
              

City, University of London Institutional Repository

Citation: Makkeh, A., Chicharro, D., Theis, D. O. & Vicente, R. (2019). MAXENT3D_PID: 

An estimator for the maximum-entropy trivariate partial information decomposition. Entropy, 
21(9), 862. doi: 10.3390/e21090862 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/27165/

Link to published version: https://doi.org/10.3390/e21090862

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


entropy

Article

MAXENT3D_PID: An Estimator
for the Maximum-Entropy Trivariate Partial
Information Decomposition

Abdullah Makkeh 1,*,† , Daniel Chicharro 2,†,‡, Dirk Oliver Theis 1,† and Raul Vicente 1,†

1 Institute of Computer Science, University of Tartu, 51014 Tartu, Estonia
2 Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di

Tecnologia, 38068 Rovereto (TN), Italy
* Correspondence: makkeh@ut.ee
† These authors contributed equally to this work.
‡ Current address: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

Received: 28 June 2019; Accepted: 27 August 2019; Published: 3 September 2019

Abstract: Partial information decomposition (PID) separates the contributions of sources about
a target into unique, redundant, and synergistic components of information. In essence, PID
answers the question of “who knows what” of a system of random variables and hence has
applications to a wide spectrum of fields ranging from social to biological sciences. The paper presents
MAXENT3D_PID, an algorithm that computes the PID of three sources, based on a recently-proposed
maximum entropy measure, using convex optimization (cone programming). We describe the
algorithm and its associated software utilization and report the results of various experiments
assessing its accuracy. Moreover, the paper shows that a hierarchy of bivariate and trivariate PID
allows obtaining the finer quantities of the trivariate partial information measure.

Keywords: multivariate information theory; partial information decomposition; cone programming;
synergy; redundancy; PYTHON

1. Introduction: Motivation and Significance

The characterization of dependencies within complex multivariate systems helps to identify the
mechanisms operating in the system and understanding their function. Recent work has developed
methods to characterize multivariate interactions by separating n-variate dependencies for different
orders n [1–5]. In particular, the work of Williams and Beer [6,7] introduced a framework, called
partial information decomposition (PID), which quantifies whether different input variables provide
redundant, unique, or synergistic information about an output variable when combined with other
input variables. Intuitively, inputs are redundant if each carries individually information about the
same aspects of the output. Information is unique if it is not carried by any other single (or group of)
variables, and synergistic information can only be retrieved combining several inputs.

This information-theoretic approach to study interactions has found many applications to
complex systems such as gene networks (e.g., [8–10]), interactive agents (e.g., [11–14]), or neural
processing (e.g., [15–17]). More generally, the nature of the information contained in the inputs
determines the complexity of extracting it [18,19], how robust it is to disrupt the system [20], or how
input dimensionality can be reduced without information loss [21,22].

Despite this great potential, the applicability of the PID framework has been hindered by
the lack of agreement on the definition of a suitable measure of redundancy. In particular,
Harder et al. [23] indicated that the original measure proposed by [6] only quantifies common amounts
of information, instead of shared information that is qualitatively the same. A constellation of
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measures has been proposed to implement the PID (e.g., [23–29]), and core properties, such as requiring
nonnegativity as a property of the measures, are still the subject of debate [29–32].

A widespread application of the PID framework has also been limited by the lack of multivariate
implementations. Some of the proposed measures were only defined for the bivariate case [23,24,33].
Other multivariate measures allow negative components in the PID [26,29], which, although it
may be adequate for statistical characterization of dependencies, limits the interpretation of the
information-theoretic quantities in terms of information communication [34]. Even though at the level
of local information, negativity is regarded as misinformation and can be interpreted, for example,
operationally in terms of changes in belief [35], when considering information in the context of
communication [36], then interpreting it as the number of messages to be retrieved without error
through a noisy channel requires nonnegativity; for example, assessing the information representation
about multidimensional sensory stimulus across neurons, in particular the analyses of the information
content of neural responses [17,37]. Among the PID measures proposed, the maximum entropy
measures of Bertschinger et al. [24] have a preeminent role in the bivariate case because they provide
bounds for any other measure consistent with a set of properties shared by many of the proposed
measures. Motivated by this special role of the maximum entropy measures, Chicharro [38] extended
the maximum entropy approach to measures of the multivariate redundant information, which provide
analogous bounds for the multivariate case. However, the work in [38] did not address their
numerical implementation.

In this work, we present MAXENT3D_PID, a Python module that computes a trivariate
information decomposition following the maximum entropy PID of [38] and exploits the connection
with the bivariate decompositions associated with the trivariate ones [28]. This is, to our knowledge,
the first available implementation of the maximum-entropy PID framework beyond the bivariate
case [39–42], see Appendix B. This implementation is relevant for the theoretical development and
practical use of the PID framework.

From a theoretical point of view, this implementation will provide the possibility to test the
properties of the PID beyond the bivariate case. This is critical with regard to the nonnegativity property
because, while nonnegativity is guaranteed in the bivariate case, for the multivariate case, it has
been proven that negative terms can appear in the presence of deterministic dependencies [30,32,43].
However, the violation of nonnegativity has only been proven with isolated counterexamples, and it is
not understood which properties of a system’s dependencies lead to negative PID measures.

From a practical point of view, the trivariate PID allows studying new types of distributed
information that only appear beyond the bivariate case, such as information that is redundant
for two inputs and unique with respect to a third [6]. This extension is significant both to study
multivariate systems directly, as well as to be exploited for data analysis [21,44]. As mentioned above,
the characterization of synergy and redundancy in multivariate systems is relevant for a broad range of
fields that encompass social and biological systems. So far, the PID has particularly found applications
in neuroscience (e.g., [17,37,45–48]). For data analysis, the quantification of multivariate redundancy
can be applied to dimensionality reduction [22] or to better understand how representations emerge in
neural networks during learning [49,50]. Altogether, this software promises to contribute significantly
to the refinement of the information-theoretic tools it implements and also to foster its widespread
application to analyze data from multivariate systems.

2. Models and Software

The section starts by briefly describing the mathematical model of the problem. Then, it discusses
the architecture of MAXENT3D_PID. It closes by explaining in details of how to use the software.

2.1. Maximum Entropy Decomposition Measure

Consider X, Y,, and Z as the sources and T as the target of some system. Let P be the joint
distribution of (T, X, Y, Z) and MI(T;S) be the mutual information of T and S , where S is any
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nonempty subset of (X, Y, Z). The PID decomposes MI(T; X, Y, Z) into finer parts, namely synergistic,
unique, redundant unique, and redundant information. These finer parts respect certain identities [6],
e.g., a subset of them sums up to MI(T, X) (all identities are explained in Appendices A and C).
Following the maximum entropy approach [24], to obtain this decomposition, it is necessary to solve
the following optimization problems:

min
∆P

MI(T; X, Y, Z) (1a)

min
∆P

MI(T; X1, X2) for X1, X2 ∈ {X, Y, Z} (1b)

where:

∆P = {Q ∈ ∆ :Q(T, X) = P(T, X), Q(T, Y) = P(T, Y),

Q(T, Z) = P(T, Z)}

and ∆ is the set of all joint distributions of (T, X, Y, Z). The four minimization problems in
Equation (1a,b) can be formulated as exponential cone programs, a special case of convex optimization.
The authors refer to [41] for a nutshell introduction to cone programs, in particular the exponential
ones. The full details on how to formulate (1a,b) as exponential cone programs and their convergence
properties are explained in [51] (Chapter 5).

MAXENT3D_PID on its own returns the synergistic information and unique information
collectively. In addition, with the help of the bivariate solver [39] (used in a specific way), the finer
synergistic and unique information can also be extracted. Hence, the presented model obtains
all the trivariate PID quantities. The full details for recovering the finer parts can be found in
Appendices C and D.

2.2. Software Architecture and Functionality

MAXENT3D_PID is implemented using the standard PYTHON syntax. The module uses an
optimization software ECOS [52] to solve several optimization problems needed to compute the
trivariate PID. To install the module, the ECOS Python package has to be installed, and then
from the GITHUB repository, the files MAXENT3D_PID.py, TRIVARIATE_SYN.py, TRIVARIATE_UNQ.py,
and TRIVARIATE_QP.py must be downloaded [53].

MAXENT3D_PID has two Python classes Solve_w_ECOS and QP. Class Solve_w_ECOS receives the
marginal distributions of (T, X), (T, Y), and (T, Z) as Python dictionaries. These distributions are used
by Solve_w_ECOS sub-classes Opt_I and Opt_II to solve the optimization problems of Equation (1a,b)
respectively. The class QP is used to recover the solution of any optimization problems of Equation (1a,b)
when Solve_w_ECOS fails to obtain a solution of a good quality. Figure 1 gives an overview of how
these two classes interact.

2.2.1. The Subclass Opt_I and Opt_II

The sub-classes Opt_I and Opt_II formulate the problems Equation (1a,b), use ECOS to get the
optimal values, and compute their violations of the optimality certificates. They return the optimal
values and their optimality violations. These violations are quality measures of the obtained PID.
Figure 1 describes this process within the class Solve_w_ECOS. Note that both sub-classes Opt_I and
Opt_II optimize conditional entropy functionals; however, the different number of arguments leads
to a difference in how to fit the problems into the cone program and retrieving the optimal solution;
hence the requirement of splitting them into different classes.
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Figure 1. A flowchart describing the process of computing the trivariate PID via MAXENT3D_PID.
It gives an overview of how pid() utilizes the classes Solve_w_ECOS and QP in the aim of computing
the trivariate PID.

2.2.2. The Class QP

Class QP acts if Solve_w_ECOS returns values of a subset of Equation (1a,b) with high optimality
violations. It improves the errant values by best fitting them using quadratic programming, where the
PID identities (A12) are respected.

2.3. Using MAXENT3D_PID

The process of computing the PID is packed in the function pid(). This function takes as input
the distribution P of (T, X, Y, Z) via a Python dictionary where the tuples (t, x, y, z) are keys and their
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associated probability P(t, x, y, z) is the value of the key; see Figure 2. The function formulates and
solves the problems of (1a,b) using Solve_w_ECOS and, if needed, uses QP to improve the solution.
This function pid() returns a Python dictionary, explained in Tables 1 and 2, containing the PID of
(T, X, Y, Z) in addition to the optimality violations.

# The function pid() is imported from the module MAXENT3D_PID
from MAXENT3D_PID import~pid

# The input distribution is defined as a Python dictionary
andDgate = dict()
andDgate[ (0,0,0,0) ] = .25
andDgate[ (0,0,1,0) ] = .25
andDgate[ (0,1,0,1) ] = .25
andDgate[ (1,1,1,1) ] = .25

# pid() is called
sol = pid(andDgate)
# printing the obtained PID
msg="""Synergistic information: {CI}
Unique information in X: {UIX}
Unique information in Y: {UIY}
Unique information in Z: {UIZ}
Unique information in X,Y: {UIXY}
Unique information in X,Z: {UIXZ}
Unique information in Y,Z: {UIYZ}
Shared information: {SI}"""
print(msg.format(**sol))

Figure 2. Using MAXENT3D_PID to compute the PID of the distribution obtained from
the ANDDUPLICATE gate (andDgate). The ANDDUPLICATE gate evaluates T as the logical and of
X and Y (X ∧ Y) such that Z copies X.

Table 1. The keys of the trivariate PID quantities in the returned dictionary. Note that
UI(T; Xi\Xj, Xk) and UI(T; Xi, Xk\Xj) refer to unique and unique redundant information for
Xi, Xk, Xj ∈ {X, Y, Z}, CI(T; X, Y, Z) refers to synergistic information, and SI(T; X, Y, Z) refers to
redundant or shared information.

Keys Values Keys Values

’UIX’ UI(T; X\Y, Z) ’UIYZ’ UI(T; Y, Z\X)
’UIY’ UI(T; Y\X, Z) ’UIXZ’ UI(T; X, Z\Y)
’UIZ’ UI(T; Z\X, Y) ’UIXY’ UI(T; X, Y\Z)
’CI’ CI(T; X, Y, Z) ’SI’ SI(T; X, Y, Z)

Table 2. The keys of optimality violations for each problem (1a,b) in the returned dictionary.

Key Value

’Num_Err_I’ Optimality violations of min
∆P

MI(T; X, Y, Z)

’Num_Err_12’ Optimality violations of min
∆P

MI(T; X, Y)

’Num_Err_13’ Optimality violations of min
∆P

MI(T; X, Z)

’Num_Err_23’ Optimality violations of min
∆P

MI(T; Y, Z)

The function pid() has three other optional inputs. The first optional input is called parallel
(the default value is parallel=’off’), which determines whether the process will be parallelized.
If parallel=’off’, then the process is going to be done sequentially, i.e., the four problems of
Equation (1a,b) are going to be formulated and solved one after the other. Their optimality violations
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are also computed consecutively, and then, final results are obtained; whereas, when parallel=’on’,
the formulation of the four problems Equation (1a,b) is done in parallel. The four problems are solved
simultaneously, and finally, the optimality violations along with the final results are computed in
parallel. Thus, when parallel=’on’, there will be three sequential steps: formulating the problems,
solving them, and obtaining the final results, as opposed to parallel=’off’, which requires at least
twelve sequential steps.

The second optional input is a dictionary that allows the user to tune the tolerances controlling
the optimization routines of ECOS listed in Table 3.

Table 3. Parameters (tolerances) that govern the optimization in ECOS.

Parameter Description Default Value

feastol primal/dual feasibility tolerance 10−7

abstol absolute tolerance on the duality gap 10−6

reltol relative tolerance on the duality gap 10−6

feastol_inacc primal/dual infeasibility relaxed tolerance 10−3

abstol_inacc absolute relaxed tolerance on the duality gap 10−4

reltol_inacc relaxed relative duality gap 10−4

max_iter maximum number of iterations that ECOS does 100

In this dictionary, the user only sets the parameters that will be tuned. For example, if the user
wants to achieve high accuracy, then the parameters abstol and reltol should be small (e.g., 10−12)
and the parameter max_iter should be high (e.g., 1000). In Figure 3, it is shown how to modify the
parameters. In this case, the solver will take longer to return the solution. For further details about the
parameter’s tuning, check [41].

# The function pid() is imported from the module MAXENT3D_PID
from MAXENT3D_PID import pid
# The input distribution is defined as a Python dictionary
andDgate = dict()
andDgate[ (0,0,0,0) ] = .25
andDgate[ (0,0,1,0) ] = .25
andDgate[ (0,1,0,1) ] = .25
andDgate[ (1,1,1,1) ] = .25
# The dictionary is defined to tune ECOS parameters
parms = dict()
parms[’abstol’] = 1.e-12 # set abstol
parms[’reltol’] = 1.e-12 # set reltol
parms[’max_iters’] = 100 # set maximum iteration
# pid is called
pid(andDgate, parallel=’on’, **parms)

Figure 3. Tuning the parameters of ECOS.

The third optional input is called output, and it controls what pid() will print on the user’s
screen. This optional input is explained in Table 4.
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Table 4. Description of the printing modes in the function pid().

Value Description

0 (default) Simple Mode: pid() prints its output (Python dictionary).

1 Time Mode: In addition to what is printed when output=0, pid() prints a flag when it starts
preparing the optimization problems in Equation (1a,b), the total time to create each problem, a flag when it
calls ECOS, brief stats from ECOS of each problem after solving it (Figure 4), the total time for
retrieving the results, the total time for computing the optimality violations, and the total time
to store the results.

2 Detailed Time Mode: In addition to what is printed when output=0, pid() prints for each
problem the time of each major step of creating the model, brief stats from ECOS of each problem
after solving it, the total time of each function used for retrieving the results, the time of each
major step used to compute the optimality violations, the time of each function used to obtain
the final results, and the total time to store the results.

3 Detailed Optimization Mode: In addition to what is printed when output=1, pid() prints
ECOS detailed stats of each problem after solving it (Figure 5).

MAXENT3D_PID.pid(): Stats for optimizing H(S|X,Y,Z):
{’exitFlag’: 0, ’pcost’: -0.3465735936653011, ’dcost’: -0.3465735930504127,
’pres’: 2.8092696654527348e-09, ’dres’: 2.7131747078266765e-10, ’pinf’: 0.0,
’dinf’: 0.0, ’pinfres’: nan, ’dinfres’: 0.43220650722288695, ’gap’:
6.4243546975262245e-09, ’relgap’: 1.8536769144998566e-08, ’r0’: 1e-08,
’iter’: 19, ’mi_iter’: -1, ’infostring’: ’Optimal solution found’, ’timing’:
{’runtime’: 0.000498888, ’tsetup’: 9.6448e-05, ’tsolve’: 0.00040244},
’numerr’: 0}

Figure 4. Brief stats from ECOS after solving Problem (1a).

ECOS 2.0.4 \hl{-} (C) embotech GmbH, Zurich Switzerland, 2012--2015. Web: \hl{www.embotech.com/ECOS}
It pcost dcost gap pres dres k/t mu step sigma IR | BT
0 +0.000e+00 -0.000e+00 +4e+02 1e+00 3e-01 1e+00 1e+00 --- --- 0 0 - | - -
1 -3.608e+00 -2.696e+00 +1e+01 9e-01 2e-02 1e+00 3e-02 0.9791 9e-03 1 1 1 | 1 0
2 -2.806e+00 -2.611e+00 +3e+00 3e-01 5e-03 2e-01 7e-03 0.7833 1e-02 1 1 1 | 1 1
3 -1.863e+00 -1.822e+00 +5e-01 5e-02 9e-04 4e-02 1e-03 0.7833 5e-03 1 1 1 | 0 1
4 -7.797e-01 -7.704e-01 +8e-02 1e-02 2e-04 1e-02 2e-04 0.7833 9e-03 1 1 1 | 1 1
5 -7.319e-01 -7.299e-01 +2e-02 3e-03 5e-05 2e-03 5e-05 0.7833 9e-04 1 1 1 | 0 1
6 -6.969e-01 -6.964e-01 +4e-03 7e-04 1e-05 6e-04 1e-05 0.7833 9e-03 1 1 1 | 1 1
7 -6.950e-01 -6.949e-01 +9e-04 1e-04 3e-06 1e-04 2e-06 0.7833 1e-03 1 1 1 | 0 1
8 -6.933e-01 -6.933e-01 +2e-04 3e-05 6e-07 3e-05 5e-07 0.7833 9e-03 1 0 0 | 1 1
9 -6.932e-01 -6.932e-01 +4e-05 6e-06 1e-07 6e-06 1e-07 0.7833 8e-04 1 0 0 | 0 1
10 -6.932e-01 -6.932e-01 +8e-06 1e-06 3e-08 1e-06 2e-08 0.7833 9e-03 1 0 0 | 1 1
11 -6.932e-01 -6.932e-01 +2e-06 3e-07 6e-09 3e-07 6e-09 0.7833 1e-04 1 0 0 | 0 1
12 -6.931e-01 -6.931e-01 +4e-07 7e-08 1e-09 6e-08 1e-09 0.7833 9e-03 2 0 0 | 1 1
13 -6.931e-01 -6.931e-01 +3e-08 4e-09 4e-11 1e-09 8e-11 0.9791 9e-03 2 0 0 | 1 0
14 -6.931e-01 -6.931e-01 +7e-09 1e-09 3e-11 7e-10 2e-11 0.5013 2e-01 2 0 0 | 4 3
OPTIMAL (within feastol=1.3e-09, reltol=1.1e-08, abstol=7.4e-09).
Runtime: 0.002952 seconds.

Figure 5. Detailed stats from ECOS after solving Problem (1a).

3. Illustrations

This section shows some performance tests of MAXENT3D_PID on three types of instances.
We will describe each type of instance and show the results of testing MAXENT3D_PID for each
one of them. The first two types, paradigmatic and COPY gates, are used as validation and memory
tests. The last type, random probability distributions, is used to evaluate the accuracy and efficiency
of MAXENT3D_PID in computing the trivariate partial information decomposition. More precisely,
accuracy is evaluated as how close the values of UI(T; X\Y, Z) and UI(T; Y\X, Z) are to zero when Z
has a considerably higher dimension, which is expected theoretically. The efficiency will be depicted
in how fast MAXENT3D_PID is able to produce the results. The machine used comes with an Intel(R)
Core(TM) i7-4790K CPU (four cores) and 16 GB of RAM. Only the computations of the last type were
done using parallelization.
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3.1. Paradigmatic Gates

As a first test, we used some trivariate PIDs that are known and have been studied previously [25].
These examples are the logic gates collected in Table 5. For these examples, the decomposition can be
derived analytically, and thus, they serve to check the numerical estimations.

Table 5. Paradigmatic gates with a brief explanation of their operation, where ⊕ is the logical XOR

and ∧ is the logical AND.

Instance Operation

XORDUPLICATE T = X⊕ Y; Z = X; X, Y i.i.d.

XORLOSES T = X⊕ Y; Z = X⊕ Y; X, Y i.i.d.

XORMULTICOAL T = U⊕V⊕W; X = (U, V),
Y = (U, W), Z = (V, W); U, V, W i.i.d.

ANDDUPLICATE T = X ∧ Y; Z = X; X, Y i.i.d.

Testing

The test was implemented in test_gates.py. MAXENT3D_PID returns, for all gates, the same
values as ([25], Table 1) up to a precision error of order 10−9. The slowest solving time (not in parallel)
was one millisecond.

3.2. Copy Gate

As a second test, we used the COPY gate example to examine the simulation of large systems.
We simulated how the solver handled large systems in terms of speed and reliability. Reliability, in this
context, is meant as the consistency of the measure on large systems and the degree to which the
results can be trusted to be accurate enough.

The COPY gate is the mapping of (x, y, z), chosen uniformly at random, to (t, x, y, z), where
t = (x, y, z). The size of the joint distribution of (T, X, Y, Z) scales as |X|2 · |Y|2 · |Z|2, where x, y, z ∈
X×Y× Z. In our test, |X| = `, |Y| = m and |Z| = n, where `, m, n ∈ {10, 20, . . . , 50}.

Since X, Y and Z are independent, it is easy to see that the only nonzero quantities are
UI(T; X1\X2, X3) = H(X1) for X1, X2, X3 ∈ {X, Y, Z}.

Testing

The test was implemented in test_copy_gate.py. The slowest solving time was less than 100 s,
and the worst deviation from the actual values was 0.0001%. For more details, see Table 6.
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Table 6. Copy gate results. The results are divided into three sets ordered increasingly w.r.t. the size of
the joint distributions. Dimensions capture the unordered triplet (|X|, |Y|, |Z|), and the deviation is
computed as the maximum over all PID quantities of 100|r̃− r| where r̃ is the obtained PID quantity
and r is the analytical PID quantity. Note that the theoretical results are either zero or log2(|S|),
where S ∈ X, Y, Z.

Set 1 Set 2 Set 3

Dimensions Time (s) Deviation (%) Dimensions Time (s) Deviation (%) Dimensions Time (s) Deviation (%)

(10,10,10) 0.82 10−7 (20,20,30) 7.53 10−6 (30,30,40) 25.72 10−6

(10,10,20) 1.06 10−7 (10,30,50) 8.67 10−6 (20,40,50) 24.32 10−5

(10,10,30) 1.62 10−7 (10,40,40) 8.68 10−7 (30,30,50) 27.90 10−6

(10,10,40) 2.08 10−7 (20,20,40) 8.85 10−7 (30,40,40) 29.85 10−6

(10,20,20) 2.21 10−7 (20,30,30) 11.41 10−6 (20,50,50) 34.94 10−6

(10,10,50) 2.61 10−6 (10,40,50) 11.44 10−6 (30,40,50) 47.40 10−5

(10,20,30) 2.99 10−6 (20,20,50) 11.34 10−6 (40,40,40) 42.21 10−5

(10,20,40) 4.11 10−6 (20,30,40) 13.00 10−6 (30,50,50) 55.60 10−4

(20,20,20) 4.96 10−6 (10,50,50) 16.37 10−7 (40,40,50) 55.18 10−5

(10,30,30) 4.43 10−7 (30,30,30) 16.28 10−7 (40,50,50) 89.58 10−6

(10,20,50) 5.51 10−7 (20,30,50) 17.24 10−7 (50,50,50) 97.74 10−5

(10,30,40) 6.51 10−6 (20,40,40) 18.34 10−5

3.3. Random Probability Distributions

As a last example, we used joint distributions of (T, X, Y, Z) sampled uniformly at random over
the probability space, to test the accuracy of the solver. The size of T, X, and Y was fixed to two,
whereas |Z| varied in {2, . . . , 14}. For each |Z|, 500 joint distributions of (T, X, Y, Z) were sampled.

Testing

As |Z| increased, the average value of UI(T; X\Y, Z) and of UI(T; Y\X, Z) decreased, while that of
UI(T; Z\X, Y) increased. In Figure 6, the accuracy of the optimization is reflected in the low divergence
from zero obtained for the unique information UI(T; X\Y, Z) and UI(T; Y\X, Z). In Figure 7, the time
has a constant trend, and the highest time value recorded was 0.8 s.
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Figure 6. The variation of the unique information, as the size of Z increases, for the random probability
distributions described in Section 3.3. It shows that the value of the unique information of Z increases
as the dimension of Z increases.
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Figure 7. Box plotting of the time for MAXENT3D_PID to compute the PID of random joint probability
distributions of (T, X, Y, Z) for |T| = |X| = |Y| = 2 and different sizes of Z. For the size of the sets
explored, the computational time shows a flat trend, and its variance is small.

3.4. Challenging Distributions

We tested MAXENT3D_PID on randomly uniformly-sampled distributions, but with large sizes
of T, X, Y, and Z. For each m, 500 joint distributions of (T, X, Y, Z) were sampled where |T| =
|X| = |Y| = |Z| = m and 2 ≤ m ≤ 19. The idea was to check with random and huge distributions
(not structured as in the case of the COPY gate) how stable the estimator was.

3.4.1. Testing

For m ≥ 5, some of the optimization problems (1a,b) did not converge due to numerical
instabilities. This issue started to be frequent and significant when m ≥ 14, for example 5% of
the distributions had numerical problems in some of their optimization problems. We noticed that the
returned solution from the non-convergent problem was feasible and far from optimal by a factor of 100
at most. The feasibility of the returned solution suggested fitting it along with the returned (optimal)
solutions from the other convergent problems into the system of PID identities (A12), which will
reduce the optimality gap.

3.4.2. Recommendation

These challenging distributions have mainly two features, namely the high dimensionality of the
quadruple (T, X, Y, Z) and a significant number of relatively small (almost null) probability masses
along with few concentrated probability masses. We suspect that these two features combined were
the main reason for the convergence problems. Our approach was to use a quadratic programming
(Class QP), which focuses on reducing the optimality gap and thus returns a close PID to the optimal
PID (in case of no convergence problems).

Furthermore, we advise users to mitigate such distributions by dropping some of the points
with almost null probability masses. Since the objective functions in (1a,b) are continuous and
smooth (full support distributions) on ∆P, then the PID of the mitigated distribution is considered
a good approximation of that of the original distribution. Although we did not test this ad hoc
on MAXENT3D_PID, the same technique was applied to such instances for BROJA_2PID ([51],
Chapter 5).

We speculated that when m ≥ 50, the solver will suffer dire numerical instabilities. It is
recommended for the user to avoid large discrete binning resulting in humongous distributions.
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3.4.3. Time Complexity

Theoretically, Makkeh et al. [39,51] showed that the worst running time complexity for solving (1a)
(the hardest problem computationally) was O(N3/2 log N) where N = |T× X×Y× Z|. Note that this
time complexity bound was for the so-called barrier method, whereas ECOS uses the primal-dual
Mehrotra predictor-corrector method [54], which does not have a theoretical complexity bound [55].

4. Summary and Discussion

In this work, we presented MAXENT3D_PID, a Python module that computes a trivariate
decomposition based on the partial information decomposition (PID) framework of Williams and
Beer [6], in particular following the maximum entropy PID of [38] and exploiting the connection
with the bivariate decompositions associated with the trivariate one [28]. This is, to our knowledge,
the first available implementation extending the maximum-entropy PID framework beyond the
bivariate case [39–42].

The PID framework allows decomposing the information that a group of input variables has about
a target variable into redundant, unique, and synergistic components. For the bivariate case, this results
in decomposition with four components, quantifying the redundancy, synergy, and unique information
of each of the two inputs. In the multivariate case, finer parts appear, which do not correspond to
purely redundant or unique components. For example, the redundancy components of the multivariate
decomposition can be interpreted based on local unfoldings when a new input is added, with each
redundancy component unfolding into a component also redundant with the new variable and a
component of unique redundancy with respect to it [38]. The PID analysis can qualitatively characterize
the distribution of information beyond the standard mutual information measures [56] and has already
been proven useful to study information in multivariate systems (e.g., [14,17,37,56–62]).

However, the definition of suited measures to quantify synergy and redundancy is still a
subject of debate. From all the proposed PID measures, the maximum entropy measures by
Bertschinger et al. [24] have a preeminent role in the bivariate case because they provide bounds to
any other alternative measures that share fundamental properties related to the notions of redundancy
and unique information. Chicharro [38] generalized the maximum entropy approach, proposing
multivariate definitions of redundant information and showing that these measures implement the
local unfolding of redundancy via hierarchically-related maximum entropy constraints. The package
MAXENT3D_PID efficiently implemented the constrained information minimization operations
involved in the calculation of the trivariate maximum-entropy PID decomposition. In Section 2,
we described the architecture of the software, presented in detail the main function of the software that
computes the PID along with its optional inputs, and described how to use it. In Section 3, we provided
examples that verified that the software produced correct results on paradigmatic gates, simulated how
the software scaled with large systems, and hinted to the accuracy of the software in estimating PID.
In this section, we also presented challenging examples where the MAXENT3D_PID core optimizer
had convergence problems and discussed our technique to retrieve an approximate PID and some
suggestions to avoid such anomalies.

The possibility to calculate a trivariate decomposition of the mutual information represents a
qualitative extension of the PID framework that goes beyond an incremental extension of the bivariate
case, both regarding its theoretical development and its applicability. From a theoretical point of view,
regarding the maximum-entropy approach, the multivariate case requires the introduction of new
types of constraints in the information minimization that do not appear in the bivariate case (Section 2
and [38]). More generally, the trivariate decomposition allows further studying one of the key unsolved
issues in the PID formulation, namely the requirement of the nonnegativity of the PID measures in the
multivariate case.

In particular, Harder et al. [23] indicated that the original measure proposed by [6] only quantified
common amounts of information and required new properties for the PID measures, to quantify
qualitatively and not quantitatively how information is distributed. However, for the multivariate
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case, these properties have been proven to be incompatible with guaranteeing nonnegativity, by using
some counterexamples [30,32,43]. This led some subsequent proposals to define PID measures that
either focus on the bivariate case [23,24] or do not require nonnegativity [26,29]. A multivariate
formulation was desirable because the notions of synergy and redundancy are not restrained to
the bivariate case, while nonnegativity is required for an interpretation of the measures in terms
of information communication [34] and not only as a statistical description of the probability
distributions. MAXENT3D_PID will allow systematically exploring when negative terms appear,
beyond the currently-studied isolated counterexamples. Furthermore, it has been shown that in those
counterexamples, the negative terms result from the criterion used to assign the information identity to
different pieces of information when deterministic relations exist [32]. Therefore, a systematic analysis
of the appearance of negative terms will provide a better understanding of how information identity
is assigned when quantifying redundancy, which is fundamental to assess how the PID measures
conform to the corresponding underlying concepts.

From a practical point of view, the trivariate decomposition allows studying qualitatively new
types of distributed information, identifying finer parts of the information that the inputs have about
the target, such as information that is redundant for two inputs and unique with respect to a third [6].
This is particularly useful when examining multivariate representations, such as the interactions
between several genes [8,63] or characterizing the nature of coding in neural populations [64,65].
Furthermore, exploiting the connection between the bivariates and the trivariate decomposition due to
the invariance of redundancy to context [28], MAXENT3D_PID also allows estimating the finer parts
of the synergy component (Appendix D). This also offers a substantial extension in the applicability of
the PID framework, in particular for the study of dynamical systems [66,67]. In particular, a question
that requires a trivariate decomposition is how information transfer is distributed among multivariate
dynamic processes. Information transfer is commonly quantified with the measure called transfer
entropy [68–72], which calculates the conditional mutual information between the current state of a
certain process Y and the past of another process X, given the past of Y and of any other processes
Z that may also influence those two. In this case, by construction, the PID analysis should operate
with three inputs corresponding to the pasts of X, Y, and Z. Transfer entropy is widely applied to
study information flows between brain areas to characterize dynamic functional connectivity [73–75],
and characterizing the synergy, redundancy, and unique information of these flows can provide further
information about the degree of integration or segregation across brain areas [76].

More generally, the availability of software implementing the maximum entropy PID framework
beyond the bivariate case promises to be useful in a wide range of fields in which interactions in
multivariate systems are relevant, spanning the domain of social [12,77] and biological sciences [3,10,17,63].
Furthermore, the PID measures can also be used as a tool for data analysis and to characterize
computational models. This comprises dimensionality reduction via synergy or redundancy
minimization [19,22], the study of generative networks that emerge from information maximization
constraints [78,79], or explaining the representations in deep networks [50].

The MAXENT3D_PID package presents several differences and advantages with respect to
other software packages currently available to implement the PID framework. Regarding the
maximum entropy approach, other packages only compute bivariate decompositions [39–42]. The dit
package [42] also implements several other PID measures, including bivariate implementations for the
measure of [23,27]. Among the multivariate decompositions, the ones using the measures Imin [6] or
IMMI [80] can readily be calculated with standard estimators of the mutual information. However,
the former, as discussed above, only quantifies common amounts of information, while the latter is
only valid for a certain type of data, namely multivariate Gaussian distributed. Software to estimate
multivariate pointwise PIDs is also available [26,29,81]. However, as mentioned above, these measures
by construction allow negative components, which may not be desirable for the interpretation of the
decomposition, for example in the context of communication theory, and limits their applicability for
data analysis in such regimes [22]. Altogether, MAXENT3D_PID is the first software that implements
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the mutual information PID framework via hierarchically-related maximum entropy constraints,
extending the bivariate case by efficiently computing the trivariate PID measures.
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Appendix A. Williams–Beer PID Framework

In order to decompose MI(T, S) where T is the target and S are the sources, Williams and
Beer [6] defined a set of axioms leading to what is known as the redundancy lattice (Figure A1).
These axioms and lattice form the framework for partial information decomposition (PID) upon which
all the exiting definitions of PID are formulated.

Appendix A.1. Williams–Beer Axioms

Suppose that a source A is a subset of S and a collection α is a set of sources. A shorthand notation
inspired by [38] will be used to represent the collection of sources; for example, if the system is
(T, X, Y, Z), then the collection of sources {{X, Y}, {X, Z}} will be denoted as XY.XZ. [6] defined the
following axioms that redundancy should comply with:

• Symmetry (S): MI(T; α) is invariant with respect to the order of the sources in the collection.
• Self-redundancy (SR): The redundancy of a collection formed by a single source is equal to the

mutual information of that source.
• Monotonicity (M): Adding sources to a collection can only decrease the redundancy of the

resulting collection, and redundancy is kept constant when adding a superset of any of the
existing sources.

Appendix A.2. The Redundancy Lattice

Williams and Beer [6] defined a lattice formed from the collections of sources. They used (M)
to define the partial ordering between the collections. The axiom (S) reflects the fact that each atom
of the lattice will represent a partial information decomposition quantity. More importantly, not all
the collections of sources will be considered as atoms since adding a superset of any source to the
examined system does not change redundancy, i.e., (M). The set of collections of sources included in
the lattice which will form its atoms is defined as:

A(S) = {α ∈ P(S)− {∅} : ∀Ai, Aj ∈ α, Ai * Aj}, (A1)

where P(S) is the power set of S. For this set of collections (atoms), the partial ordering relation that
constructs the redundancy lattice is:

∀α, β ∈ A(S), (α � β⇔ ∀B ∈ β, ∃A ∈ α, A ⊆ B), (A2)

i.e., for two collections α and β, α � β, if for each source in β, there is a source in α that is a subset of
that source. In Figure A1, the bivariate and trivariate redundancy lattices are shown.
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Figure A1. (A) Bivariate and (B) trivariate redundancy lattices. Letters indicate the mapping of terms
between the lattices.

Appendix A.3. Defining PID over the Redundancy Lattice

The mutual information decomposition was constructed in [6] by implicitly defining partial
information measures δC(T; α) associated with each node α of the redundancy lattice C (Figure A1),
such that the redundancy measures are obtained as:

MI(T, α) = ∑
β∈↓α

δC(T; β), (A3)

where ↓ α refers to the set of collections lower than or equal to α in the partial ordering, and hence
reachable descending from α in the lattice C.

Appendix B. Bivariate Partial Information Decomposition

Let T be the target random variable, X and Y be the two source random variables, and P be the
joint probability distribution of (T, X, Y). The PID captures the synergistic, unique, and redundant
information as follows:

• The synergistic information between X and Y about T, namely CI(T; X : Y).
• The redundant information of X and Y about T, namely SI(T; X, Y).
• The unique information of X about T, namely UI(T; X\Y).
• The unique information of Y about T, namely UI(T; Y\X).

This decomposition, using Beer–Williams axioms, yields these identities:

MI(T; X, Y) = CI(T; X : Y) + SI(T; X, Y) + UI(T; X\Y) + UI(T; X\Y)
MI(T; Xi) = SI(T; Xi, Xj) + UI(T; Xi\Xj) for all Xi, Xj ∈ {X, Y}.

(A4)

Given the generic structure of the PID framework, the work in [24] (BROJA) defined PID measures
considering the following polytope:

∆P = {Q ∈ ∆ : Q(T, X) = P(T, X), Q(T, Y) = P(T, Y)}, (A5)

where ∆ is the set of all joint distributions of (T, X, Y). The work in [24] (BROJA) used the maximum
entropy decomposition over ∆P in order to quantify the above quantities. Moreover, BROJA assumed
that the following assumptions hold.

Assumption A1 (Lemma 3 [24]). On the bivariate redundancy lattice (Figure A1), the following assumptions
must hold to quantify the PID
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1. All partial information measures of the redundancy lattice are nonnegative.
2. The terms δ(T; X.Y), δ(T; X), and δ(T; Y), are constant on ∆P.
3. The synergistic term, namely δ(T, XY), vanishes on ∆P upon minimizing the mutual information

MI(T; X, Y).

Under the above assumptions and using maximal entropy decomposition, BROJA defined the
following optimization problems that compute the PID quantities.

C̃I(T; X : Y) = MI(T; X, Y)− min
Q∈∆P

MI(T; Y, X) (A6a)

ŨI(T; Xi\Xj) = min
Q∈∆P

MI(T; Xi, Xj)− min
Q∈∆P

MI(T; Xj) for all Xi, Xj ∈ {X, Y} (A6b)

S̃I(T; X, Y) = max
Q∈∆P

CoI(T; X; Y) (A6c)

where CoI(T; X; Y) is the co-information of T, X, and Y defined as MI(T, X) −MI(T, X | Y). Note
that [38] proved that (A6c) is equivalent to:

S̃I(T; X, Y) = min
Q∈∆P ,

CoI(T;X;Y)=0

MI(T; X, Y)− min
Q∈∆P

MI(T; X, Y).

Appendix B.1. Mutual Information over the Bivariate Redundancy Lattice

This subsection writes down some mutual information quantities in terms of redundancy lattice
partial information measures using (A3). These formulas will be used in the following subsection
to verify that the measures defined in (A6a–c) to quantify the desired partial information quantities.
MI(T; X, Y) will be the sum of partial information measure on every node of the redundancy lattice C
as follows:

MI(T; X, Y) = δ(T, XY) + δ(T, X) + δ(T, Y) + δ(T, X.Y). (A7)

The mutual information of one source and the target is expressed as:

MI(T; Xi) = δ(T, Xi) + δ(T, Xi.Xj) for Xi, Xj ∈ {X, Y}. (A8)

The mutual information of one source and the target conditioned on knowing the other source is
expressed as:

MI(T; Xi | Xj) = δ(T, XiXj) + δ(T, Xi) for all Xi, Xj ∈ {X, Y}. (A9)

The co-information CoI(T; X; Y) is expressed as:

CoI(T; X; Y) = δ(T, X.Y)− δ(T, XY). (A10)

Appendix B.2. Verification of BROJA Optimization

This subsection will verify that the measures defined in (A6a–c) quantify the desired partial
information quantities under the maximum decomposition principle. Assumption A1 implies that
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min
Q∈∆P

δ(T, XY) = 0, min
Q∈∆P

δ(T, X.Y) = δ(T, 1.2), min
Q∈∆P

δ(T, X) = δ(T, X), and min
Q∈∆P

δ(T, Y) = δ(T, Y).

Therefore, it is easy to see that:

C̃I(T; X : Y) = MI(T; X, Y)− min
Q∈∆P

MI(T; Y, X) = δ(T, XY)

ŨI(T; X\Y) = min
Q∈∆P

MI(T; X, Y)− min
Q∈∆P

MI(T; Y) = δ(T, X)

ŨI(T; Y\X) = min
Q∈∆P

MI(T; X, Y)− min
Q∈∆P

MI(T; X) = δ(T, Y).

Now, CoI(T; X; Y) = 0 implies that δ(T, XY) = δ(T, X.Y); thus:

S̃I(T; X, Y) = min
Q∈∆P ,

CoI(T;X;Y)=0

MI(T; X, Y)− min
Q∈∆P

MI(T; X, Y) = δ(T, X.Y).

Hence, under Assumption A1,

C̃I(T; X : Y) = CI(T; X : Y), ŨI(T; X\Y) = UI(T; X\Y)
ŨI(T; Y\X) = UI(T; Y\X), S̃I(T; X, Y, Z) = SI(T; X, Y, Z).

(A11)

Appendix C. Maximum Entropy Decomposition of Trivariate PID

Let T be the target random variable, X, Y, Z be the source random variables, and P be the joint
probability distribution of (T, X, Y, Z). Chicharro [38] using maximum entropy decomposed mutual
information MI(T, X, Y, Z) into: synergistic, unique, unique redundant, and redundant information.
In this decomposition,

• the synergistic quantity, C̃I(T; X, Y, Z), captures the sum of all individual synergistic terms, namely
δ(T; XYZ) + δ(T; XY) + δ(T; XZ) + δ(T; YZ) + δ(T; XY.XZ) + δ(T; XY.YZ) + δ(T; XZ.YZ) +
δ(T; XY.XZ.YZ),

• the unique information, ŨI(T; Xi\Xj, Xk), captures the sum of the information that Xi has about
T solely, δ(T; Xi), and the information Xi knows redundantly with the synergy of (Xj, Xk),
δ(T; Xi.XjXk) for all Xi, Xj, Xk ∈ {X, Y, Z},

• the unique redundant information, ŨI(T; Xi, Xj\Xk), captures the actual unique information that
Xi and Xj have redundantly about T, δ(T; Xi.Xj) for all Xi, Xj, Xk ∈ {X, Y, Z},

• and the redundant information, S̃I(T; X, Y, Z) captures the actual redundant information of X, Y,
and Z about T, i.e, δ(T; X.Y.Z).

Using Beer–Williams axioms. the decomposition yields these identities:

MI(T; X, Y, Z) = C̃I(T; X, Y, Z) + S̃I(T; X; Y; Z) + ŨI(T; X\Y, Z) + ŨI(T; Y\X, Z)

+ ŨI(T; Z\X, Y) + ŨI(T; X, Y\Z) + ŨI(T; X, Z\Y) + ŨI(T; Y, Z\X)
MI(T; Xi) = S̃I(T; Xi; Xj; Xk) + ŨI(T; Xi\Xj, Xk) + ŨI(T; Xi, Xj\Xk)

+ ŨI(T; Xi, Xk\Xj) for all Xi, Xj, Xk ∈ {X, Y, Z}.

(A12)

and ∆ is the set of all joint distributions of (T, X, Y, Z). The measure uses the maximum entropy
decomposition over ∆P in order to compute the above quantities. Moreover, the work in [38] made
some assumptions over the partial information measures of the redundancy lattice.

Assumption A2 (Assumptions a.1 and a.2 in [38]). On the trivariate redundancy lattice (Figure A1),
the following assumptions are made to quantify the PID

1. All partial information measures of the redundancy lattice are nonnegative.
2. The terms δ(T; X.Y.Z) and δ(T; Xi.Xj) for all Xi, Xj ∈ {X, Y, Z} are invariant on ∆P.
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3. The summands δ(T; Xi) + δ(T; Xi.XjXk) for all Xi, Xj, Xk ∈ {X, Y, Z} are invariant on ∆P.
4. The terms δ(T; XYZ), δ(T; XY.XZ.YZ), δ(T; XiXj), δ(T; XiXj.XiXk), δ(T; Xi), and δ(T; Xi.XjXk) for

all Xi, Xj, Xk ∈ {X, Y, Z} are not constant on ∆P.
5. All synergistic terms, δ(T; XYZ), δ(T; XY.XZ.YZ), δ(T; XiXj), and δ(T; XiXj.XiXk) for all Xi, Xj, Xk ∈

{X, Y, Z} vanish at the minimum over ∆P.
6. The partial information measures δ(T; Xi.XjXk) for all Xi, Xj, Xk ∈ {X, Y, Z} vanish at the minimum

over ∆P.

Under the above assumptions and using maximal entropy decomposition, the work in [38] defined
the following optimization problems that compute the PID quantities.

C̃I(T; X, Y, Z) = MI(T; X, Y, Z)− min
Q∈∆P

MI(T; Y, X, Z) (A13a)

ŨI(T; Xi\Xj, Xk) = min
Q∈∆P

MI(T; Xi, Xj, Xk)− min
Q∈∆P

MI(T; Xj, Xk) (A13b)

for all Xi, Xj, Xk ∈ {X, Y, Z}
ŨI(T; Xi, Xj\Xk) = min

Q∈∆P ,
CoI(T;Xi ;Xj |Xk )=0

MI(T; Xi, Xj, Xk)− min
Q∈∆P

MI(T; Xi, Xj, Xk) (A13c)

for all Xi, Xj, Xk ∈ {X, Y, Z}
S̃I(T; Z, Y, Z) = min

Q∈∆P ,CoI(T;X;Y)=0,
CoI(T;X;Y|Z)=0,w(Q)

MI(T; X, Y, Z)− min
Q∈∆P ,w(Q),

CoI(T;X;Y|Z)=0

MI(T; X, Y, Z), (A13d)

where:

w(Q) := {Q ∈ ∆ : MI(T; X, Y) = min
Q∈∆P

MI(T; X, Y), MI(T; X, Z) = min
Q∈∆P

MI(T; X, Z),

MI(T; Y, Z) = min
Q∈∆P

MI(T; Y, Z)}.

Mutual Information over the Trivariate Redundancy Lattice

This subsection writes down some mutual information quantities in terms of the trivariate
redundancy lattice’s partial information measures using (A3). The verification that the optimization
defined in (A13a–d) quantifies the desired partial information quantities was discussed in detail
by [38] and so will be skipped. However, these formulas are needed later when discussing how
to compute the individual PID terms using a hierarchy of BROJA and [38] PID decompositions.
The mutual information quantities are in terms of redundancy lattice partial information measures.

MI(T; X, Y, Z) will be the sum of the partial information measure on every node of the redundancy
lattice C as follows.

MI(T; X, Y, Z) = δ(T, XYZ) + δ(T, XY) + δ(T, XZ) + δ(T, YZ) + δ(T, XY.XZ)

+ δ(T, XY.YZ) + δ(T, XZ.YZ) + δ(T, XY.XZ.YZ) + δ(T, X)

+ δ(T, Y) + δ(T, Z) + δ(T, X.YZ) + δ(T, Y.XZ) + δ(T, Z.XY)

+ δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).

(A14)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the mutual information of two sources (jointly) and the target is
expressed as:

MI(T; Xi, Xj) = δ(T, XiXj) + δ(T, XiXj.XiXk) + δ(T, XiXj.XjXk)

+ δ(T, XiXj.XiXk.XjXk) + δ(T, Xi) + δ(T, Xj) + δ(T, Xi.XjXk)

+ δ(T, Xj.XiXk) + δ(T, Xk.XiXj) + δ(T, Xi.Xj) + δ(T, Xi.Xk)

+ δ(T, Xj.Xk) + δ(T, Xi.Xj.Xk).

(A15)
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For all Xi, Xj, Xk ∈ {X, Y, Z}, the mutual information of one source and the target is as follows:

MI(T; Xi) = δ(T, Xi) + δ(T, Xi.XjXk) + δ(T, Xi.Xj) + δ(T, Xi.Xk) + δ(T, Xi.Xj.Xk). (A16)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the mutual information of two sources (jointly) and the target
conditioned on knowing the other source is evaluated as:

MI(T; Xi, Xj | Xk) = δ(T, XiXjXk) + δ(T, XiXj) + δ(T, XiXk) + δ(T, XjXk)

+ δ(T, XiXj.XiXk) + δ(T, XiXj.XjXk) + δ(T, XiXk.XjXk)

+ δ(T, XiXj.XiXk.XjXk) + δ(T, Xi)

+ δ(T, Xj) + δ(T, Xi.XjXk) + δ(T, Xj.XiXk) + δ(T, Xi.Xj).

(A17)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the mutual information of one source and the target conditioned on
knowing only one of the other sources is written as:

MI(T; Xi | Xj) = δ(T, XiXj) + δ(T, XiXj.XiXk) + δ(T, XiXj.XjXk)

+ δ(T, XiXj.XiXk.XjXk) + δ(T, Xi) + δ(T, Xi.XjXk)

+ δ(T, Xk.XiXj) + δ(T, Xi.Xk).

(A18)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the mutual information of one source and the target conditioned on
knowing the other sources is:

MI(T; Xi | Xj, Xk) = δ(T, XiXjXk) + δ(T, XiXj) + δ(T, XiXk)

+ δ(T, XiXj.XiXk) + δ(T, Xi).
(A19)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the co-information of two sources and the target is expressed as:

CoI(T; Xi; Xj) = δ(T, Xi.Xj) + δ(T, Xi.Xj.Xk)−
(
δ(T, XiXj) + δ(T, XiXj.XiXk)

+ δ(T, XiXj.XjXk) + δ(T, XiXj.XiXk.XjXk) + δ(T, Xk.XiXj)
)
.

(A20)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the co-information of one source, two sources (jointly), and the target
is as follows:

CoI(T; Xi; Xj, Xk) = δ(T, Xi.XjXk) + δ(T, Xi.Xj) + δ(T, Xi.Xk) + δ(T, Xi.Xj.Xk)

−
(

δ(T, XiXjXk) + δ(T, XiXj) + δ(T, XiXk) + δ(T, XiXj.XiXk)
)

.
(A21)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the co-information of two sources (jointly), two sources (jointly),
and the target is evaluated as:

CoI(T; Xi, Xj; Xi, Xk) = δ(T, XiXj.XiXk) + δ(T, XiXj.XiXk.XjXk) + δ(T, Xi)

+ δ(T, Xk.XiXj) + δ(T, Xi.Xj) + δ(T, Xi.XjXk) + δ(T, Xj.XiXk)

+ δ(T, Xi.Xk) + δ(T, Xj.Xk) + δ(T, Xi.Xj.Xk)− δ(T, XiXjXk)

− δ(T, XjXk).

(A22)

For all Xi, Xj, Xk ∈ {X, Y, Z}, the co-information of two sources and the target conditioning on
knowing the other source can be written as:

CoI(T; Xi; Xj | Xk) = δ(T, XiXk.XjXk) + δ(T, XiXj.XiXk.XjXk) + δ(T, Xi.XjXk)

+ δ(T, Xj.XiXk) + δ(T, Xi.Xj)− δ(T, XiXjXk)− δ(T, XiXk). (A23)
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Appendix D. The Finer Quantities of Trivariate Maximum Entropy PID

In Appendix C, the maximum entropy decomposition for trivariate PID returns a synergistic
term, which is the sum of all individual synergy quantities, and a unique term, which is the sum of
unique and unique redundancy quantities. This section aims to show how to use maximum entropy
decomposition for bivariate PID in order to obtain each individual synergy quantity, as well as each
individual unique and unique redundancy quantity.

Let T be the target random variable, X, Y, Z be the source random variables, and P be the joint
probability distribution of (T, X, Y, Z). Now, BROJA will be applied to some subsystems of (T, X, Y, Z),
namely, (T, (Xi, Xj), Xk), (one single source) and (T, (Xi, Xj), (Xi, Xk)) (two double sources) for all
Xi, Xj, Xk ∈ {X, Y, Z}. Not that the pairs (Xi, Xj) and (Xi, Xk) are ordered alphabetically. Consider the
following probability polytopes upon which the optimization will be carried out:

∆P = {Q ∈ ∆; Q(T, X) = P(T, X), Q(T, Y) = P(T, Y), Q(T, Z) = P(T, Z)}

∆
Xi ,Xj .Xk
P = {Q ∈ ∆; Q(T, Xi, Xj) = P(T, Xi, Xj), Q(T, Xk) = P(T, Xk)}

where Xi 6= Xj, Xi 6= Xk, Xj 6= Xk for all Xi, Xj, Xk ∈ {X, Y, Z}

∆
Xi ,Xj .Xi ,Xk
P = {Q ∈ ∆; Q(T, Xi, Xj) = P(T, Xi, Xj), Q(T, Xi, Xk) = P(T, Xi, Xk)}

whereXi 6= Xj, Xi 6= Xk, Xj 6= Xk for all Xi, Xj, Xk ∈ {X, Y, Z}.

(A24)

Note that ∆P ( ∆
Xi ,Xj .Xk
P ( ∆

Xi ,Xj .Xi ,Xk
P for all Xi, Xj, Xk ∈ {X, Y, Z}.

Appendix D.1. One Single Source Subsystems

These subsystems have the form (T, (Xi, Xj), Xk) where Xi, Xj, Xk ∈ {X, Y, Z}, Xi 6= Xj 6= Xk,
and Xi 6= Xk. Now, apply the BROJA decomposition to the subsystem (T, (X, Y), Z). Therefore, its four
PID quantities are defined as follows:

C̃I(T; X, Y) = MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y, Z)

ŨI(T; X, Y\Z) = min
Q∈∆XY.Z

P

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; Z)

ŨI(T; Z\X, Y) = min
Q∈∆XY.Z

P

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y)

S̃I(T; X, Y, Z) = min
Q∈∆XY.Z

P ,
CoI(T;X,Y;Z)=0

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y, Z).

Note that the (X, Y) marginal distribution is fixed. This implies that the mutual information
MI(T; X, Y), MI(T; X | Y), MI(T; Y | X), and CoI(T; X; Y) is invariant over ∆XY.Z

P . Therefore,
the summands δ(T, XY) + δ(T, XY.XZ) + δ(T, XY.YZ) + δ(T, XY.XZ.YZ) + δ(T, Z.XY) are fixed.
However, from Assumption A2 and the fact that the X, Y marginal is fixed, the redundancy δ(T; Z.XY)
is invariant over ∆XY.Z

P . Thus, in addition to 2 in Assumption A2, the following partial information
measures are invariant over ∆XY.Z

P .

1. δ(T; Z.XY) since the (X, Y) marginal is fixed.
2. δ(T; Z) since MI(T; Z) and δ(T; Z.XY) are invariant over ∆XY.Z

P .
3. δ(T, XY) + δ(T, XY.XZ) + δ(T, XY.YZ) + δ(T, XY.XZ.YZ) since CoI(T; X, Y) and δ(T; Z.XY) are

invariant over ∆XY.Z
P .

Thus, using Assumption A2 and the definition of MI(T; X, Y, Z) over the redundancy lattice,

min
Q∈∆XY.Z

P

MI(T; X, Y, Z) = δ(T, XY) + δ(T, XY.XZ) + δ(T, XY.YZ) + δ(T, XY.XZ.YZ)

+ δ(T, X) + δ(T, Y) + δ(T, Z) + δ(T, X.YZ) + δ(T, Y.XZ)

+ δ(T, Z.XY) + δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).
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The synergy is evaluated as:

C̃I(T; X, Y) = MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y, X)

= δ(T, XYZ) + δ(T, XZ) + δ(T, YZ) + δ(T, XZ.YZ).

The unique information of (X, Y) in terms of the redundancy lattice atoms is:

ŨI(T; XY\Z) = min
Q∈∆XY.Z

P

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; Z)

= δ(T, XY) + δ(T, XY.XZ) + δ(T, XY.YZ) + δ(T, XY.XZ.YZ)

+ δ(T, X) + δ(T, Y) + δ(T, X.YZ) + δ(T, Y.XZ) + δ(T, X.Y).

The unique information of Z is written as:

ŨI(T; Z\XY) = min
Q∈∆XY.Z

P

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y) = δ(T, Z)

When CoI(T; X, Y; Z) = 0, then δ(T, Z.XY) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z) is equal to
δ(T, XYZ) + δ(T, XZ) + δ(T, YZ) + δ(T, XZ.YZ).

Then, in terms of redundancy lattice atoms, the shared information of (X, Y) and Z is:

S̃I(T; X, Y, Z) = min
Q∈∆XY.Z

P ,
CoI(T;X,Y;Z)=0

MI(T; X, Y, Z)− min
Q∈∆XY.Z

P

MI(T; X, Y, Z)

= δ(T, Z.XY) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).

Hence, for all Xi, Xj, Xk ∈ {X, Y, Z}, the BROJA decomposition of (T, (Xi, Xj), Xk) is:

C̃I(T; (Xi, Xj), Xk) = δ(T; XiXjXk) + δ(T; XiXk) + δ(T; XjXk) + δ(T; XiXk.XjXk)

ŨI(T; (Xi, Xj)\Xk) = δ(T; Xi) + δ(T; Xi.XjXk) + δ(T; Xj) + δ(T; Xj.XiXk) + δ(T; Xi.Xj)

+ δ(T; XiXj) + δ(T; XiXj.XiXk) + δ(T; XiXj.XjXk)

+ δ(T; XiXj.XiXk.XjXk)

ŨI(T; Xk\Xi, Xj) = δ(T; Xk)

S̃I(T; Xi, Xj, Xk) = δ(T; Xk.XiXj) + δ(T; Xi.Xk) + δ(T; Xj.Xk) + δ(T; Xi.Xj.Xk).

Appendix D.2. Two Double Source Subsystems

These subsystems have the form (T, (Xi, Xj), (Xi, Xk)) where Xi, Xj, Xk ∈ {X, Y, Z}, Xi 6= Xj,
Xi 6= Xk, and Xj 6= Xk. Now, apply the BROJA decomposition to the subsystem (T, (X, Y), (X, Z)).
Therefore, its four PID quantities are defined as follows:

C̃I(T; X, Y) = MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)

ŨI(T; (X, Y)\(X, Z)) = min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Z)

ŨI(T; (X, Z)\(X, Y)) = min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y)

S̃I(T; (X, Y), (X, Z)) = min
Q∈∆XY.XZ

P ,
CoI(T;X,Y;X,Z)=0

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y, Z).

Note that the (X, Y) and (X, Z) marginal distributions are fixed. Then, MI(T; X1, X2), MI(T; X1 |
X2), CoI(T; X1; X2), and MI(T; X : Y, X : Z) are invariant over ∆XY.XZ

P for (X1, X2) = (X, Y)
and (X1, X2) = (X, Z). Therefore, for (X1, X2, X3) = (X, Y, Z) and (X1, X2, X3) = (X, Z, Y),
δ(T, X1X2) + δ(T, X1X2.X1X3) + δ(T, X1X2.X2, X3) + δ(T, X1X2.X1X3.X2X3) + δ(T, X3.X1X2) are fixed.
However, from Assumption A2 and the two fixed (X, Y) and (X, Z) marginals, then the redundancies
δ(T; Z.XY) and δ(T; Y.XZ) are invariant over ∆XY.XZ

P . Therefore, in addition to 2 in Assumption A2,
the following partial information measures are invariant ∆XY.XZ

P :
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1. δ(T; Xi.XXj), for all Xi, Xj ∈ {Y, Z} since the (X, Xj) marginal is fixed.
2. δ(T; XY.XZ) + δ(T, XY.XZ.YZ) since MI(T; X : Y, X : Z) and δ(T; Z.XY) are invariant.
3. δ(T; Xi), for all Xi, Xj ∈ {Y, Z} since MI(T; Xi) and δ(T; Xi.XXj) are invariant over ∆XY.XZ

P .
4. δ(T, XXi) + δ(T, XXi.XiXj), is invariant for all Xi, Xj ∈ {Y, Z} since δ(T; XXi.XXj) +

δ(T, XXi.XXj.XiXj), and CoI(T; X; Xi), δ(T; Xj.XXi) are invariant over ∆XY.XZ
P .

Thus, using Assumption A2 and the definition of MI(T; X, Y, Z) over the redundancy lattice,

min
Q∈∆XY.XZ

P

MI(T; X, Y, Z) = δ(T, XY) + δ(T, XZ) + δ(T, XY.XZ) + δ(T, XY.YZ)

+ δ(T, XZ.YZ) + δ(T, XY.XZ.YZ) + δ(T, X) + δ(T, Y)

+ δ(T, Z) + δ(T, X.YZ) + δ(T, Y.XZ) + δ(T, Z.XY)

+ δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).

The synergy is evaluated as:

C̃I(T; X, Y) = MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)

= δ(T, XYZ) + δ(T, YZ).

The unique information of (X, Y) is expressed as:

ŨI(T; X, Y\X, Z) = min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Z)

= δ(T, XY) + δ(T, XY.YZ) + δ(T, Y).

The unique information of (X, Z) is written as:

ŨI(T; X, Z\X, Y) = min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y)

= δ(T, YZ) + δ(T, XZ.YZ) + δ(T, Z).

When CoI(T; X, Y; X, Z) = 0, then:

δ(T, XYZ) + δ(T, YZ) = δ(T, XY.XZ) + δ(T, XY.XZ.YZ)

+ δ(T, X) + δ(T, X.YZ) + δ(T, Y.XZ) + δ(T, Z.XY)

+ δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).

The shared information of X, Y and X, Z is evaluated as:

S̃I(T; X, Y, Z) = min
Q∈∆XY.XZ

P ,
CoI(T;X,Y;X,Z)=0

MI(T; X, Y, Z)− min
Q∈∆XY.XZ

P

MI(T; X, Y, Z)

= δ(T, XY.XZ) + δ(T, XY.XZ.YZ)

+ δ(T, X) + δ(T, X.YZ) + δ(T, Y.XZ) + δ(T, Z.XY)

+ δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z) + δ(T, X.Y.Z).

Hence, then the BROJA decomposition of the subsystem (T, (Xi, Xj), (Xi, Xk)) is:

C̃I(T; (Xi, Xj), (Xi, Xk)) = δ(T; XiXjXk) + δ(T; XjXk),

ŨI(T; (Xi, Xj)\(Xi, Xk)) = δ(T; XiXj) + δ(T; XiXj.XjXk) + δ(T; Xj),

ŨI(T; (Xi, Xj)\(Xi, Xk)) = δ(T; XiXk) + δ(T; XiXk.XjXk) + δ(T; Xk),

S̃I(T; (Xi, Xj), (Xi, Xk)) = δ(T; XiXj.XiXk) + δ(T; Xi) + δ(T; XiXj.XiXk.YjXk)

+ δ(T; Xi.XjXk) + δ(T; Xj.XiXk) + δ(T; Xk.XiXj)

+ δ(T; Xi.Xj) + δ(T; Xi.Xk) + δ(T; Xj.Xk) + δ(T; Xi.Xj.Xk).
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Appendix D.3. Synergy of Three Double Source Systems

Consider the system of the form (T, (X, Y), (X, Z), (Y, Z)). The sources here are called composite,
as they are compositions of the primary sources X, Y and Z. Applying the PID measure [38] based on
maximum entropy decomposition (A13a–d) captures the synergy of composite sources only and cannot
capture other contributions such as those involving unique or redundant composite sources; meaning
that the optimization (A13a) is the only useful one for a system of composite sources. Therefore,
using (A13a), the optimization is taken over the polytope:

∆XY.XZ.YZ
P = {Q ∈ ∆; Q(T, Xi, Xj) = P(T, Xi, Xj) for all Xi, Xj ∈ {X, Y, Z}}. (A25)

In this polytope, MI(Xi, Xj), CoI(Xi, Xj), and MI(Xi | Xj) are invariant for all Xi, Xj ∈ {X, Y, Z}.
Therefore, in addition to Assumption 2, the following partial information measures are invariant
∆XY.XZ.YZ

P .

1. δ(T; Xk.XiXj), for all Xi, Xj, Xk ∈ {X, Y, Z} since the (Xi, Xj) marginal is fixed.
2. δ(T; XiXj.XiXk), for all Xi, Xj, Xk ∈ {X, Y, Z} since (Xi, Xj), (Xi, Xk), and (Xj, Xk) marginals

are fixed.
3. δ(T; XY.XZ.YZ) since the (X, Y), (X, Z), and (Y, Z) marginals are fixed.
4. δ(T; Xi), for all Xi, Xj, Xk ∈ {X, Y, Z} since MI(T; Xi) and δ(T; Xi.XjXk) are invariant over

∆XY.XZ.YZ
P .

5. δ(T, XiXj), for all Xi, Xj, Xk ∈ {X, Y, Z} since CoI(T; Xi; Xj), δ(T, XiXj.XiXk), δ(T, XiXj.XjXk),
δ(T, XiXj.XiXk.XjXk), and ∆(T; Xk.XiXj) are invariant over ∆XY.XZ.YZ

P .

Hence, the only partial information measure that is not fixed is δ(T; XYZ) and:

min
Q∈∆XY.XZ.YZ

P

MI(T; X, Y, Z) = δ(T, XY) + δ(T, XZ) + δ(T, YZ) + δ(T, XY.XZ)

+ δ(T, XY.YZ) + δ(T, XZ.YZ) + δ(T, XY.XZ.YZ)

+ δ(T, X) + δ(T, Y) + δ(T, Z) + δ(T, X.YZ) + δ(T, Y.XZ)

+ δ(T, Z.XY) + δ(T, X.Y) + δ(T, X.Z) + δ(T, Y.Z)

+ δ(T, X.Y.Z).

(A26)

The synergy is evaluated as:

C̃I(T; (X, Y), (X, Z), (Y, Z)) = MI(T; X, Y, Z)− min
Q∈∆XY.XZ.YZ

P

MI(T; X, Y, X) = δ(T, XYZ).

Appendix D.4. Computing the Finest Parts of the Trivariate PID

The values of δ(T; X), δ(T; Y), δ(T; Z), δ(T; X.YZ), δ(T; Y.XZ), and δ(T; Z.XY) are recovered from
ŨI(Xk\Xi, Xj) of (T, (Xi, Xj), Xk) and ŨI(Xk\Xi, Xj) of (T, X, Y, Z), for all Xi, Xj, Xk ∈ {X, Y, Z}.
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To recover the individual synergistic quantities, construct the following system of equations from
the synergy of (T, X, Y, Z), (T, (X, Y), (X, Z), (Y, Z)), (T, (Xi, Xj), Xk), and (T, (Xi, Xj), (Xi, Xk)) for all
Xi, Xj, Xk ∈ {X, Y, Z}.

C̃I(T; X, Y, Z) = δ(T; XYZ) + δ(T; XY.XZ.YZ) + δ(T; XY) + δ(T; XZ)

+ δ(T; YZ) + δ(T; XY.XZ) + δ(T; XY.YZ) + δ(T; XZ.YZ)

C̃I(T; (X, Y), Z) = δ(T; XYZ) + δ(T; XZ) + δ(T; YZ) + δ(T; XZ.YZ)

C̃I(T; (X, Z), Y) = δ(T; XYZ) + δ(T; XY) + δ(T; YZ) + δ(T; XY.YZ)

C̃I(T; (Y, Z), X) = δ(T; XYZ) + δ(T; XY) + δ(T; XZ) + δ(T; XY.XZ)

C̃I(T; (X, Y), (X, Z)) = δ(T; XYZ) + δ(T; YZ)

C̃I(T; (X, Y), (Y, Z)) = δ(T; XYZ) + δ(T; XZ)

C̃I(T; (X, Z), (Y, Z)) = δ(T; XYZ) + δ(T; XY)

C̃I(T; (X, Y), (X, Z), (Y, Z)) = δ(T; XYZ).

This hierarchy that is needed to compute the trivariate PID quantities is implemented in script
file test_trivariate_finer_parts.py.
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