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Rank functions on triangulated categories
By Joseph Chuang at London and Andrey Lazarev at Lancaster

Abstract. We introduce the notion of a rank function on a triangulated category C

which generalizes the Sylvester rank function in the case when C D Perf.A/ is the perfect
derived category of a ring A. We show that rank functions are closely related to functors into
simple triangulated categories and classify Verdier quotients into simple triangulated categories
in terms of particular rank functions called localizing. If C D Perf.A/ as above, localizing
rank functions also classify finite homological epimorphisms from A into differential graded
skew-fields or, more generally, differential graded Artinian rings. To establish these results,
we develop the theory of derived localization of differential graded algebras at thick subcate-
gories of their perfect derived categories. This is a far-reaching generalization of Cohn’s matrix
localization of rings and has independent interest.

1. Introduction

The dimension of a vector space V over a (possibly skew-)fieldK is a basic characteristic
of V and it is an elementary fact that it is an invariant, i.e. does not depend on the choice of
a basis in V . However, further generalizations withK replaced with a noncommutative ring A,
and V replaced with an A-module, are not straightforward. Indeed, there are examples of rings
such that their free modules do not have a well-defined dimension, or rank. One possibility
to obviate this difficulty is to start with a homomorphism f W A! K where K is a skew-field
(which allows one to associate to anA-module aK-module by tensoring up) and define the rank
of an A-module as the rank of the correspondingK-module. Different homomorphisms f give
rise to possibly different ranks. This suggests that ranks are closely related to homomorphisms
into skew-fields. This was made precise by Cohn and Schofield [9, 30] by showing that maps
f as above are in one-to-one correspondence with certain functions, called Sylvester rank
functions, on finitely presented A-modules, defined intrinsically.

A crucial part of the Cohn–Schofield theory is the method of matrix localization. Given
a ring A and a matrix M with entries in A, there exists another ring AŒM�1� supplied with
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a map A! AŒM�1� such that the matrix M becomes invertible over AŒM�1�; moreover,
AŒM�1� is universal in the sense that any other ring having this property factorizes uniquely
throughAŒM�1�. IfM is a 1 � 1matrix, i.e. an element s 2 A, thenAŒM�1� reduces toAŒs�1�,
the usual localization of A at s. Furthermore, if A is a commutative ring, then general matrix
localization reduces to inverting a single element, namely the determinant of M ; however in
the general noncommutative case no such reduction is possible.

Our original motivation was to rework the Cohn–Schofield theory in a way intrinsic to the
derived category of A. To this end, we formulate the notion of a rank function on an arbitrary
triangulated category C . Compared to the Sylvester rank function, our definition is simpler and,
arguably, more natural. In the case C D Perf.A/ for a ring A, it subsumes that of the Sylvester
rank function but does not reduce to it. The “exotic” rank functions on Perf.A/ (i.e. those that
are not equivalent to Sylvester rank functions) are related to maps from A into graded skew-
fields or graded simple Artinian rings in the homotopy category of differential graded (dg)
rings. Recall that maps in the homotopy category of dg rings are computed by replacing the
source with a cofibrant dg ring. This needs to be done even if the source is an ordinary ring. In
other words, such maps are invisible on the classical level.

Our notion of a rank function on C appears close, albeit certainly not equivalent, to the
notion of cohomological functions on C in the sense of Krause [22]. The precise relation-
ship between the two notions is unclear at the moment and we hope to return to this question
in future.

Apart from the purely algebraic motivation described above, Sylvester rank functions are
of great relevance to geometric group theory and, in particular, to various versions of the Atiyah
conjecture, cf. [19] for a survey of recent results in this direction. A natural question, that we
also leave for future investigation, is whether our notion of a rank functions can be usefully
exploited in that context.

One unexpected source of rank functions on triangulated categories turns out to be
Bridgeland’s “stability conditions” [6]. Namely, it turns out that there is a continuous map from
the space of stability conditions to that of rank functions on the same triangulated category.
Here we limit ourselves with merely recording this observation but it undoubtedly deserves
further study.

Next, we need to develop an analogue of matrix localization in a homotopy invariant way.
Even when one is interested in inverting only one element in a ring, i.e. a 1 � 1 matrix, care is
needed since this operation is not exact in the noncommutative context. The notion of derived
localization (in this restricted sense) was developed in the previous work of the authors [5].
In the present paper we build on this work to construct derived localization of a dg ring A
with respect to an arbitrary thick subcategory of Perf.A/. This extends the notion of matrix
localization since the latter is the nonderived version of the localization with respect to the
thick subcategory generated by a collection of free complexes of length 2. In contrast with
inverting a single element, even for commutative rings general derived localization may have
nontrivial derived terms. However, for hereditary algebras, derived localization reduces to the
nonderived notion.

A rank function � on a triangulated category C has a kernel Ker.�/, the thick subcate-
gory of C consisting of objects of rank zero. We describe those rank functions for which the
Verdier quotient C=Ker.�/ is simple, i.e. equivalent to the perfect derived category of a graded
skew-field. These are the so-called localizing rank functions. It turns out that localizing rank
functions classify homotopy classes of homological epimorphisms from dg rings into dg fields
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and dg simple Artinian rings. We call such homological epimorphisms derived fraction fields.
Strikingly, ordinary rings (even finite-dimensional algebras over fields) have nontrivial derived
fraction fields.

There are, of course, exact functors from a given triangulated category C to a simple one
that are not Verdier quotients; these induce (non-localizing) rank functions on C . It is an open
question to which extent such functors are captured by rank functions.

The paper is organized as follows. In Section 2 the notion of a rank function on a triangu-
lated category is introduced, in two equivalent ways: as a function on objects or on morphisms
satisfying appropriate conditions, as well as its refinement, a d -periodic rank function where
d D 1; 2; : : : ;1 (an ordinary rank function is then 1-periodic). We show how rank functions
can be constructed using functors into simple triangulated categories and (very briefly) stability
conditions.

In Section 3 we prove that 1-periodic rank functions on the perfect derived category
of ordinary rings are nothing other than Sylvester rank function whereas Section 4 estab-
lishes various further properties of rank functions reminiscent of those for Sylvester rank
functions.

Section 5 develops the theory of derived localization for dg algebras at thick subcate-
gories of their perfect derived categories and compares it with the nonderived notion. This sec-
tion has an independent interest and can be read independently of the rest of the paper. Finally,
Section 6 introduces the notion of a localizing rank function and shows that they describe
Verdier quotients into simple triangulated categories and homotopy classes of homological
epimorphisms from dg algebras into dg fields and dg simple Artinian rings.

Acknowledgement. We are grateful to Marc Stefan and the anonymous referee for
pointing out various inaccuracies and a host of useful comments.

1.1. Notation and conventions. Throughout this paper we work with homologically
graded chain complexes over a fixed unital commutative ring k. Unadorned tensor products
and Homs will be assumed to be taken over k. For a chain complex A we denote by †A its
suspension given by .†A/i D Ai�1. The signs ' and Š will stand for quasi-isomorphisms
and isomorphisms of chain complexes, respectively.

We will normally use the abbreviation “dg” for “differential graded”. By “dg algebra”
we will mean “dg associative unital algebra” over k. The category of dg algebras dgAlg has
the structure of a closed model category (with weak equivalences being multiplicative quasi-
isomorphisms) and so it makes sense to talk about homotopy classes of maps between dg
algebras. A given dg algebraB together with a dg algebra mapA! B (not necessarily central)
will be referred to as an A-algebra. The category A # dgAlg of A-algebras is likewise a closed
model category. The category of right dg A-modules over a dg algebra A will be denoted by
Mod-A and we will refer to its objects as A-modules. The category Mod-A is a closed model
category whose homotopy category is denoted by D.A/, the derived category of A. We chose
to focus (for notational convenience) on right modules but will occasionally use left modules
as well, making sure that no confusion would arise.

For A-modules M;N we denote by HomA.M;N / the chain complex of A-linear homo-
morphismsM ! N . We write RHomA.M;N / for the corresponding derived functor obtained
by replacing M with a cofibrant A-module quasi-isomorphic to M . If M D N , we will write
EndA.M/ and REndA.M/ for HomA.M;N / and RHomA.M;N /, respectively.
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For a (right) A-module M and a left A-module N we write M ˝A N and M ˝LA N for
their tensor product and derived tensor product, respectively. For two dg algebras B and C
supplied with a dg algebra maps A! B and A! C their free product or pushout will be
denoted by B �A C , and its derived version – by B �LA C .

A description of the closed model categories of algebras and modules convenient for our
purposes is given in [5], except for the minor difference that left modules are treated in that
paper whereas right modules are emphasized here.

We will freely use the language of triangulated categories and their localizations, cf. [21]
for an overview. If C is a triangulated category with translation functor † and †d Š id, we
say that C has period d ; if no such d exists, C is said to have infinite period. Given a trian-
gulated category C , its full triangulated subcategory S is thick if it is closed with respect to
taking retracts. In this situation one can form the Verdier quotient C=S , a triangulated cate-
gory supplied with a (triangulated) functor j W C ! C=S whose kernel is S and universal with
respect to this property. A triangulated subcategory S of C is called localizing if it contains all
small coproducts; in that case the Verdier quotient often admits a right adjoint i W C=S ! C ,
and then the endofunctor L WD i ı j W C ! C is called the (Bousfield) localization functor
with respect to S . It is necessarily idempotent: L2 Š L and for any X 2 C the natural map
X ! L.X/ is called the localization of X (with respect to S ). For a collection of objects S
of C we will denote by Loc.S/ the smallest localizing subcategory of C containing S ; we say
that S generates Loc.S/.

We say that an object X is a (classical) generator of the triangulated category C if C is
the smallest thick subcategory of C containing X .

For a triangulated category C a perfect (or compact) object X is characterized by the
property

HomC

�
X;
M
i2I

Xi

�
Š

M
i2I

HomC .X;Xi /

for any collection of Xi ; i 2 I of A-modules indexed by a set I . The full subcategory of
D.A/ consisting of perfect A-modules will be denoted by Perf.A/; note that A is a generator
of Perf.A/.

A dg category is understood to be a category enriched over dg k-modules. Thus, for two
objects X1 and X2 in a dg category C we have a dg space of homomorphisms Hom.X1; X2/
and composition is a dg map. The homotopy category H0.C / of the dg category C has the
same objects as C and for two objects X1; X2 in C we have

HomH0.C/.X1; X2/ WD H0ŒHomC .X1; X2/�:

A dg functor F W C ! C 0 between two dg categories is quasi-essentially surjective if
H0.F / W H0.C /! H0.C

0/ is essentially surjective and quasi-fully faithful if F induces quasi-
isomorphisms on the Hom-spaces; if both conditions are satisfied then F is called a quasi-
equivalence.

2. Rank functions on triangulated categories

Let C be a triangulated category.
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Definition 2.1. A rank function on C is an assignment to each object X of C of a non-
negative real number �.X/ such that the following conditions hold.

Translation invariance: for any object X , we have

(O1) �.†X/ D �.X/:

Additivity: for any objects X and Y , we have

(O2) �.X ˚ Y / D �.X/C �.Y /:

Triangle inequality: for any exact triangle X ! Y ! Z , we have

(O3) �.Y / � �.X/C �.Z/:

Remark 2.2. Conditions (O1) and (O3) may be replaced by the statement that for any
exact triangle X ! Y ! Z , the triple .�.X/; �.Y /; �.Z// is triangular, i.e. it is com-
posed of the side lengths of a (possibly degenerate) planar triangle. Indeed, one only needs
to show that the latter condition together with (O2) implies (O1). Consider the exact triangle
X

0
�! X ! X ˚†X  . Then the triangularity condition together with (O2) implies that

�.†X ˚X/ D �.†X/C �.X/ � 2�.X/

so that �.†X/ � �.X/. Similarly, the exact triangle †X ˚X ! †X
0
�! †X  implies that

�.X/ � �.†X/ and it follows that �.X/ D �.†X/.

Rank functions on triangulated categories may alternatively be defined as functions on
morphisms, as follows.

Definition 2.3. A rank function on C is an assignment to each morphism f in C of
a nonnegative real number �.f /, such that the following conditions hold.

Translation invariance: for any morphism f , we have

�.†f / D �.f /:(M1)

Additivity: for any morphisms f and g, we have

�.f ˚ g/ D �.f /C �.g/:(M2)

Rank-nullity condition: for any exact triangle X
f
�! Y

g
�! Z ; we have

�.f /C �.g/ D �.idY /:(M3)

The translation between the two definitions is given by the following formulas:

�.X/ D �.idX /;(2.1)

�.f W X ! Y / D
�.X/C �.Y / � �.cone.f //

2
:(2.2)

Proposition 2.4. Definitions 2.3 and 2.1 are equivalent.

Proof. Given a nonnegative function � on morphisms in C satisfying the three condi-
tions of Definition 2.3, the rule (2.1) defines a function on objects which is clearly nonnegative,
and translation invariance (O1) and additivity (O2) follow immediately from the corresponding
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properties (M1) and (M2). Finally, take an exact triangle

X
f
�! Y

g
�! Z 

in C , with rotated exact triangles Y
g
�! Z

h
�! †X  and†�1Z

†�1h
����! X

f
�! Y  . We have

�.X/C �.Z/ � �.Y / D �.idX /C �.idZ/ � �.idY /

D .�.†�1h/C �.f //C .�.g/C �.h// � .�.f /C �.g//

D 2�.h/ � 0;

by (M1) and (M3), which establishes (O3).
Conversely, given a nonnegative function � on objects of C satisfying the three conditions

of Definition 2.1, define a function on morphisms by formula (2.2). For f W X ! Y , we have
an exact triangle Y ! cone.f /! †X  , so (O1) and (O3) imply that �.f / � 0. Properties
(M1) and (M2) are consequences of (O1) and (O2), respectively, and, finally, given an exact
triangle

X
f
�! Y

g
�! Z ;

we confirm property (M3):

�.f /C �.g/ D
�.X/C �.Y / � �.Z/

2
C
�.Y /C �.Z/ � �.†X/

2

D �.Y /

D �.idY /;

using (O1).

In view of Proposition 2.4, we regard a rank function on C as a function on both objects
and morphisms, related by equations (2.1) and (2.2).

We call a rank function �

� object-faithful if for all nonzero objects X we have �.idX / ¤ 0,

� morphism-faithful if for all nonzero maps f we have �.f / ¤ 0,

� integral if �.f / 2 Z for all f ,

� prime if � is integral and C admits a generator X such that �.idX / D 1.

Remark 2.5. In the case C is a tensor triangulated category (i.e. it has a symmetric
monoidal structure compatible with its triangulation, cf. [17, Appendix A]), it makes sense to
require additionally that a rank function � is multiplicative in the sense that

�.idX ˝ idY / D �.idX /�.idY /

for any two objects X; Y 2 C . Multiplicative rank functions are likely to be of relevance to
tensor triangular geometry, [1] but will not be considered in this paper.

2.1. Periodic rank functions. We will consider a certain refinement of the notion of
a rank function defined above.
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Let R be an ordered commutative ring and fix d 2 ¹1; 2; : : :º [ ¹1º. Put

R.d/ WD

´
RŒq; q�1� if d D1;

RŒq�=.qd � 1/ if d <1;

and

R�0.d/ WD

´
R�0Œq; q

�1� if d D1;

R�0Œq�=.q
d � 1/ if d <1:

For �; 2 R.d/, we write � �  to mean � �  2 R�0.d/. Given two integers q; q0 where
d is divisible by d 0 or d D1, there is an obvious reduction map �d;d 0 W R.d/! R.d 0/. We
will mostly be interested in the case R D R or R D Z.

Definition 2.6. A d -periodic rank function on a triangulated category C is an assign-
ment to each morphism f in C of �.f / 2 R�0.d/ such that axioms (M2) and (M3) hold,
axiom (M1) gets modified as follows:

Translation invariance: for any morphism f , we have

�.†f / D q�.f /;(Mp1)

and, in addition, the following axioms hold:

Triangular inequality: for all morphisms f , g and h in C such that g and h share the
same domain and f and h share the same codomain, we have

�

 
f h

0 g

!
� �.f /C �.g/:(M4)

Ideal condition: for any morphisms f and g for which the composition gf is defined,
we have

�.gf / � �.f / and �.gf / � �.g/:(M5)

Remark 2.7. Note that given two integers d and d 0 where d 0 divides d or d D1,
a d -periodic rank function on C determines a d 0-periodic rank function on C via the reduction
map R.d/! R.d 0/. In particular, any d -periodic rank function gives rise to a 1-periodic rank
function. Under this reduction, axiom (Mp1) becomes (M1) and we will see that often (e.g.
when d D 1) the axioms (M4) and (M5) are consequence of axioms (M1), (M2) and (M3). In
particular, the terms “rank function” and “1-periodic rank function” are synonymous. Further-
more, often a periodic rank function can be defined as a function on objects (e.g. we saw that
it holds for d D 1).

A d -periodic rank function taking values in Z�0.d/ will be called integral. The notions
of a prime, object-faithful and morphism-faithful rank function obviously make sense in the
d -periodic case.

Proposition 2.8. Let � be a d -periodic rank function on C . For all objects X in C , put

�.X/ WD �.idX / 2 R�0.d/:
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Then � satisfies the additivity axiom (O2) of the rank function whereas axioms (O1), (O3) get
refined as follows:

Translation invariance: for any object X in C , we have

�.†X/ D q�.X/:(Op1)

Triangle inequality: for any exact triangle X ! Y ! Z in C we have

�.X/ � �.Y /C �.Z/ D .q C 1/�(Op3)

for some � 2 R�0.d/. More precisely, we can take � D �.f /, where f W †�1Z
f
�! X

is the connecting morphism for the triangle.

Moreover, if � is integral, i.e. �.f / 2 Z�0.d/ for all morphisms f in C , then �.X/ 2 Z�0.d/
for any X 2 C .

Proof. This is a straightforward modification of the first part of proof of Proposition 2.4.
In particular, conditions (Op1) and (O2) follow immediately from (Mp1) and (M2). Further-
more, given an exact triangle

†�1Z
f
�! X

g
�! Y

h
�! Z;

we have, using (M3) and (Mp1),

�.X/ � �.Y /C �.Z/ D .�.f /C �.g// � .�.g/C �.h//C .�.h/C �.†f //

D .q C 1/�.f /;

as desired. The claim about integrality is likewise clear.

Remark 2.9. Note that in order to obtain axioms (Op1), (O2) and (Op3), we only make
use of conditions (Mp1), (M2) and (M3) of Definition 2.6.

The following useful observation relates the rank of morphism with that of its source
and target.

Lemma 2.10. Let � be a d -period rank function on C . For any morphism f W X ! Y ,
we have �.f / � �.X/ and �.f / � �.Y /.

Proof. Consider the factorizations f D f ı idX and f D idY ıf in the ideal condi-
tion (M5).

To check condition Op3 when d D1, the following obvious lemma is useful.

Lemma 2.11. A real Laurent polynomial f .q/ D
P
n2Z anq

n can be written as

f .q/ D .1C q/�;

where � has nonnegative coefficients if and only if for any n 2 Z it holds that
1X
iD0

.�1/ianCi � 0:
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It is natural to ask whether a rank function is determined by its values on objects (so as to
obtain a periodic analogue Proposition 2.4). The following result gives a partial answer to that.

Proposition 2.12. Assume that d D1 or d is odd and there is given an assignment to
any object X of C of an element �.X/ 2 R.d/ satisfying conditions (Op1), (O2) and (Op3).
Then, for any f W X ! Y in C the formula

(2.3) �.f / WD
�.Y / � �.cone.f //C q�.X/

q C 1

determines a d -periodic rank function on C . If, in addition, �.X/ 2 Z.d/ and the polynomial
� figuring in triangle inequality (Op3), belongs to Z.d/, then the obtained rank function is
integral.

Proof. We will only treat the case of real rank functions; the integral case is obtained
completely analogously.

Note that q C 1 is invertible in R.d/ if d is odd, and a nonzero-divisor (like all nonzero
elements) if d D1. By Proposition 2.8, the element �.Y / � �.cone.f //C q�.X/ is divisible
by q C 1 and it follows that it is uniquely divisible. Thus, �.f / 2 R.d/ for any X 2 C . Condi-
tions (Mp1), (M2) and (M3) of Definition 2.6 are proved by the same argument as the second
part of Proposition 2.4.

To check condition (M5), suppose we are given morphisms f W X ! Y and g W Y ! Z.
We have

�.f / � �.gf / D
q�.X/C �.Y / � �.cone.f //

q C 1
�
q�.X/C �.Z/ � �.cone.gf //

q C 1

D
�.Y / � �.cone.f /˚Z/C �.cone.gf ///

q C 1

� 0;

where the inequality is deduced from Lemma 2.13 below and (Op3).
Finally, we check condition (M4). Suppose we have morphisms f WX ! Y , gWZ ! W

and h W Z ! Y in C . There is an exact triangle in C of the form

cone.g/! cone

 
f h

0 g

!
! cone.f / :

Hence, by (O2) and (Op3),

�

 
f h

0 g

!
D

�.Y ˚W / � �

 
cone

 
f h

0 g

!!
C q�.X ˚Z/

q C 1

�
�.Y /C �.W / � �.cone.f // � �.cone.g//C q�.X/C q�.Z/

q C 1

D �.f /C �.g/:

Lemma 2.13. For any pair of composable morphisms f W X ! Y and g W Y ! Z in
a triangulated category, there exists an exact triangle of the form

Y ! cone.f /˚Z ! cone.gf / :
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Proof. There exists the following commutative diagram where the right square is
a homotopy pushout and the rows are exact triangles:

X

Š

��

f
// Y

g

��

// cone.f /

��

//

X 0 // Z // W . //

By a version of the octahedral axiom the dotted arrow exists making the whole diagram com-
mutative and the bottom row into an exact triangle. It follows that W Š cone.gf / and the
desired result follows.

2.2. Stability conditions and rank functions. Recall that a stability condition on a tri-
angulated category C , cf. [6] is a pair .P ; Z/ where P D P .�/; � 2 R is a slicing on C ,
a collection of subcategories of C with properties modelled on the Postnikov truncations in the
category of chain complexes and a central charge, that is a homomorphism Z W K0.C/! C
compatible with the slicing in a suitable way. Every nonzero object E of C has a filtration

0 D E0 ! � � � ! En D E

so that Ai WD cone.Ei�1 ! Ei / belongs to P.�i / and �1 > � � � > �n; one sets ��
P
.E/ D �1

and �C
P
.E/ D �n. The mass of E is defined as

m� .E/ D

nX
iD1

jZ.Ai /j:

More generally, one can introduce a parameter and define

m�;t .E/ D
X
jZ.Ai /je

�i t

cf.[10, Section 4.5].

Proposition 2.14. Given a stability condition � D .P ; Z/ on a triangulated category C ,
the mass m� defines an object faithful rank function on C .

Proof. Translation invariance (O1), additivity (O2) and object-faithfulness are obvious.
The triangle inequality form�;t .E/ is proved in [18, Proposition 3.3] for all t and (O3) follows
by taking t D 0.

Remark 2.15. The last result suggests that a rank function may serve as a replacement
for a stability condition on C which exists even in the absence of a t -structure (e.g. when C is
periodic).

The set Stab.C/ of stability conditions on C is a topological space. The topology may be
induced by the generalized metric (allowed to assume infinite values):

d.�1; �2/ D sup
0¤E2C

²
j���2.E/ � �

�
�1
.E/j; j�C�2.E/ � �

C
�1
.E/j;

ˇ̌̌̌
log

m�2.E/

m�1.E//

ˇ̌̌̌³
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(cf. [6, p. 341]). In a similar (albeit much more obvious) way, the set FRank.C/ of object
faithful rank functions on C is topologized by the generalized metric

d.�1; �2/ D sup
0¤E2C

ˇ̌̌̌
log

�1.E/

�2.E/

ˇ̌̌̌
:

On the set Rank.C/ of all rank functions on C , it is more useful, following Schofield
[30, Chapter 7], to consider the topology of pointwise convergence of real-valued functions on
objects of C .

The following result is immediate:

Proposition 2.16. The maps

Stab.C/! FRank.C/ ,! Rank.C/;

� 7! m�

are continuous.

In [3], it is suggested that a compactification of the quotient Stab.C/=C of Stab.C/ by
a natural action of C may be constructed as the closure of its image in Rank.C/=R�.

2.3. Simple triangulated categories. The most basic examples of rank functions come
from simple triangulated categories.

Definition 2.17. We say that a triangulated category C is simple if every exact triangle
in C is split (by which we mean that it is isomorphic to a direct sum of triangles having an
isomorphism as one of their arrows) and C is generated as a triangulated category by one
nonzero indecomposable object.

Simple triangulated categories are in one-to-one correspondence with graded skew-fields,
i.e. graded rings whose nonzero homogeneous elements are invertible.

Proposition 2.18. A triangulated category C is simple if and only if C is equivalent
to Perf.K/ where K is a graded skew-field (i.e. the category of finite-dimensional vector
K-spaces).

Proof. Let C be a simple triangulated category with an indecomposable generator X
and let f W X ! †nX be a morphism. Then the exact triangle

X
f
! †nX ! cone.f / 

is contractible, that is one of its arrows contains an isomorphism as a direct summand. Since
X is indecomposable, this can only happen if f is an isomorphism or zero. We conclude that
the graded ring End�.X/ is a graded skew-field and C is equivalent to the category of graded
vector spaces over it. Conversely, all monomorphisms and epimorphisms of graded modules
over a graded field K split and it follows that Perf.K/ is a simple triangulated category.

Remark 2.19. Graded skew-fields can easily be classified in terms of ordinary skew-
fields. Indeed, let K be a graded skew-field; then K0, its zeroth component is an (ungraded)
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skew-field. Suppose that K0 ¤ K and let d be the smallest positive integer such that K has
a nonzero, hence invertible, element of degree d ; denote this element by t . Then K is isomor-
phic as a K0-module to K0Œt; t�1� and if t is central then this isomorphism is multiplicative.
In general K will be isomorphic to a skew Laurent polynomial ring K0Œt; t�1�� where � is an
automorphism of K0 and the multiplication is determined by the rule ta D �.a/t for a 2 K0.

The graded skew-field of the formK DK0Œt; t
�1�� with jt j D d will be called d -periodic

and d is called the period of K; furthermore we adopt the convention that an ungraded skew-
field K D K0 has infinite period. The corresponding simple triangulated category Perf.K/ is
d -periodic, i.e. the functor †d on Perf.K/ is naturally isomorphic to the identity.

Periodic rank functions on simple triangulated categories are essentially unique. More
precisely, we have the following result.

Proposition 2.20. The space of d 0-periodic rank functions on a d -periodic simple tri-
angulated category is isomorphic to R�0.d 0/ if d D1 or d 0 is a divisor of d ; otherwise it
is ¹0º. If the space is nonzero, there exists a unique (up to multiplication by a power of q) prime
rank function.

Proof. Let C be a simple d -periodic triangulated category with a generator X and let �
be a nonzero d 0-periodic rank function on C ; assume that d 0 <1. Then �.X/ 2 R�0.d 0/ so
that d 0 is the smallest integer with qd

0

D 1. If d <1, then X Š †dX and

�.X/ D �.†dX/ D qd�.X/

so that qd D 1 from which it follows that d 0 divides d . Furthermore, any other d 0-periodic rank
function can be obtained from � by multiplying it with an arbitrary element of R�0.d 0/ and
rank functions corresponding to different elements in R�0.d 0/ will be different. The argument
with d 0 D1 is similar. Finally, if a nonzero rank function on C exists, then the condition
�.X/ D 1 specifies it uniquely.

Corollary 2.21. A simple triangulated category admits a unique prime rank function.

Proof. This follows from Proposition 2.20 by specializing q D 1.

Remark 2.22. Recall that by Proposition 2.18 a simple triangulated category is equiv-
alent to the category of finite-dimensional vector spaces over a (possibly graded) skew-field.
Clearly the unique rank function of Corollary 2.21 is just the dimension of a finite-dimensional
vector space.

Proposition 2.23. If a triangulated category admits a morphism-faithful prime rank
function, then it is simple.

Proof. Let C be a triangulated category having a generator X and a morphism-faithful
rank function � with �.X/ D 1. Let

f W †nX ! X

be any nonzero morphism of some degree n; by (M3), �.f / is either 1 or 0, by morphism-
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faithfulness the second possibility is ruled out so �.f / D 1. Considering the exact triangle

†�1Y
h
�! †dX

f
�! X

g
�! Y

and using (M3) again, we conclude that �.h/ D �.g/ D 0 and then by morphism-faithfulness
g D h D 0 and f is an isomorphism. Thus, any nonzero element in End.X/ is invertible, i.e.
End.X/ is a graded skew-field.

Definition 2.24. A dg algebra A is called a dg skew-field if its homology H.A/ is
a graded skew-field. Similarly, A is a simple Artinian dg algebra if H.A/ is a graded simple
Artinian algebra (i.e. it is isomorphic to the graded matrix algebra Mn.K/ over some graded
skew-field K).

The derived categories of dg skew-fields and dg Artinian simple algebras are all simple:

Proposition 2.25. The following statements hold.

(1) Let A be a simple Artinian dg algebra so that H.A/ ŠMn.K/, where K is a graded
skew-field of period d and n is some integer. Then Perf.A/ is a simple triangulated
category of period d .

(2) Conversely, ifA is a dg algebra for which Perf.A/ is simple, thenA is a simple dg Artinian
algebra.

Proof. The homology graded ring H.A/ of A is a graded matrix algebra over some
graded skew-field K. A primitive idempotent e 2 H.A/ determines a retract X WD eA in the
triangulated category Perf.A/. The H.A/-module H.X/ is a simple generator of the cate-
gory of H.A/-module. Given a perfect dg A-module M , its homology H.M/ is a graded
H.A/-module that is a finite direct sum ofH.A/-modulesH.X/ and it is clear that this decom-
position lifts to Perf.A/ so that M is a direct sum of copies of X in Perf.A/. Similarly, a map
M ! N of A-modules is determined by the map H.M/! H.N/ of H.A/-modules and it
follows that any exact triangle in Perf.A/ splits. Thus, Perf.A/ is simple and its period clearly
coincides with that of K. This proves (1).

For (2) let A be a dg algebra for which Perf.A/ is simple; denote by X an indecompos-
able generator of Perf.A/ and assume without loss of generality thatX is a cofibrantA-module.
Since every nonzero map X ! †nX is invertible in Perf.A/, the dg algebra B WD EndA.X/
is a dg skew-field. Then the functor F WM 7!M ˝A X is a dg equivalence between the cat-
egories of cofibrant left A-modules and cofibrant B-modules and therefore the dg algebras
A Š EndA.A/ and EndB.F.A// D EndB.X/ are quasi-isomorphic. SinceB is a dg skew-field,
the B-module X is a direct sum of simple B-modules and thus, EndB.X/ is a matrix algebra
of a dg skew-field, i.e. a dg simple Artinian ring.

Remark 2.26. Another notion of a simple dg algebra was considered in the recent
paper [28]. Orlov’s notion is much stronger than ours, in that it is quasi-isomorphic to an
ordinary simple algebra. A simple Artinian dg algebra in our sense or even a dg skew-field of
finite period is not determined up to quasi-isomorphism by its homology algebra. Examples of
non-formal A1 algebras whose homology algebras are skew-fields are not hard to construct
(cf. for example even Moore algebras of [23]). This situation arises also in stable homotopy
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theory where Eilenberg–MacLane spectra of graded fields and Morava K-theories have equiv-
alent simple homotopy categories of modules yet are very different in many ways, e.g. they
have inequivalent homotopy categories of bimodules.

3. Rank functions on perfect derived categories of ordinary rings

We start with a short review of ordinary Sylvester rank functions, following [30]. This
theory and its applications motivated us to develop its derived analogue.

3.1. Sylvester rank functions. LetA be a ring. Denote by fp.A/ the category of finitely
presented A-modules, and by Proj.A/ the subcategory of finitely generated projective A-mod-
ules.

Definition 3.1. A Sylvester morphism rank function onA associates to each morphismf
of Proj.A/ a rank �.f / 2 R�0. It is required to satisfy the following conditions.

Normalization: it holds

�.idA/ D 1:(m1)

Additivity: for any morphisms f and g, we have

�.f ˚ g/ D �.f /C �.g/:(m2)

Triangular inequality: for all morphisms f , g and h such that g and h share the same
domain and f and h share the same codomain, we have

�

 
f h

0 g

!
� �.f /C �.g/:(m3)

Ideal condition: for any morphisms f and g for which the composition gf is defined,
we have

�.gf / � �.f / and �.gf / � �.g/:(m4)

Definition 3.2. A Sylvester module rank function on A associates to each finitely pre-
sented A-module M a rank �.M/ 2 R�0 such that

Normalization: it holds

�.A/ D 1:(o1)

Additivity: for all finitely presented modules M and N , we have

�.M ˚N/ D �.M/C �.N /:(o2)

Triangle inequality: for any exact sequence

L!M ! N ! 0

of finitely presented A-modules, we have

�.N / � �.M/ � �.L/C �.N /:(o3)
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Let
P

f
�! Q �!M �! 0

be an exact sequence of A-modules, with P;Q 2 Proj.A/, so that M 2 fp.A/. The formulas

�.f / D �.Q/ � �.M/ and �.M/ D �.idQ/ � �.f /;

yield a one-to-one correspondence between Sylvester morphism rank functions on A and
Sylvester object rank functions on A. So we just call the resulting function defined on both
morphisms and objects a Sylvester rank function on A.

Example 3.3. Let A be a skew-field; then the category fp.A/ is just the category of
finite-dimensional vector spaces over A. It is clear that fp.A/ has a unique Sylvester rank
function given by the dimension of a vector space; a triangulated analogue of this obvious
result is Corollary 2.21.

Remark 3.4. A Sylvester rank function on A may be recovered from its values on
homomorphisms f W Am ! An between free modules, since every finitely presented module
is isomorphic to the cokernel of such a map. By additivity, one may even restrict to the case of
square matrices, i.e. the case m D n.

Let S be a simple Artinian ring. Then S is isomorphic to a matrix algebra Mn.K/ over
a skew-field K. Every object of fp.S/ D Proj.S/ is a finite direct sum of copies of the simple
module V D Kn, and the unique Sylvester rank function on fp.S/ takes the value 1

n
on V .

Given a homomorphism A! B , we obtain a right exact functor

fp.A/! fp.B/; M 7! B ˝AM:

It is easy to confirm that any Sylvester rank function on B pulls back via this functor to
a Sylvester rank function onA. In particular, any homomorphismA! S into a simple Artinian
ring determines a canonical Sylvester rank function on A. Two homomorphisms A! S and
A! S 0 into simple Artinian rings are considered equivalent if they become equal after com-
posing with homomorphisms S ! S 00 and S 0 ! S 00 into a third simple Artinian ring. Equiva-
lent homomorphisms clearly determine the same Sylvester rank function on fp.A/.

Theorem 3.5. There is a one-to-one correspondence between equivalence classes of
homomorphisms of A into simple Artinian rings S and Q-valued Sylvester rank functions on A
taking the value 0 or 1 on A=rA for any integer r . In this correspondence S is a skew-field if
and only if the corresponding rank function is Z-valued.

Proof. See [30, Chapter 7, Theorems 7.12 and 7.14].

Remark 3.6. Let � be a Sylvester rank function on A. Since 0 � �.A=rA/ � 1 for any
integer r , the condition on �.A=rA/ is automatically satisfied if � is Z-valued. The same is true
for an arbitrary Sylvester rank function on A when A is an algebra over a field, for then A=rA
is isomorphic to either A or 0. See [30, p. 121] for a discussion on this issue.

We already explained how to obtain a rank function from a homomorphism into a simple
Artinian ring S , and since S is an algebra over a field, namely its center, it will satisfy the addi-



16 Chuang and Lazarev, Derived rank functions

tional condition, cf. Remark 3.6. The reverse construction in the case of an integral Sylvester
rank function � is described as follows. The Cohn localization of A� of A with respect to
all morphisms f W P ! Q in Proj.A/ such that �.f / D �.P / D �.Q/, can be shown to be
local with residue skew-field, say,K, cf. [30, Theorem 7.5]. The desired homomorphism is the
composition A! A� ! K.

3.2. Derived rank functions. Let A be an ordinary ring. We consider periodic rank
functions on the triangulated category Perf.A/. A d -periodic rank function � on Perf.A/ is
called normalized if �.A/ D 1. We will denote by NRkd .Perf.A// and Syl.A/ the set of nor-
malized d -periodic rank functions on Perf.A/ and Sylvester rank functions on fp.A/, respec-
tively. In this subsection we give a comparison between NRkd .Perf.A// and Syl.A/.

Theorem 3.7. Let A be an ordinary ring and d 2 ¹1; 2; : : : º [ ¹1º. The restriction
of any normalized d -periodic rank function on Perf.A/ to Proj.A/ is a Sylvester morphism
rank function on A. In the case d D1, this determines a one-to-one correspondence between
normalized1-periodic rank functions on Perf.A/ and Sylvester rank functions on A.

Proof. By additivity, any normalized periodic rank function takes values in R on any
object in Proj.A/, and therefore on any morphism in Proj.A/, by Lemma 2.10. The first state-
ment then follows from a straightforward unraveling of definitions. The stronger statement for
d D1 is a consequence of the Proposition 3.9 below.

Lemma 3.8. Let � be a normalized d -periodic rank function on Perf.A/. Let X be a
bounded complex of A-modules with finitely generated projective terms Xn. Then

�.X/ �
X
n2Z

�.Xn/q
n:

Proof. This follows by induction on the length of X from (Op3).

Proposition 3.9. Let A be an ordinary ring. Any normalized1-periodic rank function
� on Perf.A/ is determined by its restriction to Proj.A/. More precisely, given a bounded com-
plexX D ¹Xnº of finitely generated projectiveA-modules with a differential dn W Xn ! Xn�1,
we have

(3.1) �.X/ D
X
n2Z

.�.Xn/ � �.dn/ � �.dnC1//q
n:

Moreover, any Sylvester rank function on A extends (uniquely) via this formula to a rank
function � on Perf.A/. This extension will be referred to as the derived rank function on Perf.A/.

Proof. Let us prove that given a Sylvester rank function �, formula (3.1) gives a1-peri-
odic rank function on Perf.A/. Note that a bounded exact complex

X D ¹� � �
dn
 ��� Xn

dnC1
 ��� � � � º

of finitely generated projectiveA-modules splits as a direct sum of elementary exact complexes
of length two. It is clear that for such a complex one has �.Xn/ D �.dn/C �.dnC1/ and it
follows that �.X/ D 0.
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Given a quasi-isomorphism f W X ! Y of bounded complexes of finitely generated pro-
jective A-modules, we can factor it as X

i
! Z

p
! Y where Z is the mapping cylinder of f .

Since X and Y are chain deformation retracts of Z, it follows that �.X/ D �.Z/ D �.Y /.
Therefore, � is well-defined on Perf.A/.

It is clear that the function � on Perf.A/ given by (3.1) satisfies axioms (Op1) and (O2)
of the rank function. To prove (Op3), consider an exact triangle X ! Y ! Z in Perf.A/.
Without loss of generality, we can assume that the mapX ! Y is a cofibration of complexes of
A-modules, in other words, it is a degree-wise split injection, andZ Š X=Y is a bounded com-
plex of finitely generated projective A-modules. By property (o2) of a Sylvester rank function,
we have for all n 2 Z,

(3.2) �.Yn/ D �.Xn/C �.Zn/:

Denote by dXn ; d
Y
n ; d

Z
n ; n 2 Z the differentials in the complexes X; Y and Z, respectively.

Then by (m3) we have for all n 2 Z,

(3.3) �.dYn / � �.d
X
n /C �.d

Z
n /:

From (3.2) we deduce

�.X/ � �.Y /C �.Z/ D
X
n2Z

.�.dYn /C �.d
Y
nC1/ � �.d

X
n / � �.d

X
nC1/

� �.dZn / � �.d
Z
nC1//q

n:

Using (3.3), we conclude that the polynomial �.X/ � �.Y /C �.Z/ satisfies the condition of
Lemma 2.11. It follows that �.X/ � �.Y /C �.Z/ D .q C 1/� with � 2 R�0.d/ as required.

Given a morphism f W P ! Q in Proj.A/, (3.1) gives

�.cone.f // D .�.P / � �.f //q C .�.Q/ � �.f //;

consistent with (2.3). It follows that the1-periodic rank function on Perf.A/ defined by (3.1)
does in fact extend the original Sylvester rank function � on Proj.A/.

We will now prove that, conversely, any1-periodic rank function � on Perf.A/ is neces-
sarily given by formula (3.1). Given an interval I of integers, denote byXI 2 Perf.A/ the brutal
truncation of X concentrated in degrees n 2 I , i.e. .XI /n D Xn for n 2 I , and .XI /n D 0
otherwise, with differential dn equal to that of X for all n such that ¹n; n � 1º 2 I . Since
the claimed formula for �.X/ is consistent with condition (Op1), it suffices to prove that the
constant term of �.X/ is equal to �.X0/ � �.d0/ � �.d1/:

From the standard exact triangle

†�1XŒ2;1/
�
! X.�1;1� ! X ! XŒ2;1/ 

we obtain by (Op3) that

(3.4) �.X.�1;1�/ � �.X/C �.XŒ2;1// D .q C 1/�.�/:

Next note that by Lemma 3.8, the constant terms of �.XŒ2;1// and of �.†�1XŒ2;1// are
zero, and then the constant term of �.�/ is likewise zero since �.�/ � �.†�1XŒ2;1// by
Lemma 2.10. It follows from equation (3.4) that the constant terms of �.X/ and �.X.�1;1�/
coincide.
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Arguing similarly with the exact triangle

! X.�1;1� ! XŒ�1;1� ! †X.�1;�2� ;

we find that the constant terms of �.XŒ�1;1�/ and �.X.�1;1�/ coincide and thus, also coincide
with the constant term of �.X/.

Write
�.XŒ�1;1�/ D aq

�1
C b C cq;

�.XŒ�1;0�/ D a
0q�1 C b0;

�.XŒ0;1�/ D b
00
C c00q:

From the two exact triangles

XŒ�1;0� ! XŒ�1;1� ! †X1 and †�1X�1 ! XŒ�1;1� ! XŒ0;1� ;

and the triangle inequality (Op3) we find that a D a0, c D c00 and

�.XŒ�1;1�/qD�1 � �.†X�1/qD�1 C �.XŒ0;1�/qD�1 D 0:

Furthermore, from the exact triangle

X0 ! XŒ0;1� ! †X1 

we obtain �.XŒ0;1�/qD0 D �.X0/ � �.d1/ and similarly

q�.XŒ�1;0�/qD0 D �.X�1/ � �.d0/:

We then calculate

b D �.XŒ�1;1�/qD�1 C aC c

D �.†X�1/qD�1 C �.XŒ0;1�/qD�1 C a
0
C c00

D ��.X�1/C b
00
C a0

D �.XŒ0;1�/qD0 C .q�.XŒ�1;0�//qD0 � �.X�1/

D �.X0/ � �.d1/C �.X�1/ � �.d0/ � �.X�1/

D �.X0/ � �.d1/ � �.d0/;

as desired.

Remark 3.10. Let A be an ordinary ring. Let d <1. Recall from Section 2.1 that
�1;d W Z.1/! Z.d/ is the natural reduction map. It allows one to assign to any normalized
1-periodic rank function � on Perf.A/ the normalized d -periodic rank function �1;d ı � on
Perf.A/. This is a injective map with a canonical splitting: given a normalized d -periodic rank
function �, restrict it to a Sylvester rank function on A, and then take the unique extension to
a normalized (1-periodic) rank function O� on Perf.A/ provided by Proposition 3.9:

NRk1.Perf.A// //

�

''

NRkd .Perf.A//

ww

Syl.A/.

Suppose that ˇ W A! K is a map in the homotopy category of dg rings from a ring A
to a d -periodic skew-field K. Let � D �ˇ be the normalized d -periodic rank function on
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Perf.A/ obtained via pullback along ˇ of the unique normalized d -periodic rank function
on the perfect derived category of K. Then O� may be described as follows. The homomor-
phism H.ˇ/ W A! K obtained by passing to homology algebras factors as the composition
of a homomorphism ˇ0 W A! K0 and the inclusion K0 ,! K, and we have O� D �ˇ0 , the
pullback along ˇ0 of the unique normalized (1-periodic) rank function on Perf.K0/. More-
over, � D �1;d ı O� if and only if (the homotopy class of maps) ˇ is realized as an actual ring
homomorphism A! K (and then, it must necessarily be H.ˇ/).

4. Further properties of rank functions

As before, we assume that C is a triangulated category with a d -periodic rank function �.
We will examine the behavior of � with respect to functors in or out of C . Given another
triangulated category C 0 and an exact functor F W C 0 ! C , the pullback �0 D F �.�/, assigning
to each morphism f of C 0 the rank �0.f / D �.F.f //, is clearly also a d -periodic rank function
on C 0. The pullback of an integral rank function is integral.

On the other hand, a pushforward of � is not always possible; later on we will consider
the case of a pushforward along a Verdier quotient.

Lemma 2.10 motivates the following definitions.

Definition 4.1. Let � be a d -periodic rank function on C . We say that a morphism
f W X ! Y in C is

� left �-full if �.f / D �.X/,

� right �-full if �.f / D �.Y /,

� �-full if it is left full and right full.

Lemma 4.2. Let � be a d -periodic rank function on C .

(i) Let

X
f
�! Y

g
�! Z 

be an exact triangle in C , with a connecting homomorphism h W †�1Z ! X . Then:

� f if left �-full if and only if g is right �-full if and only if �.h/ D 0,
� f is �-full if and only if �.Z/ D 0.

(ii) Let f WX ! Y and gWY ! Z be morphisms in C . If f is �-full, then �.gf / D �.g/.
If g is �-full, then �.gf / D �.f /.

Proof. The first part follows directly from Axiom (M3). For the second part, consider
the exact triangle

cone.f /! cone.gf /! cone.g/ ;

given by the octahedral axiom. Suppose that f is �-full. Then �.cone.f // D 0 and therefore
�.cone.gf // D �.cone.g//. We deduce that

.q C 1/.�.gf / � �.g// D .�.X/ � �.cone.gf //C q�.Z//

� .�.Y / � �.cone.g//C q�.Z// D 0:
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Since, by (M5), �.gf / � �.f / � 0, we deduce that �.gf / � �.g/ D 0, as desired. The argu-
ment when g is �-full is similar.

Corollary 4.3. Let ˛ be an invertible element in k and f W X ! Y is a morphism in C .
Then �.˛ � f / D �.f /.

Proof. The multiplication by ˛ is an automorphism ofX and so, it is a �-full map. Then
the conclusion follows from Lemma 4.2 (2).

Corollary 4.4. The full subcategory on

Ker.�/ WD ¹X 2 C W �.X/ D 0º

is a thick subcategory of C . Moreover, � descends to a d -periodic rank function � on the
Verdier quotient C=U by any thick subcategory U � Ker.�/, and the pullback of � to C is �.
The obtained d -periodic rank function on C=Ker.�/ is object-faithful.

Proof. The category C=U is the localization of C at a set of �-full morphisms, and so
any morphism f WM ! N in C=U can be written as a roof

M
h
�! L

g
 � N;

where h and g are morphisms in C and cone.g/ is an object of U (so, in particular, g is �-full).
We set �.f / WD �.h/; then part (2) of Lemma 4.2 ensures that � is a well-defined function on
morphisms of C=U. Clearly, � pulls back to �, and satisfies (Mp1) and (M2). That � obeys
(M3)–(M5) follows from the fact that every triangle or diagram of the form X ! Y ! Z or
X ! Y  Z ! W in C=U is isomorphic to the image of a triangle or diagram of the same
form in C .

The object-faithfulness of � on C=Ker.�/ is clear.

Remark 4.5. Let d and d 0 be positive integers with d divisible by d 0; clearly the only
element in R.d/ mapping to zero under the reduction map R�0.d/! R�0.d 0/ is zero. Thus,
given a d -periodic rank function � and the corresponding d 0-periodic rank function �0, their
kernels coincide. In particular, if one is interested in the thick subcategories that are kernels of
rank functions, it results in no loss of generality to consider only ordinary (i.e. 1-periodic) rank
functions.

Lemma 4.6. Let f and g be morphisms in C with the same domain and codomain.
Then

�.f C g/ � �.f /C �.g/:

Proof. We have a factorization

.f C g/ D
�
1 1

� f 0

0 g

! 
1

1

!
:

The desired inequality follows from axioms (M5) and (M2).
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Corollary 4.7. For any pair of objects X; Y of C , define

Hom�
C
.X; Y / D ¹f 2 HomC .X; Y / W �.f / D 0º :

This is an ideal of morphisms in C , by (M5) and by Lemma 4.6.

Lemma 4.8. Let f and g be morphisms of C with �.g/ D 0. Then �.f C g/ D �.f /.

Proof. By Lemma 4.6 we have �.f C g/ � �.f /C �.g/ D �.f /. Taking into account
that �.�g/ D �.g/ by Corollary 4.3 we have

�.f / D �.f C g � g/ � �.f C g/C �.g/ D �.f C g/

which implies the desired equality.

Lemma 4.9. Let � be a prime rank function on a triangulated category C supplied with
a generator X and denote by L�.X/ the image of X in the Verdier quotient C=Ker.�/. Then
the graded algebra End�.L�.X// is local.

Proof. Recall that the induced rank function � on C=Ker.�/ is object-faithful. The set

I WD ¹f 2 End.L�.X// W �.f / D 0º

is an ideal in End�.L�.X// by (M5). If f 2 End�.L�.X// is not in I , then �.f / D 1, in other
words f W L�.X/! L�.X/ is a �-full map. By Lemma 4.2 the cone of f has zero rank and
so is zero in C=Ker.�/; thus f is invertible. Since any element in End�.L�.X// not in I is
invertible, it follows that I is a maximal ideal and End�.L�.X// is local.

So any prime rank function on a triangulated category with a generator X gives rise to
a map End�.X/! F�, where F� is the (graded, skew) residue field of End�.L�.X//.

Recall that the idempotent completion of an additive category C is a category QC whose
objects are pairs .X; e/ where X is an object of C and e is an idempotent endomorphism
of X ; a morphism between two such pairs .X; e/ and .Y; t/ is a morphism f W X ! Y in C

such that ef D f D f t . The idempotent completion of a triangulated category is known to be
triangulated and it possesses a universal property with respect to exact functors into idempotent
complete triangulated categories [2].

Lemma 4.10. Any d -periodic rank function �WC ! R.d/ on a triangulated category
C extends uniquely to a d -periodic rank function on its idempotent completion.

Proof. Given a map f W .X; e/! .Y; t/ in QC , define its rank as the rank of f W X ! Y

in C . Note that under this definition the rank of the identity morphism of .X; e/ is �.e/. All
axioms of the rank function except (M3) are obvious. To check (M3), consider an exact triangle
in QC :

.X; e/
f
! .Y; t/

g
! .Z; k/ 

and note that it is a direct summand in QC of the following exact triangle in C

(4.1) .X; 1/
f
! .Y; 1/

g 0

! .Z0; 1/ :
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Moreover, there is the following isomorphism in QC :

.Z0; 1/ Š .Z; k/˚ .†X; 1 � e/˚ .Y; t/

and the morphism g0 W .Y; 1/! .Z0; 1/ can be represented as the composite map

.Y; 1/
Š // .Y; t/˚ .Y; 1 � t /

g˚id.Y;1�t/
// .Z; k/˚ .†X; 1 � e/˚ .Y; 1 � t /

from which it follows that �.g0/ D �.g/C �.1 � t /. The exact triangle (4.1) gives

�.t/C �.1 � t / D �..Y; t/˚ .Y; 1 � t //

D �.Y /

D �.f /C �.g0/

D �.f /C �.g/C �.1 � t /

and it follows that �.t/ D �.f /C �.g/ as desired.

Assume now that C has a generator X and � is a prime rank function. An object of C

which is a finite coproduct of shifted copies of X will be called graded free. Note that a map
between graded free objects could be written as a rectangular matrix M whose entries are
graded endomorphisms ofX , so we can speak of the rank �.M/ ofM , generalizing the familiar
notion in linear algebra. We will denote by M the matrix obtained from M by passing to the
graded residue field F� of the graded local algebra EndL�.X/ and its usual graded rank by
rankF�.M/.

Proposition 4.11. We have �.M/ D rankF�.M/.

Proof. We may assume that � is object-faithful, so that End�.X/ is graded local, other-
wise replace C with the Verdier quotient C=Ker.�/. By the usual row reduction process,
M D ER, where E is an invertible matrix and R is a rectangular matrix such that R is of
the form . I 00 0 /, where I is an identity matrix. Here E is a product of permutation matrices and
upper and lower triangular matrices with invertible elements on the diagonal. So it suffices to
prove that �.R/ D rankF�.R/. This follows from Lemma 4.8.

Corollary 4.12. Let M be a matrix over End�.X/ representing a morphism between
graded free objects. The M has a (square) �-full submatrix N with �.N / D �.M/.

Proof. This follows from the corresponding result for the graded ranks of matrices over
a graded skew-field.

5. Derived localization of differential graded algebras

Let A be a dg algebra assumed, without loss of generality, to be cofibrant, and let � be
a thick subcategory of Perf.A/.

Definition 5.1. A dg A-module M is called � -local if RHomA.X;M/ D 0 for any
X 2 � .
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Lemma 5.2. Let B be a dg algebra supplied with a map A! B . Then B is � -local if
and only if B ˝LA X ' 0 for any X 2 � .

Proof. Note that

RHomA.X;B/ ' RHomB.X ˝LA B;B/;

thus HomB.X ˝LA B;B/ ' 0 implies RHomA.X;B/ ' 0. Conversely, since X is a perfect
dg A-module, X ˝LA B is a perfect dg B-module. Note that a perfect dg B-module (being
quasi-isomorphic to its double B-dual) is quasi-isomorphic to zero if and only if its B-dual is
quasi-isomorphic to zero. Therefore 0 ' RHomA.X;B/ ' RHomB.X ˝LA B;B/ implies that
X ˝LA B ' 0.

Definition 5.3. The derived localization of A with respect to � is a dg algebra L� .A/
together with a mapA! L� .A/making it a � -localA-module and such that for any dg algebra
B and a map f W A! B making B a � -local A-module, there is a unique up to homotopy
map L� .A/! B making the following diagram commutative in the homotopy category of
dg algebras:

A
f

//

��

B

L� .A/.

<<

Remark 5.4. Let s 2 A be an n-cycle of a dg algebra A for n 2 Z, and let A=s be the
homotopy cofiber of the left multiplication map †nA! A. Then A=s is a perfect A-module
and the localization with respect to the thick subcategory hA=si generated by it, exists and is
given explicitly by the formula

LsA WD LhA=si.A/ D A �
L
kŒs� khs; s�1i;

cf. [5]. We will now generalize this result to an arbitrary thick subcategory.

Theorem 5.5. For any dg algebraA and any thick subcategory � of Perf.A/, the derived
localization L� .A/ exists and is unique up to homotopy.

Proof. Let us first suppose that � is generated by a single perfect object X 2 Mod-A,
assumed without loss of generality to be cofibrant. Denote by E the dg algebra of endomor-
phisms of the A-module A˚X . Let e be the element in E given by the projection E ! A

along X followed by the inclusion of A into E. Then e is a zero-cocycle and an idempotent of
E. We will show that the desired (derived) localization L� .A/ may be constructed as LeE, the
(derived) localization of E at e, cf. Remark 5.4. We have the following commutative diagram
of dg categories:

(5.1) Mod-A F // Mod-E

¹Xº //

� ?

OO

¹E=eº.
� ?

OO
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Here F.M/ D HomA.A˚X;M/, for M 2 Mod-A, E=e is the cofiber of the left multiplica-
tion by e on E, ¹Xº the full dg subcategory of Mod-A containing X and closed with respect
to arbitrary coproducts, homotopy cofibers and passing to quasi-isomorphic modules and sim-
ilarly ¹E=eº is the full dg subcategory of Mod-A containing E=e, having arbitrary coproducts,
homotopy cofibers and closed with respect to passing to quasi-isomorphic modules. Note that
E=e is quasi-isomorphic as an E-module to .1 � e/E ˚†.1 � e/E and

F.X/ D HomA.A˚X;X/ Š X ˚ HomA.X;X/ Š .1 � e/X:

Therefore the image of ¹Xº under F is ¹E=eº and the commutativity of 5.1 indeed holds.
Since A˚X is a compact generator of D.A/, the functor F is a quasi-equivalence, as

well as its restriction ¹Xº ! ¹E=eº.
Let us construct (a homotopy class of) a map of dg algebras A! LeE. Note that the

functor F could be viewed as tensoring overAwith the leftA-module HomA.A˚X;A/ Š eE.
Composing F with the localization functor into Mod-LeE, we obtain the functor

G W Mod-A! Mod-LeE; M 7!M ˝A .eE ˝E LeE/ ŠM ˝A eLeE:

Since G is a dg functor, there is an induced (homotopy class of a) map of dg algebras

f W A Š EndA.A/! EndLeE .eLeE/ ' EndLeE .LeE/ Š LeE:

The commutative diagram (5.1) implies

X ˝A LeE ' G.X/ ' F.X/˝E LeE ' 0;

meaning that LeE is hXi-local.
Let us now prove that LeE has the required universal property with respect to maps from

A into hXi-local algebras. To this end, let QA WD A � k. Then QA is a dg algebra with the dif-
ferential d.a; x/ D dA.a/ and the product .a; x/ � .a0; y/ D .aa0; xy/ for a; a0 2 A; x; y 2 k.
There is a dg algebra map Qf W QA! E given by the diagonal embedding .a; x/ 7! .la; 1 � e/

where la is the action of A on itself by the left multiplication by a. Note that Qf could also be
described as a map

QA Š End QA. QA/! EndLeE .LeE/ Š E

induced by the functor �˝ QA E W Mod- QA! Mod-E.
The idempotent .1; 0/2 QA is mapped to e 2E under Qf , and, slightly abusing notation, we

will denote it also by e. We obtain an induced map on derived localizations Le. QA/! Le.E/.
This produces a homotopy class of dg algebra maps A! Le.E/ since clearly Le. QA/ ' A.
This is the same map (up to homotopy) as f as implied by the following diagram of dg
categories and dg functors, commutative up to a natural isomorphism:

Mod- QA
�˝ QALeE //

�˝ QAA

��

Mod-LeE

Mod-A
�˝AeE // Mod-E.

�˝ELeE

OO

Let B be a dg algebra supplied with a map g W A! B and hXi-local (so that X ˝A B ' 0);
we need to show that g extends uniquely (up to homotopy) to a map L� .A/ WD LeE ! B .
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Consider the following diagram of dg algebras, commutative up to homotopy (excluding the
dotted arrow):

(5.2) QA
Qf

//

��

E Š EndA.A˚X/

��

!!

A ' Le QA
Le. Qf / //

g

--

LeE D LhXi.A/

**

B ' EndB.B ˚X ˝A B/.

Here the arrow from E to B is induced by the functor �˝A B W Mod-A! Mod-B . By the
universal property of the localization LeE the dotted arrow, making commutative the upper
triangle of (5.2), exists. It follows that the lower triangle of (5.2) commutes upon restriction
to QA. However since the map QA! A ' LeE becomes an isomorphism upon inverting e,
and the dg algebra B is e-inverting, we conclude that the lower triangle of (5.2) is commu-
tative. Conversely, a similar argument shows that any dotted arrow, making the lower triangle
commutative, makes the upper triangle commutative and is, therefore, unique.

So, the theorem is proved under the assumption that � is generated by a single perfect
object X . It is easy to see that for two perfect objects X; Y 2 Mod-A, we have

LhX˚Y i.A/ ' LhXi.A/ �
L
A LhY i.A/

as both sides satisfy the required universal property with respect to any dg algebra B local with
respect to both X and Y . Letting Xs; s 2 S be a collection of compact generators of � indexed
by a set S , we can set A� WD

`L
A;s2S LhXS i.A/, the (derived) coproduct over A of derived

localizations LhXS i.A/.

5.1. Derived localization of A-algebras. Recall that if C is a closed model category
and X is an object of C , then the undercategory of X is the category X # C with objects
Y 2 C supplied with a mapX ! Y and morphisms being obvious commutative triangles inC .
The undercategory of X inherits the structure of a closed model category from C ; in the case
when X is cofibrant, this undercategory is homotopy invariant in the sense that for any other
cofibrant X 0 and a weak equivalence X ! X 0 the undercategories X # C and X 0 # C are
Quillen equivalent.

Lemma 5.6. For a � -local A-algebra B there exists a map of A-algebras L� .A/! B ,
unique up to homotopy in the undercategory A # dgAlg.

Proof. As in the proof of Theorem 5.5 we first consider the case when � is generated
by a single perfect A-module X and arguing similarly with diagram (5.2), we conclude that
there exists a map g W L� ! B making the diagram of dg algebras (which is a fragment of the
diagram (5.2))

(5.3) A

""��

L� .A/
g
// B
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homotopy commutative in the category of dg algebras. Thus, g could be viewed as a map in the
undercategory A # dgAlg. The uniqueness of g is proved similarly: suppose that there exists
another map of A-algebras g0 W L� .A/! B making the (5.3) homotopy commutative. Then g
and g0 are homotopic in A # dgAlg if and only if they are homotopic in QA # dgAlg and this,
in turn, is equivalent to them being homotopic in E # dgAlg. But they are indeed homotopic
in E # dgAlg by the defining property of the derived localization LeE, cf. [5, Definition 3.3].
The proof is finished as that of Theorem 5.5.

Remark 5.7. Another way to formulate Lemma 5.6 is to say that L� .A/ is the initial
object of the subcategory of the homotopy category of A # dgAlg consisting of � -local A-alge-
bras. It may appear that this statement and its proof are just rephrasing the corresponding parts
of the statement and proof of Theorem 5.5. The substantive difference is that two maps of
A-algebras may be homotopic as maps of dg algebras but not as maps in the undercategory
A # dgAlg. We will discuss this discrepancy in more detail below.

Let now B be an A-algebra, assumed, without loss of generality, to be cofibrant in
A # dgAlg (meaning that the given map A! B is a cofibration of dg algebras). The induc-
tion functor �˝A B W Mod-A 7! Mod-B takes Perf.A/ into Perf.B/ and (abusing the notation
slightly) we will denote by the image of the thick subcategory � 2 Perf.A/ under this functor,
by the same symbol � .

Proposition 5.8. We have a natural isomorphism

L� .B/ Š B �
L
A L� .A/

in the homotopy category of A # dgAlg.

Proof. This is similar to [5, Lemma 3.7]. There is a Quillen adjunction

A # dgAlg� B # dgAlg

with the left adjoint � �A B and the right adjoint being the restriction functor. It is easy
to see that this adjunction restricts to an adjunction between � -local A-algebras and � -local
B-algebras and the corresponding homotopy categories. Since left adjoints preserve initial
objects, the desired statement follows from Lemma 5.6.

Corollary 5.9. The map of dg algebras L� .A/! L� .A/ �
L
A L� .A/ given by the inclu-

sion of the either factor is a quasi-isomorphism.

Recall from [16, Chapter 5], for any closed model category C , the notion of a derived
mapping space, a simplicial set Map.X; Y /, where X; Y 2 C , generalizing the usual simpli-
cial mapping space in a simplicial model category. Recall also from [26] that a morphism
f W X ! Y in a model category is said to be a homotopy epimorphism if for any object Z, the
induced morphism Map.Y;Z/! Map.X;Z/ is an injection on connected components of the
corresponding simplicial sets and an isomorphism on homotopy groups for any choice of a base
point. Then we have the following generalization of [5, Proposition 3.17], which follows, as in
op.cit. from Corollary 5.9.

Corollary 5.10. The localization map A! L� .A/ is a homotopy epimorphism.
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5.2. Homotopy coherence. We defined the derived localization L� .A/ of a dg algebra
A through a certain universal property formulated in the homotopy category of dg algebras.
It makes sense to ask whether more structured notions, taking into account the 1-structure
of the category of dg algebras (i.e. the homotopy type of mapping spaces) can reasonably be
considered. We will show that such, apparently more refined, versions of derived localization,
nevertheless, turn out to be equivalent to the one defined above.

Proposition 5.11. Let C be an � -local A-algebra. The following statements are equiv-
alent:

(1) C is isomorphic in the homotopy category of A # dgAlg to L� .A/.

(2) For any � -local A-algebra B there is a unique map C ! B in the homotopy category of
A # dgAlg.

(3) For any � -local A-algebra B the map Map.L� .A/; B/! Map.A;B/ induced by the
localization map A! L� .A/ is a weak equivalence.

(4) For any � -local A-algebra B the mapping space MapA.L� .A/; B/ in A # dgAlg is con-
tractible.

Proof. There is the following homotopy fiber sequence of simplicial sets:

(5.4) MapA.L� .A/; B/! Map.L� .A/; B/! Map.A;B/I

here MapA.L� .A/; B/ is the homotopy fiber over the map A! B that determines B as an
A-algebra. The second map in (5.4) is a weak equivalence if and only if its homotopy fiber is
contractible over every point. Thus, (3) and (4) are equivalent. Implication (2)) (1) is implied
by the following fragment of the long exact sequence of the fibration (5.4):

! �0 MapA.L� .A/; B/! �0 Map.L� .A/; B/! �0 Map.A;B/;

and the reverse implication (1)) (2) is Lemma 5.6. Implication (3)) (1) is obvious. Finally,
implication (1)) (3) follows from Corollary 5.10.

Remark 5.12. Let us call a map B ! C in A # dgAlg a � -local equivalence if for any
� -local A-algebra X there is a weak equivalence MapA.C;X/! MapA.B;X/. Then Propo-
sition 5.11 implies that for an A-algebra B its derived localization L� .B/ ' L� .A/ �LA B is
the Bousfield localization of B in A # dgAlg with respect to � -local equivalences, cf. [15]
regarding this notion.

5.3. Module localization. We will now relate the notion of derived localization of
algebras to the Bousfield localization of D.A/. Localization functors exist for a large class
of triangulated categories C and thick subcategories S . For example, such is the case when
C D D.A/, the derived category of a dg algebra and S D Loc.�/ where � is a perfect thick
subcategory of D.A/.

The localization of an objectM 2 Mod-Awith respect to a thick subcategory � 2 Perf.A/
is a � -local A-module N together with a map f WM ! N that is a local � -equivalence, i.e.
for any � -local A-module L the induced map f � W RHom.N;L/! RHom.M;L/ is a quasi-
isomorphism. A localization of an A-module is clearly defined up to a quasi-isomorphism and,
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(slightly blurring the distinction between the category Mod-A and D.A/) we will refer to it
as the localization of M and denote by LMod-A

� .M/. The following results connect module
localization and (derived) algebra localization, generalizing the corresponding results in [5].

Proposition 5.13 ([11, Proposition 2.5], [5, Theorem 4.12]). There is a dg algebra X
supplied with a dg algebra map A! X such that X ' LMod-A

� .M/ as an A-module.

Proof. Let � ˝ 1 be the thick subcategory in Perf.A˝ Aop/ (i.e. perfect A-bimodules)
generated byA-bimodules of the formX˝Aop withX 2 � . The argument of [5, Theorem 4.12]
shows that LMod-A

� .M/ is quasi-isomorphic as an A-module to REndAop.LMod-A˝Aop

�˝1 .A// and
the latter is clearly an A-algebra.

The following result is proved in [11, Proposition 2.10].

Proposition 5.14. LetM be an A-module. ThenM 'M ˝LA A!M ˝LA L
Mod-A
� A is

the localization LMod-A
� .M/ of M .

Corollary 5.15. The Quillen adjunction

Mod-A! Mod-LMod-A
� A

with left adjoint given by extension of scalars M 7!M ˝LA L
Mod-A
� A and right adjoint given

by restriction along A! LMod-A
� A induces an equivalence between D.LMod-A

� A/ and the full
subcategory of D.A/ of � -local modules.

Proof. By Proposition 5.14 the functor M 7!M ˝LA L
Mod-A
� A is the � -localization of

the A-module M ; thus if M is already � -local, then

M !M ˝LA L
Mod-A
� A

is a quasi-isomorphism. Moreover, sinceLMod-A
� A, andLMod-A

� A is � -local, anyLMod-A
� A-mod-

ule is also � -local as lying in the localizing subcategory generated by any LMod-A
� A. Therefore,

for any LMod-A
� A-module M the map M ˝LA L

Mod-A
� A!M is a quasi-isomorphism.

Theorem 5.16. If LMod-A
� .A/ is a dg A-algebra which is the localization of A as an

A-module, then it is also the localization of A as a dg algebra (so that LMod-A
� .A/ and L� .A/

are isomorphic in the homotopy category of A-algebras).

Proof. This theorem is proved in [5] in the special case when � is generated by a set
of A-modules having the form of a cofiber of an endomorphism of A, however the proof con-
tinues to hold for arbitrary � . For the reader’s convenience we will repeat the main points.
First, we prove that for any A-algebra C that is � -local as an A-module there is a (homo-
topy class of a) map of A-algebras LMod-A

� .A/! C . This is [5, Lemma 41.7] and the proof
applies verbatim. Since the algebra localization L� .A/ is � -local, there is an A-algebra map
f W LMod-A

� .A/! L� .A/. Next, by the universal property of L� .A/ and since LMod-A
� .A/ is

a � -local A-algebra, there is a map g W L� .A/! LMod-A
� .A/. The composition

f ı g W L� .A/! L� .A/
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is an endomorphism of L� .A/ as an A-algebra and should, therefore, be homotopic to the iden-
tity. Similarly, the composition g ı f is an endomorphism of LMod-A

� .A/ that is homotopic to
the identity. Thus, f and g are mutually inverse quasi-isomorphisms of dg algebras LMod-A

� .A/

and L� .A/.

Definition 5.17. A map of dg algebras A! L� .A/ is called a finite homological epi-
morphism corresponding to a thick subcategory � 2 Perf.A/.

Remark 5.18. A dg algebra map A! B is said to be a homological epimorphism
(cf. [29]) if the mapB˝LA B ! B , induced by the multiplication onB , is a quasi-isomorphism.
Clearly the derived localization map A! L�A is a homological epimorphism (since the map
L� .A/˝

L
A L� .A/! A is the � -localization of L� .A/ but L� .A/ is already � -local) but not

every homological epimorphism is of this form, owing to the failure of the so-called telescope
conjecture, cf. [20].

Corollary 5.19. Let A be a dg algebra. Then there is a one-to-one correspondence
between:

� thick subcategories in Perf.A/,

� equivalence classes of homotopy classes of finite homological epimorphisms from A

where two such A! B and A! B 0 are equivalent if there is a homotopy commutative
diagram

A

�� ��

B // B 0,

where B ! B 0 is a quasi-isomorphism.

Proof. Given a thick subcategory � we construct a finite homological epimorphism
A! L� .A/. Conversely, associate to a finite homological epimorphism A! B the kernel of
the functor �˝A B W Perf.A/! Perf.B/. The universal property of the derived localization
L� .A/ implies that these constructions are mutually inverse, as claimed.

5.4. Derived localization of ordinary rings. Let A be an ordinary algebra and let � be
a thick subcategory in Perf.A/ generated by a collection of objects represented by complexes
of finitely generated projective A-modules of length two. In other words, the localization map
Perf.A/! Perf.A/=� inverts some maps between finitely generated projective A-modules.
If these modules are free, such maps are represented by matrices with entries in A and derived
localization map A! L�A is the derived version of Cohn’s matrix localization [9]. The more
general (still underived) version belongs to Schofield [30].

Definition 5.20. Let S be a collection of maps between finitely generated projective
A-modules. An algebra B supplied with a map A! B is called S -inverting if the functor
‹ 7! B ˝A ‹ carries every morphism in S into an isomorphism of B-modules. The localization
of A at S is the S -inverting algebra AŒS�1� such that for any other S -inverting S -algebra B
the map A! B factors uniquely through AŒS�1�.
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It is clear thatAŒS�1� is unique if it exists. The existence ofAŒS�1� is [30, Theorem 4.1].
The following result establishes a precise relationship between the derived and underived
notions (and simultaneously gives an independent proof of the existence of AŒS�1�).

Theorem 5.21. Let A, S and � be as above. Then L�A is a connective dg algebra, i.e.
Hn.L� .A// D 0 for n < 0 and H0.L� .A// D AŒS�1�.

Proof. By Theorem 5.16 we can identify L� .A/ with LMod-A
� .A/. With this, the desired

result is the combination of [11, Proposition 3.1] and [11, Proposition 3.2] (note that op. cit.
works with left modules but this difference is, of course, unimportant).

It is natural to ask when Cohn–Schofield localization coincides with derived localization.
The following result answers this question.

Proposition 5.22. LetA, S and � be as above. Then the canonical mapL�A! AŒS�1�

is a quasi-isomorphism if an only ifAŒS�1� is stably flat overA, i.e. TorAn .AŒS
�1�; AŒS�1�/D 0

for n > 1.

Proof. After the identification ofL� .A/ andLMod-A
� .A/, this is [11, Proposition 3.3].

Corollary 5.23. Let A be right-hereditary, i.e. having right global dimension� 1. Then
the derived localization L� at any thick subcategory � of Perf.A/ is (quasi-isomorphic to) its
Cohn–Schofield localization.

Proof. This follows at once from Proposition 5.22 since higher Tor functors over a here-
ditary algebra vanish.

5.5. Commutative rings. Assume that A is an ordinary commutative ring. Derived
localizations corresponding to two-term complexes A! A given by multiplications by ele-
ments of A are ordinary localizations of A as a commutative ring at a multiplicatively closed
subset. However for more general thick subcategories � , it is possible forL� .A/ to be a genuine
dg algebra. Recall that the well-known Hopkins–Neeman–Thomason theorem [31] gives the
classification of all thick subcategories in Perf.A/: these correspond bijectively to the unions
of closed subsets in Spec.A/ having quasi-compact complement (such subsets are sometimes
called Hochster open sets). Specifically, to any such subset S one associates the thick sub-
category of Perf.A/ consisting of perfect A-modules having support on S . Then one has the
following result, in which we A stands for the structure sheaf on SpecA and we identify D.A/
with the category of complexes of quasi-coherent sheaves of A-modules.

Proposition 5.24. Let A be a Noetherian commutative ring and let �S be the thick
subcategory of dg A-modules with support on a closed subset S of SpecA and denote by
i W Spec.A/ n S ,! Spec.A/ the corresponding inclusion map. Then L� .A/ Š Ri�i�.A/ as
objects of D.A/.

Proof. Let DS .A/ be the subcategory of D.A/ consisting of complexes of quasi-coher-
ent sheaves on Spec.A/ supported on S . It is clear that the (homotopy) fiber of the natural map
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A! Ri�i
�A is supported on S . On the other hand, the sheaf Ri�i�A is � -local; indeed for

any A-module sheaf F supported on S we have i�F ' 0 and so

RHom.Ri�i�A;F / ' RHom.i�.A/; i�F / ' 0:

It follows that Ri�i�A is the localization of A with respect to the localizing subcate-
gory DS .A/. Now the desired statement follows from Theorem 5.16.

Remark 5.25. The assumptions that A is Noetherian and S is closed are imposed in
order for the locally ringed space Spec.A/ n S to be a scheme and for the direct image functor
Ri� to land in the derived category of quasi-coherent sheaves on Spec.A/.1)

Example 5.26. Let A WD kŒx; y� be the polynomial algebra in two variables and let �
be the thick subcategory generated by the 1-dimensional A-module kŒx; y�=.x; y/. It is easy to
see (e.g. using the Koszul complex) thatL� .A/ is a dg algebra whose homology is concentrated
in degrees 0 and �1.

It is natural to ask whether for a commutative dg algebra A its derived localizationL� .A/
is also such. As usual, it is better to consider E1 algebras rather than strictly commutative
ones. Then a positive answer to this question could be derived by combining the results of [13]
and [24]. Since E1 algebras are rather tangential to the main themes of the present paper, we
will only sketch the proof and omit all topological and operadic prerequisites, referring to the
two above mentioned sources for details.

Proposition 5.27. If A is a (dg) E1 algebra, then L� .A/ is also a dg E1 algebras and
the localization A! L� .A/ can be constructed as a map of dg E1 algebras.

Proof. Let Hk be the Eilenberg–MacLane spectrum corresponding to the ring k; it is
known to be a commutative S -algebra. According to [24, Theorem 7.11], there is a functor
„ W B 7! „.B/ from the homotopy category of commutative Hk algebras to the homotopy
category of dg E1 algebras and another one R WM 7! R.M/ from the homotopy category of
„.B/-modules to the homotopy category of B-modules. Moreover, both „ and R are equiva-
lences. Additionally, the B-module R.„.B// is weakly equivalent to B for any S -algebra B;
this property is not stated explicitly in op.cit. but follows readily from the construction.

It suffices to show that LMod-A
� is quasi-isomorphic to a dg E1 algebra and, by the setup

described above this is equivalent to showing that the Bousfield localization of .„/�1.A/ is
a commutative S -algebra (and the map into it from .„/�1.A/ is that of commutative S -alge-
bras). But this is proved in [13, Chapter 8, Theorem 2.2].

5.6. Small example. The following is the smallest example of a finite-dimensional
algebra possessing nontrivial derived localization. Let A be the algebra with a basis e1, e2,
˛1, ˛2 so that e21 D e1; e

2
2 D e2; ˛1e1 D ˛1 D e2˛1; e1˛2 D ˛2 D ˛2e2 and the rest of the

products are zero. The algebra A is the path algebra of a quiver with two vertices and two
arrows between them running in the opposite directions, subject to the relations above. The
elements ˛i ; i D 1; 2 correspond to the two arrows and the elements ei ; i D 1; 2 correspond to
the trivial loops at each vertex.

1) We are grateful to the anonymous referee for pointing out this subtlety to us.
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Set B WD REndA.k;k/, where A acts on k via e2 D ˛i D 0 for i D 1; 2, and also set
B 0 WD REndA.k � k;k � k/, where A acts on k � k via ˛i D 0; i D 1; 2. It is immediate that
B 0 is (quasi-isomorphic to) the path algebra of the same quiver with arrows marked by the
generators ˛0i , i D 1; 2 with j˛0i j D �1 and no relations. It follows that B ' e1B 0e1 is the
polynomial algebra on one generator ˇ D ˛02˛

0
1 with jˇj D �2. It further follows that

REndB.k;k/ ' kŒ˛�=.˛2/;

the exterior algebra on one generator ˛ with j˛j D 1.
On the other hand, it is clear thatLe1A is the localization of the algebraA as anA-module

with respect to the functor RHomA.�; e1Ae1/ ' RHomA.�;k/ and the latter localization is
(quasi-isomorphic to) REndB.k;k/, cf. [12, Theorem 2.1 and Proposition 4.8] for this kind
of statement.

All told, we conclude that Le1A ' kŒ˛�=.˛2/. The nonderived localization AŒe�11 � of A
is, of course, the ground ring k.

Next, consider the projective A modules e1A and e2A; then the left multiplication with
˛2 determines a map e1A! e2Awhich we will regard as an object in Perf.A/. Denote by � the
thick subcategory generated by this object. ThenL�A is isomorphic toM2.k/, the 2 � 2matrix
algebra over k and since M2.k/ is flat over A, we conclude that no higher derived terms are
present, i.e. L� .A/ 'M2.k/. Similar conclusions can be made regarding derived localizations
of A at e2 and at the object e2A! e1A determined by the left multiplication by ˛1.

5.7. Group completion. Let M be a discrete monoid and let BM be its classifying
space. Then the based loop space�BM is the so-called group completion ofM and according
to McDuff’s theorem, any topological space X is weakly equivalent to some �BM [25]. The
chain algebra C�.�BM/ is quasi-isomorphic to the derived localization of the monoid algebra
kŒM � at all monoid elements by [5, Theorem 10.3]. It follows that the derived localization
of an ordinary (ungraded) algebra, such as kŒM � can be a fairly arbitrary dg algebra. Here is
a particularly striking example due to Fiedorowicz [14].

Example 5.28. LetM be the monoid with five elements ¹1; xij ; i; j D 1; 2ºwhich mul-
tiply according to the rule xijxkl D xil . It is easy to see that the nonderived group completion
of M is trivial and that H�.M;k/ WD TorkŒM�

� .k;k/ coincides with the homology of S2, the
2-dimensional sphere. It follows that BM is weakly equivalent to S2 and, therefore �BM is
weakly equivalent to �S2. The homology of �S2 is kŒx� with jxj D 1, and this dg algebra is
clearly formal. Thus, the derived localization of kŒM � is (quasi-isomorphic to) kŒx�. Note that
the localization map kŒM �! C�.�BM/ ' kŒx� is highly nontrivial in the homotopy category
of dg algebras (e.g. it induces a Verdier quotient on the level of derived categories) and it is not
the one that factors through k.

5.8. Rank functions for derived localization algebras. LetA be a dg algebra and � be
a rank function on Perf.A/. Consider the map A! L�.A/ from A into its derived localization
at Ker.�/. Then the following result holds.

Theorem 5.29. The rank function � descends to an object-faithful rank function � on
Perf.L�.A// (so that the pullback of � under the direct image functor Perf.A/! Perf.L�.A//
is �).
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Proof. By Corollary 4.4, the rank function � descends to an object-faithful rank function
on the Verdier quotient Perf.A/=Ker.�/. Note that Perf.L�.A// is the idempotent completion
of Perf.A/=Ker.�/ by [27, Theorem 2.1] and so the obtained rank function on Perf.A/=Ker.�/
extends further to � on Perf.L�.A// by Lemma 4.10. Clearly, � has the required properties.

Remark 5.30. The above theorem is an extension of the corresponding statement for
Sylvester rank functions, [30, Theorem 7.4]. This is a key result in theory of Sylvester rank
functions and its proof in op.cit. is very involved. The almost trivial proof of the much more
general result above demonstrates the advantage of the notion of a rank function for triangulated
categories over the classical notion.

5.9. Loops on p-completions of topological spaces. Another example of derived
localization in topology comes from the study of chain algebras of based loops on completed
classifying spaces of finite groups, cf. [4, 8]. Let X be a topological space such that �1.X/ is
finite (e.g. the classifying space of a finite group) and X^p is the p-completion of X . Then it
is proved in [7] that there is an idempotent e 2 FpŒ�1.X/� such that the derived localization
LeFpŒ�1.X/� is quasi-isomorphic, as a dg algebra, to C��.X^p /, the chain algebra of the based
loop space of X^p .

Remark 5.31. When X is the classifying space of a finite group, this result (in a some-
what different formulation) was proved in the paper [32] where a good portion of derived
localization theory was also developed. Unfortunately, the present authors had not been aware
of this earlier work and did not make a proper attribution to it in [5, 7].

6. Localizing rank functions and fraction fields

We will start with the following almost obvious result.

Proposition 6.1. Let f W X ! Y be a morphism in a triangulated category C supplied
with a rank function � such that �.f / D 0. Then the following conditions are equivalent:

(1) The morphism f factors through an object of rank zero.

(2) There exists an object Z in C and �-full morphism g W Z ! X such that f ı g D 0.

(3) There exists and object W in C and a �-full morphism h W Y ! W such that h ı f D 0.

(4) The morphism f maps to zero under the Verdier quotient map C ! C=Ker.�/.

Proof. The equivalence of (1) with (2) and (3) follows from Lemma 4.2 and the equiv-
alence of (2) and (3) with (4) follows from the characterization of morphisms in a Verdier
quotients in terms of left or right fractions.

Definition 6.2. An integral rank function on a triangulated category C is localizing if
any morphism in C of rank zero satisfies either of the equivalent conditions of Proposition 6.1.

Remark 6.3. The notion of a localizing rank function is motivated by constructing
derived localization of dg rings to dg simple Artinian rings. If one is interested in maps into
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dg algebras more general than dg simple Artinian rings (e.g. dg analogues of von Neumann
regular rings), one can speculate that real-valued rank functions will be relevant. In this con-
text perhaps it is more natural to require that any rank 0 morphism factors through objects of
arbitrarily small rank. We will not elaborate on this more subtle notion in the present paper
however.

Theorem 6.4. Let C be a triangulated category admitting a generator. Then there is
a bijection between the following two sets:

� localizing prime rank functions,

� thick subcategories of C with a simple Verdier quotient.

Proof. Let � be a thick subcategory of C such that C=� is simple. Fix an indecompos-
able object X in C=� . Then there is a unique morphism-faithful rank function on C=� taking
value 1 on X , see Corollary 2.21. The pullback of this rank function to C is a localizing rank
function on C .

Conversely, given a localizing rank function �WC ! Z, let � be the rank function on
C=Ker.�/ induced by �; since � is localizing, � is morphism faithful and �.X/ D 1 for some
generator X . By Proposition 2.23, C=Ker.�/ is simple.

It is clear that the two processes described define mutually inverse maps between the two
sets in the statement of the theorem.

The following result gives a complete description of homotopy classes of derived local-
izations of dg algebras into dg skew-fields or, more generally, dg simple Artinian rings, in terms
of rank functions. Classically, only partial results of this sort were available (e.g. for a very
specific class of rings or a particular class of localizations), cf. [30, Theorems 5.4 and 5.5] and
[9, Theorem 4.6.14].

Theorem 6.5. Let A be a dg algebra. Then there is a bijection between the following
two sets:

� localizing prime rank functions on Perf.A/,

� equivalence classes of homotopy classes of finite homological epimorphismsA! B into
simple Artinian dg algebras B .

Moreover, �.A/ D 1 if and only if B is a dg skew-field.

Proof. By Theorem 6.4 localizing prime rank functions � on Perf.A/ correspond bijec-
tively to thick subcategories on Perf.A/ with a simple Verdier quotient. For such a thick
subcategory � the image of A in Perf.A/ is a generator M of Perf.A/=� that we can assume
without loss of generality to be cofibrant over A. Since Perf.L� .A// is the idempotent com-
pletion of Perf.A/=� and Perf.A/=� is simple, Perf.L� .A// is also simple and it follows by
Proposition 2.25 that L� .A/ is a simple Artinian dg algebra. By Corollary 5.19 such thick
subcategories correspond bijectively with the equivalence classes of homotopy classes of finite
homological epimorphisms A! L� .A/. Finally, the condition �.A/ D 1 means that M is an
indecomposable object of Perf.A/=� and in this case H.L� .A// Š EndPerf.A/=� .M;M/ must
be a graded skew-field.
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Example 6.6. Let A be the 4-dimensional algebra of Section 5.6. The localization map
A! L� .A/ 'M2.k/ induces a functor Perf.A/! Perf.M2.k//where the target triangulated
category is simple. The induced rank function on Perf.A/ is localizing.

On the other hand, consider the localization map A! Le1.A/ ' kŒ˛�=˛2. The category
Perf.kŒ˛�=˛2/ is not simple, but composing with the augmentation kŒ˛�=˛2 ! k, we obtain
a map A! k. Note that the latter map is the Cohn–Schofield (nonderived) localization of A.
The induced rank function (which corresponds to a certain Sylvester rank function for A) is
not localizing.

6.1. Localizing rank functions for hereditary rings. Localizing rank functions are
easiest to construct for perfect derived categories of (right)-hereditary algebras in which case
they essentially reduce to the nonderived notion.

Let A be an ordinary k-algebra and let K0.A/ be its Grothendieck group of its category
of finitely generated projective modules. The abelian groupK0.A/ has a pre-order specified by
the declaring the classes of finitely generated projective modules inK0.A/ to be positive. Then
we have the notion of a projective rank function on A cf. [30].

Definition 6.7. A projective rank function on A is homomorphism of pre-ordered
groups � W K0.A/! R for which �ŒA� D 1.

A Sylvester rank function on A (which, by Theorem 3.7 is equivalent to a normalized
1-periodic rank function on Perf.A/) restricts to a function on the positive cone ofK0.A/with
values in nonnegative real numbers and thus, determines a projective rank function on A. One
can ask whether, conversely, one can associate to a projective rank function on A a Sylvester
rank function on A. For this, a rank needs to be assigned to any map between two finitely
generated projective A-modules. One can attempt the following definition.

Definition 6.8. Let A be a ring with a projective rank function �. Given f W P ! Q,
a map between two finitely generated projective A-modules, its inner rank �.f / is defined as
�.f / WD inf.�.S//, where S ranges through finitely generated projective A modules through
which f factors.

There is no reason for an inner rank function to be Sylvester in general. However, this
holds in one important special case.

Proposition 6.9. Let A be a hereditary algebra with a projective rank function �. Then
the associated inner rank function is Sylvester.

Proof. We prove the desired statement by quoting relevant results of [30] (all of which
are elementary and easy). Firstly, by [30, Theorem 1.11] the Sylvester law of nullity holds for �;
that is if ˛ W P0 ! P1 and ˇ W P1 ! P2 are two maps between finitely generated projective
A-modules for which ˇ ı ˛ D 0, then �.˛/C �.ˇ/ � �.P1/.

Next, the law of nullity implies axioms (m2) and (m3) of the Sylvester morphism rank
functions, by [30, Lemmata 1.14 and 1.15]. Finally, axioms (m1) and (m4) are immediate from
the definition.
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Remark 6.10. As is clear from the above proof, Proposition 6.9 is essentially contained
in [30], although it is not explicitly formulated in op. cit. as such. Moreover, the statement of the
proposition holds under the weaker assumption that A be weakly semihereditary (as opposed
to hereditary). We will not need this stronger result.

Corollary 6.11. Let A be a hereditary algebra with a projective rank function �. Then
� extends uniquely to a rank function on Perf.A/.

Proof. The inner rank function associated to � is Sylvester by Proposition 6.9. Next,
Proposition 3.9 implies that a Sylvester rank function gives rise to an1-periodic rank function
on Perf.A/ and the latter determines, by reduction, a (1-periodic) rank function on Perf.A/.

Remark 6.12. For a hereditary algebraA there is a one-to-one correspondence between
rank functions and 1-periodic rank functions on Perf.A/. Indeed, this is straightforward to
check on complexes of finitely generated projective A-modules of length 2 using formula
(3.1) and the hereditary property implies that such complexes generate the whole triangulated
category Perf.A/.

Proposition 6.13. LetA be a hereditary algebra and let � be a rank function on Perf.A/
associated, as above, with a projective rank function on A. Then � is localizing.

Proof. The rank function � is localizing if and only if the derived localization L�A
of A at Ker.�/ is a dg skew-field by Theorem 6.5 and by Corollary 5.23, L�A is quasi-
isomorphic to the underived localization of A at the collection of �-full maps between finitely
generated A-modules. By [30, Theorem 5.4] this underived localization is a skew-field and
we are done.

A standard application of this result is the construction of the skew-field of fractions of
a free algebra.

Example 6.14. Let khSi, the free algebra on a set S . Then there exists a unique homo-
logical epimorphism A! K.S/ whereK.S/ is a skew-field. Indeed, A is a hereditary algebra
withK0.A/ D Z, thus there exists a unique projective rank onA that uniquely extends to a rank
� function on Perf.A/. The corresponding derived localization L�.A/ (which coincides with
the Cohn–Schofield localization since A is hereditary) is therefore a skew-field, commonly
known as the free field on S , [9].

6.2. Derived fields of fractions. Given an ordinary ring A we will understand a clas-
sical field of fractions of A to be a (nonderived) localization A! K, where K is a skew-field.
A derived field of fractions of A is a dg skew-field K together with a derived localization
map A! K.

Remark 6.15. This definition of a classical field of fractions agrees with the standard
notion that ordinarily assumes that A is a commutative domain. In the noncommutative case
the definition accepted e.g. in [9] is different, in particular the map A! K is assumed to be
an embedding. Our definition is one that extends most naturally to the dg context.
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Corollary 6.5 classifies derived fields of fractions of a ring A in terms of localizing
rank functions on Perf.A/. The following examples demonstrate the existence of such (gen-
uinely derived) fields of fractions and thus, localizing rank functions (that cannot be reduced to
classical Sylvester rank functions) even for finite-dimensional algebras over fields.

Example 6.16. (1) Let A D kŒM � be the 5-dimensional algebra of Example 5.28. We
saw that there is a derived localization map kŒM �! kŒx�, where jxj D 1. Composing this
with inverting x, we obtain a derived localization map kŒM �! kŒx; x�1�, where the target is
a graded skew-field of period 1, i.e. a derived fraction field of A. The “classical” part of this
map is the augmentation map kŒM �! k; this is an underived localization and thus, a classical
fraction field in the sense understood above.

(2) This example is essentially contained in [7, Example 6.13]. Let k be a field of charac-
teristic 3 and consider A WD kŒS3�, the group algebra of the symmetric group on three symbols.
Then A contains an idempotent e such that LeA is (quasi-isomorphic to) the graded algebra
generated by two indeterminates y and z with jzj D 2; jyj D 3 and z3 D y2. The latter algebra
has a fraction field kŒx; x�1� with x D z�1y so jxj D 1. Thus, kŒx; x�1� is a derived frac-
tion skew-field for A. Again, the “classical” part of the latter derived fraction field is the
augmentation map of the group ring kŒS3�.
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