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Abstract — AntiVirus (AV) products use multiple components 

to detect malware. A component which is found in virtually all 

AVs is the signature-based detection engine: this component 

assigns a particular signature label to a malware that the AV 

detects. In previous analysis [1-3], we observed cases of 

regressions in several different AVs: i.e. cases where on a 

particular date a given AV detects a given malware but on a 

later date the same AV fails to detect the same malware. We 

studied this aspect further by analyzing the only externally 

observable behaviors from these AVs, namely whether AV 

engines detect a malware and what labels they assign to the 

detected malware. In this paper we present the results of the 

analysis about the relationship between the changing of the 

labels with which AV vendors recognize malware and the AV 

regressions.  

Keywords - security assessment; empirical analysis; malware; 

antivirus; intrusion detection. 

I.  INTRODUCTION 

 AntiVirus (AV) products are one of the most commonly 
deployed security protection software in both personal and 
business deployments. Almost all computers currently 
connected to the Internet have some type of an AV product 
installed. Modern AV products use many different 
components to improve their detection capabilities, ranging 
from signature-based detection engines to anomaly based 
statistical patterns and reputation based data collection 
services.  

Studies which perform analysis of malware detection 
capabilities and rank various AV products are very common. 
Several sites

1
 report rankings and comparisons of AV 

products, though care must be taken when comparing the 
results from different reports, as they might use different 
definitions of “system under test”.  

Our own previous research has concentrated on the 
benefits that diversity brings in improving the detection 
capabilities of the AV products i.e. using more than one AV 
product, from different vendors, in a diverse configuration to 
improve the malware detection capability [1-3]. While 
performing this research we observed an interesting 
phenomenon: AV products seem to regress in their detection 
capability, i.e. they failed to detect a malware which they had 
detected successfully in the past. We also noticed that many 
AV products at different times would assign different labels 
when identifying the same piece of malware.  
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We speculate that AV vendors are under great 
competitive pressure to update their rulesets frequently and be 
able to detect malware with as small ruleset as possible (due 
to the need to not only achieve high detection rates but also to 
do this in short response times and without consuming too 
many computing resources on the host machines). The 
frequent changes of the rulesets (which we observe externally 
as the labels with which the AV products identify the 
malware) may cause regressions. To check whether there is 
enough empirical evidence to support this claim we decided 
to run empirical studies. 

Our experimental infrastructure consists of a honeypot 
network distributed over several different countries. These 
honeypots collect malware, which we then send for 
inspection to an online service called VirusTotal. VirusTotal 
hosts (at the time of writing) 46 signature-based detection 
engines from different AV vendors. Each AV either detects a 
malware (in which case it assigns a label to malware it 
detects) or fails to detect it. We then continued sending the 
collected malware to the signature-based detection engines in 
VirusTotal over a period spanning November 2012 to March 
2013 to observe whether we see evidence of regressions, and 
also whether we see changes with which the different vendors 
identify the same malware over time. We then analyzed the 
observations to also check for possible signs of correlation, or 
cause and effect relationships between regressions and label 
changes. We report the results of this analysis in this paper. 

This research has been motivated by the need to gain a 
better understanding about the reliability of the software 
engineering practices that different vendors may be 
employing. As already stated, the whole analysis has been 
done using externally observable properties of the AV 
products: namely whether they detect a given malware, and, if 
they detect it, what label they assign to that malware. For 
software architects and managers that need to make decisions 
on what AV products to choose, this analysis provides other 
selection criteria that they may decide to use to help them 
make a better decision and reduce risks of making a sub-
optimal choice for their chosen deployment environment. We 
acknowledge that there are limitations to the VirusTotal 
service (e.g. VirusTotal only provides the signature-based 
detection engines of the AV products, rather than other 
capabilities, such as heuristics, and reputation based detection 
components), but nevertheless each of the vendors is being 
compared against a single common component only: namely 
the signature-based detection engine. This makes the 
comparison across vendors fair. To the best of our knowledge 
this is the first study that has systematically analyzed AV 
regressions and label changes from many different vendors. 

file:///C:/Users/City%20University/City%20University/Users/vladimir/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/2NX1582C/av-comparatives.org/
http://www.virusbtn.com/index


For the sake of brevity, unless otherwise specified, in the 
rest of the paper we shall use the term AV to refer to the 
signature-based detection engines of the AV vendors that are 
provided by the VirusTotal service. The signature-based 
detection engine is the component that almost all AV 
products contain and which uses predefined rules to detect, 
identify and label a malware. 

The rest of the paper is organized as follows: Section II 
contains a summary of related work in AV detection analysis 
and regression testing; Section III provides a description of 
the experimental architecture; Section IV provides an analysis 
of the results of regressions and label changes of the AVs for 
the malware in our collection period; Section V provides a 
discussion of the results and finally Section VI contains 
conclusions and provisions for further work. 

II. RELATED WORK 

There are many studies that perform analysis of the 
detection capabilities and rank various AVs. An interesting 
analysis of “at risk time” for single AVs is given in [4]. In 
this paper the authors analyzed how long it takes for different 
AV vendors to detect a malware. As we stated previously, 
there are numerous sites that report rankings and 
comparisons of AVs (see footnote 1 for links to these sites). 

There have also been studies to assess the benefits in 
improved malware detection from using more than one 
diverse AV. An initial implementation of an architecture 
called Cloud-AV, which utilizes multiple diverse AVs to 
detect the malware was given in [5]. The authors in [5] also 
describe an empirical analysis of the benefits of diversity 
based on the deployment of Cloud-AV at the University of 
Michigan network. Some of the authors of this paper have 
also performed large-scale studies on the detection 
capabilities of diverse AVs which have been published in [1-
3]. In this earlier research we utilized the VirusTotal service 
for the analysis. For the research reported in two of these 
studies [1, 2] the malware samples were collected by a real 
world honeypot deployment - SGNET [6, 7], whereas the 
malware samples reported in [3] were collected using the 
same infrastructure described in Section III of this paper. 

Regression testing is a well known technique in software 
testing [8]. The aim of this kind of testing is to ensure that 
changes or updates in the software do not introduce new 
faults. A good introduction as well as examples of regression 
testing tools can be found here

2
. 

Over the past several years, researchers and practitioners 
have used honeypots to learn about attacks and attackers. 
These systems can be categorized as security tools whose 
value lies in being probed, attacked, or compromised [9]. 
These carefully monitored systems allow security 
researchers to attract hackers, analyze their actions and 
profile them [10].  

Honeypot systems can be found at different scales: from 
a single host to more complex honeypot networks. These 
networks, also called honeynets, can be deployed on few IP 
addresses within a local network. The project Leurre.com 
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[11], SGNET [6, 7] and the honeynet initiative from CAIDA 
[12] are examples of distributed honeypot networks in 
different locations.  

III. DESCRIPTION OF THE EXPERIMENTAL ARCHITECTURE 

Dionaea
3
, a low interaction honeypot used to emulate 

common vulnerable services, has been deployed on a 
distributed honeypot network architecture. Dionaea captures 
malicious payload submitted by attackers during the 
exploitation of exposed network services. Dionaea presents 
several advantages compared to a high interaction honeypot: 
1) it emulates many well-known vulnerabilities and 
protocols, 2) it is easier to maintain than a high interaction 
honeypot, and 3) the level of interaction is sufficient to allow 
successful malicious payload injections. 

The 1,136 public IP addresses dedicated to Dionaea were 
distributed over 7 different networks and 4 geographic 
locations: France, Germany, Morocco and the USA. Table I 
shows the repartition of the IP addresses per subnet. 

TABLE I.  THE GEOGRAPHICAL LOCATIONS OF IP ADDRESSES 

Subnet type Country Number of IPs  

University 1 France 2 

University 2 Germany 9 

University 3 Morocco 2 

Company  United States 3 

University 4 United States 1044 

University 5 United States 55 

University 6 United States 21 

 
This study does not intend to compare the malware 

collected on the different networks or locations. The 
different subnets do not have the same size. For instance, 
because of some of the author’s affiliation, University 4 has 
provided a significantly higher number of IP addresses and 
allowed to deploy a larger number of honeypots. Note also 
that the different organizations involved in this distributed 
architecture apply different security policies. As a 
consequence each network is not protected in the same way.  

Dionaea’s default configuration exposes several well-
known vulnerabilities of common Internet services (Figure 
1) such as http, ftp, smtp, MS SQL, MySQL, as well as 
Microsoft Windows and VOIP protocols. Because of the 
nature of the exposed vulnerabilities, Dionaea essentially 
captures Windows Portable Executable (PE) files

4
, the 

executable file format used on Windows platforms.  
Dionaea waits for attackers to inject malicious payloads 

known as shellcodes by exploiting one of the service’s 
vulnerabilities. The shellcodes are evaluated using libemu

5
, a 

C library able to detect and execute shellcodes using the 
GetPC heuristics [13]. The shellcode profiling allows 
Dionaea to act upon three possible intentions: 1) providing a 
remote shell to the attacker by opening a network socket on 
the targeted system, 2) downloading a file from a remote 
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4
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5 http://libemu.carnivore.it 
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location using ftp, http or SMB protocols, or 3) executing an 
existing binary file on the local file system of the target host. 
Dionaea executes multi-staged shellcodes in a virtual 
machine using libemu to infer their final intent. 

Binary files can be captured in different ways: ftp and 
http downloads, and downloads occurring during the 
shellcode executions. They can have different formats. The 
Unix command file

6
 allows the file format to be identified. 

Empty and ASCII files were automatically discarded from 
this analysis as well as the data format that describes 
unknown binary files. Hence only Microsoft Windows PE 
files and MS DOS executable files were collected for this 
study.  
 
Starting Nmap 5.21 (http://nmap.org) at 2012-11-12 22:24 EST 
Nmap scan report for XXX.XXX.XXX.XXX 
Host is up (0.039s latency). 
Not shown: 986 closed ports 
PORT     STATE    SERVICE 
21/tcp   open     ftp 
25/tcp   filtered smtp 
42/tcp   open     nameserver 
80/tcp   open     http 
135/tcp  open     msrpc 
443/tcp  open     https 
445/tcp  open     microsoft-ds 
554/tcp  open     rtsp 
1433/tcp open     ms-sql-s 
2222/tcp filtered unknown 
3306/tcp open     mysql 
5060/tcp open     sip 
5061/tcp open     sip-tls 
7070/tcp open     realserver 
Nmap done: 1 IP address (1 host up) scanned in 9.18 seconds 

Figure 1 - Open ports in Dionaea  
A test version of Dionaea has been deployed to try its 

different functionalities. Dionaea names captured binary files 
after their MD5 hashes and logs the capture or malware 
submission into an SQLite database. Each entry of the 
submission database contains:  

 The MD5 hash of the binary,  

 A capture timestamp,  

 The source and destination IP addresses,  

 The source and destination ports,  

 The protocol exploited,  

 The transport protocol (TCP or UDP), and 

 The URL used to download the binary file.  
Our tests of Dionaea showed that the same binary file 

could be submitted several times by different originating 
hosts. 

An instance of Dionaea has been deployed on each of the 
seven subnets that consists of a Linux Virtual Machine 
running the low interaction honeypot. The captured malware 
and their submission information are merged and centralized 
on a single server to facilitate the analysis.  

The malware centralization and submission process 
consists of two steps. The first script written in Perl is 
executed every day at midnight to download the binary files 
from the different virtual machines running Dionaea to the 
main server. This script also fetches the SQLite database that 
contains the malware submission information and merges 
them into a single database. Then the whole repository is 

                                                           
6
 http://darwinsys.com/file/  

submitted to VirusTotal. VirusTotal returns a key when a file 
is successfully submitted. This scan key is built from the 
binary’s SHA1 hash and the submission timestamp. The 
script keeps track of the scan key to ensure a correct 
submission of each malware and then later retrieves the 
VirusTotal analysis. 

The second step of the process includes the execution of 
a second Perl script. By using the scan keys generated by 
VirusTotal at the submission, the script retrieves the analysis 
reports from the different AVs. The results sent by 
VirusTotal are presented in an array. This array contains:  

 The response code and response status indicating that 
the analysis is completed, 

 The AV products that have flagged the file as malicious 
(i.e. detected the malware), 

 The total number of AVs used in the analysis, and  

 The AVs names, versions and the signatures name. 
If the first attempt to retrieve the report for a malware 

fails, the Perl script will attempt to retrieve it until a response 
code indicating a completed analysis is received. The script 
then uploads the content of the report in a MySQL database. 
Everyday a new database entry is created for each malware. 
This entry contains the information related to the VirusTotal 
submission. The AV’s names, versions and the malware 
signature names are also uploaded in various tables and 
linked together with the file submission.  

A limitation of VirusTotal requires a delay of one second 
between each binary file that is submitted. It takes about one 
to two seconds to submit a file and its analysis can be 
executed within a minute depending on the service load. To 
make sure that all the files are uploaded and analyzed a delay 
of four hours was set between the submission to VirusTotal 
and results retrieval. 

IV. ANALYSIS OF THE RESULTS 

A. Descriptive Statistics 

Data collection lasted for 135 days: 10
th
 November 2012 

until 24
th
 March 2013. During this period we collected 2,185 

malware. The vast majority of the malware (2,174) were 
Microsoft Windows Portable Executable (PE) files and 11 
were MS DOS executables. These malware were sent to 
VirusTotal where they were examined by up to 46 AV 
products. We sent the malware on the first day of 
observation and continued to send them throughout the 
collection period. However, the total number of datapoints 
we have is not simply 135 * 2,185 * 46. It is smaller 
because: 

 Not all malware were observed in the first day of 
collection – we continued to observe new malware 
throughout the collection period and we cannot send a 
newly collected malware to older versions of AVs 
running on VirusTotal; 

 VirusTotal may not always return results for all AVs – 
we are not sure why this is. VirusTotal is a black-box 
service and its internal configuration is not provided. 
We presume that each AV is given a certain amount of 
time to respond and if it doesn’t, VirusTotal will not 
return a result for that AV. There might also be issues 

http://darwinsys.com/file/


with a particular AV not being available at the time we 
submitted the malware for inspection. 

A unique “demand” for the purpose of our analysis is a 
{Malwarej, Datek} pair which associates a given malware j to 
a given date k in which it was sent to VirusTotal. We treat 
each of the malware sent on a different date as a unique 
demand. If all 2,185 malware were sent to VirusTotal on 
each of the 135 days of data collection, then we would have 
2,185 * 135 = 294,975 demands. But as explained before, 
due to missing data, the number of demands sent to any of 
the AVs is smaller than 294,975. 

If we now associate a given AV i’s response to a given 
malware j on a given date k then we can consider each of our 
datapoints in the experiment to be a unique triplet {AVi, 
Malwarej, Datek}. For each of these triplets we have defined 
a binary score: 0 in case of successful detection, 1 in case of 
failure. Table II shows the aggregated counts of the 0s and 1s 
for the whole period of our data collection. We have 
considered as success the generation of an alert by an AV 
regardless of the nature of the alert itself. 

TABLE II.  COUNTS OF DETECTIONS AND FAILURES FOR 

TRIPLETS { AVI, MALWAREJ, DAYK} 

Value Count 

0 –  detection / no failure 8,812,080 

1 –  no detection / failure 801,096 

 
Table III contains the failure rates of all the 46 AVs. The 

ordering is by the failure rate (second column) with the AV 
with the smallest failure rate appearing first.  

The third column in Table III counts the number of 
“releases” of a given AV recorded by VirusTotal. We 
presume these are the versions of either the rule set of the 
detection engine or the release version of the detection 
engine itself. It seems that different products have different 
conventions for this. Amongst the three best AVs in our 
study, Comodo reports 300 whereas Norman and Ikarus 
report 4 sub-release versions.  

The fourth and fifth columns of Table III contain counts 
of regressions [2]. We count a regression when an AV fails 
to detect on date k+1 a malware which it had detected on day 
k. The fourth column contains the number of malware on 
which a given AV regressed, and the fifth column contains 
the number of instances of these regressions (since an AV 
may have regressed more than once on a given malware: 
alternated between detection and non-detection of a malware 
several times). We note that even a few AVs, which are in 
the top ten in terms of the overall detection rates, did have 
cases of regressions. Such a phenomenon can be due to 
various reasons. For instance, the vendor might have deleted 
the corresponding detection signature as a consequence of 
the identification of false positives associated to it, or the 
vendor might be attempting to consolidate and streamline the 
signature-based detection rules (i.e. define a smaller number 
of more generic rules) to achieve faster detection.  

The sixth column contains the counts of signature label 
changes. We count a signature label change when an AV 

changes the label with which it identified a malware on date 
k+1 compared with how it identified the malware on date k.   

TABLE III.  FAILURE RATES, RELEASE COUNTS, REGRESSION COUNTS, 
AND LABEL CHANGES COUNTS FOR EACH AV 

AV Name 
Failure 

rate 

Number of 

“releases” 

of the AV 
in 

VirusTotal 

Count of 

Malware 

on which 
AV 

regressed 

Count of 

Regression 
Instances 

Count of 
Label 

changes 

 

Comodo 0.00017 300 0 0 20 

Norman 0.000453 4 39 39 1780 

Ikarus 0.000674 4 7 7 376 

McAfee-GW-

Edition 0.000714 2 
117 145 

2994 

AVG 0.000894 1 0 0 35 

Panda 0.001048 1 33 85 114 

Symantec 0.001568 5 99 108 58 

TheHacker 0.002374 2 6 6 34 

AntiVir 0.003159 304 0 0 39 

TrendMicro-
HouseCall 0.003634 2 

537 626 
68 

VIPRE 0.004398 336 14 14 205 

Jiangmin 0.004429 3 4 4 25 

Kingsoft 0.005909 5 31 54 429 

PCTools 0.006764 2 78 102 547 

Agnitum 0.008059 1 140 145 1 

BitDefender 0.012567 1 2 2 175 

F-Secure 0.01259 3 5 5 2898 

GData 0.013964 1 279 298 169 

Avast 0.014726 1 3 3 120 

F-Prot 0.015667 2 68 68 3 

nProtect 0.016076 224 0 0 59 

McAfee 0.016744 1 16 27 1784 

AhnLab-V3 0.016834 235 75 82 20 

Kaspersky 0.017786 1 11 11 10 

Sophos 0.017826 10 52 56 58 

Emsisoft 0.017951 4 15 15 1014 

TotalDefense 0.018539 211 0 0 166 

ViRobot 0.01854 2 4 4 20 

K7AntiVirus 0.019779 167 12 12 557 

TrendMicro 0.020509 7 589 703 53 

Microsoft 0.021461 11 1 1 59 

ESET-NOD32 0.021693 262 27 27 14 

DrWeb 0.023253 6 5 5 38 

VBA32 0.024699 9 7 7 13 

NANO-Antivirus 0.02703 9 0 0 302 

Commtouch 0.028271 2 8 9 855 

Rising 0.044548 110 386 394 14 

CAT-QuickHeal 0.047723 2 1643 1663 97 

SUPERAntiSpyw

are 0.114503 4 
7 7 

1 

MicroWorld-

eScan 0.164515 1 
2023 21494 

123 

eSafe 0.24881 1 18 19 1366 

ClamAV 0.356962 1 1 1 4 

Fortinet 0.418235 4 1050 1051 94 

Antiy-AVL 0.442624 3 48 49 73 

Malwarebytes 0.689115 2 465 485 13 

ByteHero 0.930788 1 83 1087 0 

Even though some of the AVs have very good detection 
rates (i.e. low failure/non-detection rates) none of them have 
detected all the malware in our study. We can also see that 
some AVs have really low detection rates, with the bottom 8 
AVs failing to detect more than 10% of all the demands sent 



to them. We are not certain why this is the case. It could be 
because the AV vendors are failing to keep their AVs in 
VirusTotal up to date with their latest signatures, even if 
their products in commercial installations are up to date 
(though some of these vendors do seem to be updating their 
products with new release numbers, as evidenced from 
column three values), it could be that these products have 
more advanced anomaly and reputation based features (not 
available for testing in VirusTotal) or it could be because 
these AVs genuinely have low detection rates for this 
dataset. 

B. Regressions Analysis 

Figures 2 and 3 show 3D plots of the regressions for the 
AV and Date dimensions (Figure 2) and AV and Malware 
dimensions (Figure 3). Each value in the plot gives the ratio 
of regressions observed for either a given AV on a given date 
(Figure 2), or for a given AV on a given malware (Figure 3). 
The ratio values are shown by the intensity of the color in the 
plot (with green being low ratio values (close to 0) and red 
being high (close to 1)), with white areas meaning no 
regressions have been observed, and black areas representing 
missing data. We have kept the ordering of the AVs by 
failure rate as in Table III, with the AVs with lowest failure 
rates appearing on the left of the plots.  

These figures further illustrate the trends for the 
regressions counts we showed in Table III. We can see that 
even some AVs with high detection rates regress regularly 
during our data collection period. So for some AVs these 
regressions are not just isolated incidents in particular points 
in time, but rather seem to be regular occurrences. Hence 
some of these AVs in particular would especially benefit 
from regression testing.    

 
Figure 2 – AV (x-axis), dates (y-axis) and the proportion 

of malware that have caused a particular AV to regress 

on a particular date. 

 

 
Figure 3 - AV (x-axis), malware (y-axis) and the 

proportion of days in which a given AV has regressed on 

a given malware. 

C. Label Changes Analysis 

Table IV is an analysis report from VirusTotal of the 

malicious sample identified by the MD5 hash 

fb7ba7e14bafdc97724ffb66d39c2246. The report provides 

for each AV the label used to identify the malware. In this 

present case, the malicious program is Conficker
7
.   

Malicious programs can be classified in different 

categories depending on their nature such as worms, Trojans, 

backdoors etc. AVs signature labels can be used to determine 

these categories. For example, ClamAV uses the following 

signature label naming convention
8
:  malware_type.family-

variant. When we subjected all these malware to our locally 

installed copy of ClamAV it classified the malware as 

follows: 75.5% worms, 20.5% Trojans, 0.4% backdoors or 

Windows viruses, and 3.6% were unknown to this ClamAV 

version. Table IV also shows that these categories may vary 

from one AV to another. 
Depending on the AV, the signature labels may follow a 

specific naming convention. Most of them will include the 
type of malware, sometimes the platform or operating 
system impacted, a family name and variant numbers or 
letters. However, some AVs use generic labels to qualify the 
malicious sample or just a number.  

The analysis of the label changes shows a common 

behavior: a generic label is first given to an unknown 

sample when an AV has detected a suspicious behavior 

using heuristic algorithms. The label is then changed when 

the threat is clearly identified as a variant of an existing 

malware or a new malware. For example the AV nProtect 

label changes occurred when a malicious program was first 
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identified as Win32.Worm.Downadup.Gen and then as 

Worm/W32.Kido.139680.D. 

TABLE IV.  VIRUSTOTAL ANALYSIS REPORT FOR CONFICKER 

MALWARE 

AV Engine Version Signature Label 

Avast 6.0.1289.0 Win32:Confi [Wrm] 

Antiy-AVL 2.0.3.7 Trojan/Win32.Agent.gen 

Ikarus T3.1.1.122.0 Trojan-Downloader.Win32.Kido 

Panda 10.0.3.5 W32/Conficker.C.worm 

VBA32 3.12.18.2 Worm.Win32.kido.106 

TrendMicro-

HouseCall 9.500.0.1008 WORM_DOWNAD.AD 

Emsisoft 5.1.0.11 
Trojan-

Downloader.Win32.Kido!IK 

CAT-

QuickHeal 12 Win32.Net-Worm.Kido.ih.4 

SUPERAntiSp
yware 4.40.0.1006 Trojan.Agent/Gen 

McAfee-GW-

Edition 2012.1 W32/Conficker.worm.gen.a 

TrendMicro 9.561.0.1027 WORM_DOWNAD.AD 

Kaspersky 9.0.0.837 Net-Worm.Win32.Kido.ih 

ViRobot 2011.4.7.4223 Worm.Win32.Conficker.165405 

Microsoft 1.8601 Worm:Win32/Conficker.C 

Jiangmin 13.0.900 Worm/Kido.ml 

McAfee 5.400.0.1158 W32/Conficker.worm.gen.a 

ClamAV 0.97.3.0 Worm.Kido-96 

F-Secure 9.0.16440.0 Worm:W32/Downadup.gen!A 

eSafe 7.0.17.0 Win32.Banker 

F-Prot 4.6.5.141 W32/Conficker!Generic 

AVG 10.0.0.1190 Worm/Downadup 

Norman 6.08.06 W32/Conficker.GW 

Symantec 20121.1.0.298 W32.Downadup.B 

GData 22 Win32.Worm.Downadup.Gen 

Commtouch 5.3.2.6 W32/Conficker!Generic 

TheHacker None W32/Kido.ih 

BitDefender 7.2 Win32.Worm.Downadup.Gen 

PCTools 8.0.0.5 54815 

Sophos 4.80.0 Mal/Conficker-A 

DrWeb 7.0.3.07130 Win32.HLLW.Shadow.based 

K7AntiVirus 9.147.7516 NetWorm 

AntiVir 7.11.40.82 Worm/Conficker.AA 

AhnLab-V3 2012.08.20.00 Win32/Kido.worm.165405 

Rising 24.24.00.01 Trojan.Win32.Generic.122F15C8 

nProtect 2012-08-20.01 Worm/W32.Kido.165405 

VirusBuster 15.0.155.0 Worm.Kido!2hIqC2kC9R4 

Comodo 13286 NetWorm.Win32.Kido.A 

TotalDefense 37.0.10037 Win32/Conficker 

VIPRE 12706 Worm.Win32.Downad.Gen (v) 

ESET-NOD32 7399 a variant of Win32/Conficker.X 

The opposite behavior is sometimes observed as well: a 
specific name is given to a malicious sample and then 
changed to a more generic category. For example the AV 
Symantec changed a signature label from Trojan.ADH.2 to a 
more generic one Packed.Generic.382. 

Few changes introduce new variants numbers or new 
threat types. 

Table V contains counts of malware per AV grouped by 
the number of label changes they had in our dataset. We 
grouped them in categories representing 0, 1, 2, 3, 4 or 5 or 
more label changes. We kept the ordering of the AVs by 
failure rate as in Table III. Note that in Table III we had 
shown the overall number of label changes per AV, whereas 

Table V shows the number of malware grouped by the count 
of label changes a particular AV exhibited  (e.g. Comodo 
had 20 label changes in total: 18 malware with 1 label 
change, and 1 malware with 2 label changes). 

TABLE V.  COUNTS OF MALWARE PER AV GROUPED BY THE NUMBER 

OF LABEL CHANGES THEY HAD IN OUR DATASET (0 TO 5 OR MORE)  

AV Name 0 1 2 3 4 5+ 

Comodo 1862 18 1 0 0 0 

Norman 382 1218 281 0 0 0 

Ikarus 1535 321 21 3 1 0 

McAfee-GW-Edition 1048 204 199 12 190 228 

AVG 1857 19 0 4 1 0 

Panda 1848 20 3 3 2 5 

Symantec 1840 25 15 1 0 0 

TheHacker 1849 30 2 0 0 0 

AntiVir 1460 258 156 3 3 1 

TrendMicro-

HouseCall 1833 32 13 2 1 0 

VIPRE 1750 70 53 3 5 0 

Jiangmin 1860 17 4 0 0 0 

Kingsoft 1469 397 13 2 0 0 

PCTools 1366 490 20 4 0 1 

Agnitum 1880 1 0 0 0 0 

BitDefender 1793 51 24 7 0 6 

F-Secure 440 17 1421 1 0 2 

GData 1793 51 24 7 0 6 

Avast 1765 112 4 0 0 0 

F-Prot 1878 3 0 0 0 0 

nProtect 1828 49 2 2 0 0 

McAfee 1014 174 152 8 100 433 

AhnLab-V3 1866 10 5 0 0 0 

Kaspersky 1872 8 1 0 0 0 

Sophos 1846 12 23 0 0 0 

Emsisoft 872 1005 3 1 0 0 

TotalDefense 1717 162 2 0 0 0 

ViRobot 1863 17 0 1 0 0 

K7AntiVirus 1485 242 150 1 3 0 

TrendMicro 1829 17 18 2 14 1 

Microsoft 1822 59 0 0 0 0 

ESET-NOD32 1868 12 1 0 0 0 

DrWeb 1849 29 0 3 0 0 

VBA32 1868 13 0 0 0 0 

NANO-Antivirus 1717 80 30 54 0 0 

Commtouch 1346 253 254 18 10 0 

Rising 1869 11 0 1 0 0 

CAT-QuickHeal 1821 26 33 1 0 0 

SUPERAntiSpyware 1880 1 0 0 0 0 

MicroWorld-eScan 1799 66 9 5 0 2 

eSafe 1769 7 6 0 1 98 

ClamAV 1877 4 0 0 0 0 

Fortinet 1810 48 23 0 0 0 

Antiy-AVL 1808 73 0 0 0 0 

Malwarebytes 1870 9 2 0 0 0 

 
Figures 4 and 5 show plots of the label changes for the 

AV and Date (Figure 4) and AV and Malware (Figure 5).  
We can see that AVs seem to change the labels with 

which they identify the malware fairly regularly. Even the 
AVs with high detection rates (that appear towards the left 
hand side of the plots) seem to frequently change the labels 
with which they name the malware. So there is a continuous 
activity in the naming of these malware that seems to be 
happening for many of these AVs. 



Note that Figure 5 shows a lot of missing data for the 
right-most 6 AVs. As we saw in Table III these are AVs that 
have very high failure rates. These AVs fail to detect large 
proportions of malware. Since we can only count label 
changes when AVs detect malware, we have no data for 
label changes for large proportions of these malware – hence 
the large black areas in the plot. 

 

 
Figure 4 - AV (x-axis), dates (y-axis) and the proportion 

of malware for which a particular AV changed labels on 

a given date. 
 

 
Figure 5 - AV (x-axis), malware (y-axis) and the 

proportion of days a given AV has changed labels for a 

given malware detection. 

D. Correlation of Regressions and Label Changes 

So far we have looked at the trends of label changes and 
regressions separately. In this section we will analyze the 
relationships between these two aspects.  

Figures 6 and 7 show the plots for the combined ratios of 
label changes and regressions in the AV-date and AV-
malware dimensions respectively. The coloring rules are as 
follows:  

 Black - No data: in the combined plots no data means 
we have missing data for either regressions or label 
changes (or both); 

 White - No Regressions and no Label changes;  

 Yellow - Regressions but no Label changes; 

 Green – No Regressions but Label changes; 

 Red – Regressions and Label changes. 
We see several areas in the graphs colored red, meaning 

proportions of both regressions and label changes on those 
days for the same AV (in Figure 6) or both regressions and 
label changes for the same instances of malware for a given 
AV (in Figure 7). These are especially prominent for the 
TrendMicro, McAfee and the MicroWorld AVs (from Figure 
6). In the AV-malware plot the red patches are less 
pronounced partially because there are more malware being 
plotted in the y-axis (2185) compared with the dates (135).  

To study the correlations between label changes and 
regressions in more detail we calculated the Pearson product-
moment correlation coefficients for each AV. The Pearson 
product-moment correlation coefficient for two arrays X 
(label changes) and Y (regressions) is as follows: 

              
             

                 
 

The correlation coefficient values are shown in Figure 8. 
We cannot calculate correlation coefficients for seven AVs 
which exhibited either no regressions, or no label changes, or 
neither (Comodo, AVG, AntiVir, nProtect, TotalDefense, 
NANO-Antivirus, ByteHero) so they are not shown in Figure 
8 (or Figure 9). From Figure 8 we see that three AVs have 
correlation coefficients of 0.7 or higher which suggests high 
positive correlation between regressions and label changes 
for them. Note that Commtouch, which appears as the AV 
with the highest correlation coefficient, did not seem to 
exhibit significant regressions or label changes results, as 
shown in Figures 6 and 7. However, on closer inspection it 
was seen that for this AV there were long periods when there 
were no label changes or regressions, and then short bursts of 
label changes, which were coincident with a few cases of 
regressions. This results in a strong correlation coefficient 
seen in Figure 8. 

We also calculated correlation coefficients for each AV 
when we removed the “white” areas from the calculations: 
i.e. instances where we had neither label changes nor 
regressions. This is shown in Figure 9. The AVs which 
exhibit positive correlations tend to be the same as the ones 
in Figure 8 (though the ordering based on CC values 
changes).  

   



 
Figure 6 - AV (x-axis), dates (y-axis) and proportion of regressions only (yellow), label changes only (green), or both 

label changes and regression (red). White color - no regressions or label changes; black – no data for either label 

changes or regressions, or both. 
 

 
Figure 7 - AV (x-axis), malware (y-axis) and the proportion of regressions only (yellow), label changes only (green), or 

both label changes and regression (red). White color - no regressions or label changes; black – no data for either label 

changes or regressions, or both. 
 
 
      

 
 



We do see a reversal from a mildly positive to a mildly 
negative correlation for some of the AVs - this is because for 
these AVs there were few cases of regressions and label 
changes, and hence removing the white areas (i.e. two 0 
values, indicating positive correlation), leaves only a few 
values on which to calculate the CCs, which would generally 
shift the CC value towards a negative correlation side. And 
we also see a more pronounced negative correlation shown 
for some of the other AVs. This means that for these AVs, 
on the same dates, when we see label changes we tend not to 
see regressions and vice versa (again removal of the white 
areas makes this negative relationship stronger). 

 
Figure 8 – Correlation coefficients per AV. The 

grouping of label changes and regressions for each AV 

was done per date. 

  

Figure 9 - Correlation coefficients per AV using only the 

data where there is either a regression or label change. 

The grouping of label changes and regressions for each 

AV was done per date. 

V. DISCUSSION 

The preliminary results look intriguing. For some of 
these AVs there does seem to be a relationship between label 
changes and regressions. This can be visually inspected from 
the joint plots of regressions and label changes, but also 
confirmed from the correlation coefficients. The reason for 
these coincident values might be because of lack of 
regression testing prior to the updating of the malware 
detection rules by these vendors. Hence some of these 
vendors may benefit from more systematic use of regression 
testing before releasing updates to their malware detection 
rulesets.  

On the other end of the spectrum we also see that there 
are some AVs (Comodo, AVG, AntiVir, nProtect, 
TotalDefense, NANO-Antivirus) for which we have 
observed label changes but no regressions at all. These AV 
vendors may have good regression testing practices 
implemented in house or very good software engineering 
practices implemented that lead to fault avoidance during the 
updating of the rulesets. 

When we calculated correlation coefficients using just 
the data where we had either regressions or label changes (cf. 
Figure 9) we see that there are also some AVs that exhibit 
strong negative correlations when we group the label 
changes and regressions per date. This might be due to a 
delayed effect: we see evidence that, in some cases, on the 
same date we either see label changes or regressions, but not 
both. But it might mean that progressive label changes do 
have a delayed effect on regressions.  

VI. CONCLUSIONS  

In this paper we presented an analysis of the relationship 
between two externally observable properties of AV 
products: regressions of the AVs in their detection capability 
(i.e. their (reoccurring) failure to detect a malware which 
they had successfully detected in the past); and the change of 
labels with which the AVs mark detected malware.  

We ran an experimental campaign over a 135 day period 
with 2,185 malware samples collected in our distributed low-
interaction honeypots environment, which we sent to 46 
signature-based detection engines of AVs provided by the 
VirusTotal service. 

To the best of our knowledge this is the first paper that 
has analyzed the relationship between regressions and 
malware label changes for AVs. 

Our main findings can be summarized as follows: 

 For some of these AVs there seems to be a relationship 
between label changes and regressions: we saw either a 
high Pearson product-moment correlation coefficient 
value, or a large number of dates in which both 
regressions and label changes were observed. We 
speculate that the reason for these coincident values 
might be because of a lack of regression testing prior to 
the updating of the malware detection rules by these 
vendors. We therefore postulate that some of these 
vendors may benefit from more systematic use of 
regression testing before releasing updates to their 
malware detection rulesets.  



 There are some AVs for which we have observed label 
changes but no regressions. These AV vendors may 
have good regression testing practices implemented in 
house, do not frequently change the labels for the 
malware, or they have very good software engineering 
practices implemented that lead to fault avoidance 
during the updating of the rulesets (or a combination of 
the above). 

It is difficult to conclude with high confidence that the 
causes of regressions or lack of them (i.e. the effect) are the 
software engineering practices and/or lack of regression 
testing that the AV vendors employ. This is because we are 
only dealing with the externally visible behavior of these 
products (i.e. whether they detect a malware or not in time, 
and what labels they attach to those malware they detect). 
More confidence about the cause and effect relationships 
could be gained if we had insight into the vendors’ practices. 
But we hope our analysis and results will provide sufficient 
motive for some of these vendors to enhance their in-house 
software engineering and regression testing procedures to 
improve their overall malware detection capabilities. 

The main limitation of our study which prevents us from 
making more general conclusions is that VirusTotal only 
provides the signature-based detection engines of these 
vendors. We don’t know whether in cases where there is a 
regression of the signature-based detection engine if some 
other part of the AV product detects that malware. Hence 
further work is required using the full capabilities of these 
products to perform a more complete analysis of the 
detection capabilities. 

Other provisions for further work include: 

 Studying the interplay between the false positive, false 
negative rates on the one hand and the rates of 
regressions and label changes on the other. All our 
analysis so far has been with malware samples, which 
means we cannot get any measurements on false 
positive rates. It would be interesting to observe what 
effect the false positive rate has on the dynamics of 
regressions and label changes. 

 Studying the patterns of label changes: in Table V we 
saw that some AVs change the labels for a malware 
multiple times to potentially multiple different names. It 
will be interesting to observe if there are specific 
patterns that these changes have over time (e.g. 
changing from a more generic name, to something more 
specific etc.), and what impact this has, if any, on the 
overall detection rates and rate of regressions. 
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