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We study longitudinal magnetotransport in disorder-free cylindrical Weyl semimetal nanowires.
Our theory includes a magnetic flux Φ piercing the nanowire and captures the finite curvature of
the Fermi arc in the surface Brillouin zone through a boundary angle α. Electron backscattering
by acoustic phonons via the deformation potential causes a finite resistivity which we evaluate by
means of the semiclassical Boltzmann approach. We find that low-energy transport is dominated
by surface states, where transport observables are highly sensitive to the angle α and to Aharonov-
Bohm phases due to Φ. A generic subband dispersion relation allows for either one or two pairs of
Fermi points. In the latter case, intra-node backscattering is possible and implies a parametrically
larger resistivity than for a single Fermi point pair. As a consequence, large and abrupt resistivity
changes take place across the transition points separating parameter regions with a different number
of Fermi point pairs in a given subband.

I. INTRODUCTION

Weyl semimetal (WSM) materials represent one of the
most intensely studied topics in current condensed mat-
ter physics; for recent reviews, see Refs. [1–6]. WSM
materials have pairs of Weyl nodes in the Brillouin zone
which act as sources of Berry curvature, with topologi-
cal Fermi arc surface states connecting the surface pro-
jections of different Weyl nodes. Experimental evidence
for Fermi arcs has already been accumulated for several
WSM materials by means of surface probe techniques
[2, 4], and experimental studies of other interesting phe-
nomena such as the chiral anomaly [5] or nonlocal Weyl
orbits [6] are well advanced. Nonetheless, a satisfactory
understanding of the transport properties of WSM mate-
rials is often difficult to reach due to the intricate inter-
play between topological protection and backscattering
mechanisms. In addition, it is important to include elec-
tromagnetic fields and finite size effects in specific device
setups. To give just one example, while measurements of
the magnetoresistivity could in principle reveal the chiral
anomaly [7], the precise relation between transport ob-
servations and the chiral anomaly remains under intense
debate [5].

In this paper, we present a theory of magnetotrans-
port in disorder-free WSM nanowires, taking into ac-
count electron backscattering by acoustic phonons. Since
this device geometry is experimentally realizable and
at the same time analytically tractable, the interplay
between topological Fermi arcs, backscattering effects,
electromagnetic fields, and finite-size effects can here
be analyzed in a comprehensive manner. The band
structure and the noninteracting transport properties of
clean WSM nanowires have been studied in Refs. [8–
13]. In particular, for cylindrical wires, the authors of
Ref. [12] have shown that the contribution of Fermi arcs
to the conductance often outweighs the effect of bulk
states. This conclusion also applies for large values of
the nanowire radius, see Refs. [14, 15] for related stud-
ies. One of the goals of this work is to quantify phonon-

induced backscattering effects on the magnetoresistivity
of WSM nanowires, in particular in parameter regions
where transport is dominated by surface states.

The importance of phonons in WSMs has been es-
tablished by recent experiments [16–19]. Phonon effects
can be identified, for instance, through the character-
istic temperature dependence of phonon-induced contri-
butions to transport observables. Theoretical studies of
electron-phonon coupling effects have so far mainly fo-
cused on optical phonons and/or phenomena unrelated to
transport, see, e.g., Ref. [20]. Phonon-induced backscat-
tering effects on transport in WSMs have been studied for
the slab geometry [21] but (to the best of our knowledge)
not for nanowires. We note that the phonon-induced re-
sistivity of conventional one-dimensional (1D) quantum
wires with parabolic (or linear) dispersion was studied by
many authors [22–29]. However, the dispersion relations
of 1D subbands in WSM nanowires turn out to be more
complex. For instance, a given 1D subband may allow
for more than one pair of Fermi momenta. In such cases,
new scattering processes appear which in turn directly af-
fect the dependence of the resistivity on key parameters
such as temperature, Fermi energy, and magnetic field.

The consequences of this enriched complexity will here
be studied for cylindrical WSM nanowires. We employ a
two-band model describing WSMs with broken time re-
versal symmetry and just two bulk Weyl nodes [14, 30–
33], where a boundary condition ensures that the current
density perpendicular to the cylinder surface vanishes.
This boundary condition is parametrized by a bound-
ary angle α [11, 34], where the commonly used infinite
mass boundary conditions are recovered for α = 0. For
a planar surface with α = 0, the Fermi arc curves in
the surface Brillouin zone are straight lines. For α 6= 0,
however, one finds that Fermi arcs acquire curvature. By
including the phenomenological parameter α, we there-
fore can also address the case of WSM materials with
curved Fermi arcs.

We use the well-known phonon modes predicted by
isotropic elastic continuum theory with stress-free bound-
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ary conditions in the wire geometry [35], and we assume
that the deformation potential provides the dominant
electron-phonon coupling. Including a constant mag-
netic field along the wire axis, we then compute the re-
sistivity from Boltzmann theory [36, 37]. For a com-
plementary study in the context of topological insulator
nanowires, see Ref. [38]. In addition, we will discuss the
two-terminal conductance of cleanWSM nanowires in the
zero-temperature limit, where phonon effects are frozen
out. It is interesting to compare WSM nanowires and
topological insulator nanowires [39, 40]. Even though
only the latter have gapped bulk states, we show below
that surface states in both types of nanowires show a sim-
ilar response to a magnetic flux threading the wire. With
some modifications along the lines of Ref. [13], our the-
ory can also be adapted to Dirac semimetal nanowires.
Nanowires made of the Dirac semimetal material Cd3As2
have recently been synthesized; for transport experi-
ments, see Refs. [41–45]. We note that first trans-
port experiments have recently been reported for WSM
nanowires as well [46, 47].

The paper is structured as follows. In Sec. II, we de-
rive and discuss the electronic band structure. Assuming
that the deformation potential produces the dominant
electron-phonon coupling, the phonon-induced resistivity
has been computed within the semiclassical Boltzmann
approach as explained in Sec. III. Our results for trans-
port observables are then discussed in Sec. IV. The paper
concludes with a brief summary and an outlook in Sec. V.
Details about our calculations can be found in several
Appendices, and we often put ~ = e = c = kB = 1.

II. ELECTRONIC BAND STRUCTURE

In this section, we address the band structure of WSM
nanowires. In Sec. II A, we describe a two-band model
for magnetic WSMs and derive the spectral equation for
cylindrical wires. We then discuss the band structure in
Sec. II B, in particular its dependence on magnetic flux
and on the boundary angle α.

A. Model

We start from a well-known inversion-symmetric two-
band model for the single-particle electron states of a
magnetic WSM [14, 30–33]. This model describes the
simplest case with just two Weyl points located at mo-
menta k = ±bêz in the Brillouin zone, where the unit
vector êz is along the z-direction. We will study a cylin-
drical nanowire geometry with radius R and wire axis êz
by imposing a boundary condition at the cylinder sur-
face. In addition, we include the effects of a constant
magnetic field B = Bêz along the wire axis, with B > 0.
We note that for a magnetic field perpendicular to the
wire axis, transport observables are strongly suppressed,
see Ref. [10] for a detailed study.

Electronic states are then described by the low-energy
model [14, 30–33]

H0 = v [σx(−i∂x +Ax) + σy(−i∂y +Ay)]+mkσz, (2.1)

with the bulk Fermi velocity v and Pauli matrices σx,y,z
acting in a combined spin-orbital space. Clearly, the mo-
mentum k along êz is a good quantum number, and the
effective mass function is given by

mk =
v

2b
(k2 − b2). (2.2)

Throughout we focus on energies |E| . vb/2 such that
the two Weyl nodes at k = ±b can be clearly distin-
guished. The magnetic field is given by B = ∂xAy−∂yAx,
where we use the symmetric gauge, A = 1

2B(−y, x, 0). In
units of the flux quantum Φ0 = hc/e, the magnetic flux
through the cross-section of the nanowire is encoded by
the dimensionless flux parameter

Φ =
πR2B

Φ0
=

R2

2l2B
, (2.3)

with the magnetic length lB =
√
~c/eB. For a nanowire

of radius R = 25 nm, one finds Φ ≈ 1 for a magnetic
field B ≈ 2 T. We note that the magnetic Zeeman term
has been neglected in Eq. (2.1). As shown in Ref. [48],
even though the g factor can be large in typical WSM
materials, the Zeeman coupling is expected to cause only
small quantitative changes in the band structure. The
orbital effects of the magnetic field, on the other hand,
cause qualitative differences.

Before turning to the derivation of the spectrum, let
us summarize the relevant energy scales. First, the scale
vb/2 corresponds to the mass gap at k = 0, see Eq. (2.2).
Second, transverse quantization introduces the finite-size
scale v/R. Third, the magnetic energy scale is v/lB . We
are interested in relatively thin wires and consider low
energies, |E| . vb/2. The number of bands in this energy
range can be roughly estimated by ∼ vb/(v/R) = bR.
Throughout this paper, we consider the case bR � 1;
in concrete examples, we set bR = 10. Taking a typical
value b ∼ 0.5 nm−1 in WSM materials [1, 2], this choice
corresponds to a nanowire radius R ∼ 20 nm. The ratio
between the magnetic scale v/lB and the finite-size scale
v/R remains as free parameter determined by Φ.

We proceed by employing polar coordinates, (x, y) =
r(cosφ, sinφ), with unit vectors êr and êφ. Below we will
also use the dimensionless radial variable

ξ =
r2

2l2B
, i.e., ξ/Φ = (r/R)2. (2.4)

From Eq. (2.1) one then finds that the angular momen-
tum operator Jz = −i∂φ+ 1

2σz with half-integer eigenval-
ues j is conserved. Spinor eigenfunctions are thus given
by

Ψk,j(r) =
eikz√
L

eijφ√
2π

(
e−iφ/2 Y+(ξ)
ieiφ/2 Y−(ξ)

)
, (2.5)
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Figure 1. Energy bands Ek,j,p vs momentum k for a WSM nanowire with α = π/2, bR = 10, and magnetic flux parameter
Φ = 0 (left), Φ = 2 (center), and Φ = 4 (right panel), see Eq. (A1). Dashed blue (solid black) curves represent j < 0 (j > 0)
states. For this value of α, the Fermi arc surface states with Ek,j>0 = mk are degenerate. For all other bands, we find states
with −21/2 ≤ j ≤ 27/2 in the shown energy range. Green dotted curves show E = ±mk.

where the wire length L appears for normalization. The
real-valued radial eigenfunctions Y±(ξ) are combined to
form radial spinors,

Yk,j(ξ) =

(
Y+(ξ)
Y−(ξ)

)
, l2B

∫ Φ

0

dξ (Y 2
+ + Y 2

−) = 1, (2.6)

where the normalization condition has been adapted to
the cylindrical geometry. Using Eqs. (2.5) and (2.6),
H0Ψ = EΨ reduces to the radial equation −E−

√
ξ∂ξ +

ξ+j+ 1
2

2
√
ξ

−
√
ξ∂ξ +

ξ+j− 1
2

2
√
ξ

−E+

Yk,j(ξ) = 0,

(2.7)

with the dimensionless quantities

E±(k,E) =
E ±mk√

2v/lB
. (2.8)

We require regularity of Y (ξ) at the origin ξ = 0. Then
the general solution of Eq. (2.7) can be expressed in terms
of the confluent hypergeometric function M(a, b; ξ) [49].
Using the notation

aj = (j + 1/2) Θ(j)− E+E−, (2.9)

with the Heaviside step function Θ and keeping the de-
pendence on k and E implicit, we obtain (up to normal-
ization)

Yk,j(ξ) =


ξ

1
2 (j− 1

2 )e−ξ/2
(

(j + 1
2 )M(aj , j + 1

2 ; ξ)
E−
√
ξ M(aj , j + 3

2 ; ξ)

)
, j > 0,

ξ−
1
2 (j+ 1

2 )e−ξ/2
(
E+
√
ξ M(aj + 1,−j + 3

2 ; ξ)
(j − 1

2 )M(aj ,−j + 1
2 ; ξ)

)
, j < 0.

(2.10)

The finite cylinder radius R now enters through a
boundary condition at the surface r = R, i.e., for ξ = Φ.
Following Refs. [11, 34], this boundary condition is writ-
ten in the form

M(α)Ψ(R) = ±Ψ(R), M(α) = σφ cosα+ σz sinα,
(2.11)

with σφ = e−i
φ
2 σzσye

iφ2 σz . We consider the +1 eigenvalue
in Eq. (2.11) for −π/2 < α ≤ π/2 in what follows. The
boundary condition (2.11) imposes that on the surface
of the wire the pseudospin direction lies in the tangent
plane, at an angle α with respect to the circumferential
direction êφ. Importantly, this condition preserves an-
gular momentum conservation and ensures a vanishing
local current density through the surface. This last con-

dition is the same one would impose on a conventional
semiconducting nanowire, but the form of the effective
Hamiltonian in a WSM allows for one free parameter,
the boundary angle α. This is a non-universal parameter
which in general will depend on both the WSM material
and the precise surface structure.

Using Eq. (2.5) to express Ψ in terms of radial func-
tions, Eq. (2.11) is equivalently written as

Y+(Φ)

Y−(Φ)
= tan

(α
2

+
π

4

)
. (2.12)

The choice α = 0 implements infinite mass boundary
conditions [10, 12], defined by a ξ-dependent mass given
by mk in Eq. (2.2) for ξ < Φ but mk →∞ for ξ > Φ.
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Figure 2. Energy bands Ek,j,p vs momentum k for α = 0 and several Φ. All other parameters and conventions are as in Fig. 1.

Figure 3. Energy dispersion Ek,j,p vs k for α = π/4 and several Φ. All other parameters and conventions are as in Fig. 1.

B. Band structure

The solutions admitted by the boundary condi-
tion (2.12) determine the energy spectrum of the
nanowire, which consists of 1D subbands labeled by the
angular momentum j and a radial band index p. By
inversion symmetry, the respective subband dispersion
εk ≡ Ek,j,p is always symmetric, ε−k = εk. The qualita-
tive features of the spectrum depend on the interplay of
the three dimensionless parameters bR,Φ, and α charac-
terizing our system.

In general, the spectral condition (2.12) has to be
solved numerically, but in several limiting cases, analyt-
ical progress is possible. In particular, an approximate
solution for the dispersion of Fermi arc surface states will
be given below. The full spectrum can be obtained in
closed form for the boundary angle α = π/2, see App. A,
and is illustrated in Fig. 1 for several values of the mag-
netic flux parameter Φ. For all angular momenta j > 0,
we obtain degenerate Fermi arc surface states with the
Φ-independent dispersion relation εk = mk. However,
the point α = π/2 is quite special since for α < π/2, we
will see below that the Fermi arc degeneracy is lifted and
the arc dispersion depends on Φ. To illustrate the typi-
cal band structure found for α < π/2, results obtained by
numerical solution of Eq. (2.12) are shown for α = 0 in
Fig. 2, and for α = π/4 in Fig. 3. The radial probability
density distribution is shown for selected states in Fig. 4.

In order to better understand the band structure, we
next discuss surface states. As we show in App. B, the
radial Dirac-Weyl equation (2.7) admits solutions where
the radial spinor wave function is localized at the surface,
Y (r) ∝ e−κ(R−r)Y (R). The inverse decay length must
satisfy κR � 1 to describe a proper surface state and
follows as

κ =

√
(j + Φ)2

R2
+
m2
k − E2

v2
, (2.13)

where the surface state dispersion is given by

Ek,j =
v(j + Φ)

R
cosα+mk sinα (2.14)

under the condition
v(j + Φ)

R
sinα−mk cosα > 0. (2.15)

Equations (2.14) and (2.15) describe Fermi arc states
in WSM nanowires in the presence of a magnetic flux
threading the wire. This flux enters only through the
shift j → j + Φ, just as for the surface states in topo-
logical insulator nanowires [38, 39]. In the absence of a
magnetic field and for very large R, Eq. (2.14) reproduces
the known Fermi arc dispersion for a planar surface [33].
The approximations leading to Eqs. (2.14) and (2.15), see
App. B, hold under the condition∣∣∣∣j − Φ

j + Φ

∣∣∣∣� κR. (2.16)
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We observe that for κR� 1, Eq. (2.16) is always fulfilled
except for nearly half-integer values of Φ, where the sub-
band with the angular momentum j closest to −Φ can
violate Eq. (2.16).

A comparison to the numerical solution of Eq. (2.12)
shows that under the above conditions, the dispersion of
Fermi arc states in cylindrical WSM nanowires is well
approximated by Eq. (2.14), see App. B. For α = 0,
the spectrum in Fig. 2 exhibits a sequence of almost flat
Fermi arc states for −b < k < b, with energy spacing
given by the finize-size scale v/R. This numerical re-
sult is in accordance with Eq. (2.14). For finite α, the
bands disperse. This case is illustrated for α = π/4 in
Fig. 3, where the Fermi arc dispersion again agrees with
Eq. (2.14). Apart from an increase in radial probability
density as the surface is approached, see Fig. 4, surface
states can therefore also be identified by a strong sensi-
tivity of the dispersion to the boundary angle α.

Next we turn to bulk states, where the probability den-
sity is large away from the surface. For R→∞, Landau
states follow by standard steps from the expressions in
Sec. II A. Using the magnetic length lB =

√
~c/eB and

the index n = 0, 1, 2, . . ., their dispersion is given by

Ek,j,p =


±
√

2(n+j+ 1
2 )v2

l2B
+m2

k, j > 0, p = (n,±),

±
√

2nv2

l2B
+m2

k, j < 0, p = (n ≥ 1,±),

−mk, j < 0, p = n = 0.
(2.17)

The states with j < 0 and n = 0 are chiral zero modes [1].
For a finite radius R, these bulk dispersions are obtained
as long as lB � R and the corresponding wave functions
are centered within the nanowire, far from the surface.
For a given Landau level, upon decreasing j, the states
have increasing weight near the surface and eventually
become chiral edge states. In general, surface states can
thus represent Fermi arc or chiral edge states. By moni-
toring the magnetic field dependence, the character of a
given surface state can be revealed, as only Fermi arcs
remain well-defined surface states for B → 0.

We finally note that in the finite-size geometry consid-
ered here, there is not a sharp distinction between sur-
face bands and bulk bands. The character of the states
(bulk vs surface) within a given subband depends on k.
This is illustrated in Fig. 4, where we show the radial
profile of the probability amplitude for states with en-
ergy E = −0.15vb in bands with j = ±1/2 as an ex-
ample. The probability density mainly accumulates near
the surface for the state with j = 1/2. However, for the
two states in the j = −1/2 subband, which correspond
to opposite sides of the extremum in the dispersion at
k ≈ b, we observe that one is a bulk state and the other
a surface state. Specifically, in Fig. 4, the j = −1/2 state
with k = 1.08b has a large probability density near the
center of the nanowire (bulk state), while the state with
k = 0.62b is peaked near its boundary (surface state).

Figure 4. Probability density |Ψk,j |2 vs radial coordinate
ξ/Φ = (r/R)2 for three eigenstates with energy E = −0.15vb,
using α = π/4, bR = 10, and Φ = 2, see central panel in
Fig. 3. The case k = 0.32b and j = 1/2 corresponds to a
Fermi arc state. For the j = −1/2 subband, we find a bulk
state at k = 1.08b but a surface state at k = 0.62b.

III. PHONON-INDUCED RESISTIVITY:
BOLTZMANN THEORY

In this section, we derive the phonon-induced resistiv-
ity in WSM nanowires with the band structure described
in Sec. II. Our model for including electron-phonon scat-
tering effects is summarized in Sec. III A. We compute
the longitudinal magnetoresistivity, ρ = ρ(T, µ,Φ, α), in
the linear response regime from semiclassical Boltzmann
theory [36, 37], see Sec. III B. We separately consider the
resistivity contributions from bands with a single pair of
Fermi points, see Sec. III C, and from bands with two
pairs of Fermi points, see Sec. IIID.

A. Electron-phonon coupling

We first describe the effects of a deformation poten-
tial coupling between phonons and electrons at low en-
ergy scales, where we include only acoustic phonon modes
that are able to generate such a coupling. Experiments
on WSM nanowires are often carried out on nanowires
deposited on a substrate (see, e.g., [41–43]), and we here
focus on phonon modes which remain gapless even in
the presence of a substrate. Since the flexural (bend-
ing) modes with finite angular momentum are expected
to be gapped, in what follows we only take into account
the longitudinal acoustic phonon mode with zero angular
momentum and dispersion ωq = cL|q|, where the sound
velocity cL is typically small against the Fermi veloc-
ity v and the phonon momentum q is defined along êz.
Using typical parameters for cL and v in the WSM ma-
terial TaAs [50] for an order of magnitude estimate, we
find cL/v ∼ 0.01. The phonon momenta q responsible
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for low-temperature backscattering processes then sat-
isfy qR � 1 and correspond to effectively 1D phonon
modes.

We assume an isotropic elastic continuum model with
stress-free boundary conditions at the cylinder surface
[35]. The resulting phonon modes are well known. In con-
trast to most previous works, where phonon backscatter-
ing in 1D wires has been examined for three-dimensional
phonon modes, we focus on the 1D phonon mode cor-
responding to longitudinal acoustic phonons with zero
angular momentum. With the bosonic annihilation op-
erators bq, the bulk mass density ρM , and Poisson’s ratio
ν (where 0 < ν < 1/2), the displacement field operator
is then given by [35, 38]

u(r) =

∫
dq

2π

sgn(q)eiqz√
2πR2ρMωq

(νqrêr + iêz)
[
bq + b†−q

]
.

(3.1)
Assuming that the deformation potential is the domi-
nant coupling mechanism, the electron-phonon interac-
tion reads

Hep = g0

∫
dr ρe(r)∇ · u(r), (3.2)

where the coupling constant g0 has dimension of energy
and ρe(r) is the electron density operator. Unfortunately,
it is hard to get reliable theoretical predictions for the
value of g0 since this coupling constant is strongly af-
fected by screening processes. A standard Thomas-Fermi
argument predicts g0 ∝ 1/nb(µ), where nb(ε) is the bulk
density of states. Since the latter vanishes for chemical
potential µ→ 0, we expect large couplings for |µ| � vb.
Recent experimental results suggest that the electron-
phonon coupling is of the order of 10 meV but varies
substantially in a small energy range [51]. In any case,
the value of g0 affects the phonon-induced resistivity only
via the overall resistivity scale ρ0 discussed below.

We then express the electronic density ρe(r) in
terms of the normalized radial eigenstates Yk,j,p(ξ) in
Eq. (2.6), with fermion annihilation operators ck,j,p. Us-
ing Eq. (3.1) and taking the limit L→∞, we obtain

Hep = −(1− 2ν)g0

∑
j,p,p′

∫
dk

2π

dk′

2π

dq

2π
δ(k − k′ − q)

× |q|Rl2B√
2πρMωq

∫ Φ

0

dξ Y †k′,j,p′(ξ) · Yk,j,p(ξ)

×
(
bq + b†−q

)
c†k′,j,p′ck,j,p. (3.3)

Since we include only longitudinal acoustic phonons with
zero angular momentum, the electron-phonon interac-
tion (3.3) only couples electronic states with the same
angular momentum j. In principle, scattering processes
between different radial eigenmodes with the same j are
possible. However, we here focus on parameter regions
where at most a single radial band for given j crosses
the Fermi level. This simplification is justified for rel-
atively thin nanowires at low energies, |µ| . vb/2. (We

have explicitly verified this point by monitoring the band
structure for all results presented in this work.) We note
that in order to describe the resistivity in the ultimate
bulk limit bR → ∞, arbitrary scattering processes in-
volving different radial modes with the same j become
relevant. This problem is, however, beyond the scope of
this work.

B. Boltzmann theory

For a translationally invariant nanowire in a weak con-
stant electric field Eêz, Ohm’s law states that a steady-
state charge current density Jêz with J = σE will flow.
In the Boltzmann approach, one uses transition rates ob-
tained from Fermi’s golden rule to compute the linear
conductivity σ [36]; the resistivity then follows as ρ =
1/σ. On this perturbative level, electron-phonon scatter-
ing processes generated by Hep always scatter an initial
electronic state with angular momentum j to a final state
with the same angular momentum. Ohm’s law then im-
plies that the conductivity contributions σj = 1/ρj from
different angular momentum channels simply add up,

1

ρ
=
∑
j

1

ρj
, (3.4)

and we only have to tackle the problem for fixed angular
momentum j. However, in cases where processes beyond
Fermi’s golden rule become important, Eq. (3.4) repre-
sents an approximation.

We obtain the resistivity contribution ρj by solving a
linearized Boltzmann equation for the 1D subband with
angular momentum j. We use the notation εk = Ek,j,p =
ε−k and Yk = Yk,j,p, and as discussed in Sec. IIIA, we
focus on parameter regions with a single radial band for
given j. The steady-state distribution function is then
written as

nk = nF (εk) + δnk, nF (ε) =
1

eβ(ε−µ) + 1
, (3.5)

where δnk is the nonequilibrium correction to the Fermi
equilibrium distribution and β = 1/T . We follow stan-
dard practice and parametrize δnk by a function g(εk)
[36],

δnk = −eE
(
−∂nF (εk)

∂εk

)
vkg(εk), vk = ∂kεk. (3.6)

With ωq = cL|q| and following the notation of Ref. [37],
the linearized Boltzmann equation can be written as

vk
∂nF (εk)

∂εk
=

1

T

∫ ∞
−∞

dk′

2π
D(k, k′) [vk′g(εk′)− vkg(εk)]

×
∑
ν=±

δ (εk − εk′ − νωk−k′) , (3.7)

with the symmetric kernel

D(k, k′) = W (k, k′)
nF (εk)nF (εk′)∣∣e−β(εk−µ) − e−β(εk′−µ)

∣∣ . (3.8)
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HereW (k′, k) denotes the transition probability for scat-
tering from an initial state with an electron with momen-
tum k to a final state with an electron with momentum k′

under emission of a phonon with momentum q = k − k′.
Microreversibility dictates that the same probability also
describes the phonon absorption process [36, 37], where
the initial state contains an electron with momentum k
and a phonon with momentum q = k′ − k, and the final
state has an electron with momentum k′. We thus have
W (k, k′) = W (k′, k).

For the electron-phonon interaction (3.3), Fermi’s
golden rule yields

W (k, k′) = 2πZv2|k − k′| Ik,k′ , (3.9)

with (squared) dimensionless overlap integrals,

Ik′,k = Ik,k′ =

∣∣∣∣∣l2B
∫ Φ

0

dξ Y †k′(ξ) · Yk(ξ)

∣∣∣∣∣
2

, (3.10)

and the dimensionless electron-phonon coupling param-
eter

Z =
g2

0(1− 2ν)2

2π~R2ρMcLv2
. (3.11)

For an order-of-magnitude estimate, we assume g0(1 −
2ν) ∼ 1 eV and consider TaAs material parameters with
ρM ≈ 10 g/cm3, cL ≈ 2000 m/s, and cL/v ∼ 0.01. For a
nanowire with radius R ∼ 20 nm, Eq. (3.11) then gives
Z ∼ 10−8.

Once the solution to Eq. (3.7) has been determined,
the resistivity follows from

1

ρj
= e2

∫
dk

2π
v2
k

(
−∂nF (εk)

∂εk

)
g(εk). (3.12)

The linearized Boltzmann equation (3.7) can be solved
by a constant function g(ε) = g. Following [37], we find

g =
C

A
, C =

∫
dk

2π
v2
k

(
−∂nF (εk)

∂εk

)
,

A =
1

2T

∫
dk

2π

dk′

2π
D(k′, k) (vk′ − vk)

2 ×

×
∑
ν=±

δ (εk − εk′ − νωk−k′) . (3.13)

Since the linearized Boltzmann equation is a non-singular
linear integral equation, it has a unique solution. Within
the validity regime of the approximations made above,
Eq. (3.13) therefore describes the only solution.

Below we separately consider subbands with one or two
local extrema (dubbed “valleys” or “nodes”). Both single-
valley and two-valley subbands appear in the spectrum
of WSM nanowires, see Sec. II B. Single-valley subbands
have a local extremum at k = 0 and closely resemble
the dispersion encountered in conventional 1D quantum
wires with a single pair of Fermi points, k = ±kF . Two-
valley subbands instead have local extrema near k ≈ ±b,
giving rise to a regular or inverted mexican hat shape of
the dispersion. In that case, the number of Fermi point
pairs (one or two) depends on the chemical potential.

C. One pair of Fermi points

We first consider the case characterized by a single pair
of Fermi points at k = ±kF (with kF > 0), where the
Fermi velocity is given by vF = |∂kεk=kF |. We consider
low temperatures and assume that typical phonon ener-
gies are much smaller than the relevant electron energies
εk and εk′ in Eq. (3.13), i.e., the latter energies are very
close to the Fermi energy µ = ε±kF . The integration over
momenta in Eq. (3.13) is then limited to a small region
around the Fermi momenta, and we can linearize the dis-
persion for k ≈ ±kF . The linearization breaks down near
the band bottom (or when approaching the transition to
a regime with two pairs of Fermi points in a two-valley
subband), where the respective resistivity contribution
may formally diverge. However, as long as other bands
with finite resistivity remain present, no contribution to
the total resistivity (3.4) arises from such a divergence.

As detailed in App. C, from Eq. (3.13) we then find
C ' vF /π and

A ' 4kF
π
Zv2 F (TBG/T ) , (3.14)

where we use the function

F(X) =
X/2

sinh2(X/2)
. (3.15)

The Bloch-Grüneisen temperature is defined by

TBG = ω2kF = 2cLkF . (3.16)

To give a typical order of magnitude, for kF ∼ b and TaAs
parameters, we find TBG ∼ 10 K. Since only phonons
with momentum q ∼ 2kF can efficiently backscatter elec-
trons, phonons with energy ∼ TBG are required in such
2kF processes. From Eq. (3.12), we then find

ρj '
π~
e2vF

A

C
. (3.17)

With the overall resistivity scale

ρ0 =
h

e2
Zb, (3.18)

we thus arrive at
ρj
ρ0

=
2kF
b

v2

v2
F

F (TBG/T ) . (3.19)

We emphasize that both vF and kF , and therefore also
TBG, depend on the angular momentum j. These quanti-
ties can be obtained numerically from the band structure
discussed in Sec. II.

Equation (3.19) describes the phonon-induced resistiv-
ity for a 1D electron channel with a single pair of Fermi
points and agrees with previous results [27, 28, 38]. In
particular, we obtain a linear dependence ρj ∝ T for
T � TBG. However, for T � TBG, Eq. (3.19) predicts
an exponentially small resistivity, ρj ∝ e−TBG/T , since
the probability for having thermal phonons with the en-
ergy required for 2kF scattering processes is exponen-
tially small.
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Figure 5. Schematic illustration of the different types of scat-
tering processes contributing to the resistivity ρj for a two-
valley subband with two pairs of Fermi points, see Sec. IIID.

D. Two pairs of Fermi points

Next we turn to the resistivity contribution gener-
ated by a two-valley band with the Fermi level adjusted
to realize two pairs of Fermi points k = ±kγ=±, with
Fermi momenta k+ > k− > 0 and Fermi velocities
vγ = |∂kεk=kγ |. Note that the group velocities for k ∼ k+

and k ∼ k− have opposite sign. Three different scatter-
ing channels are now important, see Fig. 5. In particular,
we distinguish the following processes:

1. In analogy to 2kF scattering, see Sec. III C,
we have inter-node backscattering (“inter-bs”) pro-
cesses, where an electron scatters between k ∼ kγ
and k′ ∼ −kγ (with γ = ±). The momentum ex-
change 2kγ has to be supplied by phonons.

2. For a two-valley band, the dispersion has two lo-
cal extrema inherited from the Weyl nodes at k =
±b. As a consequence, for appropriate values of
the chemical potential, intra-node backscattering
(“intra-bs”) processes become possible, where scat-
tering takes place between k ∼ sk+ and k′ ∼ sk−
with s = ±. Since the momentum transfer k+−k−
is typically small against the other relevant mo-
mentum transfers, the contributions due to intra-bs
processes are particularly important at low temper-
atures.

3. Finally, inter-node forward scattering (“inter-fs”)
processes couple states with the same sign of the
velocity, i.e., k ∼ sk+ and k′ ∼ −sk−. Even though
right movers scatter to right movers again, and sim-
ilarly for left movers, resistivity contributions arise
because of the velocity change for v+ 6= v−. We
note that forward scattering processes near a sin-
gle Fermi point are always negligible, see App. C.

Repeating the analysis of Sec. III C for two pairs of
Fermi points, see App. C for details, the solution of the

Boltzmann equation follows from Eq. (3.13) with C '
(v+ + v−)/π and

A ' Ainter−bs +Aintra−bs +Ainter−fs. (3.20)

The inter-bs contribution is given by, cf. Eq. (3.14),

Ainter−bs '
4

π
Zv2

∑
γ=±

kγ F
(
T

(γ)
inter−bs/T

)
, (3.21)

with F(X) in Eq. (3.15) and the Bloch-Grüneisen scales
T

(±)
inter−bs = 2cLk±. Intra-bs processes imply the contri-

bution

Aintra−bs '
1

π
Zv2 (v+ + v−)2

v+v−
(k+ − k−) Ik+,k−

× F (Tintra−bs/T ) (3.22)

with the overlap matrix element (3.10) and the Bloch-
Grüneisen scale Tintra−bs = cL(k+−k−). Finally, inter-fs
contributions are given by

Ainter−fs '
1

π
Zv2 (v+ − v−)2

v+v−
(k+ + k−) Ik+,k−

× F (Tinter−fs/T ) (3.23)

with Tinter−fs = cL(k+ + k−). We here used Ik+,−k− =
Ik+,k− , which holds because the radial spinor eigenfunc-
tions Yk(ξ) only depend on |k|.

Collecting all terms, the resistivity contribution ρj fol-
lows as

ρj = ρinter−bs + ρintra−bs + ρinter−fs. (3.24)

With the reference scale ρ0 in Eq. (3.18), we obtain

ρinter−bs

ρ0
=
∑
γ

2kγ
b

v2

(v+ + v−)2
F
(
T

(γ)
inter−bs/T

)
,

ρintra−bs

ρ0
=
k+ − k−

b
Ik+,k−

v2

2v+v−
F (Tintra−bs/T ) ,

ρinter−fs

ρ0
=
k+ + k−

b
Ik+,k−

(
v+ − v−
v+ + v−

)2

×

× v2

2v+v−
F (Tinter−fs/T ) . (3.25)

From Eq. (3.24), the contributions from different
backscattering channels simply add up and Mathiessen’s
rule [36] seems to be valid. However, Mathiessen’s rule is
not valid for the two different inter-bs processes related
to 2k+ and 2k− backscattering, which cannot be treated
separately because of the factor 1/(v+ +v−)2 in ρinter−bs.
We stress that in Eq. (3.25), the quantities k± and v±,
and thus also the overlap integral Ik+,k− and the vari-
ous Bloch-Grüneisen temperatures, depend on the spe-
cific subband under consideration, in particular on the
angular momentum j.

In general, the scattering channel with the smallest
of the above Bloch-Grüneisen scales (denoted by TbBG)
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Figure 6. Zero-temperature two-terminal conductance G0 of a nanowire with bR = 10 as obtained from Eq. (4.1). The left and
center panels show the dependence on the magnetic flux parameter Φ for µ = 0 and several values of α (left), and for α = π/4
and several values of µ (center). The right panel shows the dependence on µ for Φ = 0 and several values of α.

dominates the low-temperature resistivity. In particu-
lar, ρj ∝ T for T � TbBG while ρj ∝ e−TbBG/T for
T � TbBG. In many cases of interest, TbBG can be well
below the inter-bs scale TBG. The low-temperature resis-
itivity is thus dominated by those subbands which allow
for intra-bs processes.

IV. TRANSPORT OBSERVABLES

In this section, we describe our results for transport
observables. In Sec. IVA, we consider the two-terminal
conductance for an ideal WSM nanowire in the zero-
temperature limit, where phonons are frozen out. The
conductance is then directly determined by the total
number of transport channels at the Fermi level. In
Sec. IVB, we present results for the phonon-induced
resistivity as obtained from the Boltzmann theory in
Sec. III.

A. Conductance of ideal WSM nanowires

We first consider the two-terminal linear magneto-
conductance of a WSM nanowire without disorder and
in the absence of electron-phonon interactions, assuming
perfectly adiabatic contacts between the nanowire and
the attached source and drain electrodes. This problem
can be described by the Landauer-Büttiker scattering ap-
proach [52], which implies that the two-terminal conduc-
tance G0 is given by [10, 12, 13]

G0(µ,Φ, α) = N
e2

h
, (4.1)

where N = N(µ,Φ, α) is the number of transport chan-
nels at the Fermi level, which coincides with the num-
ber of positive Fermi momenta. The conductance in
Eq. (4.1) then follows directly from the band structure
in Sec. II. We note that G0 has been studied before for
WSM nanowires with boundary conditions correspond-

ing to α = 0 [10, 12, 13]. Our results are consistent with
those works and extend them to arbitrary values of α.

We illustrate the dependence of G0 on the magnetic
field in Fig. 6, both for chemical potential µ = 0 and var-
ious α (left panel), and for α = π/4 and several values
of µ (center panel). The number N , and thus G0, jumps
in discrete units upon changing Φ. The addition (or re-
moval) of one pair of Fermi points to (from) the Fermi
surface implies conductance steps of size ∆G0 = ±e2/h
from Eq. (4.1). We also see steps with ∆G0 = ±2e2/h,
where a two-valley band with two pairs of Fermi points
is added or removed.

The flux dependence shown in Fig. 6 reveals that con-
ductance steps occur with a typical spacing of order
∆Φ ≈ 1. To rationalize this observation, we recall that
the Fermi arc dispersion depends on the Aharonov-Bohm
phase through the shift j → j+Φ, see Eq. (2.14). Chang-
ing Φ → Φ + 1 shifts the sequence of surface subbands
by one unit. In a surface-dominated regime, conductance
variations thus have the (approximate) period ∆Φ ≈ 1.
Similar features have been experimentally observed in
Dirac semimetal wires [41, 42].

From the left panel of Fig. 6, we observe that the
boundary angle α has a major impact on the conduc-
tance. This strong sensitivity of G0 on a boundary pa-
rameter is consistent with the fact that for the parame-
ters in Fig. 6, we mainly have surface states at the Fermi
level. In our model, the phenomenological parameter α
encodes the surface feature of the WSM material. This
sensitivity thus indicates that the surface structure of the
material can strongly influence the conductance.

The rich band structure exemplified in Fig. 3 also im-
plies that the two-terminal conductance is not a mono-
tonic function of the magnetic flux. In an infinite WSM, a
negative magnetoresistance is expected when E ‖ B, as a
direct consequence of the chiral nature of the lowest Lan-
dau levels. In our cylindrical geometry, the spectrum is
qualitatively very different from the bulk case, hence one
may expect a different behavior. Indeed, as seen in the
left panel of Fig. 6 for 0 ≤ α < π/2, the magnetoconduc-
tance shows a non-monotonic behavior with a minimum
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at Φ ≈ Φmin(α), even for the clean case under consid-
eration, and strongly depends on the surface parameter
α. This non-monotonicity of the magnetoresistance is a
manifestation of the predominance of the surface over the
bulk transport in this geometry. Interestingly, the value
of Φmin can be determined by an approximate fit ofG0(Φ)
to a third-order polynomial function. For the conduc-
tance curves shown in the left panel of Fig. 6, we observe
that Φmin is linked to the boundary angle by the empir-
ical relation α ' 0.28Φmin − 0.01Φ2

min. By determining
the position of the magnetoconductance minimum, one
can thus infer information about α from transport mea-
surements, at least in the parameter regime under study
here.

In analogy to the stepwise dependence on the flux, we
also find conductance steps when varying µ at fixed mag-
netic flux, as shown in the right panel of Fig. 6 for several
values of α. For α = 0, this parameter region was identi-
fied in Ref. [12], via the conductance steps, as the regime
in which surface states dominate transport. Our results
confirm this scenario. At the same time, we observe
that a finite value of the boundary angle α can dramat-
ically change the low-temperature transport properties.
In fact, only for special values of α, we obtain insulat-
ing behavior at zero magnetic field and T � v/R. For
generic α, the two-terminal conductance is finite and can
even become large. This observation again highlights the
importance of non-universal surface physics in this geom-
etry.

Finally, we note that even though we have a finite two-
terminal conductance G0, the local resistivity ρ vanishes
in the absence of phonon-induced (or other) backscatter-
ing processes.

B. Phonon-induced resistivity

We here discuss our results for the phonon-induced lon-
gitudinal magnetoresistivity (3.4) obtained in Sec. III us-
ing the semiclassical Boltzmann approach. We start by
illustrating the α-dependence of ρ for fixed chemical po-
tential µ = 0 and temperature T = 0.1cLb in Fig. 7.
While it is not possible to experimentally change the
boundary angle α in a given device, Fig. 7 shows that
the resistivity strongly depends on α. Typically, with in-
creasing α, 1D subbands with different j fall below the
Fermi level one by one. As a consequence, the number N
increases and the resistivity tends to become smaller ac-
cording to Eq. (3.4). Once a new subband becomes just
accessible, the corresponding resistivity contribution will
become very large because of the smallness of the Fermi
velocity and of the Fermi momentum in this limit. From
Eq. (3.4), we see that such a contribution makes little
difference as long as other subbands with finite ρj are
present. The dependence of ρ on α (or other parame-
ters) thus remains smooth even when N changes, with
an important exception discussed below.

For the parameters corresponding to the left panel in

Fig. 7, where Φ = 1/2, only j > 0 bands with a single
pair of Fermi points contribute. The expected smooth
decrease of ρ(α) with increasing α is observed. In partic-
ular, for small α, there are no bands at the Fermi level
and thus ρ → ∞. On the other hand, for α → π/2, the
resistivity becomes extremely small since N increases to
very large values. The right panel of Fig. 7 shows that
for Φ = 2, the α-dependence of the resistitivty is more
complex. In a finite window around α ≈ π/8, N van-
ishes and ρ → ∞. For α & π/8, only j > 0 bands with
a single pair of Fermi points are present, and ρ(α) shows
a smooth decrease again. For α . π/8, we have contri-
butions from subbands with j = −1/2 and j = −3/2.
At a critical value of α slightly above π/16, a transition
from one to two pairs of Fermi points takes place within
the two-valley subband with j = −1/2. As detailed be-
low and in App. D, such a transition causes an abrupt
and very large resistivity increase as seen in Fig. 7. This
prominent feature arises because only for cases with more
than one pair of Fermi points, intra-node backscattering
processes become possible, see Sec. IIID. Such processes
dominate the resistivity at low temperatures.

Next, Fig. 8 shows the magnetic field dependence of
the resistivity. Let us first discuss the case µ = 0 (left
panel). We again see that ρ(Φ) is a smooth curve ex-
cept for an abrupt resistivity drop near Φ ≈ 6. Re-
calling the logarithmic scales, the resistivity increase is
very steep for small Φ. Again, the jump-like behavior at
Φ ≈ 6 takes place at the transition point from two to
one pairs of Fermi points within the two-valley subband
with j = −1/2. For large Φ, we observe that ρ(Φ) also
shows variations governed by the Aharonov-Bohm scale
∆Φ ∼ 1, see Sec. IVA. For µ = 0.1vb (right panel in
Fig. 8), we find similar features.

We now turn to Fig. 9, which shows the µ-dependence
of ρ. While for Φ = 2 (left panel), no abrupt resis-
tivity changes occur in the shown chemical potential
range, such behavior is found for Φ = 4 (right panel)
near µ = µc ' −0.136vb. We can trace this resistivity
change to the two-valley subband with j = −1/2. For
µ < µc, this band contributes a single pair of Fermi
points. For µ > µc, on the other hand, we get two
pairs of Fermi points. At the transition, µ ' µc, the
resistivity exhibits a sharp increase. We discuss this
mechanism in some detail in App. D for a simple toy
model dispersion. For µ → µc from above, the Bloch-
Grüneisen temperature for intra-bs processes sets the
relevant scale, TbBG = Tintra−bs = cL(k+ − k−), see
Sec. IIID. When approaching the transition from the
other side, however, only inter-bs processes can take
place, with TBG = 2cLk+. As a consequence, the re-
sistivity is much larger for µ > µc. We note that the lin-
earized band structure used in Sec. IIID is not applicable
for µ→ µc. However, while the precise µ-dependence of
ρ is expected to be continuous when going beyond the
linearized band structure, the large low-temperature re-
sistivity changes predicted here should be robust.

Finally, we briefly turn to the temperature dependence
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Figure 7. Resistivity ρ (in units of ρ0) vs boundary angle α for T = 0.1cLb, µ = 0, bR = 10, and cL = 0.01v, with magnetic
flux parameter Φ = 1/2 (left panel) and Φ = 2 (right panel). We use logarithmic scales for ρ/ρ0 (solid black curves). The
number of Fermi points N is shown by red dashed curves. The divergence at small values of α in the left panel and around
α = π/8 in the right panel is due to the fact that for these values there are no available bands at the Fermi level.

Figure 8. Resistivity ρ/ρ0 vs magnetic flux parameter Φ for α = π/4 and T = 0.1cLb, with µ = 0 (left panel) and µ = 0.1vb
(right panel). All other parameters and conventions are as in Fig. 7.

Figure 9. Resistivity ρ/ρ0 vs µ for α = π/4 and T = 0.1cLb, with Φ = 2 (left panel) and Φ = 4 (right panel). All other
parameters and conventions are as in Fig. 7.
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Figure 10. Resistivity ρ/ρ0 vs temperature T (in units of
Tb = 2cLb) for α = π/4, µ = 0, and several values of Φ.
Note the double-logarithmic scales. All other parameters and
conventions are as in Fig. 7.

of ρ, which is shown for µ = 0 and different Φ in Fig. 10.
For T � Tb = 2cLb, we find a universal ρ ∝ T depen-
dence, but for T → 0, the resistivity becomes exponen-
tially small since all phonon backscattering mechanisms
are frozen out in that limit.

V. CONCLUSIONS

In this work, we have discussed magnetotransport in a
cylindrical WSM nanowire. Our analysis includes the
effects of a magnetic flux threading the wire (via the
Aharonov-Bohm flux Φ) and the consequences of a finite
curvature of the Fermi arc (via the boundary angle α).
We have presented detailed results for the band struc-
ture, in particular how the dispersion of Fermi arc states
depends on Φ and α. The magnetic flux is here effectively
captured by the replacement j → j + Φ, where j is the
half-integer angular momentum of the Fermi arc state.
Importantly, we have taken into account the electron-
phonon interaction via deformation potential. We have
focused on phonon modes with zero angular momentum,
since for nanowires deposited on a substrate, phonon
modes with finite angular momentum are expected to
be gapped.

Our analysis shows that the phonon-induced resistivity
contains rich information about the underlying physics of
the WSM material. The resistivity strongly depends on
the boundary angle α and on the magnetic flux param-
eter Φ. We find that large and abrupt changes of the
resistivity arise because of the mexican hat shape of the
dispersion for two-valley subbands, where a change of the
chemical potential can induce a transition between one vs
two pairs of Fermi points. Since in the case of two pairs
of Fermi points intra-node backscattering processes with
small momentum transfer are possible, a much larger low-

temperature resistivity is obtained than for the case with
a single pair of Fermi points, where such processes are not
available.

Comparing our results for WSM nanowires to the case
of conventional quantum wires [22–29], we find a note-
worthy difference. Even though it is difficult to quan-
tify the impact of chiral anomaly on the phonon-induced
magnetoresistivity in this finite-size wire geometry, the
observed strong sensitivity of the resistivity on a bound-
ary condition parameter is in marked contrast to the con-
ventional setting and can be rationalized by the crucial
role of Fermi-arc surface states.

Our work also points to several topics of interest for
future studies: (i) For freely suspended WSM nanowires,
phonon modes with finite angular momentum have to
be included. In particular, flexural modes with l = ±1
will be the energetically lowest modes [35]. One then
has to account for scattering processes connecting sub-
bands with different angular momenta. (ii) Similarly, at
higher energy scales and/or very large nanowire radius,
the restriction to a single radial band for given angu-
lar momentum j has to be lifted even when keeping only
l = 0 phonon modes. One may then encounter more than
two pairs of Fermi points at fixed angular momentum j,
and many additional scattering processes beyond those
considered in Sec. III become possible. (iii) The above
two points are important also for the proper description
of nonequilibrium transport beyond the linear response
regime considered here. (iv) In the present work, we have
studied type-I WSM materials. In type-II WSM materi-
als, one has (over-)tilted Dirac-Weyl cones with interest-
ing analogies to black hole physics [53]. In such a setting,
phonons may give spectacular effects, cf. Ref. [54]. (v)
At very low temperatures, disorder effects will dominate
the resistivity in real samples. While the zero-field re-
sistivity of disordered WSM nanowires (without phonon
effects) has been studied in Ref. [14], the magnetoresis-
tivity has not been analyzed in a systematic way so far.
(vi) In this work, we have neglected the Zeeman effect
due to the magnetic field. While one expects such effects
to be subleading [48], for a precise comparison to future
experimental results, it may be necessary to include them
into the theoretical description. (vii) An interesting gen-
eralization of our work could study WSM materials with
more than two Weyl nodes. For instance, if the mate-
rial enjoys time-reversal symmetry at zero magnetic field,
there will be at least four Weyl nodes. In the presence of
phonons and in a magnetic field, one then expects a mul-
titude of possible scattering processes. (viii) Our theory
assumes angular momentum conservation. Indeed, we
consider a cylindrical wire geometry, where the magnetic
field is aligned both with the wire axis and with the direc-
tion of the separation between Weyl nodes in reciprocal
space. A weak violation of these conditions could be han-
dled by perturbation theory, but for stronger deviations,
one has to resort to a generalization of our theory and a
corresponding numerical study. (ix) Finally, apart from
the real magnetic field, it may be of interest to study
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the consequences of pseudo-magnetic fields generated by
straining the sample [55].

To conclude, we hope that our paper will stimulate
future work along these or other directions.
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Appendix A: Band structure for α = π/2

We here summarize the exact band structure for the
special value α = π/2, where the boundary condition
(2.12) simplifies to Y−(Φ) = 0. Then, for j > 0,
Eq. (2.10) gives a solution either for E− = 0 (band in-
dex p = 0) or from the zeros of the confluent hyperge-
ometric functions (with respect to the first argument),
a = aj,p with p = 1, 2, . . ., solving M(a, j + 3/2; Φ) = 0.
Using Eqs. (2.8) and (2.9), the dispersion relations of the
respective subbands follow as

Ek,j>0,0 = mk, Ek,j,±p = ±
√

2Cj,p(v/lB)2 +m2
k,

(A1)
with Cj>0,p = j+1/2−aj,p; the zeros aj,p are all negative
numbers. The radial eigenfunctions (2.6) for p = 0 are
given by

Yk,j>0,0(ξ) ∝ ξ 1
2 (j− 1

2 )eξ/2
(

1
0

)
. (A2)

The associated probability density increases with ξ and
has a maximum at the surface, i.e., for ξ = Φ. The
dispersion relation εk = mk for the degenerate p = 0
subbands with j > 0 agrees with the Fermi arc dispersion
for α = π/2 in Eq. (2.14). On the other hand, for j <
0, the p = 0 band does not exist at finite R, and all
p 6= 0 bands occur in pairs as follows from Eq. (A1) with
Cj<0,p = −a−j−1,p. The band structure for α = π/2 is
illustrated in Fig. 1 for few different values of Φ.

Let us further discuss Eq. (A1) in two limiting cases.
(i) For Φ→ 0, Eq. (A1) reduces to

Ek,j>0,0 = mk, Ek,j,±p = ±
√

(vzj,p/R)2 +m2
k, (A3)

where zj,p > 0 is the pth zero of the Bessel function
Jj+1/2(z). The p 6= 0 bands correspond to bulk states,
which involve the finite-size quantization energy scale

v/R. The states in the p = 0 bands have radial eigenfunc-

tions Yk,j>0,0(r) ∝ rj− 1
2

(
1
0

)
and correspond to degener-

ate Fermi arc surface states. From Eq. (A1), we observe
that the dispersion relation of the p = 0 subbands is not
affected by the magnetic field, although the states are.
(The j = 1/2 state is obviously not localized at the sur-
face. However, taking the limit of large j and large R at
fixed ratio j/R, the corresponding states represent bona
fide surface states.)
(ii) For very large but finite Φ, the zeros of the confluent
hypergeometric functions approach negative integer
values, aj,p → −(p − 1). As a consequence, we recover
the bulk Landau level spectrum (2.17). The Fermi arc
states with p = 0 and j > 0 exist for any finite Φ but
disappear in the limit of infinite radius. From Eq. (A1),
we also observe that the dispersion of the bulk states
Ψk,j<0,±1 approaches ±|mk|, with an avoided crossing at
k = ±b. The latter is formally due to the fact that a = 0
is never a solution of M(a,−j + 1

2 ; Φ) = 0. In the limit
R → ∞, the gap closes. The branch with E = −mk

reduces to the usual bulk zero mode, see Eq. (2.17), and
the branch E = mk disappears.

Appendix B: On Fermi arc surface states

In this Appendix, we construct approximate surface
state solutions and compare the analytical result for their
dispersion relation with the band structure obtained nu-
merically from Eq. (2.12).

Starting from the radial Dirac-Weyl equation for the
spinor Y (r) (the indices k, j are understood), − 1

v (E −mk) ∂r +
j+ 1

2

r + r
l2B

−∂r +
j− 1

2

r + r
2l2B

− 1
v (E +mk)

Y (r) = 0, (B1)

we first write the radial coordinate as r = R + x with
−R < x < 0. We search for solutions localized at the
surface, with main weight at |x| � R and decaying for
increasing |x|. Expanding Eq. (B1) to lowest non-trivial
order in |x|/R� 1 and writing Y (r) = e(x−R)2/4R2

χ(x),
we arrive at(

− 1
v (E −mk) ∂x + j+Φ

R − j−Φ
R2 x

−∂x + j+Φ
R − j−Φ

R2 x − 1
v (E +mk)

)
χ(x) = 0.

(B2)
This equation can be solved exactly, but we here con-
sider a simpler approximate solution. We neglect the
term ∝ x in Eq. (B2), so that χ(x) ∝ eκxχ(0) is a solu-
tion, with the inverse decay length κ given by Eq. (2.13).
The consistency of the approximation requires κR � 1.
Imposing the boundary condition (2.12) on the eigen-
state χ(0), we arrive at the dispersion relation (2.14) with
the condition (2.15). To estimate the neglected term
∝ x in Eq. (B2), we put |x| ∼ 1/κ. We then require
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Figure 11. Dispersion relation for Fermi arc states with j = ±1/2 for several values of Φ. Results are shown for bR = 10 with
α = 0 (left panel) and α = π/4 (right panel). The solid curves were obtained by numerical solution of Eq. (2.12). The dashed
curves follow from the approximate analytical dispersion relation (2.14) and terminate according to Eq. (2.15). Note that the
analytical (but not the numerical) results for (j,Φ) = (−1/2, 1) and (1/2, 0) coincide.

|j + Φ|/R � |(j − Φ)x|/R2, which in turn implies the
condition (2.16).

We next compare the approximate dispersion relation
Eq. (2.14) to the numerically exact band structure. In
Fig. 11, we show the dispersion of Fermi arc states with
j = ±1/2 for bR = 10 and several values of Φ and α.
We find a fair agreement between numerical and analyti-
cal results. In accordance with Eq. (2.16), the deviations
are more pronounced for j < 0 and Φ 6= 0, but even for
j = −Φ = −1/2, Eq. (2.14) provides a rather good ap-
proximation. Since the penetration length κ−1 becomes
very large near the arc ends, the analytical expression in
Eq. (2.14) — which assumes κR � 1 — becomes less
accurate in these limits, in accordance with Fig. 11.

Appendix C: Solution of the Boltzmann equation

We present here the derivation of Eqs. (3.14) and (3.20)
for one and two pairs of Fermi points, respectively. Fol-
lowing Ref. [37], we begin by rewriting the coefficient A
in Eq. (3.13) as

A =
1

2T

∫
dεdε′

∫ ∞
0

dω F (ε, ε′, ω)× (C1)

× ωnF (ε)nF (ε′)∣∣e−β(ε−µ) − e−β(ε′−µ)
∣∣ ∑
ν=±

δ(ε− ε′ − νω)

with the auxiliary function

F (ε, ε′, ω) =
1

ω

∫
dk

2π

dk′

2π
W (k′, k) (vk′ − vk)

2 ×

× δ(ε− εk)δ(ε′ − εk′)δ(ω − ωk−k′). (C2)

At low temperatures, the momentum integrations in
Eq. (C2) can be restricted to the vicinity of the Fermi
points.

Let us first consider the case of a single pair of Fermi
momenta, see Sec. III C. Writing k = skF + k̃ and
k′ = s′kF + k̃′ with s, s′ = ± and |k̃|, |k̃′| � kF , we first
linearize the dispersion relation, ε±kF+k̃ − µ ' ±vF k̃.
We then have backscattering contributions to Eq. (C2)
when k and k′ are near opposite Fermi points (s =
−s′), and forward scattering contributions when k and
k′ are near the same Fermi point (s = s′). The for-
ward scattering terms are strongly suppressed by the
factor (vk′ − vk)2 ∝ (k̃ − k̃′)2 in Eq. (C2), and they
are always neglected in what follows. With vk ' svF ,
the backscattering contributions follow by approximating
W (k, k′) ' W (kF ,−kF ) = W (−kF , kF ) ≡ Wbs. Since
the k-dependence of the radial eigenfunctions Yk(ξ) arises
only through mk, which is an even function of k, we have
Ik,−k = Ik,k, and the normalization in Eq. (3.10) implies
Ik,k = 1. Thus, with Wbs = 4πZv2kF from Eq. (3.9), we
obtain

F (ε, ε′, ω) ' 4Zv2

πcL
δ(ω − 2cLkF ). (C3)

Using the auxiliary relation [37]∫
dεdε′

nF (ε)nF (ε′)∣∣e−β(ε−µ) − e−β(ε′−µ)
∣∣ ×

×
∑
ν=±

δ(ε− ε′ − νω) =
ω

2 sinh2(βω/2)
(C4)

in Eq. (C1), we finally arrive at Eq. (3.14). The above
approximations also imply C ' vF /π from Eq. (3.13).

Next we turn to a two-valley band with the Fermi level
adjusted to allow for two pairs of Fermi momenta at k =
±kγ with γ = ±, see Sec. IIID and Fig. 5. The symmetry
εk = ε−k then implies that the group velocity at k ∼ skγ
is given by vs,γ = sγvγ (where s = ±), with the positive
Fermi velocities v+ and v−. Linearizing the dispersion
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relation for k ≈ skγ , contributions to Eq. (C2) from the
three types of scattering processes illustrated in Fig. 5
arise. We find

F (ε, ε′, ω) ' Finter−bs + Fintra−bs + Finter−fs, (C5)

where, in analogy to the 2kF backscattering result (C3),
inter-node backscattering processes give

Finter−bs '
4Zv2

πcL

∑
γ=±

δ(ω − 2cLkγ). (C6)

Intra-node backscattering processes produce the term

Fintra−bs '
2Zv2

πcL

(v+ + v−)2

v+v−
Ik+,k−δ (ω − 2cL|k+ − k−|) ,

(C7)
with Ik,k′ in Eq. (3.10), and inter-node forward scattering
contributions give

Finter−fs '
2Zv2

πcL

(v+ − v−)2

v+v−
Ik+,k−δ (ω − 2cL|k+ + k−|) .

(C8)
Inserting the above results into Eq. (C1), we arrive at
Eq. (3.20).

Appendix D: Abrupt resistivity changes

To demystify the jump-like behavior of the resistivity
reported in Sec. IVB, we consider a toy model for a two-
valley subband with the dispersion relation (v = b = 1)

εk = −
∣∣k2 − 1

∣∣ , (D1)

and analyze how the resistivity depends on the chemical
potential µ < 0. For µ > µc = −1, there are N = 2 pairs
of Fermi points, ±k±, with k± =

√
1± |µ| and respective

Fermi velocities v± = 2
√

1± |µ|. On the other hand,
for µ < µc, there is only a single pair (N = 1), ±kF ,
with kF = k+ and vF = v+. Therefore, according to
Eq. (3.25), for µ > µc, the dominant resistivity contribu-
tion comes from intra-bs processes with Bloch-Grüneisen
temperature Tintra−bs = cL(k+ − k−). For µ < µc, in-
stead, only inter-bs processes are possible and the rele-
vant Bloch-Grüneisen temperature is Tinter−bs = 2cLk+.
The resistivity is thus parametrically larger on the N = 2
side since intra-bs processes are then possible, which are
not available on the N = 1 side. This gives rise to a large
jump of the resistivity when µ crosses the critical value
µ = µc, as ilustrated in Fig. 12.

We then conclude that the abrupt resistivity changes
observed in Sec. IVB originate from transitions between
one and two pairs of Fermi points within a two-valley
band.
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