning
(or the way the expert should have reasoned) in arigorous form and subject it to formal
verification and if necessary to corrections.

All this should be done when possible, or rather when feasible, given the time, money and
personne available to the decision maker, and the limits to the complexity that any human
mind can master. In any case, reducing the area where intuitive judgement is needed, so
that it isless critical and/or more reliable, and improving intuitive judgement itself, are all
useful steps. The literature suggests means towards this end. A decision maker who is
conscious of the problem of experts falibility can seek meansto:

- change the experts tasks to make them less error-prone;

- change the experts tasks to make them more amenable to anaysis;

- help the experts in detailing their evidence, deductions and inferences;
- help the expertsin finding and correcting fallacies in their reasoning;
- make the best use of the availability of multiple experts.

In the rest of this section | enumerate some plausible means for improving the results of
engineering judgement. Table 1 isan attempt to summarise some known risks and
remedies. Aswill be noticed, and will appear from the following discussion, the remedies
overlap both in terms of which problems they may attenuate and in which cases they
should be applied. A few of these remedies are simple prescriptions against specific fal-
lacies, easy to apply mechanically (e.g., "use odds rather than probabilities"), which are,
however, derived mostly from laboratory experiments, and might well be ineffectivein a
specific case of interest. Towards the bottom of the table | have collected the broader-
scope precautions, amounting to principles of good scientific reasoning. These should
always be used, but what their application amountsto in practice is determined by the
details of each case, and their effectiveness depends on the skill and competence of the
people involved.
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T ask

Origin of mistakes

Possible precautions or remedies

[Producing from own
experience a statement of
probability about an event

Avallability bias,
effects of attention

Separate the task of enumerating
relevant events from that of extracting
statistical statements

"Producing from experience

astatements of correlation

[lusory correlations

Formalise task, tests of significance

[Stating subjective
probability distributions

Overconfidence

Ask about probabilities of ranges of
values rather than percentiles;

use frequentist, not Bayesian
framework

Updating own beliefs with
new evidence

Conservative updating
"anchoring"

Use odds rather than probabilities
(but see Note 8)

Predicting probability of
event by combining case-
specific evidence with
information about the
genera population

Excessve welght to
case-specific evidence
(neglect of base rate)

Formalise procedure;

make the subject sample the
population ("experience the base
rate") rather than being told what the
baserateis

[Deriving a statement of
probability by combining
probabilistic statements

Difficulties with the
caculus of probability

Formalise application of probability
calculus; state problem in terms of
frequencies of events

"Producing a Statement of
probability for an unlikely
or implausible event

Use of scenario-
building heuristics

Look for alternative scenarios;
formalise difference between
counting scenarios and stating
probabilities

Any tasks

Problem complexity:
expert uses heuristics
instead of probabilis-

Decompose task into smpler
subtasks

tic reasoning

Misunderstanding of | Clarity questions;

guestion provide dternate formulations
[Expert hasdifficulty | AsSist expert in stating knowledge in

expressing knowledge
in terms of
probabilities

terms perceived as more appropriate,
then re-state it into rigorous
(probabilistic or other) terms

Any

Reasonabl eness checks: show the
conseguences of the expert's state-
ment in different terms or on diverse
aspects of problem;

make the reasoning of the expert
explicit and formal

Any shortcoming of

Provide ass stance, forewarning of

individual expert problems, feedback, training;
change the experts; evaluate error and
recalibrate judgement;
make decisions robust with respect to
judgement errors
Table 1
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5.2. Elicitation of judgement

5.2.1. Formalism, asking the right questions

In debates in dependability assessment, one can observe some simple but common
problems which cannot but detract from the reliability of judgement.

Simply defining the questions asked with sufficient rigour may make abig differencein
the ability of people to judge properly. [Chhibber et a. 1992] lists common mistakes, like
reasoning about failure rates without specifying for which operating conditions, so that
guestions and statements are interpreted inconsistently by different experts or at different
stages of a study. In the software field, it is still common to have arguments about
software testing in which the purposes of detecting faults and of estimating reliability, and
the meaning of counts of faultsin the product and of failures over time, are confused.

Animportant issue seemsto be, smply, whether the question asked is appropriate. For
instance, a specialist may not be qualified to state that a system has a certain probability of
failure, but may be able to argue rigoroudly that the system is to be considered more
reliable than another system, based on a sound model of the structures of the two systems
and known reliability data. Now, if the structure of a safety case requires, tofill it,
statements that the experts cannot reliably produce, the experts may be unable to recognise
the problem. It seems that the safety analyst must explicitly investigate which questions
the avail able engineers can answer more reliably, before settling on the final structure of a
safety case.

5.2.2. Asking questions in the right terms; changing the formalism for
representing uncertainty

Intuitive judgement is affected by how a question is posed (different forms of the question
elicit inconsistent answers). Many instances of poor judgement by experimental subjects
seem to arise from the fact that the chosen notations for the statements or measures of
interest are not familiar or intuitive for the subjects. For instance, there is some evidence
that:

- asking people explicitly for subjective percentile values of adistribution makes
them more prone to the "anchoring” problem (leading to a narrow distribution
around the median or mean, used as an "anchor") than asking for the probability
that each in a series of values of the random variable will be exceeded (although of
course the two sets of questions are formally equivalent);

- changing the question posed from an absol ute evaluation of some measure to
ranking of the measures of appropriate different objects can improve the
consistency of the answers [Anderson 1986];

- asking questions in frequentist terms ("how many times would the event happenin
ahypothetical sample of 100 similar Situations?"') rather than in Bayesian, single-
event probability terms ("what is the probability of this event in the situation at
hand?") may avoid those mistakes which are due to the unfamiliar nature of the
latter formulation [Gigerenzer 1994]8.

More considerations are found in the literature about formalisms for representing
uncertainty (Bayesian vs,, e.g., Shafer-Dempster or fuzzy logic. Surveysare found e.g. in
[Hollnagel 1989; Wright and Cai 1994 Ng and Abramson 1990; Saffiotti et al. 1992]).
However, al the recommendations above share the property that they allow the expert to

8 However, which form of questions are best at eliciting correct answers may well very between
groups of people. form instance, [Bolger and Wright 1994] points out that asking for statementsin terms
of odds rather than probabilities ("4 to 1" rather than "0.8" or "80 %") has been shown in some
experiment to reduce certain biases, while other experiment showed the opposite to be true.
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produce statements that make as much sense as possible to him/her in intuitive terms, and
still have a clear and non-misleading formal meaning in a probabilistic context.

Another, related consideration is that many experimental subjects (lay or expert) may
"fail" atest for probabilistic reasoning for the "legitimate" reason that they are not in fact
solving the given problem by a probabilistic strategy but rather by a"knowledge-based”
strategy [Beach and Braun 1994]. It seems that the kind of strategy chosen is affected by
cuesin the presentation of the problem (evident elements of chance and repeatability
would cause one to favour probabilistic reasoning). [Curlo and Strudler 1993] claims
(based on experimental results) that people use "causal” reasoning not only to integrate
but also to override statistical reasoning®. We should derive two consequences from these
observations. Firgt, if we wish an expert to reason probabilistically, we should present the
problem so asto prompt that style of reasoning. More importantly, we may fear that we
may thus cause the experts to neglect some of the knowledge which they would usein
"non-probabilistic’ reasoning: we should then strive to obtain this knowledge, in
whichever form the experts can stateit, and useit. However, this cannot amount to
accepting the experts opinion without scrutiny: we also wish the conclusions derived from
this knowledge to be sound. We need then to re-express the derivation process (and thus
the knowledge itself) in arigorous formalism which can be subject to proof or
confutation, for instance (though not necessarily only) the language of probabilities.

5.2.3. Challenging the expert's opinion

It is recommended that an analyst interviewing an expert should manipulate and vary the
guestions so asto highlight any inconsistencies in the answers, so that the expert can try
and correct errorsin reasoning and express higher "true" belief.

Although | have found no specific reference to this effect, it would seem that asking an
expert simply to justify a conclusion may well be counterproductive, as the conclusion
would tend to dominate his/her new exam of the evidence. It would be better to separate
the decomposition of the argument into individual inference steps, and then consider each
step in isolation; or to derive and represent the consequences of the expert's reasoning in a
form different enough from that of the expert's own statement that he/she could scrutinise
them without bias.

As people are often conservative in revising their judgement on the basis of new evidence,
it seems possible that, even if the questioning makes the experts realise that they neglected
some evidence he knew, they may not be able to change their previous answers as much as
they should. Presumably, making the revision of the conclusion explicit (in Bayesian
terms) would help.

[Fischhoff 1982a] lists along series of methods for "debiasing” and discusses their
efficacy. For instance, "hindsight bias' appears to be quite "robust” with respect to how
the problem is posed, and quite impervious to most attempts to restructure the task. A
useful techniqueisto ask the experts how they would explain the non-occurrence of the
event. However, it is not known how much this procedure would improve predictions, and
whether it might be self-defeating in making experts over-confident that they have
overcome their hindsight bias.

9 The experiment presented there is reminiscent of a common situation in dependability
assessment: the subjects have to choose a bicycling helmet using information about the accident
statistics, design details, and manufacturing standards of various brands. The authors' conclusions seem
stronger than those of [Beach and Braun 1994]: "While the most important factor in deciding whether an
event is evaluated probabilistically or causally isthe availability of appropriate information, other factors
contribute to alter the appropriateness of probabilistic reasoning, as perceived by an individua [...].. ;
highly specific and precise probabilistic information may in fact encourage causal reasoning when
evidence of a causal processis available".
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A partially effective remedy against overconfidence is asking people to look for reasons
why they might be wrong. In general, observed calibration varies widely between
categories of experts (e.g., it isgood in weather forecasters, bad in doctors; interestingly
good in reporters specialising in horse races). A habit of thinking in probabilistic termsis
probably important. Recalibration methods exist, whereby one would correct the experts
own confidence statements. However, they may cause expertsto ater their habits, and
some recalibration methods lead to recalibrated "probabilities’ which are no longer true
probabilities (they violate the axioms of probability).

5.2.4. Cross-checking

One may often detect errorsin intuitive reasoning by ssmple calculations and comparisons
with other available knowledge, as mentioned before under the heading "reasonableness
checks and diversity". Examples are "back of the envelope” calculations using different
methods ("how does this probability of operator error vary if | decompose the operator
action in adifferent way?"), comparison with situations different from that under

cons deration and where more knowledge is available ("how does this prediction compare
with the observed behaviour of other systems? If it differs markedly, does the knowledge
available about this system warrant so strong a departure from the average of the
population?'), checking that parts of the assessment performed separately did not rely on
incompatible assumptions, etc. Such checks could be proposed both by the expert
engineers themselves, if they depend on specia properties of the system under
consderation, or by aless specialised collaborator or analyst, who has a better chance of
"seeing the forest despite the trees’.

5.2.5. Checking intuitive statistical reasoning through causal reasoning

The use of scenario-building asaway to build intuitive estimates of probability would not
be afdlacy if two conditions were satisfied: i) the scenarios evoked by the expert were the
whole set of possible scenarios, and ii) the expert were able to assess and sum the
probabilities of al these scenarios. Making the scenario-building activity explicit may be
sufficient to eliminate the illusion of completeness. For instance, testing strategies for
complex systems often aim at being "complete” in some intuitive sense which does not
necessarily warrant trust that all defects can thus be found. Simply finding the classes of
defects that atesting strategy would not detect may be sufficient to avoid excessive
overoptimism based on the results of atesting campaign.

5.2.6. Systematisation of tasks

Changing intuitive statistical tasks into more explicit ones has an important role. For
instance, [Kahneman and Tversky 1982a] suggests the following procedure to correct for
peopl€'s tendency to "non-regressive” prediction, i.e., to excessive reliance on information
about the individual case about which prediction is sought, compared to information about
the population to which it belongs. The expert is guided through a sequence of steps:

- dection of areference class;
- assessment of the distribution for the reference class;
- intuitive estimation for the individual case, based on available information;

- assessment of predictability: the expert is guided to assess the predictive power of
the information available about the individual case. This may still be based on the
expert's own judgement, applied to questions about different hypothetical
stuations: e.g., how often would the expert expect, if confronted with two specific
cases, to correctly predict at least in which of the two the unknown variable would
have the greater value?
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- correction of the intuitive estimate, where the expert is shown how the intuitive
estimate can be made more regressive, using the expert's own assessment of
predictability, and can then choose to correct one or the other judgement to
improve the prediction.

5.3. Organisation of decision-making

5.3.1. Separation of roles

A common enough problem is that the knowledge that is needed to reach adecisionis
divided among different experts. An expert engineer, with much experience in the problem
of interest, may be untrustworthy as an intuitive statistician. Rather than asking such
engineers to produce ajudgement, it would be useful to obtain from them the knowledge
upon which they would base this judgement, and let an expert statistician do the inference.
A common recommendation is, therefore, to separate properly the roles between the
engineer expert and the statistical anayst. Another dangerous confusion is between the
tasks of producing evidence for adecision and of producing the "values' or goals on
which the decision will be based, or between the roles of expert and decision maker.
Examples abound in public policy decisions, where experts are asked to suggest solutions
before the public goals have been spelled out, but can aso be found inindustria contexts,
where an expert's decision on operability may be solicited. The expert may not know the
goals of the management or of the regulator, or the expert may end up being confused by
the added complication and pushed into neglecting evidence. Although in many casesa
single person may have to fill more than one role, the advice to be aware of the necessary
division of these tasks seems appropriate (if one really needs to "take off one's engineer's
hat and put on one's manageria hat", this switch should at least be conscious and explicit).

5.3.2. Multiple experts

Thereis much literature in risk assessment about the use of multiple experts. A common
approach isto try and "combine" the experts conclusions. For instance, after asking
expertsfor their subjective distributions for a variable of interest, one can repeatedly
"update” (in the Bayesian sense) one of these subjective distributions, using as evidence
the next expert's distribution with likelihood functions which appear appropriate based on
knowledge about the experts [Wright and Cai 1994]. The results of procedures for
combining expert opinions are reported e.g. in [Van Steen and Cooke 1989].

Such procedures can be made comparably ssimple, but they make no attempt to improve
the experts opinions to start with: a shared bias would survive the combination process
without being revea ed. Some researchers therefore argue (quite rightly in my opinion)
that the multiple experts available should be used to criticise and improve one another's
reasoning; they can point out fallacies related to their technical knowledge (e.g., omissions
in afault tree, neglect of some relevant past evidence), and, interacting with a professional
statistical analyst, in intuitive inference steps. In other words, the intention is to move as
much of the process as possible from intuition to reasoning (including reasoning about
uncertainty): to quote [Kaplan 1992], "Weigh evidence, not experts!”. The expected result
iseither a consensus, or aclearer understanding of where disagreement really exists
among the experts, what degree of uncertainty it introducesin afina decision, and what
could be doneto reduce it. Of course, thereis somerisk of undesired psychological
effects from group interaction, in the form, e.g., of irrationa tendenciesto unwarranted
consensus or dissension. Detailed procedures for organising such sessions are indicated
in [Kaplan 1992; Ortiz et al. 1991]. The aid of specialistsis considered necessary to help
the experts to limit the effects of both individual psychological biases (as seen above) and
of undesired group effects.
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Among the suggestions made in [Fischhoff and Whipple 1982] for public health policy
decisions, thereisthat of using "quasi-experts' to facilitate exchange and/or collate and
cross-check the experts arguments.

5.4. Training

5.4.1. Probabilistic thinking

There is some consensus that training people in probabilistic thinking improves (as
should be hoped) their performance even in intuitive inference, e.g., by reducing
overconfidence. It seems obvious that this should improve communication between
engineering experts and decision makers, or make the engineers better decision makers,
when they have both roles. For instance, [Keeney and von Winterfeldt 1991] reports
favourably on an attempt to improve the dicitation of probability judgementsto be usedin
nuclear safety assessment: the engineering experts received training and assistance by
expertsin probabilistic evauation, and on the basis of this experience anew dicitation
procedure was subsequently specified.

5.4.2. Learning from experience, feedback

Overconfidence (the tendency to produce subjective distributions which are too narrow),
seems to be reduced (in controlled experiments) by training the subjects, with feedback
about their own performance, and coaching about the relationship between feelings of
certainty and numerical expressions. Training seems also to be effective in real-world
professional settings, whilereal expertisein the problem is, by itself, no defence (e.g., in
samples of bankers, clinical psychologists, civil engineers,...) [Fischhoff 19823].

The often-quoted, very good calibration of professiona meteorologistsis explained by
[Edwards and von Winterfeldt 1986] in terms of very favourable conditions: frequent
forecasts, feedback from them, and systematic scoring of their performance, known to
them and tied, to some extent, to their wage and promotions. Similar considerations seem
to apply to the less often quoted, good calibration of horse-racing betting specialists
[Lichtenstein et al. 1982]. Reproducing these conditions for other experts may be
difficult. However, if engineers are to be used as expert probabilistic predictors, one could
attempt to systematically give feedback about predictions, if possible, and even elicit more
frequent predictions to improve judgement.

Techniques have also been proposed which alow an analyst to correct the experts
overconfidence; however, the right corrective factors are afunction of the problem and the
techniques require, therefore, aknowledge of the difficulty of the problem or of the
performance of the expert in a comparable problem.

6. Conclusions

Thefirst conclusion which stems from these considerationsiis, of course, a healthy
scepticism about the trustworthiness of engineering judgement as a basis for answering
difficult questions. It would be easy to describe the research available as just confirming
that we must expect intuitive, non-formal reasoning to be easily flawed by mostly well-
known human weaknesses, and that common-sense remedies may help alittle. More
optimigtically, one can state that the existing literature can offer an improved
understanding of how biasis built into judgement, and evidence as to which "common-
sense” remedies are indeed useful.

There are wide variationsin the performance of those categories of experts who have been
studied, so that thereis usually no direct evidence that a certain professiona category isas
unreliable as one might infer from this survey. However, given these very wide variations,
adecision maker should be aware of these problems which may affect the judgement of
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experts. For disciplines where engineering or expert judgement is critical for decision-
making, more experimental research is desirable about the trustworthiness of the specific
categories of expertsinvolved, and about which conditions tend to improveiit.

Two defences seem to exist, and these need to be used together, for reducing the criticality
of this problem: the first one (and the best remedy, asfar asit goes) isto make intuitive
judgement unnecessary, as often as possible, by turning it into systematic, scientific
reasoning. This requires the experts to be able to spell out the evidence and the procedures
leading to their conclusions. So, precautions that help the expertsin thistask, attempting

to formulate clearly the questions asked, and to lay out the judgement processin arational
form, are useful. However, proper descriptions of very complex arguments will still be
unfeasible: in the end, we are confronted with the limited resources of the human mind.

Despite these limits, it is clear that every judgement process may be improved. No one can
muster the resources needed for a perfect judgement; yet, in many cases, it is possible to
rely on something more sophisticated than the "gut feelings' of the experts. The second
defenceis, therefore, to modify or aid the task of the expertsin ways that have been shown
to improve their performance: ways exist for decreasing the risk of error from the part of
the process that is left initsintuitive state. Among these are attempts to double-check
facts, rules and conclusions, to shelter the expert from known error-causing factors, and
so on. A generd result of research in decision-making is that presenting the same
guestion in different forms tends to elicit widely different answers, and that some of the
possible forms are less error-inducing than others. Ways to improve decision-making
have been studied in some depth for such critical and high-visibility areas asrisk
assessment for nuclear power, or environmental policy-making. Although thereisno
definitive consensus about this problem, decision anaysts have developed "tricks' for
eiciting "better" answers, which can usefully be applied in solving difficult dependability
assessment problems. When reduced to using "engineering judgement” to produce an
assessment of very high dependability, it seemsthat a proper checklist about the quality of
this assessment should include at least:

- was an attempt made to formalise the reasoning used?
- was the remembered evidence checked against the records?

- were the expert's assumed correlations and conditional probabilities properly
elicited, cross-checked with facts, and challenged to prompt the expert's criticism?

- were the known defences employed against the inherent biases of intuitive
reasoning?

- was appropriate computer support made available to reduce the problem of
complexity in the reasoning?

- was evidence about the quality of the expert used, if available?
- were different experts or quasi-experts asked to debate their respective arguments?

This checklist includes methods for making judgement more scientific and hence
trustworthy, not, evidently, for making it aways correct. Even if areally complete analysis
were possible for a real-world situation, it would not remove the basic limitation that no
amount of empirical information would alow oneto predict the future with certainty. Any
physical "law" may be refuted by asingle new experiment. The "scientific" character of an
analysis or argument is amatter of degree, rather than of kind, and the practical questionis
whether an analysisis "scientific enough", given the weight of the decisions that must be
based on it. This paper has argued that, in view of current knowledge, the way engineering
judgement is commonly used is not "scientific enough™, and that there are ways for
improving its use.

A separate issue - dealing with improving the general quality of judgement rather than
specific instances of it - seemsto be that judgement can be improved by specific training
and by providing as much feedback as possible. It would seem that the common (or
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increasingly common) practices of revising the safety case for an installation every so
many years, of collecting reliability data and of providing fixesfor "bugs’ found in
designs during operation, could be made the basis for amore formal process of improving
not only the judgement about individual systems, but also the ability of engineers as
judges and the knowledge of this ability.

Last, | must mention that the literature about practical applications of these methods
belongs mostly to narrow (and "wealthy") fields, like risk assessment for nuclear power,
or environmental policy-making [Keeney and von Winterfeldt 1991; Ortiz et al. 1991;
Thorne 1993;]. The techniques suggested often require a costly selection of engineering
experts, éicitation sessions with the help of professional analysts, etc. This does not make
these considerations and techniques inappropriate for the wider field of dependability
assessment (and decision-making based on it). On the one hand, recognising a need isthe
first step towards procuring the resources for satisfying it; and there are fields where
dependability assessment already costs large amounts of money (viz. aircraft certification),
or are going in that direction (cf. the large investments being made in | SO-9000-rel ated
activities). In these sectors of industry, redirecting some of thisinvestment to improveits
effectiveness would not be alarge problem. On the other hand, most of the suggested
safeguards amount to injecting some scientific discipline into otherwise obscure
processes. These safeguards, and the knowledge itself of the problems, can be useful to
anyone performing or using engineering judgement, even in less structured environments
where all therolesin the process (expert, Statistical analyst and decision maker) have to be
performed by the same person.
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