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A tumour is a product of somatic evolution in which mutation, 
selection, genetic drift and cell dispersal generate a patch-
work of cell subpopulations (clones) with varying degrees of 

aggressiveness and treatment sensitivity1. A primary goal of modern 
cancer research is to characterize this evolutionary process to enable 
precise, patient-specific prognoses and optimize targeted therapy 
regimens. However, studies revealing the evolutionary features of 
particular cancers raise as many questions as they answer. Why 
do different tumour types exhibit different modes of evolution2–8? 
What conditions sustain the frequently observed pattern of branch-
ing evolution, in which clones diverge and evolve in parallel2,9–11? 
And why do some pan-cancer analyses indicate that many tumours 
evolve neutrally12, whereas others support extensive selection13?

Factors proposed as contributing to tumour evolution include 
microenvironmental heterogeneity, niche construction and positive 
ecological interactions between clones1,14–17. However, because such 
factors have not been well characterized across human cancer types, 
it remains unclear how they might relate to evolutionary modes. 
In contrast, it is well established that tumours exhibit a wide range 
of architectures and types of cell dispersal18,19 (Fig. 1), the evolu-
tionary effects of which have not been systematically examined. 
Because gene flow (the transfer of genetic information between 
localized populations20) is a principal force in evolutionary dynam-
ics, we hypothesized that different tumour structures might result 
in different evolutionary modes. To test this hypothesis, we devel-
oped a way to formulate multiple classes of mathematical models, 
each tailored to a different class of tumour, within a single general 
framework, and we implemented this framework as a stochastic 
computer programme.

Our modelling approach is built on basic tenets of cancer evo-
lutionary theory1. Simulated tumours arise from a single cell that 
has acquired a fitness-enhancing mutation. Each time a tumour cell 

divides, its daughter cells can acquire passenger mutations, which 
have no fitness effect, and more rarely driver mutations, which 
confer a fitness advantage. In solid tumours, we assume that cells 
compete with one another for space and other resources. Whereas 
previous studies have assumed that tumours grow into empty space, 
our model also allows us to simulate the invasion of normal tissue—
a defining feature of malignancy.

Results
Tumour architecture can determine the mode of evolution. To test 
whether varying tumour architecture suffices to alter the tumour 
evolutionary mode, we considered four particular models with differ-
ent spatial structures and manners of cell dispersal but identical evo-
lutionary parameters (driver mutation rate and distribution of driver 
fitness effects). We set the dispersal probability per cell division such 
that all tumours take a similar amount of time to grow from one cell 
to one million cells, corresponding to several years in real time.

Our first case is a non-spatial model that has been proposed as 
appropriate to leukaemia21,22, a tumour type in which mutated stem 
cells in semi-solid bone marrow produce cancer cells that mix and 
proliferate in the bloodstream (Fig. 1a). When simulating tumour 
growth in the absence of spatial constraints, rapid clonal expansions 
can result from driver mutations that increase the cell division rate 
by as little as a few percent, and the vast majority of cells eventually 
share the same set of driver mutations (Fig. 2a–d). These character-
istics are reminiscent of chronic myeloid leukaemia, in which cell 
proliferation is driven by a single change to the genome23, and acute 
myeloid leukaemia, which has relatively few drivers24.

In our second model, consistent with the biology of colorectal 
adenoma25 and in common with previous computational models 
of colorectal carcinoma5,26,27, we simulate a tumour that consists 
of  large glands (Fig. 1b) and grows via gland fission (bifurcation). 
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Although the driver mutation rate and the fitness effect are exactly 
the same as in the previous case, the addition of spatial structure 
dramatically alters the mode of tumour evolution. The organiza-
tion of cells into glands limits the extent to which driver mutations 
can spread through the population, so that selective sweeps become 
progressively localized as the tumour expands. For our parameter 
values, this process leads to a highly branched, fan-like driver phy-
logenetic tree and ever greater spatial diversity, with different com-
binations of driver mutations predominating even in neighbouring 
glands (Fig. 2e–h). The mean tumour cell fitness increases sub-
stantially, but there is also extensive, positively correlated intratu-
mour variation in cell fitness values and passenger mutation counts 
(Extended Data Fig. 1a–b). Model outcomes are similar even if cells 
are able to acquire drivers that directly increase the gland fission 
rate, because such mutations rarely spread within glands (Extended 
Data Fig. 2a).

The third case corresponds to a glandular tumour that grows by 
invading adjacent normal tissue, as documented in various types 
of solid tumour, including many colorectal, breast and lung can-
cers19,28. Glandular tumours are subdivided into localized cell com-
munities (Fig. 1c), whose small size has previously been inferred by 
community detection methods29 and mathematical modelling.30 To 
obtain additional estimates of gland size in four cancer types, we 
used semi-automated analysis of histology slides (Extended Data 
Fig. 3) and found that each gland contains between a few hundred 
and a few thousand cells (Extended Data Fig. 4a). In simulations 
with gland sizes within this range, we find that even small increases 
in cell fitness can spark rapid clonal expansions. Clonal interference 
nevertheless inhibits selective sweeps, resulting in a zonal tumour in 
which large regions share the same combination of driver mutations 
(Fig. 2i–l and Extended Data Fig. 1c,d). Simulated invasive glandu-
lar tumours typically exhibit stepwise increases in driver diversity 
and a phylogeny with several long branches, qualitatively consistent 
with observations in numerous cancer types2,3,11. Restricting cell dis-
persal to the tumour boundary without dispersal within the tumour 
bulk (to simulate tumours that lack intratumoural budding28 or 
tumours in which proliferation is confined to the boundary31) 
results in somewhat shorter branches (Extended Data Fig. 2b).

Our fourth and final model represents a tumour with no 
glandular structure and with growth confined to its boundary  
(Fig. 1d). Expansive tumour growth associated with a clearly 

defined boundary and no sign of active migration occurs 
in tissues that impose relatively weak physical resistance18. 
Boundary-growth models have in particular been proposed as 
appropriate for simulating the evolution of certain kinds of hepa-
tocellular carcinoma7,32, although it should be noted that hepa-
tocellular carcinoma in general exhibits a wide range of growth 
patterns33. The spatial structure of the boundary-growth model 
favours genetic drift, rather than selection. For our fixed param-
eter values, tumour evolution in this case is effectively almost 
neutral (Fig. 2m–p and Extended Data Fig. 1e), and mutations 
can spread only by surfing on a wave of population expansion34–36. 
Consequently, the mutation burden generally increases from the 
tumour core to its boundary (Extended Data Fig. 1f). Selection 
is only slightly more prominent when cells can compete with 
their nearest neighbours within the tumour mass (Extended 
Data Fig. 2c). Suppression of selection in the boundary-growth 
model is consistent with evidence of effectively neutral evolution 
in hepatocellular carcinoma7, as well as the existence of large, 
well-differentiated benign tumours such as leiomyomas37 and 
fibroadenomas38 that only rarely progress to malignancy.

Characterization of evolutionary modes and comparison with 
data. Together, our models demonstrate that variation in the range 
of cell–cell interactions and the manner of cell dispersal alone can 
generate distinct modes of tumour evolution. We next sought to 
describe these modes more precisely in terms of summary evolu-
tionary indices that can be computed from both our simulations 
and real cancer genomic data (Fig. 3a). The first index we consid-
ered is clonal diversity (denoted D), which grows with the number 
of large nodes in the driver phylogenetic tree (as in the final column 
of Fig. 2). The second index n is the mean number of driver muta-
tions per cell, which represents the average depth of the driver phy-
logenetic tree. Any pair of values of these two indices corresponds 
to a distinct set of phylogenetic trees. The nodes of these trees rep-
resent clones, and their size is proportional to clone population size. 
The space of attainable n and D values (Fig. 3b) is bounded below by 
the line D = 1 and above by the curve D = 1/(2−n)2 (see Methods). 
Locations close to the upper boundary correspond to more highly 
branched trees than locations close to the lower boundary, and 
locations on the left correspond to trees with shorter branches than 
locations on the right.

a b c d

Non-spatial Gland fission Invasive glandular Boundary growth

Fig. 1 | Representative regions of histology slides from human tumours exemplifying four different kinds of tissue structure and manners of cell 
dispersal. a, Acute myeloid leukaemia, M2 subtype, bone marrow smear. b, Colorectal adenoma. c, Breast cancer (patient TCGA-49-AARR, slide 
01Z-00-DX1). d, Hepatocellular carcinoma (patient TCGA-CC-5258, slide 01Z-00-DX1). Image a is courtesy of Cleo-Aron Weis; image b is copyright 
St Hill et al. (2009)91 and is used here under the terms of a Creative Commons Attribution License; images c and d were retrieved from TCGA at 
https://portal.gdc.cancer.gov, with brightness and contrast adjusted linearly for better visibility. Scale bars, 100 μm. The illustration below each 
histology image describes the corresponding types of spatial structure and cell dispersal.
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To compare our model outcomes to data, we determined the 
evolutionary indices of phylogenetic trees previously inferred from 
multi-region sequencing of four solid cancer types: clear cell renal 
cell carcinoma (ccRCC)9, non-small-cell lung cancer (NSCLC)10, 
breast cancer39 and mesothelioma40. We also calculated indices 
from single-cell sequencing data for breast cancer41 and uveal 
melanoma42. Despite their methodological diversity, these six stud-
ies yielded remarkably similar evolutionary indices. The majority 
of data points (28 of 35) lie above a trajectory corresponding to 
sequential selective sweeps (pink curve in Fig. 3b) and below a ref-
erence curve that represents an intermediate degree of branching 
(pale blue curve in Fig. 3b and Supplementary information). All 
the tumours have 1 < D < 12 and 3≤n < 14. Notwithstanding limi-
tations of sampling, sequencing and phylogenetic inference meth-
ods, a useful computational model of invasive tumour evolution 
should generate summary indices that are consistent with these 
data points, corresponding to branching evolution with a small 
number of main branches.

The simulation results of the four models discussed previously 
form four distinct clusters with respect to the summary indices n 

and D (Fig. 3c; mean silhouette width 0.60). Neutral counterparts of 
these four models—which have the same parameter values, except 
that the driver fitness effect is reduced to zero—cluster together, 
near the boundary-growth model. As expected, we find that the evo-
lutionary indices of the solid tumours are consistent with outcomes 
of our invasive glandular model, and this consistency is robust to 
varying gland size, driver mutation rate and driver mutation effect 
within plausible ranges (Extended Data Fig. 5). Particularly close 
agreement between unadjusted model output and data occurs when 
the average driver fitness effect is 0.2 (Fig. 3d).

An important caveat in the above comparison is that the unad-
justed model output includes all driver mutations down to a fre-
quency of one in a million, whereas solid tumour sequencing 
protocols fail to detect most mutations at frequencies below 5%9. 
This difference in sensitivity means that D values calculated from 
data are expected to underestimate true tumour diversity. It fol-
lows that a fairer comparison can be made by removing rare muta-
tions from the model output, to simulate imperfect sensitivity. Such 
adjustment strengthens the agreement between model and data 
(Fig. 3e and Extended Data Fig. 6).
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Fig. 2 | Four modes of tumour evolution predicted by our model. a, Dynamics of clonal diversity (inverse Simpson index D) in 20 stochastic simulations 
of a non-spatial model. Black curves correspond to the individual simulations illustrated in subsequent panels (having values of D and mean number of 
driver mutations n closest to the medians of sets of 100 replicates). b, Muller plot of clonal dynamics over time, for one simulated tumour according to 
the non-spatial model. Colours represent clones with distinct combinations of driver mutations (the original clone is grey-brown; subsequent clones are 
coloured using a recycled palette of 26 colours). Descendant clones are shown emerging from inside their parents. c, Final clone proportions. d, Driver 
phylogenetic trees. Node size corresponds to clone population size at the final time point and the founding clone is coloured red. Only clones whose 
descendants represent at least 1% of the final population are shown. e–h, Results of a model of tumour growth via gland fission (8,192 cells per gland). In 
the spatial plot (g), each pixel corresponds to a patch of cells, corresponding to a tumour gland, coloured according to the most abundant clone within the 
patch. i–l, Results of a model in which tumour cells disperse between neighbouring glands and invade normal tissue (512 cells per gland). m–p, Results of a 
boundary-growth model of a non-glandular tumour. In all cases, the driver mutation rate is 10−5 per cell division, and driver fitness effects are drawn from 
an exponential distribution with mean 0.1. Other parameter values are listed in Supplementary Table 4.
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Since the non-spatial model most plausibly represents liquid 
tumour evolution, we compared its predictions to additional data 
for acute myeloid leukaemia24. We found robust correspondence 
between the model and this data set (Fig. 3b,c and Supplementary 
Fig. 1). Within plausible parameter ranges, 83% of tumours simu-
lated using a non-spatial model have coordinates (n, D) consistent 
with the selective-sweeps evolutionary mode.

Alternative models that have different spatial structures are 
less consistent with data for both solid and liquid tumours. For 
the gland fission model, 83% of simulated tumours have coor-
dinates above the intermediate-branching curve, correspond-
ing to high values of D relative to n (Supplementary Fig. 2). For 
the boundary-growth model, both n and D are typically close 
to 1 (Supplementary Fig. 3). These outcomes are summarized 

in Table 1, which provides quantitative definitions of evolution-
ary modes in terms of evolutionary indices (see also Fig. 3f and 
Supplementary Table 1).

Results for a variant of the invasive glandular model, in which 
normal cells are absent and the tumour grows into empty space, 
are also less consistent with data (Supplementary Fig. 4). In this 
empty-space model, the speed at which the tumour expands (via 
cell dispersal into empty space) typically exceeds the speed at which 
clones spread within the tumour (via cell dispersal into fully occu-
pied glands), which leads to a more star-shaped or highly branched 
phylogeny (high D relative to n). Conversely, when tumour cells 
must compete with normal cells at the tumour boundary (as in the 
third row of Fig. 2), the speed at which driver mutations spread 
within the tumour is similar to the speed of tumour growth, which 
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Fig. 3 | using summary indices to characterize modes of tumour evolution. a, Causal relationships between biological parameters, summary indices 
and mode of tumour evolution. Tumour architecture, cell dispersal type and other parameters shape the stochastic evolutionary process that gives rise 
to evolutionary mode. We used evolutionary indices to characterize the modes. b, Relationship between clonal diversity D, mean driver mutations per 
cell n, and tree topology. Each location within the unshaded region corresponds to a distinct subset of phylogenetic trees. The lower boundary (clonal 
diversity = 1) corresponds to linear trees in which only one node has size greater than zero (that is, the population comprises only one extant clone). 
The sequence of pink curves near the lower boundary traces the trajectory of a population that evolves via sequential selective sweeps, so that at 
any given time, at most two nodes have size greater than zero. The boundary of the shaded region on the left corresponds to star-shaped trees. It is 
impossible to construct trees for locations within the shaded region. The number of main branches per tree typically increases along anti-clockwise 
curves between the two boundaries (black arrow). Solid black circles show evolutionary indices derived from multi-region sequencing data for kidney 
cancers (code suffix K), lung cancers (C) and breast cancers (P). Hollow black circles show evolutionary indices derived from multi-region sequencing 
data for mesothelioma (M) and single-cell sequencing data for breast cancers (TN) and uveal melanoma (U). Purple squares show evolutionary indices 
derived from single-cell sequencing data for AML (code suffix A). The pale blue curve corresponds to a particular intermediate degree of branching 
(Methods and Supplementary information). Patient codes match those in the original publication, except where abbreviated by the following patterns: 
A02, AML-02-001; C29, CRUK0029; P694, PD9694; M01, MED001; U59, UMM059. c, Summary metrics of four example models with different spatial 
structures and different manners of cell dispersal but identical driver mutation rates and identical driver mutation effects (100 stochastic simulations 
per model). Neutral counterparts of the four models are represented together as an additional group. Black curves separate four modes of tumour 
evolution defined in terms of indices n and D (see also Table 1). Region ‘E’ corresponds to the effectively almost neutral mode. d, Evolutionary indices 
for invasive glandular models with driver fitness effects drawn from an exponential distribution with mean 0.2, and with varied gland size and mutation 
rate. e, Evolutionary indices for an invasive glandular model after adjustment to simulate imperfect sequencing sensitivity (driver mutations with 
frequency below 5% are removed from the model output). Solid black circles in d and e are the same as in b. Except where specified, parameter values 
in c, d and e are the same as in Fig. 2.
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enables some driver mutations to reach high frequency and results 
in sparser branching (Extended Data Fig. 5). Yet another alternative 
model, which includes normal cells but confines cell dispersal to the 
tumour boundary, thwarts the spread of driver mutations and gen-
erates similar D but smaller n values (Supplementary Fig. 5).

Further analysis of tumour evolutionary modes. A complemen-
tary way to describe modes of tumour evolution is in terms of 
phylogenetic tree shape or balance. Because tree balance indices 
developed for characterizing organismal evolution are poorly suited 
to tumour data, we developed an index43 that is robust to variation 
in sampling and sequencing protocols (Methods). This index J1 
takes a high value for trees in which branching events tend to split 
the tree into subtrees of similar size. Low values are assigned to trees 
that are approximately linear or are dominated by a single node.

Just as for indices n and D, the tree balance values predicted by 
our invasive glandular tumour model are consistent with the val-
ues obtained from sequencing data (Fig. 4a). Typical J1 values for 
both this model and the data are between 0 and 0.5—substantially 
below the maximum value of 1 corresponding to perfectly balanced 
trees. The consistency remains when we adjust the model output 
by removing rare driver mutations (Extended Data Fig. 6, which 

constitutes a fairer comparison), even though the associated trees 
appear very different (Extended Data Fig. 7) and have dissimilar 
degree distributions (Extended Data Fig. 8). Agreement between 
model and data is also observed for alternative balance indices 
after removing rare mutations (Supplementary Figs. 6, 7 and 8). 
Conversely, neutral models and models that do not account for 
glandular structure predict smaller or more variable tree balance 
values than the data for solid tumours (Fig. 4a). Tree balance values 
for the non-spatial model are consistent with data for acute myeloid 
leukaemia (Fig. 4a).

Whereas n, D and J1 are determined only by the final tumour 
state, other indices can be based on time series data. For example, 
the mean clonal turnover magnitude Θ  provides an alternative to 
n for measuring the extent of evolutionary change, and the mean 
clonal turnover time TΘ indicates whether evolutionary change 
occurs mostly early or late during tumour growth (Methods). As 
expected, after an appropriate axis transformation, the pattern of 
clusters of D versus Θ  (Fig. 4b) resembles the pattern of clusters of 
D versus n (Fig. 3c). Plotting D versus a transformed TΘ reveals a 
somewhat similar pattern, except that models with low Θ  exhibit 
high stochastic variation in TΘ (Fig. 4c). Clonal turnover occurs 
relatively late in the non-spatial model but throughout tumour 

Table 1 | Properties of the four modes of tumour evolution

evolutionary mode Role of selection Definition in terms of 
summary indices

tree shape associated tumour 
characteristics

agreement 
(%)

Selective sweeps Strong D < 10/3 and below 
I-B curve

Approx. linear Non-spatial (or little 
spatial structure)

99 (83)

Progressive diversification Locally strong n > 2; D > 20 Highly branched Gland fission 98 (39)

Branching Strong but constrained 
by clonal interference

n > 2; 10/3 < D < 20 Branched Invasive glandular 
(budding; infiltration)

94 (62)

Effectively almost neutral Weak n < 2 and D above I-B 
curve

Approx. star-shaped Boundary growth (or very 
rapid growth)

99 (85)

I-B, intermediate-branching. Ranges of summary indices refer to true values, and it should be noted that values of D inferred from multi-region sequencing data will typically underestimate these true values. 
The ‘Agreement’ column contains the percentage of simulated tumours for which n and D values conformed to the mode definition (in the third column) when the model possessed the associated tumour 
characteristics (in the fifth column). For example, in the first row, we give the percentage of tumours simulated using a non-spatial model that conformed to the definition of the selective sweeps mode. The 
first percentage corresponds to the four non-neutral cohorts of simulations shown in Fig. 3c (one set of parameter values per model). The second percentage (in parentheses) corresponds to the average of 
multiple cohorts with varied parameter values, as shown in Extended Data Fig. 5 and Supplementary Figs. 1, 2 and 3. Additional results are given in Supplementary Table 1.
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growth in the gland fission model. Given sufficient data, evolution-
ary modes can thus be described and classified in terms of various 
summary indices capturing distinct aspects of tumour evolution 
(for alternative diversity indices, see Extended Data Fig. 9).

Influence of tumour architecture on mutation frequency dis-
tributions. As researchers and clinicians seldom have access to 
multi-regional sequencing data, or the longitudinal data needed to 
track how tumour clone sizes change over time, tumour phylogenies 
and evolutionary parameters are commonly inferred from mutation 
frequencies measured from a single biopsy sampled at a single time 
point. Moreover, current cancer sequencing technologies are neither 
sensitive enough to detect the majority of low-frequency mutations, 
nor precise enough to distinguish between high-frequency and 
clonal (100% frequency) mutations. Accordingly, the most relevant 
part of the mutation frequency distribution for practical purposes 
is in the intermediate frequency range. One way to examine dif-
ferences between distributions within this intermediate range is to 
plot the cumulative mutation count (the number of mutations pres-
ent at or above frequency f) versus the inverse mutation frequency 
(1/f). In a neutral non-spatial model, this graph is a straight line 
(Fig. 5a, blue points). Because the transformed mutation frequency 
distributions of many human cancers are also approximately linear, 
it has been proposed that neutral tumour evolution is widespread12. 
Deviations from this theoretical straight line have been taken as evi-
dence of selection27,44.

Our population genetics modelling illustrates how not only 
selection but also tumour architecture has important effects on 
tumour mutation frequency distributions (Fig. 5 and Extended 
Data Fig. 10). In particular, when the cumulative mutation count 
is plotted against the inverse mutation frequency, the curve for the 
neutral model is no longer linear. Instead, for spatial models, the 

average non-neutral curve can be closer to a straight line than the 
average neutral model curve. These results confirm and extend 
previous findings27,35 indicating that methods using mutation fre-
quencies to infer selection in solid tumours can yield incorrect con-
clusions if they fail to account for effects of population structure. 
Inappropriate choice of null model can therefore explain otherwise 
contradictory findings regarding the prevalence of neutral evolu-
tion in human cancers13,45.

Discussion
In summary, we have found that differences in the range of cell–cell 
interactions and the manner of cell dispersal are sufficient to gen-
erate a spectrum of tumour evolutionary modes. This finding has 
important implications both for understanding tumour genomic 
data and for interpreting the results of previous computational 
models. Whereas mathematical oncologists have focused on muta-
tion fitness effects5,12,27,44,46,47 or microenvironmental heterogeneity15, 
our perspective instead emphasizes the importance of population 
structure and gene flow in tumour evolution.

Prominent studies have variously used non-spatial models12,21,44,46, 
gland fission models5,27 or variants of the Eden growth model (in 
which cells compete with their nearest neighbours)32,47 to investigate 
aspects of tumour evolution (see Methods for further discussion of 
previous work). Our results imply that, at best, each of these model 
types is appropriate only in special cases. Accurate models of solid 
tumour evolution must faithfully recapitulate interactions within 
localized patches of cancer cells—the so-called tumour communi-
ties29—and between cancer cells and normal cells.

Consistent with previous work48, our models predict substantial 
variability in tumour evolutionary modes due to stochasticity in the 
timing, location and fitness effects of driver mutations. Our find-
ing that this random variation approaches the variability observed 
within and between solid tumour types (Fig. 3b,c) suggests that it 
will be challenging to infer precise information about tumour struc-
ture and growth patterns from phylogenetic data, even given previ-
ous knowledge of mutation rates and fitness effects. Nevertheless, 
of the model types we have examined, we have shown that the most 
plausible for simulating evolution in the majority of malignant solid 
tumours, which exhibit branching evolution11, is the invasive glan-
dular model introduced herein. A key feature of this model is that 
the speed at which a fitter clone spreads within its immediate ances-
tor is similar to the ancestor’s own expansion speed.

It follows from our findings that tumour architecture deter-
mines how well biopsy samples reflect intratumour heterogeneity. 
Oncologists typically base treatment decisions on the presence or 
absence of particular mutations in cells taken from only a small 
region of a solid tumour. Tumour types with structures that pro-
mote diversification are predicted to be the least responsive to tar-
geted therapies, unless truncal mutations can be reliably identified 
and targeted.

Our framework also implies that a change in tumour archi-
tecture during cancer progression can lead to a change in the 
mode of tumour evolution. For example, the ‘big bang’ model of 
colorectal cancer4,5 posits that early selective sweeps are followed 
by effectively neutral evolution, such that mutation frequency is 
determined by the time of mutation occurrence. This idea was 
previously examined using a computational model of tumour 
growth via gland fission, with a maximum of one driver muta-
tion per cell5. Based on more sophisticated population genetics 
modelling, we find reason to expect ongoing selection through-
out the very early stages of colorectal tumour progression (when 
growth is driven by gland fission), enabling multiple driver muta-
tions to reach high frequencies. In later stages, after cells from the 
adenoma invade neighbouring tissue and give rise to an adeno-
carcinoma, we predict a transition to either branching evolution 
or – because the invasion begins with numerous and/or highly 
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Fig. 5 | Mutation frequency distributions predicted by our model. 
a–d, Mutation frequency distributions for simulations with only neutral 
mutations (blue circles) or both neutral and driver mutations (red triangles). 
Cumulative mutation count is plotted against inverse mutation frequency 
(1/f), restricted to mutations with frequencies between 0.1 and 0.5. Each 
distribution represents combined data from 100 simulations.

NatuRe eCoLogY & eVoLutioN | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaTUrE ECology & EvolUTioN

transformed, rapidly expanding subclones49 – effectively neutral 
evolution. Punctuated evolution in colorectal tumours can thus be 
explained by the transition from gland fission to invasive growth. 
This explanation is broadly consistent with the big bang model 
and more recent multi-region sequencing studies6,49,50, while also 
agreeing with results of comparative genomic analysis, which 
indicate that colorectal cancers evolve subject to strong positive 
selection and have more driver mutations per cell than most other 
cancer types13,51. Transitions between evolutionary modes were 
recently investigated in a mathematical modelling study of duc-
tal carcinoma,52 which complements the current work by likewise 
highlighting the importance of spatial competition.

In clear cell renal cell carcinoma, separate studies have found that 
tumour architecture53,54 and evolutionary trajectory9 are predictors 
of cancer progression and survival. Evolutionary mode correlates 
with both tumour architecture and clinical outcome in childhood 
cancers8,55. The manner of cell dispersal has prognostic value in 
colorectal and other solid cancers28. By mechanistically connect-
ing tumour architecture to the mode of tumour evolution, our 
work provides a blueprint for a new generation of patient-specific 
models for forecasting tumour progression16,48 and for optimizing 
evolutionarily-informed treatment regimens56–58. This drive towards 
personalized models motivates further efforts to characterize how 
spatial structure interacts with other biological factors, such as 
spatially-varying carrying capacity29, alternative manners of cell dis-
persal19, immune interactions59, cancer stem cell hierarchies60, and 
frequency- or density-dependent cell fitness.17

Methods
Previous mathematical models of tumour population genetics. Many previous 
studies of tumour population genetics have used non-spatial branching processes21, 
in which cancer clones grow exponentially without interacting. Unless driver 
mutations increase cell fitness by less than 1%, these models predict lower clonal 
diversity and lower numbers of driver mutations than typically observed in 
solid tumours46. Among spatial models, a popular option is the Eden growth 
model (or boundary-growth model), in which cells are located on a regular grid 
with a maximum of one cell per site, and a cell can divide only if an unoccupied 
neighbouring site is available to receive the new daughter cell32,47,61. Other methods 
with one cell per site include the voter model32,62,63 (in which cells can invade 
neighbouring occupied sites) and the spatial branching process47 (in which cells 
budge each other to make space to divide). Further mathematical models have been 
designed to recapitulate glandular tumour structure by allowing each grid site or 
‘deme’ to contain multiple cells and by simulating tumour growth via deme fission 
throughout the tumour5,26 or only at the tumour boundary27. A class of models in 
which cancer cells are organized into demes and disperse into empty space has also 
been proposed36,52,64. Supplementary Table 2 summarizes selected studies representing 
the state of the art of stochastic modelling of tumour population genetics.

Our main methodological innovations are to implement all these distinct 
model structures, and additional models of invasive tumours, within a common 
framework, and to combine them with methods for tracking driver and passenger 
mutations at single-cell resolution. The result is a highly flexible framework for 
modelling tumour population genetics that can be used to examine consequences 
of variation not only in mutation rates and selection coefficients, but also in spatial 
structure and manner of cell dispersal65.

Computational model structure. Simulated tumours in our models are made up 
of patches of interacting cells located on a regular grid of sites. In keeping with 
the population genetics literature, we refer to these patches as demes. All demes 
within a model have the same carrying capacity, which can be set to any positive 
integer. Each cell belongs to both a deme and a genotype. If two cells belong to the 
same deme and the same genotype then they are identical in every respect, and 
hence the model state is recorded in terms of such subpopulations rather than in 
terms of individual cells. For the sake of simplicity, computational efficiency and 
mathematical tractability, we assume that cells within a deme form a well-mixed 
population. The well-mixed assumption is consistent with previous mathematical 
models of tumour evolution5,26,27,36,64 and with experimental evidence in the case of 
stem cells within colonic crypts66.

Initial conditions. A simulation begins with a single tumour cell located in a deme 
at the centre of the grid. If the model is parameterized to include normal cells, then 
these are initially distributed throughout the grid such that each deme’s population 
size is equal to its carrying capacity. Otherwise, if normal cells are absent, then the 
demes surrounding the tumour are initially unoccupied.

Stopping condition. The simulation stops when the number of tumour cells 
reaches a threshold value. Because we are interested only in tumours that reach a 
large size, if the tumour cell population succumbs to stochastic extinction, then 
results are discarded and the simulation is restarted (with a different seed for the 
pseudo-random number generator).

Within-deme dynamics. Tumour cells undergo stochastic division, death, 
dispersal and mutation events, whereas normal cells undergo only division 
and death. The within-deme death rate is density-dependent. When the deme 
population size is less than or equal to the carrying capacity, the death rate takes a 
fixed value d0 that is less than the initial division rate. When the deme population 
size exceeds carrying capacity, the death rate takes a different fixed value d1 that 
is much greater than the largest attainable division rate. Hence, all genotypes 
grow approximately exponentially until the carrying capacity is attained, after 
which point the within-deme dynamics resemble a birth–death Moran process—a 
standard, well characterized model of population genetics.

In all spatially structured simulations, we set d0 = 0 to prevent demes from 
becoming empty. For the non-spatial (branching process) model, we set d0 > 0 and 
dispersal rate equal to zero, so that all cells always belong to a single deme (with 
carrying capacity greater than the maximum tumour population size).

Mutation. When a cell divides, each daughter cell inherits its parent’s genotype 
plus a number of additional mutations drawn from a Poisson distribution. Each 
mutation is unique, consistent with the infinite-sites assumption of canonical 
population genetics models. Whereas some previous studies have examined the 
effects of only a single driver mutation (Supplementary Table 2), in our model 
there is no limit on the number of mutations a cell can acquire. Most mutations are 
passenger mutations with no phenotypic effect. The remainder are drivers, each of 
which increases the cell division or dispersal rate.

The programme records the immediate ancestor of each clone (defined in 
terms of driver mutations) and the matrix of Hamming distances between clones 
(that is, for each pair of clones, how many driver mutations are found in only 
one clone), which together allow us to reconstruct driver phylogenetic trees. To 
improve efficiency, the distance matrix excludes clones that failed to grow to more 
than ten cells and failed to produce any other clone before becoming extinct.

Driver mutation effects. Whereas previous models have typically assumed that 
the effects of driver mutations combine multiplicatively, this can potentially 
result in implausible trait values (especially in the case of division rate if the 
rate of acquiring drivers scales with the division rate). To remain biologically 
realistic, our model invokes diminishing returns epistasis, such that the 
average effect of driver mutations on a trait value r decreases as r increases. 
Specifically, the effect of a driver is to multiply the trait value r by a factor of 
1 + s(1 − r/m), where s > 0 is the mutation effect and m is an upper bound. 
Nevertheless, because we set m to be much larger than the initial value of r, the 
combined effect of drivers in all models in the current study is approximately 
multiplicative. For each mutation, the value of the selection coefficient s is drawn 
from an exponential distribution.

Dispersal. Depending on model parameterization, dispersal occurs via either 
invasion or deme fission (Supplementary Table 3). In the case of invasion, the 
dispersal rate corresponds to the probability that a cell newly created by a division 
event will immediately attempt to invade a neighbouring deme. This particular 
formulation ensures consistency with a standard population genetics model known 
as the spatial Moran process. The destination deme is chosen uniformly at random 
from the four nearest neighbours (von Neumann neighbourhood). Invasion can be 
restricted to the tumour boundary, in which case the probability that a deme can 
be invaded is 1 − N/K if N≤K and 0 otherwise, where N is the number of tumour 
cells in the deme and K is the carrying capacity. If a cell fails in an invasion attempt, 
then it remains in its original deme. If invasion is not restricted to the tumour 
boundary, then invasion attempts are always successful.

In fission models, a deme can undergo fission only if its population size 
is greater than or equal to carrying capacity. As with invasion, deme fission 
immediately follows cell division (so that results for the different dispersal types 
are readily comparable). The probability that a deme will attempt fission is equal to 
the sum of the dispersal rates of its constituent cells (up to a maximum of 1). Deme 
fission involves moving half of the cells from the original deme into a new deme, 
which is placed beside the original deme. If the dividing deme contains an odd 
number of cells, then the split is necessarily unequal, in which case each deme has 
a 50% chance of receiving the larger share. Genotypes are redistributed between 
the two demes without bias according to a multinomial distribution. Cell division 
rate has only a minor effect on deme fission rate because a deme created by fission 
takes only a single cell generation to attain carrying capacity.

If fission is restricted to the tumour boundary, then the new deme’s assigned 
location is chosen uniformly at random from the four nearest neighbours, and if 
the assigned location already contains tumour cells, then the fission attempt fails. 
If fission is allowed throughout the tumour, then an angle is chosen uniformly at 
random, and demes are budged along a straight line at that angle to make space for 
the new deme beside the original deme.
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Our particular method of cell dispersal was chosen to enable comparison 
between our results and those of previous studies and to facilitate mathematical 
analysis. In particular, when the deme carrying capacity is set to 1, our model 
approximates an Eden growth model (if fission is restricted to the tumour 
boundary, or if dispersal is restricted to the tumour boundary and normal cells are 
absent), a voter model (if invasion is allowed throughout the tumour) or a spatial 
branching process (if fission is allowed throughout).

To fairly compare different spatial structures and manners of cell dispersal, 
we set dispersal rates in each case such that the time taken for a tumour to grow 
from one cell to one million cells is approximately the same as in the neutral 
Eden growth model with maximal dispersal rate. This means that, across models, 
the cell dispersal rate decreases with increasing deme size. Given that tumour 
cell cycle times are on the order of a few days, the timespans of several hundred 
cell generations in our models realistically correspond to several years of tumour 
growth. More specifically, if we assume tumours take between 5 and 50 years 
to grow and the cell cycle time is between 1 and 10 days (both uniform priors), 
then the number of cell generations is between 400 and 8,000 in 95% of plausible 
cases. This order of magnitude is consistent with tumour ages inferred from 
molecular data67.

We note that, in addition to gland fission, gland fusion has been reported in 
normal human intestine68, which raises the possibility that gland fusion could 
occur during colorectal tumour development. However, the rate of crypt fission 
in tumours is much elevated relative to the rate in healthy tissue, and must 
exceed the rate of crypt fusion (or else the tumour would not grow). Therefore, 
even if crypt fusion occurs in human tumours, we do not expect it to have a 
substantial influence on evolutionary mode. This view is supported by previous 
computational modelling69.

Two versus three dimensions. We chose to conduct our study in two 
dimensions for two main reasons. First, the effects of deme carrying capacity on 
evolutionary dynamics are qualitatively similar in two and three dimensions, yet 
a two-dimensional model is simpler, easier to analyse, and easier to visualize. 
Second, we aimed to create a method that is readily reproducible using modest 
computational resources and yet can represent the long-term evolution of a 
reasonably large tumour at single-cell resolution.

One million cells in two dimensions corresponds to a cross-section of a 
three-dimensional tumour with many more than one million cells. Therefore, 
compared to a three-dimensional model, a two-dimensional model can provide 
richer insight into how evolutionary dynamics change over a large number of cell 
generations. Developing an approximate, coarse-grained analogue of our model 
that can efficiently simulate the population dynamics of very large tumours with 
different spatial structures in three dimensions is an important direction for 
future research.

Implementation. The programme implemented Gillespie’s exact stochastic 
simulation algorithm70 for statistically correct simulation of cell events. The order 
of event selection is (1) deme, (2) cell type (normal or tumour), (3) genotype, and 
(4) event type. At each stage, the probability of selecting an item (deme, cell type, 
genotype or event type) is proportional to the sum of event rates for that item, 
within the previous item. We measured elapsed time in terms of cell generations, 
where a generation is equal to the expected cell cycle time of the initial tumour cell.

Sequencing data. We surveyed the multi-region and single-cell tumour sequencing 
literature to identify data sets suitable for comparison with our model results. 
Studies published before 2015 (for example, refs. 71–74) were excluded as they were 
found to have insufficient sequencing depth for our purposes. We also excluded 
studies that reconstructed phylogenies using samples from metastases or from 
multifocal tumours (for example, refs. 75–80) because our model is not designed 
to correspond to such scenarios. The seven studies we chose to include in our 
comparison are characterized by either high-coverage multi-region sequencing or 
large-sample single-cell sequencing of several tumours.

The ccRCC investigation81 we selected involved multi-region deep sequencing, 
targeting a panel of more than 100 putative driver genes. Three studies of NSCLC10, 
mesothelioma40 and breast cancer39 conducted multi-region whole-exome 
sequencing (first two studies) or whole-genome sequencing (latter study), and 
reported putative driver mutations. We also used data from single-cell RNA 
sequencing studies of uveal melanoma42 and breast cancer41, in which chromosome 
copy number variations were used to infer clonal structure, and a study of acute 
myeloid leukaemia (AML) that used single-cell DNA sequencing24. All seven 
studies constructed phylogenetic trees, which are readily comparable to the 
trees predicted by our modelling. The methodological diversity of these studies 
contributes to demonstrating the robustness of the patterns we seek to explain.

From each of the seven cohorts, we obtained data for between three and eight 
tumours. In the ccRCC data set, we focused on the five tumours for which driver 
frequencies were reported in the original publication. For NSCLC, we used data 
for the five tumours for which at least six multi-region samples were sequenced. 
In mesothelioma, we selected the six tumours that had at least five samples taken. 
From the breast cancer multi-region study, we used data for the three untreated 
tumours that were subjected to multi-region sequencing. From the single-cell 

sequencing studies of uveal melanoma and breast cancer, we used all the published 
data (eight tumours in each case), and from the AML study, we selected a random 
sample of eight tumours.

In multi-region sequencing data sets, it is uncertain whether all putative driver 
mutations were true drivers of tumour progression. One way to interpret the data 
(interpretation I1) is to assume that all putative driver mutations were true drivers 
that occurred independently. Alternatively, the more conservative interpretation I2 
assumes that each mutational cluster (a distinct peak in the variant allele frequency 
distribution) corresponds to exactly one driver mutation, while all other mutations 
are hitchhikers. Thus, I1 permits linear chains of nodes that in I2 are combined 
into single nodes (compare Supplementary Figs. 9 and 10), and I1 leads to a 
higher estimate of the mean number of driver mutations per cell (our summary 
index n). If both the fraction of putative driver mutations that are not true drivers 
(false positives) and the fraction of true driver mutations that are not counted as 
such (false negatives) are low, or if these fractions approximately cancel out, then 
interpretation I1 will give a good approximation of n whereas I2 will give a lower 
bound. For the ccRCC, NSCLC and breast cancer cases in our data set, I1 generates 
values of n in the range 3–10 (mean 6.1), consistent with estimates based on other 
methodologies13,51, whereas for I2 the range is only 1–4 (mean 2.5). Accordingly,  
we used interpretation I1.

Clonal diversity index. To measure clonal diversity, we used the inverse Simpson 
index defined as D = 1/

∑
ip

2
i , where pi is the frequency of the ith combination 

of driver mutations. For example, if the population comprises k clones of equal 
size, then pi = 1/k for every value of i, and so D = 1/(k × 1/k2) = k. Clonal diversity 
has a lower bound D = 1. The inverse Simpson index is relatively robust to 
adding or removing rare types, which makes it appropriate for comparing data 
sets with differing sensitivity thresholds. Further examples are illustrated in 
Supplementary Fig. 11.

D is constrained by an upper bound for trees with n < 2, where n is the mean 
number of driver mutations per cell. Indeed, n = ∑iipi ≥ p1 + 2(1 − p1) = 2 − p1,  
so p1 ≥ 2 − n > 0, since n < 2. Therefore,

D =
1

∑
ip2i

≤
1
p21

≤
1

(2 − n)2
.

To see that this bound is tight, assume 1 ≤ n < 2 and consider a star-shaped tree 
with N nodes such that p1 = 2 − n and other nodes have equal weights pi = (1 − p1)/
(N − 1) = (n − 1)/(N − 1) for i ≥ 2. The mean number of driver mutations per cell is 
p1 + 2(1 − p1) = 2 − p1 = n, and the inverse Simpson index is

D = 1∑N
i=1 p2i

= 1
p21+

∑N
i=2 p2i

= 1
(2−n)2+(N−1)((n−1)/(N−1))2 = 1

(2−n)2+(n−1)2/(N−1) .

This quantity goes to 1/(2 − n)2 as the number of nodes N goes to infinity, so the 
bound 1/(2 − n)2 may be approached arbitrarily closely.

It is informative to derive the relationship between D and n for a population 
that evolves via a sequence of clonal sweeps, such that each new sweep begins only 
after the previous sweep is complete. For a given value of n, our simulations rarely 
produce trees with D values below the curves of this trajectory. Suppose that a 
population comprises a parent type and a daughter type, with frequencies p and 
1 − p, respectively. If the daughter has m driver mutations, then the parent must 
have m − 1 driver mutations and n must satisfy m − 1 ≤ n ≤ m. More specifically,

n = (m − 1)p + m(1 − p) = m − p ⇒ p = m − n = 1 − {n},

where {n} denotes the fractional part of n (or 1 if n = m). The trajectory is therefore 
described by

D =
1

p2 + (1 − p)2
=

1
(1 − {n})2 + {n}2

.

We additionally calculated a curve representing the maximum possible 
diversity of linear trees. In the main text and below, we refer to this curve as 
corresponding to trees with an intermediate degree of branching. Specifically, 
this intermediate-branching curve is defined such that for every point below the 
curve (and with D > 1), there exist both linear trees and branching trees that have 
the corresponding values of n and D, whereas for every point above the curve 
there exist only branching trees. Derivation of the curve’s equation is provided in 
Supplementary Information. A first-order approximation (accurate within 1% for 
n ≥ 2.2) is D ≈ 9(2n − 1)/8.

To assess the extent to which clusters of points (n, D) are well separated, 
we calculated silhouette widths using the cluster R package82. A positive mean 
silhouette width indicates that clusters are distinct.

Other diversity indices. Our diversity index fulfills the same purpose as the 
intratumour heterogeneity (ITH) index used in the TRACERx Renal study9, 
defined as the ratio of the number of subclonal driver mutations to the number 
of clonal driver mutations. However, compared to ITH, our index has the 
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advantages of being a continuous variable and being robust to methodological 
differences that affect ability to detect low-frequency mutations. In calculating 
ITH from sequencing data, we included all putative driver mutations, whereas 
ref. 9 used only a subset of mutations. For model output, we classified mutations 
with frequency above 99% as clonal and we excluded mutations with frequency 
less than 1%. ITH and the inverse Simpson index are strongly correlated across 
our models (Spearman’s ρ = 0.98, or ρ = 0.81 for cases with D > 2; Extended  
Data Fig. 9c).

The Shannon index, defined as 
∑

ipilog pi, is another alternative to the 
Simpson index. The exponential of this index has the same units as the inverse 
Simpson index (equivalent number of types). Compared to the Simpson index, 
the Shannon index gives more weight to rare types, which makes it somewhat less 
suitable for comparing data sets with differing sensitivity thresholds.

Defining evolutionary modes in terms of indices D and n. In defining regions in 
terms of indices D and n (Table 1 and Fig. 3c), we first noted that if a population 
undergoes a succession of non-overlapping clonal sweeps, then at most two clones 
coexist at any time, and hence D ≤ 2. Allowing for some overlap between sweeps, 
we defined the ‘selective sweeps’ region as having D < 10/3 and D below the 
intermediate-branching curve. We put the upper boundary at D = 10/3 because this 
intersects with the intermediate-branching curve at n = 2.

We used D = 20 to define the boundary between the ‘branching’ and 
‘progressive diversification’ regions. The TRACERx Renal study9 instead 
categorized trees containing more than 10 clones as highly branched, as opposed 
to branched. It is appropriate for us to use a higher threshold because our regions 
are based on true tumour diversity values, rather than the typically lower values 
inferred from multi-region sequencing data. Finally, we defined an ‘effectively 
almost neutral’ region containing star-shaped trees with n < 2 and D above the 
intermediate-branching curve.

It is possible to construct trees that do not fit the labels we have assigned 
to regions. For example (as shown in Supplementary Information), there exist 
linear trees within the branching and progressive diversification regions. Such 
exceptions are an unavoidable consequence of representing high-dimensional 
objects, such as phylogenetic trees, in terms of a small number of summary 
indices. Our labels are appropriate for the subset of trees that we have shown to 
arise from tumour evolution.

Previously defined tree balance indices. Conventionally, the balance of a tree 
is the degree to which branching events split the tree into subtrees with the same 
number of leaves, or terminal nodes. A balanced tree thus indicates more equal 
extinction and speciation rates than an unbalanced tree83. Tree balance indices 
are commonly used to assert the correctness of tree reconstruction methods and 
to classify trees. We considered three previously defined indices, all of which are 
imbalance indices, which means that more balanced trees are assigned smaller 
values. We subtracted each of these indices from 1 to obtain measurements of  
tree balance.

Let T = (V, E) be a tree with a set of nodes V and edges E. Let ∣V∣ = N, and 
hence ∣E∣ = N − 1 (since each node has exactly one parent, except the root). We 
defined l as the number of leaves of the tree. The root is labelled 1 and the leaves 
are numbered from N − l + 1 to N. There is only one cladogram with two leaves, 
which is maximally balanced according to all the previously defined indices 
discussed below. We also considered the single-node tree to be maximally balanced 
with respect to these previously defined indices. The following definitions then 
apply when l ≥ 3.

For each leaf j, we defined νj as the number of interior nodes between j and the 
root, which is included in the count. Then a normalized version of Sackin’s index, 
originally introduced in ref. 84, is defined as

IS,norm(T) =

N∑

j=N−l+1
νj − l

1
2 (l + 2)(l − 1) − l

,

where to be able to compare indices of trees on different number of leaves l, we 
subtracted the minimal value for a given l and divided by the range of the index on 
all trees on n leaves, as in ref. 85.

For an interior node i of a binary tree T, we defined TL(i) as the number of 
leaves subtended by the left branch of Ti, the subtree rooted at i, and TR(i) the 
number of leaves subtended by its right branch. Then, the unnormalized Colless 
index86 of T is

IC(T) =

N−l∑

i=1
|TL(i) − TR(i)|.

Since Colless index is defined only for bifurcating trees, we used the default 
normalized Colless-like index CMDM, ln(l+e), norm defined in ref. 85. This consisted of 
measuring the dissimilarity between the subtrees T′ rooted at a given internal node 
by computing the mean deviation from the median (MDM) of the f-sizes of these 
subtrees. In this case, f(l) = ln(l + e) and the f-size of T′ is defined as

∑

v∈V(T′)

ln(deg(v) + e).

These dissimilarities were then summed and the result was normalized as for 
Sackin’s index.

The cophenetic value ϕ(i, j) of a pair of leaves i, j is the depth of their lowest 
common ancestor (such that the root has depth 0). The total cophenetic index87 of 
T is then the sum of the cophenetic values over all pairs of leaves, and a normalized 
version is

IΦ,norm(T) =

∑

N−l+1≤i<j≤N
ϕ(i, j)

(
l
3

) ,

where here the minimal value of the cophenetic index is 0 for all l (for a star-shaped 
tree with l leaves).

These three balance indices were designed for analysing species phylogenies 
and are thus defined on cladograms, which are trees in which leaves correspond to 
extant species and internal nodes are hypothetical common ancestors. Conventional 
cladograms have no notion of node size. Cladograms also lack linear components 
as each internal node necessarily corresponds to a branching event. The driver 
phylogenetic trees reported in multi-region sequencing studies and generated by our 
models are instead clone trees (also known as mutation trees), in which all nodes of 
non-zero size represent extant clones. To apply previous balance indices to driver 
phylogenetic trees, we first converted the trees to cladograms by adding a leaf to each 
non-zero-sized internal node and collapsing linear chains of zero-sized nodes.

Whereas diversity indices such as D are relatively robust to the addition or 
removal of rare clones, the balance indices described above are much less robust 
because they treat all clones equally, regardless of population size (Supplementary 
Figs. 6, 7 and 8). This hampered comparison between model results and data 
for two reasons. First, due to sampling error, even high quality multi-region 
sequencing studies underestimate the number of subclonal, locally abundant driver 
mutations by approximately 25%81. Second, bulk sequencing cannot detect driver 
mutations present in only a very small fraction of cells.

A robust tree balance index. To overcome the shortcomings of previous indices, 
we have developed a more robust tree balance index based on an extended 
definition: tree balance is the degree to which internal nodes split the tree into 
subtrees of equal size, where size refers to the sum of all node populations.

Let f(v) > 0 denote the size of node v. For an internal node i, let V(Ti) denote 
the set of nodes of Ti, the subtree rooted at i. We then define

Si =
∑

v∈V(Ti)

f(v) = the size of Ti,

S∗i =
∑

v∈V(Ti)
v̸=i

f(v) = the size of Ti without its root i.

For i in the set of internal nodes Ṽ , and j in the set C(i) of children of i, we define 
pij = Sj/S∗i . We then computed the balance score W1

i  of a node i ∈ Ṽ  as the 
normalized Shannon entropy of the sizes of the subtrees rooted at the children of i:

W1
i =

∑

j∈C(i)

W1
ij , withW1

ij =

{
−pijlog d+(i)pij if pij > 0 and d+(i) ≥ 2,

0 otherwise,

where d+(i) is the out-degree (the number of children) of node i. Finally, for each node 
i, we weighted the balance score by the product of S∗i  and a non-root dominance factor 
S∗i /Si. Our normalized balance index is then

J1 :=
1

∑
k∈ṼS∗k

∑

i∈Ṽ

S∗i
S∗i
Si

W1
i .

Supplementary Fig. 11 illustrates the calculation of J1 for four exemplary trees. We 
further describe the desirable properties of this index, and its relationship to other 
tree balance indices, in another article43.

When n ≤ 2 (where n is the mean number of driver mutations per cell), the 
non-root dominance factor cannot exceed n − 1, while the other factors in J1 are at 
most 1, which implies J1 ≤ n − 1 for all n ≤ 2. Also for n > 2, we have J1 ≤ 1 < n − 1. 
Thus, it is impossible to construct trees that have J1 > n − 1, as shown in Fig. 4a.

Clonal turnover indices. For each time point t ≥ δt, we defined a clonal turnover 
index as

Θ(t) =
∑

i
(fi(t) − fi(t − τ))2,

where fi(t) is the frequency of clone i at time t, and τ is 10% of the total simulation 
time measured in cell generations. The mean value Θ  over time measures the total 
extent of clonal turnover.
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To determine whether clonal turnover mostly occurred early, late or 
throughout tumour evolution, we calculated the weighted average

TΘ =
1

max(t)

(
∑

t
Θ(t)t

/∑

t
Θ(t)

)

,

where max(t) denotes the final time of the simulation. This quantity takes values 
between 0 and 1, and is higher if clonal turnover occurs mostly late during tumour 
growth. If the rate of clonal turnover is constant over time, then TΘ ≈ 0.55.

Histology slide analysis to determine the number of cells per gland. We 
randomly selected five tumours of each of four cancer types (colorectal cancer, 
clear cell renal cancer, lung adenocarcinoma and breast cancer) from The Cancer 
Genome Atlas (TCGA) reference database (http://portal.gdc.cancer.gov). Using 
QuPath v0.2.0m488, we manually delineated five representative groups of tumour 
cells in each image and automatically counted the number of cells in each group. 
We defined a group as a set of tumour cells directly touching each other, separated 
from other groups by stroma or other non-tumour tissue (Extended Data Fig. 3).

The number of cells per group ranged from 5 to 8,485, with 50% of cases 
having between 53 and 387 cells (Extended Data Fig. 4a). Variation in the 
number of cells per group was larger between rather than within tumours, 
whereas cell density was relatively consistent between tumours (Extended Data 
Fig. 4b). Because our cell counts were derived from cross sections, they would 
underestimate the true populations of three-dimensional glands. On the other 
hand, it is unknown what proportion of cells are able to self-renew and contribute 
to long-term tumour growth and evolution89. On balance, therefore, it is reasonable 
to assume that each gland of an invasive glandular tumour can contain between 
a few hundred and a few thousand interacting cells. This range of values is, 
moreover, remarkably consistent with results of a recent study that used a very 
different method to infer the number of cells in tumour-originating niches. 
Across a range of tissue types, this study concluded that cells typically interact in 
communities of 300–1,900 cells30. Another recent study of breast cancer applied 
the Louvain method for community detection to identify two-dimensional tumour 
communities typically in the range of 10–100 cells.29

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data can be accessed at https://github.com/robjohnnoble/ModesOfEvolution.

Code availability
Our computational modelling code is available in an online repository65. Our data 
analysis R package is at https://github.com/robjohnnoble/demonanalysis. Specific 
figure plotting code is at https://github.com/robjohnnoble/ModesOfEvolution. 
Muller plots were drawn using the ggmuller R package90.
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Extended Data Fig. 1 | Cell proliferation rates and mutation burdens. a, Evolution and final spatial distribution of cell proliferation rates, for a model of 
tumour growth via gland fission (8,192 cells per gland). b, Final spatial distribution of mutation burdens. c-d, Results of a model in which tumour cells 
disperse between neighbouring glands and invade normal tissue (512 cells per gland). e-f, Results of a boundary-growth model of a non-glandular tumour. 
In all cases, the driver mutation rate is 10−5 per cell division, and driver fitness effects are drawn from an exponential distribution with mean 0.1. Other 
parameter values are listed in Supplementary Table 4.
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Extended Data Fig. 2 | Results of variant models. First column: Dynamics of driver mutation diversity in 20 stochastic simulations. Dynamics of clonal 
diversity (inverse Simpson index D) in 20 stochastic simulations of a non-spatial model. Black curves correspond to the individual simulations illustrated 
in subsequent columns. These particular simulations are those with indices D and n closest to the medians of sets of 100 replicates. Second column: 
Muller plots of clonal dynamics over time. Colours represent clones with distinct combinations of driver mutations (the original clone is grey-brown; 
subsequent clones are coloured using a recycled palette of 26 colours). Descendant clones are shown emerging from inside their parents. Third column: 
Final clone proportions (for the non-spatial model) or spatial arrangement (for spatial models). For spatial models, each pixel corresponds to a patch 
of cells, corresponding to a tumour gland, coloured according to the most abundant clone within the patch. Fourth column: Driver phylogenetic trees. 
Node size corresponds to clone population size at the final time point and the founding clone is coloured red. Only clones whose descendants represent 
at least 1% of the final population are shown. Final column: Evolutionary indices D and n at the final time point. Black points correspond to the individual 
simulations illustrated in previous columns. a, A model of tumour growth via gland fission (8,192 cells per gland), in which cells can acquire driver 
mutations that increase their contribution to the gland fission rate (with an average effect size of 50%), in addition to drivers that increase the cell division 
rate. b, A model in which tumour cells invade normal tissue but do not disperse within the tumour bulk (512 cells per gland). c, A boundary-growth model 
of a non-glandular tumour in which cells invade neighbouring sites within the tumour. d, A model in which tumour cells invade normal tissue at the 
tumour boundary only (2,048 cells per gland). e, A model of tumour growth via gland fission (2,048 cells per gland). Other parameter values are listed in 
Supplementary Table 4.
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Extended Data Fig. 3 | Quantification of tumour cell numbers per gland in a breast cancer histology slide. Multiple glands were manually outlined and 
the number of cells in each gland was counted automatically. Shaded areas are cell masks obtained with QuPath. The original image was retrieved from 
The Cancer Genome Atlas at https://portal.gdc.cancer.gov (patient TCGA-49-AARR, slide 01Z-00-DX1).
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Extended Data Fig. 4 | Results of semi-automated analysis of five glands in each of twenty randomly selected tCga histology slides, representing 
four cancer types. a, Number of cells per gland (dashed lines correspond to the overall median, 25% and 75% quantiles). b, Cell density. BRCA = breast 
invasive carcinoma; ccRCC = clear cell renal cell carcinoma; CRC = colorectal cancer; NSCLC = non-small-cell lung cancer.
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Extended Data Fig. 5 | Variation in evolutionary indices D and n for an invasive glandular model with cell dispersal throughout the tumour and at the 
tumour boundary. Results are shown for varied gland size (colours), driver mutation rate (columns) and average driver fitness effect (rows), with 100 
stochastic simulations per model. Black points show values derived from multi-region sequencing of kidney cancers, lung cancers and breast cancers. 
Non-varied parameter values are the same as in Fig. 2.
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Extended Data Fig. 6 | Variation in tree balance index J1 versus clonal diversity D for an invasive glandular model with cell dispersal throughout the 
tumour and at the tumour boundary. Results are shown for varied gland size (colours), driver mutation rate (columns) and sensitivity threshold (rows), 
with 100 stochastic simulations per model. Driver mutations with frequency below the sensitivity threshold (0.005, 0.02, 0.05 or 0.1) are removed from 
the model output before calculating J1 and D. Non-varied parameter values are the same as in Fig. 2. Black points show values derived from multi-region 
sequencing of kidney cancers, lung cancers and breast cancers.
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Extended Data Fig. 7 | Driver phylogenetic trees resulting from an evolutionary model with cell dispersal throughout the tumour and at the tumour 
boundary (512 cells per gland). The rows show final outcomes of the same five simulations (in the same order) after adjustment to simulate different 
sensitivities in detecting rare mutations. Driver mutations with frequency below the sensitivity threshold are removed from the model output. This 
means that if the combined frequency of a clone and its descendants is below the sensitivity threshold then the clone is merged with its parent clone. 
The sensitivity threshold is varied from 0.5% (top row) to 10% (bottom row). Node size corresponds to clone population size and the founding clone is 
coloured red.
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Extended Data Fig. 8 | Combined degree distribution for 100 driver phylogenetic trees resulting from an evolutionary model with cell dispersal 
throughout the tumour and at the tumour boundary (512 cells per gland). The four panels correspond to the same set of simulations after adjustment to 
simulate different sensitivities in detecting rare mutations. Driver mutations with frequency below the sensitivity threshold are removed from the model 
output. This means that if the combined frequency of a clone and its descendants is below the sensitivity threshold then the clone is merged with its 
parent clone. The sensitivity threshold is varied from 0.5% to 10%.
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Extended Data Fig. 9 | alternative diversity indices. a, Variation in the exponential of the Shannon diversity index versus mean number of driver 
mutations per cell (n). b, Variation in the ITH index versus mean number of driver mutations per cell (n). c, Correlation between the inverse Simpson 
index (D) and the ITH index. Coloured points correspond to four example models with different spatial structures and different manners of cell dispersal 
but identical driver mutation rates and identical driver mutation effects (100 stochastic simulations per model). Neutral counterparts of the four models 
are represented together as an additional group. Mutations with frequency less than 1% are removed from model outcomes before calculating ITH and D. 
Black circular points show values derived from multi-region sequencing of kidney cancers, lung cancers and breast cancers. Purple squares show values 
derived from single-cell sequencing data for acute myeloid leukaemia. Estimates of the Shannon index and ITH index based on multi-region sequencing 
data are expected to be lower than true values because these indices are sensitive to the removal of rare types, many of which are likely to be missing from 
the data due to sampling error.
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Extended Data Fig. 10 | Mutation frequency distributions for simulated tumours. a-d, Complete mutation frequency distributions for models with only 
neutral mutations (blue points) or both neutral and driver mutations (red points). Each distribution represents combined data from 100 simulations of 
each of the four model types of Figs. 2 and 3. To clarify the shape of the distributions, especially at high frequencies, the x-axes are transformed as logit(x) 
= log(x/(1 − x)), which is approximately equal to log x when x is much less than 1. Dashed lines indicate the slope predicted for an exponentially-growing 
population acquiring only neutral mutations (negative slope) and a prediction of the Bolthausen-Sznitman coalescent (positive slope), which has been 
shown to describe genealogies when a constant-size population expands into uninhabited territory92 or when a constant-size population acquires both 
neutral and highly beneficial mutations93. e-h, Mutation frequency versus timing of mutation for the specific model instances of Fig. 2. Point colour 
corresponds to clone (as in Fig. 2), and size corresponds to the division rate of cells within the clone. Driver mutations are typically preceded by a string 
of hitchhiking passenger mutations with similar frequencies. This figure format is inspired by Figure 2 of ref. 4. i-l, Mutation frequency distributions for the 
specific model instances of Fig. 2, with linear axes. Results are shown for a non-spatial branching process (a, e, i); tumour growth via gland fission (b, f, 
j); cell dispersal throughout the tumour and at the tumour boundary (c, g, k); and a boundary-growth model (d, h, l). Parameter values are the same as in 
Figs. 2 and 3.
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