

City, University of London Institutional Repository

Citation: Gashi, I., Sobesto, B., Mason, S., Stankovic, V. & Cukier, M. (2014). A Study of

the Relationship Between Antivirus Regressions and Label Changes. 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE), pp. 441-450. doi:
10.1109/ISSRE.2013.6698897

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2716/

Link to published version: https://doi.org/10.1109/ISSRE.2013.6698897

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Study of the Relationship Between Antivirus Regressions and Label Changes

Ilir Gashi
1
, Bertrand Sobesto

2
, Stephen Mason

1
, Vladimir Stankovic

1
, and Michel Cukier

2

1
 Centre for Software Reliability, City University London, London, UK

2
 University of Maryland, College Park, MD, USA

1
{ilir.gashi.1, stephen.mason.1, vladimir.stankovic.1}@city.ac.uk,

 2
{mcukier, bsobesto}@umd.edu

Abstract — AntiVirus (AV) products use multiple components

to detect malware. A component which is found in virtually all

AVs is the signature-based detection engine: this component

assigns a particular signature label to a malware that the AV

detects. In previous analysis [1-3], we observed cases of

regressions in several different AVs: i.e. cases where on a

particular date a given AV detects a given malware but on a

later date the same AV fails to detect the same malware. We

studied this aspect further by analyzing the only externally

observable behaviors from these AVs, namely whether AV

engines detect a malware and what labels they assign to the

detected malware. In this paper we present the results of the

analysis about the relationship between the changing of the

labels with which AV vendors recognize malware and the AV

regressions.

Keywords - security assessment; empirical analysis; malware;

antivirus; intrusion detection.

I. INTRODUCTION

 AntiVirus (AV) products are one of the most commonly
deployed security protection software in both personal and
business deployments. Almost all computers currently
connected to the Internet have some type of an AV product
installed. Modern AV products use many different
components to improve their detection capabilities, ranging
from signature-based detection engines to anomaly based
statistical patterns and reputation based data collection
services.

Studies which perform analysis of malware detection
capabilities and rank various AV products are very common.
Several sites

1
 report rankings and comparisons of AV

products, though care must be taken when comparing the
results from different reports, as they might use different
definitions of “system under test”.

Our own previous research has concentrated on the
benefits that diversity brings in improving the detection
capabilities of the AV products i.e. using more than one AV
product, from different vendors, in a diverse configuration to
improve the malware detection capability [1-3]. While
performing this research we observed an interesting
phenomenon: AV products seem to regress in their detection
capability, i.e. they failed to detect a malware which they had
detected successfully in the past. We also noticed that many
AV products at different times would assign different labels
when identifying the same piece of malware.

1
 av-comparatives.org/, av-test.org/, virusbtn.com/index

We speculate that AV vendors are under great
competitive pressure to update their rulesets frequently and be
able to detect malware with as small ruleset as possible (due
to the need to not only achieve high detection rates but also to
do this in short response times and without consuming too
many computing resources on the host machines). The
frequent changes of the rulesets (which we observe externally
as the labels with which the AV products identify the
malware) may cause regressions. To check whether there is
enough empirical evidence to support this claim we decided
to run empirical studies.

Our experimental infrastructure consists of a honeypot
network distributed over several different countries. These
honeypots collect malware, which we then send for
inspection to an online service called VirusTotal. VirusTotal
hosts (at the time of writing) 46 signature-based detection
engines from different AV vendors. Each AV either detects a
malware (in which case it assigns a label to malware it
detects) or fails to detect it. We then continued sending the
collected malware to the signature-based detection engines in
VirusTotal over a period spanning November 2012 to March
2013 to observe whether we see evidence of regressions, and
also whether we see changes with which the different vendors
identify the same malware over time. We then analyzed the
observations to also check for possible signs of correlation, or
cause and effect relationships between regressions and label
changes. We report the results of this analysis in this paper.

This research has been motivated by the need to gain a
better understanding about the reliability of the software
engineering practices that different vendors may be
employing. As already stated, the whole analysis has been
done using externally observable properties of the AV
products: namely whether they detect a given malware, and, if
they detect it, what label they assign to that malware. For
software architects and managers that need to make decisions
on what AV products to choose, this analysis provides other
selection criteria that they may decide to use to help them
make a better decision and reduce risks of making a sub-
optimal choice for their chosen deployment environment. We
acknowledge that there are limitations to the VirusTotal
service (e.g. VirusTotal only provides the signature-based
detection engines of the AV products, rather than other
capabilities, such as heuristics, and reputation based detection
components), but nevertheless each of the vendors is being
compared against a single common component only: namely
the signature-based detection engine. This makes the
comparison across vendors fair. To the best of our knowledge
this is the first study that has systematically analyzed AV
regressions and label changes from many different vendors.

file:///C:/Users/City%20University/City%20University/Users/vladimir/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/2NX1582C/av-comparatives.org/
http://www.virusbtn.com/index

For the sake of brevity, unless otherwise specified, in the
rest of the paper we shall use the term AV to refer to the
signature-based detection engines of the AV vendors that are
provided by the VirusTotal service. The signature-based
detection engine is the component that almost all AV
products contain and which uses predefined rules to detect,
identify and label a malware.

The rest of the paper is organized as follows: Section II
contains a summary of related work in AV detection analysis
and regression testing; Section III provides a description of
the experimental architecture; Section IV provides an analysis
of the results of regressions and label changes of the AVs for
the malware in our collection period; Section V provides a
discussion of the results and finally Section VI contains
conclusions and provisions for further work.

II. RELATED WORK

There are many studies that perform analysis of the
detection capabilities and rank various AVs. An interesting
analysis of “at risk time” for single AVs is given in [4]. In
this paper the authors analyzed how long it takes for different
AV vendors to detect a malware. As we stated previously,
there are numerous sites that report rankings and
comparisons of AVs (see footnote 1 for links to these sites).

There have also been studies to assess the benefits in
improved malware detection from using more than one
diverse AV. An initial implementation of an architecture
called Cloud-AV, which utilizes multiple diverse AVs to
detect the malware was given in [5]. The authors in [5] also
describe an empirical analysis of the benefits of diversity
based on the deployment of Cloud-AV at the University of
Michigan network. Some of the authors of this paper have
also performed large-scale studies on the detection
capabilities of diverse AVs which have been published in [1-
3]. In this earlier research we utilized the VirusTotal service
for the analysis. For the research reported in two of these
studies [1, 2] the malware samples were collected by a real
world honeypot deployment - SGNET [6, 7], whereas the
malware samples reported in [3] were collected using the
same infrastructure described in Section III of this paper.

Regression testing is a well known technique in software
testing [8]. The aim of this kind of testing is to ensure that
changes or updates in the software do not introduce new
faults. A good introduction as well as examples of regression
testing tools can be found here

2
.

Over the past several years, researchers and practitioners
have used honeypots to learn about attacks and attackers.
These systems can be categorized as security tools whose
value lies in being probed, attacked, or compromised [9].
These carefully monitored systems allow security
researchers to attract hackers, analyze their actions and
profile them [10].

Honeypot systems can be found at different scales: from
a single host to more complex honeypot networks. These
networks, also called honeynets, can be deployed on few IP
addresses within a local network. The project Leurre.com

2

http://www.softwaretestinghelp.com/regression-testing-tools-and-

methods/

[11], SGNET [6, 7] and the honeynet initiative from CAIDA
[12] are examples of distributed honeypot networks in
different locations.

III. DESCRIPTION OF THE EXPERIMENTAL ARCHITECTURE

Dionaea
3
, a low interaction honeypot used to emulate

common vulnerable services, has been deployed on a
distributed honeypot network architecture. Dionaea captures
malicious payload submitted by attackers during the
exploitation of exposed network services. Dionaea presents
several advantages compared to a high interaction honeypot:
1) it emulates many well-known vulnerabilities and
protocols, 2) it is easier to maintain than a high interaction
honeypot, and 3) the level of interaction is sufficient to allow
successful malicious payload injections.

The 1,136 public IP addresses dedicated to Dionaea were
distributed over 7 different networks and 4 geographic
locations: France, Germany, Morocco and the USA. Table I
shows the repartition of the IP addresses per subnet.

TABLE I. THE GEOGRAPHICAL LOCATIONS OF IP ADDRESSES

Subnet type Country Number of IPs

University 1 France 2

University 2 Germany 9

University 3 Morocco 2

Company United States 3

University 4 United States 1044

University 5 United States 55

University 6 United States 21

This study does not intend to compare the malware

collected on the different networks or locations. The
different subnets do not have the same size. For instance,
because of some of the author’s affiliation, University 4 has
provided a significantly higher number of IP addresses and
allowed to deploy a larger number of honeypots. Note also
that the different organizations involved in this distributed
architecture apply different security policies. As a
consequence each network is not protected in the same way.

Dionaea’s default configuration exposes several well-
known vulnerabilities of common Internet services (Figure
1) such as http, ftp, smtp, MS SQL, MySQL, as well as
Microsoft Windows and VOIP protocols. Because of the
nature of the exposed vulnerabilities, Dionaea essentially
captures Windows Portable Executable (PE) files

4
, the

executable file format used on Windows platforms.
Dionaea waits for attackers to inject malicious payloads

known as shellcodes by exploiting one of the service’s
vulnerabilities. The shellcodes are evaluated using libemu

5
, a

C library able to detect and execute shellcodes using the
GetPC heuristics [13]. The shellcode profiling allows
Dionaea to act upon three possible intentions: 1) providing a
remote shell to the attacker by opening a network socket on
the targeted system, 2) downloading a file from a remote

3
 http://dionaea.carnivore.it

4
 http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

5 http://libemu.carnivore.it

http://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
http://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
http://dionaea.carnivore.it/
http://libemu.carnivore.it/

location using ftp, http or SMB protocols, or 3) executing an
existing binary file on the local file system of the target host.
Dionaea executes multi-staged shellcodes in a virtual
machine using libemu to infer their final intent.

Binary files can be captured in different ways: ftp and
http downloads, and downloads occurring during the
shellcode executions. They can have different formats. The
Unix command file

6
 allows the file format to be identified.

Empty and ASCII files were automatically discarded from
this analysis as well as the data format that describes
unknown binary files. Hence only Microsoft Windows PE
files and MS DOS executable files were collected for this
study.

Starting Nmap 5.21 (http://nmap.org) at 2012-11-12 22:24 EST
Nmap scan report for XXX.XXX.XXX.XXX
Host is up (0.039s latency).
Not shown: 986 closed ports
PORT STATE SERVICE
21/tcp open ftp
25/tcp filtered smtp
42/tcp open nameserver
80/tcp open http
135/tcp open msrpc
443/tcp open https
445/tcp open microsoft-ds
554/tcp open rtsp
1433/tcp open ms-sql-s
2222/tcp filtered unknown
3306/tcp open mysql
5060/tcp open sip
5061/tcp open sip-tls
7070/tcp open realserver
Nmap done: 1 IP address (1 host up) scanned in 9.18 seconds

Figure 1 - Open ports in Dionaea
A test version of Dionaea has been deployed to try its

different functionalities. Dionaea names captured binary files
after their MD5 hashes and logs the capture or malware
submission into an SQLite database. Each entry of the
submission database contains:

 The MD5 hash of the binary,

 A capture timestamp,

 The source and destination IP addresses,

 The source and destination ports,

 The protocol exploited,

 The transport protocol (TCP or UDP), and

 The URL used to download the binary file.
Our tests of Dionaea showed that the same binary file

could be submitted several times by different originating
hosts.

An instance of Dionaea has been deployed on each of the
seven subnets that consists of a Linux Virtual Machine
running the low interaction honeypot. The captured malware
and their submission information are merged and centralized
on a single server to facilitate the analysis.

The malware centralization and submission process
consists of two steps. The first script written in Perl is
executed every day at midnight to download the binary files
from the different virtual machines running Dionaea to the
main server. This script also fetches the SQLite database that
contains the malware submission information and merges
them into a single database. Then the whole repository is

6
 http://darwinsys.com/file/

submitted to VirusTotal. VirusTotal returns a key when a file
is successfully submitted. This scan key is built from the
binary’s SHA1 hash and the submission timestamp. The
script keeps track of the scan key to ensure a correct
submission of each malware and then later retrieves the
VirusTotal analysis.

The second step of the process includes the execution of
a second Perl script. By using the scan keys generated by
VirusTotal at the submission, the script retrieves the analysis
reports from the different AVs. The results sent by
VirusTotal are presented in an array. This array contains:

 The response code and response status indicating that
the analysis is completed,

 The AV products that have flagged the file as malicious
(i.e. detected the malware),

 The total number of AVs used in the analysis, and

 The AVs names, versions and the signatures name.
If the first attempt to retrieve the report for a malware

fails, the Perl script will attempt to retrieve it until a response
code indicating a completed analysis is received. The script
then uploads the content of the report in a MySQL database.
Everyday a new database entry is created for each malware.
This entry contains the information related to the VirusTotal
submission. The AV’s names, versions and the malware
signature names are also uploaded in various tables and
linked together with the file submission.

A limitation of VirusTotal requires a delay of one second
between each binary file that is submitted. It takes about one
to two seconds to submit a file and its analysis can be
executed within a minute depending on the service load. To
make sure that all the files are uploaded and analyzed a delay
of four hours was set between the submission to VirusTotal
and results retrieval.

IV. ANALYSIS OF THE RESULTS

A. Descriptive Statistics

Data collection lasted for 135 days: 10
th
 November 2012

until 24
th
 March 2013. During this period we collected 2,185

malware. The vast majority of the malware (2,174) were
Microsoft Windows Portable Executable (PE) files and 11
were MS DOS executables. These malware were sent to
VirusTotal where they were examined by up to 46 AV
products. We sent the malware on the first day of
observation and continued to send them throughout the
collection period. However, the total number of datapoints
we have is not simply 135 * 2,185 * 46. It is smaller
because:

 Not all malware were observed in the first day of
collection – we continued to observe new malware
throughout the collection period and we cannot send a
newly collected malware to older versions of AVs
running on VirusTotal;

 VirusTotal may not always return results for all AVs –
we are not sure why this is. VirusTotal is a black-box
service and its internal configuration is not provided.
We presume that each AV is given a certain amount of
time to respond and if it doesn’t, VirusTotal will not
return a result for that AV. There might also be issues

http://darwinsys.com/file/

with a particular AV not being available at the time we
submitted the malware for inspection.

A unique “demand” for the purpose of our analysis is a
{Malwarej, Datek} pair which associates a given malware j to
a given date k in which it was sent to VirusTotal. We treat
each of the malware sent on a different date as a unique
demand. If all 2,185 malware were sent to VirusTotal on
each of the 135 days of data collection, then we would have
2,185 * 135 = 294,975 demands. But as explained before,
due to missing data, the number of demands sent to any of
the AVs is smaller than 294,975.

If we now associate a given AV i’s response to a given
malware j on a given date k then we can consider each of our
datapoints in the experiment to be a unique triplet {AVi,
Malwarej, Datek}. For each of these triplets we have defined
a binary score: 0 in case of successful detection, 1 in case of
failure. Table II shows the aggregated counts of the 0s and 1s
for the whole period of our data collection. We have
considered as success the generation of an alert by an AV
regardless of the nature of the alert itself.

TABLE II. COUNTS OF DETECTIONS AND FAILURES FOR

TRIPLETS { AVI, MALWAREJ, DAYK}

Value Count

0 – detection / no failure 8,812,080

1 – no detection / failure 801,096

Table III contains the failure rates of all the 46 AVs. The

ordering is by the failure rate (second column) with the AV
with the smallest failure rate appearing first.

The third column in Table III counts the number of
“releases” of a given AV recorded by VirusTotal. We
presume these are the versions of either the rule set of the
detection engine or the release version of the detection
engine itself. It seems that different products have different
conventions for this. Amongst the three best AVs in our
study, Comodo reports 300 whereas Norman and Ikarus
report 4 sub-release versions.

The fourth and fifth columns of Table III contain counts
of regressions [2]. We count a regression when an AV fails
to detect on date k+1 a malware which it had detected on day
k. The fourth column contains the number of malware on
which a given AV regressed, and the fifth column contains
the number of instances of these regressions (since an AV
may have regressed more than once on a given malware:
alternated between detection and non-detection of a malware
several times). We note that even a few AVs, which are in
the top ten in terms of the overall detection rates, did have
cases of regressions. Such a phenomenon can be due to
various reasons. For instance, the vendor might have deleted
the corresponding detection signature as a consequence of
the identification of false positives associated to it, or the
vendor might be attempting to consolidate and streamline the
signature-based detection rules (i.e. define a smaller number
of more generic rules) to achieve faster detection.

The sixth column contains the counts of signature label
changes. We count a signature label change when an AV

changes the label with which it identified a malware on date
k+1 compared with how it identified the malware on date k.

TABLE III. FAILURE RATES, RELEASE COUNTS, REGRESSION COUNTS,
AND LABEL CHANGES COUNTS FOR EACH AV

AV Name
Failure

rate

Number of

“releases”

of the AV
in

VirusTotal

Count of

Malware

on which
AV

regressed

Count of

Regression
Instances

Count of
Label

changes

Comodo 0.00017 300 0 0 20

Norman 0.000453 4 39 39 1780

Ikarus 0.000674 4 7 7 376

McAfee-GW-

Edition 0.000714 2
117 145

2994

AVG 0.000894 1 0 0 35

Panda 0.001048 1 33 85 114

Symantec 0.001568 5 99 108 58

TheHacker 0.002374 2 6 6 34

AntiVir 0.003159 304 0 0 39

TrendMicro-
HouseCall 0.003634 2

537 626
68

VIPRE 0.004398 336 14 14 205

Jiangmin 0.004429 3 4 4 25

Kingsoft 0.005909 5 31 54 429

PCTools 0.006764 2 78 102 547

Agnitum 0.008059 1 140 145 1

BitDefender 0.012567 1 2 2 175

F-Secure 0.01259 3 5 5 2898

GData 0.013964 1 279 298 169

Avast 0.014726 1 3 3 120

F-Prot 0.015667 2 68 68 3

nProtect 0.016076 224 0 0 59

McAfee 0.016744 1 16 27 1784

AhnLab-V3 0.016834 235 75 82 20

Kaspersky 0.017786 1 11 11 10

Sophos 0.017826 10 52 56 58

Emsisoft 0.017951 4 15 15 1014

TotalDefense 0.018539 211 0 0 166

ViRobot 0.01854 2 4 4 20

K7AntiVirus 0.019779 167 12 12 557

TrendMicro 0.020509 7 589 703 53

Microsoft 0.021461 11 1 1 59

ESET-NOD32 0.021693 262 27 27 14

DrWeb 0.023253 6 5 5 38

VBA32 0.024699 9 7 7 13

NANO-Antivirus 0.02703 9 0 0 302

Commtouch 0.028271 2 8 9 855

Rising 0.044548 110 386 394 14

CAT-QuickHeal 0.047723 2 1643 1663 97

SUPERAntiSpyw

are 0.114503 4
7 7

1

MicroWorld-

eScan 0.164515 1
2023 21494

123

eSafe 0.24881 1 18 19 1366

ClamAV 0.356962 1 1 1 4

Fortinet 0.418235 4 1050 1051 94

Antiy-AVL 0.442624 3 48 49 73

Malwarebytes 0.689115 2 465 485 13

ByteHero 0.930788 1 83 1087 0

Even though some of the AVs have very good detection
rates (i.e. low failure/non-detection rates) none of them have
detected all the malware in our study. We can also see that
some AVs have really low detection rates, with the bottom 8
AVs failing to detect more than 10% of all the demands sent

to them. We are not certain why this is the case. It could be
because the AV vendors are failing to keep their AVs in
VirusTotal up to date with their latest signatures, even if
their products in commercial installations are up to date
(though some of these vendors do seem to be updating their
products with new release numbers, as evidenced from
column three values), it could be that these products have
more advanced anomaly and reputation based features (not
available for testing in VirusTotal) or it could be because
these AVs genuinely have low detection rates for this
dataset.

B. Regressions Analysis

Figures 2 and 3 show 3D plots of the regressions for the
AV and Date dimensions (Figure 2) and AV and Malware
dimensions (Figure 3). Each value in the plot gives the ratio
of regressions observed for either a given AV on a given date
(Figure 2), or for a given AV on a given malware (Figure 3).
The ratio values are shown by the intensity of the color in the
plot (with green being low ratio values (close to 0) and red
being high (close to 1)), with white areas meaning no
regressions have been observed, and black areas representing
missing data. We have kept the ordering of the AVs by
failure rate as in Table III, with the AVs with lowest failure
rates appearing on the left of the plots.

These figures further illustrate the trends for the
regressions counts we showed in Table III. We can see that
even some AVs with high detection rates regress regularly
during our data collection period. So for some AVs these
regressions are not just isolated incidents in particular points
in time, but rather seem to be regular occurrences. Hence
some of these AVs in particular would especially benefit
from regression testing.

Figure 2 – AV (x-axis), dates (y-axis) and the proportion

of malware that have caused a particular AV to regress

on a particular date.

Figure 3 - AV (x-axis), malware (y-axis) and the

proportion of days in which a given AV has regressed on

a given malware.

C. Label Changes Analysis

Table IV is an analysis report from VirusTotal of the

malicious sample identified by the MD5 hash

fb7ba7e14bafdc97724ffb66d39c2246. The report provides

for each AV the label used to identify the malware. In this

present case, the malicious program is Conficker
7
.

Malicious programs can be classified in different

categories depending on their nature such as worms, Trojans,

backdoors etc. AVs signature labels can be used to determine

these categories. For example, ClamAV uses the following

signature label naming convention
8
: malware_type.family-

variant. When we subjected all these malware to our locally

installed copy of ClamAV it classified the malware as

follows: 75.5% worms, 20.5% Trojans, 0.4% backdoors or

Windows viruses, and 3.6% were unknown to this ClamAV

version. Table IV also shows that these categories may vary

from one AV to another.
Depending on the AV, the signature labels may follow a

specific naming convention. Most of them will include the
type of malware, sometimes the platform or operating
system impacted, a family name and variant numbers or
letters. However, some AVs use generic labels to qualify the
malicious sample or just a number.

The analysis of the label changes shows a common

behavior: a generic label is first given to an unknown

sample when an AV has detected a suspicious behavior

using heuristic algorithms. The label is then changed when

the threat is clearly identified as a variant of an existing

malware or a new malware. For example the AV nProtect

label changes occurred when a malicious program was first

7
 http://www.confickerworkinggroup.org/

8
 http://www.clamav.net/doc/latest/signatures.pdf

http://www.confickerworkinggroup.org/
http://www.clamav.net/doc/latest/signatures.pdf

identified as Win32.Worm.Downadup.Gen and then as

Worm/W32.Kido.139680.D.

TABLE IV. VIRUSTOTAL ANALYSIS REPORT FOR CONFICKER

MALWARE

AV Engine Version Signature Label

Avast 6.0.1289.0 Win32:Confi [Wrm]

Antiy-AVL 2.0.3.7 Trojan/Win32.Agent.gen

Ikarus T3.1.1.122.0 Trojan-Downloader.Win32.Kido

Panda 10.0.3.5 W32/Conficker.C.worm

VBA32 3.12.18.2 Worm.Win32.kido.106

TrendMicro-

HouseCall 9.500.0.1008 WORM_DOWNAD.AD

Emsisoft 5.1.0.11
Trojan-

Downloader.Win32.Kido!IK

CAT-

QuickHeal 12 Win32.Net-Worm.Kido.ih.4

SUPERAntiSp
yware 4.40.0.1006 Trojan.Agent/Gen

McAfee-GW-

Edition 2012.1 W32/Conficker.worm.gen.a

TrendMicro 9.561.0.1027 WORM_DOWNAD.AD

Kaspersky 9.0.0.837 Net-Worm.Win32.Kido.ih

ViRobot 2011.4.7.4223 Worm.Win32.Conficker.165405

Microsoft 1.8601 Worm:Win32/Conficker.C

Jiangmin 13.0.900 Worm/Kido.ml

McAfee 5.400.0.1158 W32/Conficker.worm.gen.a

ClamAV 0.97.3.0 Worm.Kido-96

F-Secure 9.0.16440.0 Worm:W32/Downadup.gen!A

eSafe 7.0.17.0 Win32.Banker

F-Prot 4.6.5.141 W32/Conficker!Generic

AVG 10.0.0.1190 Worm/Downadup

Norman 6.08.06 W32/Conficker.GW

Symantec 20121.1.0.298 W32.Downadup.B

GData 22 Win32.Worm.Downadup.Gen

Commtouch 5.3.2.6 W32/Conficker!Generic

TheHacker None W32/Kido.ih

BitDefender 7.2 Win32.Worm.Downadup.Gen

PCTools 8.0.0.5 54815

Sophos 4.80.0 Mal/Conficker-A

DrWeb 7.0.3.07130 Win32.HLLW.Shadow.based

K7AntiVirus 9.147.7516 NetWorm

AntiVir 7.11.40.82 Worm/Conficker.AA

AhnLab-V3 2012.08.20.00 Win32/Kido.worm.165405

Rising 24.24.00.01 Trojan.Win32.Generic.122F15C8

nProtect 2012-08-20.01 Worm/W32.Kido.165405

VirusBuster 15.0.155.0 Worm.Kido!2hIqC2kC9R4

Comodo 13286 NetWorm.Win32.Kido.A

TotalDefense 37.0.10037 Win32/Conficker

VIPRE 12706 Worm.Win32.Downad.Gen (v)

ESET-NOD32 7399 a variant of Win32/Conficker.X

The opposite behavior is sometimes observed as well: a
specific name is given to a malicious sample and then
changed to a more generic category. For example the AV
Symantec changed a signature label from Trojan.ADH.2 to a
more generic one Packed.Generic.382.

Few changes introduce new variants numbers or new
threat types.

Table V contains counts of malware per AV grouped by
the number of label changes they had in our dataset. We
grouped them in categories representing 0, 1, 2, 3, 4 or 5 or
more label changes. We kept the ordering of the AVs by
failure rate as in Table III. Note that in Table III we had
shown the overall number of label changes per AV, whereas

Table V shows the number of malware grouped by the count
of label changes a particular AV exhibited (e.g. Comodo
had 20 label changes in total: 18 malware with 1 label
change, and 1 malware with 2 label changes).

TABLE V. COUNTS OF MALWARE PER AV GROUPED BY THE NUMBER

OF LABEL CHANGES THEY HAD IN OUR DATASET (0 TO 5 OR MORE)

AV Name 0 1 2 3 4 5+

Comodo 1862 18 1 0 0 0

Norman 382 1218 281 0 0 0

Ikarus 1535 321 21 3 1 0

McAfee-GW-Edition 1048 204 199 12 190 228

AVG 1857 19 0 4 1 0

Panda 1848 20 3 3 2 5

Symantec 1840 25 15 1 0 0

TheHacker 1849 30 2 0 0 0

AntiVir 1460 258 156 3 3 1

TrendMicro-

HouseCall 1833 32 13 2 1 0

VIPRE 1750 70 53 3 5 0

Jiangmin 1860 17 4 0 0 0

Kingsoft 1469 397 13 2 0 0

PCTools 1366 490 20 4 0 1

Agnitum 1880 1 0 0 0 0

BitDefender 1793 51 24 7 0 6

F-Secure 440 17 1421 1 0 2

GData 1793 51 24 7 0 6

Avast 1765 112 4 0 0 0

F-Prot 1878 3 0 0 0 0

nProtect 1828 49 2 2 0 0

McAfee 1014 174 152 8 100 433

AhnLab-V3 1866 10 5 0 0 0

Kaspersky 1872 8 1 0 0 0

Sophos 1846 12 23 0 0 0

Emsisoft 872 1005 3 1 0 0

TotalDefense 1717 162 2 0 0 0

ViRobot 1863 17 0 1 0 0

K7AntiVirus 1485 242 150 1 3 0

TrendMicro 1829 17 18 2 14 1

Microsoft 1822 59 0 0 0 0

ESET-NOD32 1868 12 1 0 0 0

DrWeb 1849 29 0 3 0 0

VBA32 1868 13 0 0 0 0

NANO-Antivirus 1717 80 30 54 0 0

Commtouch 1346 253 254 18 10 0

Rising 1869 11 0 1 0 0

CAT-QuickHeal 1821 26 33 1 0 0

SUPERAntiSpyware 1880 1 0 0 0 0

MicroWorld-eScan 1799 66 9 5 0 2

eSafe 1769 7 6 0 1 98

ClamAV 1877 4 0 0 0 0

Fortinet 1810 48 23 0 0 0

Antiy-AVL 1808 73 0 0 0 0

Malwarebytes 1870 9 2 0 0 0

Figures 4 and 5 show plots of the label changes for the

AV and Date (Figure 4) and AV and Malware (Figure 5).
We can see that AVs seem to change the labels with

which they identify the malware fairly regularly. Even the
AVs with high detection rates (that appear towards the left
hand side of the plots) seem to frequently change the labels
with which they name the malware. So there is a continuous
activity in the naming of these malware that seems to be
happening for many of these AVs.

Note that Figure 5 shows a lot of missing data for the
right-most 6 AVs. As we saw in Table III these are AVs that
have very high failure rates. These AVs fail to detect large
proportions of malware. Since we can only count label
changes when AVs detect malware, we have no data for
label changes for large proportions of these malware – hence
the large black areas in the plot.

Figure 4 - AV (x-axis), dates (y-axis) and the proportion

of malware for which a particular AV changed labels on

a given date.

Figure 5 - AV (x-axis), malware (y-axis) and the

proportion of days a given AV has changed labels for a

given malware detection.

D. Correlation of Regressions and Label Changes

So far we have looked at the trends of label changes and
regressions separately. In this section we will analyze the
relationships between these two aspects.

Figures 6 and 7 show the plots for the combined ratios of
label changes and regressions in the AV-date and AV-
malware dimensions respectively. The coloring rules are as
follows:

 Black - No data: in the combined plots no data means
we have missing data for either regressions or label
changes (or both);

 White - No Regressions and no Label changes;

 Yellow - Regressions but no Label changes;

 Green – No Regressions but Label changes;

 Red – Regressions and Label changes.
We see several areas in the graphs colored red, meaning

proportions of both regressions and label changes on those
days for the same AV (in Figure 6) or both regressions and
label changes for the same instances of malware for a given
AV (in Figure 7). These are especially prominent for the
TrendMicro, McAfee and the MicroWorld AVs (from Figure
6). In the AV-malware plot the red patches are less
pronounced partially because there are more malware being
plotted in the y-axis (2185) compared with the dates (135).

To study the correlations between label changes and
regressions in more detail we calculated the Pearson product-
moment correlation coefficients for each AV. The Pearson
product-moment correlation coefficient for two arrays X
(label changes) and Y (regressions) is as follows:

The correlation coefficient values are shown in Figure 8.
We cannot calculate correlation coefficients for seven AVs
which exhibited either no regressions, or no label changes, or
neither (Comodo, AVG, AntiVir, nProtect, TotalDefense,
NANO-Antivirus, ByteHero) so they are not shown in Figure
8 (or Figure 9). From Figure 8 we see that three AVs have
correlation coefficients of 0.7 or higher which suggests high
positive correlation between regressions and label changes
for them. Note that Commtouch, which appears as the AV
with the highest correlation coefficient, did not seem to
exhibit significant regressions or label changes results, as
shown in Figures 6 and 7. However, on closer inspection it
was seen that for this AV there were long periods when there
were no label changes or regressions, and then short bursts of
label changes, which were coincident with a few cases of
regressions. This results in a strong correlation coefficient
seen in Figure 8.

We also calculated correlation coefficients for each AV
when we removed the “white” areas from the calculations:
i.e. instances where we had neither label changes nor
regressions. This is shown in Figure 9. The AVs which
exhibit positive correlations tend to be the same as the ones
in Figure 8 (though the ordering based on CC values
changes).

Figure 6 - AV (x-axis), dates (y-axis) and proportion of regressions only (yellow), label changes only (green), or both

label changes and regression (red). White color - no regressions or label changes; black – no data for either label

changes or regressions, or both.

Figure 7 - AV (x-axis), malware (y-axis) and the proportion of regressions only (yellow), label changes only (green), or

both label changes and regression (red). White color - no regressions or label changes; black – no data for either label

changes or regressions, or both.

We do see a reversal from a mildly positive to a mildly
negative correlation for some of the AVs - this is because for
these AVs there were few cases of regressions and label
changes, and hence removing the white areas (i.e. two 0
values, indicating positive correlation), leaves only a few
values on which to calculate the CCs, which would generally
shift the CC value towards a negative correlation side. And
we also see a more pronounced negative correlation shown
for some of the other AVs. This means that for these AVs,
on the same dates, when we see label changes we tend not to
see regressions and vice versa (again removal of the white
areas makes this negative relationship stronger).

Figure 8 – Correlation coefficients per AV. The

grouping of label changes and regressions for each AV

was done per date.

Figure 9 - Correlation coefficients per AV using only the

data where there is either a regression or label change.

The grouping of label changes and regressions for each

AV was done per date.

V. DISCUSSION

The preliminary results look intriguing. For some of
these AVs there does seem to be a relationship between label
changes and regressions. This can be visually inspected from
the joint plots of regressions and label changes, but also
confirmed from the correlation coefficients. The reason for
these coincident values might be because of lack of
regression testing prior to the updating of the malware
detection rules by these vendors. Hence some of these
vendors may benefit from more systematic use of regression
testing before releasing updates to their malware detection
rulesets.

On the other end of the spectrum we also see that there
are some AVs (Comodo, AVG, AntiVir, nProtect,
TotalDefense, NANO-Antivirus) for which we have
observed label changes but no regressions at all. These AV
vendors may have good regression testing practices
implemented in house or very good software engineering
practices implemented that lead to fault avoidance during the
updating of the rulesets.

When we calculated correlation coefficients using just
the data where we had either regressions or label changes (cf.
Figure 9) we see that there are also some AVs that exhibit
strong negative correlations when we group the label
changes and regressions per date. This might be due to a
delayed effect: we see evidence that, in some cases, on the
same date we either see label changes or regressions, but not
both. But it might mean that progressive label changes do
have a delayed effect on regressions.

VI. CONCLUSIONS

In this paper we presented an analysis of the relationship
between two externally observable properties of AV
products: regressions of the AVs in their detection capability
(i.e. their (reoccurring) failure to detect a malware which
they had successfully detected in the past); and the change of
labels with which the AVs mark detected malware.

We ran an experimental campaign over a 135 day period
with 2,185 malware samples collected in our distributed low-
interaction honeypots environment, which we sent to 46
signature-based detection engines of AVs provided by the
VirusTotal service.

To the best of our knowledge this is the first paper that
has analyzed the relationship between regressions and
malware label changes for AVs.

Our main findings can be summarized as follows:

 For some of these AVs there seems to be a relationship
between label changes and regressions: we saw either a
high Pearson product-moment correlation coefficient
value, or a large number of dates in which both
regressions and label changes were observed. We
speculate that the reason for these coincident values
might be because of a lack of regression testing prior to
the updating of the malware detection rules by these
vendors. We therefore postulate that some of these
vendors may benefit from more systematic use of
regression testing before releasing updates to their
malware detection rulesets.

 There are some AVs for which we have observed label
changes but no regressions. These AV vendors may
have good regression testing practices implemented in
house, do not frequently change the labels for the
malware, or they have very good software engineering
practices implemented that lead to fault avoidance
during the updating of the rulesets (or a combination of
the above).

It is difficult to conclude with high confidence that the
causes of regressions or lack of them (i.e. the effect) are the
software engineering practices and/or lack of regression
testing that the AV vendors employ. This is because we are
only dealing with the externally visible behavior of these
products (i.e. whether they detect a malware or not in time,
and what labels they attach to those malware they detect).
More confidence about the cause and effect relationships
could be gained if we had insight into the vendors’ practices.
But we hope our analysis and results will provide sufficient
motive for some of these vendors to enhance their in-house
software engineering and regression testing procedures to
improve their overall malware detection capabilities.

The main limitation of our study which prevents us from
making more general conclusions is that VirusTotal only
provides the signature-based detection engines of these
vendors. We don’t know whether in cases where there is a
regression of the signature-based detection engine if some
other part of the AV product detects that malware. Hence
further work is required using the full capabilities of these
products to perform a more complete analysis of the
detection capabilities.

Other provisions for further work include:

 Studying the interplay between the false positive, false
negative rates on the one hand and the rates of
regressions and label changes on the other. All our
analysis so far has been with malware samples, which
means we cannot get any measurements on false
positive rates. It would be interesting to observe what
effect the false positive rate has on the dynamics of
regressions and label changes.

 Studying the patterns of label changes: in Table V we
saw that some AVs change the labels for a malware
multiple times to potentially multiple different names. It
will be interesting to observe if there are specific
patterns that these changes have over time (e.g.
changing from a more generic name, to something more
specific etc.), and what impact this has, if any, on the
overall detection rates and rate of regressions.

ACKNOWLEDGEMENT

This work was supported in part by the City University
London Pump Priming fund via grant “Empirical Analysis of
Diversity for Security”, and the SeSaMo project, supported
by the Artemis JU, and the United Kingdom Technology
Strategy Board (ID 600051 and 600052). The authors thank
Gerry Sneeringer and the Division of Information
Technology at the University of Maryland for allowing and
supporting their research.

REFERENCES

[1] Bishop, P., R. Bloomfield, I. Gashi and V. Stankovic. "Diversity for
Security: A Study with Off-the-Shelf Antivirus Engines". in Software
Reliability Engineering (ISSRE), 2011 IEEE 22nd International
Symposium on, p. 11-19, 2011.

[2] Gashi, I., C. Leita, O. Thonnard and V. Stankovic. "An Experimental
Study of Diversity with Off-the-Shelf Antivirus Engines". in
Proceedings of the 8th IEEE Int. Symp. on Network Computing and
Applications (NCA), p. 4-11, 2009.

[3] Cukier, M., I. Gashi, B. Sobesto and V. Stankovic. "Does Malware
Detection Improve with Diverse Antivirus Products? An Empirical
Study". in 32nd International Conference on Computer Safety,
Reliability and Security (SAFECOMP). Toulouse, France., 2013.

[4] Sukwong, O., H.S. Kim and J.C. Hoe, "Commercial Antivirus
Software Effectiveness: An Empirical Study". IEEE Computer, 44(3):
p. 63-70. 2011.

[5] Oberheide, J., E. Cooke and F. Jahanian. "Cloudav: N-Version
Antivirus in the Network Cloud". in Proc. of the 17th USENIX
Security Symposium, p. 91–106, 2008.

[6] Leita, C. and M. Dacier. "Sgnet: A Worldwide Deployable
Framework to Support the Analysis of Malware Threat Models". in
7th European Dependable Computing Conference (EDCC). Kaunas,
Lithuania, p. 99 - 109, 2008.

[7] Leita, C. and M. Dacier. "Sgnet: Implementation Insights". in
IEEE/IFIP Network Operations and Management Symposium
(NOMS). Salvador da Bahia, Brazil, p. 1075-1078, 2008.

[8] Myers, G., C. Sandler, T. Badgett and T.M. Thomas, The Art of
Software Testing. 2nd ed, Wiley. 2004

[9] Spitzner, L., Honeypots: Tracking Hackers, Addison-Wesley
Longman Publishing Co., Inc. 2002

[10] Ramsbrock, D., R. Berthier and M. Cukier, "Profiling Attacker
Behavior Following Ssh Compromises", in Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. 2007, IEEE Computer Society. p. 119-124.

[11] Pouget, F., M. Dacier and V.H. Pham, "Leurre.Com: On the
Advantages of Deploying a Large Scale Distributed Honeypot
Platform", in ECCE’05, E-Crime and Computer Conference. 2005:
Monaco.

[12] Vrable, M., J. Ma, J. Chen, D. Moore, E. Vandekieft, A.C. Snoeren,
et al., "Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm". SIGOPS Oper. Syst. Rev., 39(5): p. 148-162. 2005.

[13] Polychronakis, M., K.G. Anagnostakis and E.P. Markatos,
"Comprehensive Shellcode Detection Using Runtime Heuristics", in
Proceedings of the 26th Annual Computer Security Applications
Conference. 2010, ACM: Austin, Texas. p. 287-296.

