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ARTICLE

GROUP TESTING AND SOCIAL DISTANCING

Spyros Galanis1,2*
1Department of Economics and Finance, Durham University Business School, Durham, United Kingdom
2Cyprus International Institute of Management, Nicosia, Cyprus
*Corresponding author. Email: spyros.galanis@durham.ac.uk

An often overlooked strategy for fighting the COVID-19 pandemic is group testing. Its main advantage is
that it can scale, enabling the regular testing of thewhole population.We argue that another advantage is that
it can induce social distancing. Using a simple model, we show that if a group tests positive and its members
are in close social proximity, then they will rationally choose not tomeet. The driving force is the uncertainty
about who has the virus and the fact that the group cares about its collective welfare. We therefore propose
identifying socially connected groups, such as colleagues, friends and neighbours, and testing them
regularly.
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1. Introduction

The SARS-CoV-2 virus, which causes the COVID-19 disease, has been spreading rapidly and globally
since December 2019, resulting in alarmingly high fatality rates, national lockdowns and unprecedented
projected economic damage (Gopinath, 2020). The main strategies for addressing the pandemic have
been individual tests, vaccinations and contact tracing. However, none of these measures has proved to
be wholly effective. Countries have not managed to scale individual testing, contact tracing only works
when the cases are very low, and it may take years before the majority of the world population is
inoculated.

An alternative strategy, that has been proposed by several papers, is group testing (Aldridge et al.,
2019). A group of people is tested using a single test. If the test is negative, then no-one has the virus,
whereas if it is positive, then at least one person is infected, even though their identity is not revealed.
Because the samples of all individuals are mixed together, the test is anonymised, so it is impossible to
knowwho has the virus. Themain advantage of group testing is its scalability, as it enables the testing of a
big part of the population on a regular basis.

In this paper, we argue that, as long as groups are selected carefully, another advantage of group
testing is that it can induce social distancing. In particular, we show that if members of a group do not
want tomeet when all the information they have is that at least one of them is infectious, then they would
still not want tomeet, even if each had some private information about who is infected. This is important
because, irrespective of what members of the group know about who is infectious, the public announce-
ment of a positive group test will induce everyone not tomeet. However, this does not apply to all groups,
only to those that are in social proximity.We say that a group is in social proximity if its members do not
want to meet when at least one of them is infectious, because their total welfare will decrease. Our results
therefore show that announcing a positive test to a group in social proximity will induce members not
to meet.
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To provide a simple example, suppose that a group consists of Alex and Bob. If they decide not to
meet, then we normalise the utility that each gets to zero. If Alex is susceptible to infection while Bob is
infected, thenmeeting implies that Bobmight be infected.Will their total utility be above 0? If it is, then it
means that the cost to Alex from possibly being infected is less than the benefit to Bob frommeeting. This
could happen because Bob does not care about Alex’s welfare. Or, it could be because Bob and Alex are
complete strangers, so ‘meeting’ just means that they pass by each other on the street, 2 m apart, which
means that Alex will probably not be infected. In that case, meeting just means that they are allowed to
walk on the street, which gives both a positive utility. In that case, we say that the group is not in social
proximity.

On the other hand, if meeting implies that the sum of their utilities is negative, we say that the group is
in social proximity. This could be because Bob incurs an extra cost if Alex becomes infected. Or, it could
be that ‘meeting’means that they access the gym at the same time, so the probability that Alex is infected
is big and therefore his cost is higher than the benefit of Bob from exercising.

Social proximity is not true for groups consisting of people who are complete strangers, because they
do not care about each other’s welfare, they meet rarely, or in a socially distanced way. For example, a
randomly selected group of people in a big city is not in social proximity, either because they do not care
about each other’s welfare, or because meeting only takes place in a socially distanced way, if at all. This
means that the sum of their utilities if they meet is greater than if they do not meet, even if someone is
infected. However, the parents of students in a school could be in social proximity, as theymeet regularly,
either directly or through their kids. The same can be true of employees who work on the same floor of a
building. As the group increases in size, social proximity reduces. For example, if the group is the whole
country, the total benefit frommeetingwith each other will surely be greater than the cost that at least one
person gets infected. On the other hand, it is important to note that social proximity is different from
altruism. Members can be in social proximity without necessarily caring about the condition of other
members.

We use the static version of the standard SIR epidemiology model to explain the mechanism
(Anderson and May, 1992; Kermack and McKendrick, 1927). Agents can have one of the three
conditions. They can be infected (I), which means that they can infect others if they meet them. They
can be susceptible (S) to infection, so that they will contract the virus if they meet someone who is
infected. Or, they can be recovered (R), which means that they do not transmit the virus and cannot get
infected. We extend the SIR model by assuming that agents face uncertainty about what is their
condition, and the condition of others. This is relevant in the current COVID-19 pandemic, as several
people are asymptomatic after contracting the virus, so they may not know that they are infected
(Mizumoto et al., 2020). Agents have a common prior and receive private information about everyone’s
condition. Each agent has two available actions: to meet within the group or not to meet. Their utility
depends on their condition, their action and the actions of everyone else. They rationally choose the
action that maximises their expected utility, given their updated beliefs and actions of others. We
examine whether the group will decide to meet in two settings: a non-strategic and a strategic one.1

When a group test turns out positive, it is publicly announced to the group.We then say that the group
is in danger, because at least one member is infected, so if they meet then it is likely that at least one
member is going to be infected. A group test is anonymised and there is no way of knowing who is
infected. Although the identity of the infected agent is not revealed, it becomes common knowledge that
if the group meets, then the group will be in danger. Do agents care about this possibility? If they do, we
say that they are in close social proximity.

In a non-strategic setting, social proximity specifies that the agents’ total welfare is greater if they do
not meet, given that the group is in danger, as compared to if they meet. In a strategic setting, social
proximity specifies that it is ex ante Pareto optimal not to meet, given that the group is in danger. The ex
ante stage is before receiving their private information, but after they are notified that the group is in

1We also note that our model is more general than the SIRmodel, in the sense that we formulate our results in terms of states
of the world, which could describe fewer (e.g. just S and I) or more conditions for each agent.
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danger. We formalise this condition by assuming that there is no strategy profile that ex ante Pareto
dominates the strategy profile where no one meets.

Will agents decide to meet? In a non-strategic setting, we show that it cannot be common knowledge
that they decide to meet (Theorem 1). In a strategic setting, we show that not meeting is the unique
Bayesian Nash equilibrium (Theorem 2).

To gain some intuition, consider first the following ‘dynamic’ story. Suppose that after a positive
group test, a member of the group expresses eagerness to meet. Then, all others deduce that she must
consider it very likely that she is not in danger, either because she currently has the virus, or because she
had it in the past and is now immune. Since at least one member must have the virus, everyone else
updates upwards the probability that they themselves are in danger, so this makes them even less willing
to meet. If, given this updating, others are still willing to meet, the remaining members become even
more cautious. Social proximity implies that not everyone can be better off from meeting, given that the
group is in danger, hence as the updating of beliefs continues, eventually some members decide not
to meet.

We now provide a rough sketch of the proofs of the two results. Consider first the non-strategic
environment and normalise the utility of any agent fromnotmeeting to be 0. An agent chooses tomeet if,
according to her private information and updated beliefs, her expected utility from doing so is strictly
positive. A public announcement that meeting is dangerous for the group implies that it becomes
common knowledge that at least one agent would be infected if they met. Even though agents may not
know who the newly infected member might be, social proximity implies that it is common knowledge
that the sum of their utilities will always be weakly negative. Can it be common knowledge that they
decide to meet? If that is the case, then it is also common knowledge that everyone’s expected utility,
according to their own private information, is strictly positive. But now there is an incompatibility,
because while it is common knowledge that everyone always has strictly positive expected utility, it is also
common knowledge that the sum of the utilities for all agents is always weakly negative. As both
statements cannot be true simultaneously, the group does not meet.

In a strategic setting, suppose that there is a Bayesian Nash equilibrium where some agents decide to
meet, even though it is common knowledge that the group is in danger. Take any agent and consider her
individual decision problem, given that everyone else’s actions are fixed. If her strategy is never to meet,
she can guarantee an ex ante expected utility of 0. Since at each state she receives some private
information and not meeting is always an option, her equilibrium strategy cannot result in her getting
an ex ante expected utility lower than 0, otherwise the value of information would be negative. Hence, her
ex ante expected utility from her equilibrium strategy cannot be lower than 0. As this is true for all agents,
ex ante Pareto optimality of not meeting, due to social proximity, implies that the equilibrium strategy is
that no one meets.

The value of information result states that in a single-agent decision problem, an agent will always be
better off ex ante, if in the interim stage she receivesmore information. Hence, the value of information is
positive. The intuition is that because actions are conditioned on information, more information means
that she can adjust better her actions, depending onwhat the true state is, so that in expectation her utility
increases. This result requires that agents are sophisticated, so that their information structure forms a
partition of the state space. See Galanis (2015, 2016, 2018) and Geanakoplos (1989), among others, who
show that the value of information may be negative when agents are boundedly rational.

1.1. Related literature

There is growing literature on the economics of pandemics, incorporating individual decision making
and notions of equilibrium. Toxvaerd (2019, 2020) extends the SIS and SIR models by introducing
endogenous social distancing. Makris (2020) allows for fatalities and risk heterogeneity, calibrating the
model to UK data in order to examine various government interventions. Eichenbaum et al. (2020)
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develop an SIR-macro model to study containment policies, whereas Alvarez et al. (2020) examine the
optimal lockdown policy.

These models are dynamic and aim to trace the spreading of the virus and the economic conse-
quences. Our model is static and only concerns a single decision of whether to meet within a group.
Moreover, an aspect that is missing from these models, that we add here, is that agents do not knowwhat
their condition is when making a decision about who to meet. This is especially relevant in the current
COVID-19 pandemic, as it seems that several people are asymptomatic for several days after contracting
the virus, so they do not know that they are infected.Moreover, our emphasis is more local, as we identify
conditions on groups which imply that the members will not meet.

Several papers (e.g. Ferretti et al., 2020; Salathé et al., 2010; Yoneki and Crowcroft, 2014) study digital
contact tracing, examining whether information about geographical proximity between infected and
susceptible can be used, in order to decrease the spread of a virus. However, these papers do not take into
account the behavioural aspect of transmission and do not try to predict how individuals will behave. The
current paper incorporates the behavioural aspects of choosing to meet and argues in favour of
leveraging social proximity, as an added tool in fighting pandemics.

Group testing is not a new idea and goes back to Dorfman (1943). It has been used to detect syphilis,
hepatitis B and HIV, among others. See Aldridge et al. (2019) for a survey. Group testing can also be
performed in the case of Covid-19.2 Gollier and Gossner (2020) show how group testing can be
optimised to multiply the efficiency of tests against Covid-19, using three applications.

Our results are closely related to the no trade theorems, first discussed by Aumann (1976) and
Milgrom and Stokey (1982). Aumann (1976) showed that ‘we cannot agree to disagree’, whereas we show
that ‘if we agree that the group is in danger, we cannot agree tomeet’. Our result that the unique Bayesian
Nash equilibrium is that the group does not meet, is closely related to a no trade result of Geanakoplos
(1989). Several papers examine the question of whether to initiate contact between two individuals when
one might be infected (Matthies and Toxvaerd, 2016; Toxvaerd, 2019, 2021). However, to the best of our
knowledge, the current paper is the first that uses the ‘agreeing to disagree’ type of results in the
economics of epidemiology.

The paper is organised as follows. Section 2 presents the model, formalising the notion of social
proximity. Section 3 presents the two results, that it cannot be common knowledge that the group meets
and that the unique Bayesian Nash equilibrium is that they do not meet. Section 4 concludes and
discusses the policy implications. The proofs and the technical details are contained in the Appendix.

2. Model

LetH be a finite set of n humans, or agents. An agent can have one of three conditions: be susceptible (S),
infected (I) or recovered (R). Agents are uncertain about their condition and the condition of others.
Their uncertainty is summarised by state space Ω. A state of the world ω∈Ω specifies the condition of
each agent (S, I or R).3 Although agents are uncertain about the true state, they have some private
information. Agent i’s private information is represented by a partitionΠi of the state spaceΩ. Ifω∈Ω is
the true state, agent i is informed that some state inΠi ωð Þ⊆Ω is true. Agents share a common probability
distribution p over Ω, so that the ex ante probability of state ω is p ωð Þ> 0.

To provide an example, suppose there are two agents. A state ω describes the condition of both
individuals, so state SI specifies that agent 1 is susceptible and agent 2 is infected. The state space Ω is
SS,SR,SI ,RS,RR,RI , IS, IR, IIf g. Suppose that agent 1 always knows her own condition, because she does

individual tests, but she has no information about the condition of agent 2. Her partition Π1 is

2Technion—Israel Institute of Technology have shown they can test more than 60 patients simultaneously. For more details,
see https://technionuk.org/video/pooling-method-for-accelerated-testing-of-covid-19-from-technion/.

3In general, we do not explicitly use the three conditions in any of the results, as we state them only in terms of states of the
world.
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ff SS,SR,SIg, RS,RR,RIf g, IS, IR, IIf ggð , with three partition elements. Suppose that agent 2 only knows
whether she is infected or not, because of the symptoms she develops. Her partition Π2 is
ff SI ,RI , IIg, SS,SR,RS,RR, IS, IRf ggð .

Each agent i has two choices, C¼ 0,1f g: either to meet with the people in the group, 1, or not, 0. Let
f i :Πi !C be the strategy of agent i, mapping each of her partition elements to an action in C. Let
f ¼ f 1,…, f H

� �
be a profile of strategies and f ωð Þ¼ f 1 ωð Þ,…, f H ωð Þ� �

be the particular realisation of
actions at state ω.

Agent i’s utility depends on the actions and the condition (S, I or R) of everyone in the group. For
example, ui ω, f ωð Þð Þ is i’s utility when the true state is ω and the actions of everyone is given by the
strategy profile f ωð Þ. Our first assumption normalises i’s utility to be 0 from not meeting with the group,
irrespective of what everyone else is doing.

Assumption 1. For all agents i∈H, states ω∈Ω and strategy profiles f with f i ωð Þ¼ 0,
ui ω, f ωð Þð Þ¼ 0.

2.1. Social proximity

We now formalise the notion of social proximity. Agent i’s utility frommeeting with the group depends
on the condition (S, I and R) and the action of each member of the group. What does it mean that she
cares about other members of the group? To provide some intuition, consider first the simple case where
the group consists of two agents, i and j. If both decide to meet, agent i will get a positive payoff mij.
However, if i is susceptible (S) and j is infected (I), agent i will incur a cost from contracting the virus, so
her total utility will be less than if they did not meet. From the normalisation of Assumption 1, her utility
will be negative. If i is infected and j is susceptible, then j will incur a cost from contracting the virus and
have a negative utility. In states (SS, SR, RR, RS, RI and IR), the virus is not transmitted and both agents
have positive utility. We argue that II should be in D at the end of this section.

Let D¼ SI , IS, IIf g⊆Ω be the event that ‘the group is in danger’, because at least one member of the
group will contract the virus by meeting. If the group consists of more than two agents, D is the set of all
states ω such that at least one i is susceptible and at least one j is infected. For example, if there are three
agents,D¼ SIS,SII ,SIR, ISS, ISI , ISR, IIS,RIS,SSI ,RSI , IIIf g. Recall that a group test is anonymised, so it
is impossible to know who in particular is infected.

Let 1 be the strategy profile specifying that all agents decide to meet always, whereas 0 is the strategy
profile where all agents decide never to meet. The following assumption specifies that for each state inD,
which describes that the group is in danger, the total welfare of the group is higher if they all decide not to
meet, as compared to deciding to meet.

Assumption 2. For all states ω∈D,
P

i ∈H
ui ω,1ð Þ≤0¼ P

i ∈H
ui ω,0ð Þ.

To understand this assumption, suppose first that the group consists of two agents, i, j, and
D¼ IS,SI , IIf g. At state ω¼ IS, agent j is susceptible and therefore her utility from meeting within this
group is negative, u j IS,1ð Þ¼�k< 0, because she may contract the virus. What about i’s utility at
ω¼ IS? It is reasonable to assume that if the two agents are friends or care about each other, i’s utility,
ui IS,1ð Þ¼ l, cannot be greater than k. In other words, if i knew with certainty that the state is IS and
therefore she would surely infect j, her benefit l would not outweigh the cost k incurred by j, so that
�kþ l≤ 0 and the total welfare of the group is weakly negative.

Should state II , ‘everyone is infected’, be included inD? If everyone is infected, is the group in danger?
One could argue that it is not, because people cannot get more infected. On the other hand, it could be
that there are different strains of the virus, or amembermay have a high virus load that could be passed to
another with a low load, so it could still be dangerous tomeet. Health authorities around the world do not
allow infected people to freely meet, so the latter arguments are probably more prevalent. Our results do
not depend on whether II belongs to D, as Theorems 1 and 2 are stated in terms of an abstract set D.
However, thismatters for the interpretation of ourmodel, because we consider that the announcement of
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a positive test makes it common knowledge that the group is in danger. For the remainder of the paper,
we assume that II belongs to D, or that II is impossible.

Finally, it may seem strange that within a group of strangers, where there is no social proximity,
Assumption 2 implies that the total welfare increases frommeeting, whereas for people that are in social
proximity, the welfare decreases. There are two reasons for that. First, members of groups in social
proximity may care about each other, which means that they will incur a cost if another member gets
infected when they meet. Second, they meet in places where the danger of transmission is high, for
example, because they work in the same building or their kids meet in the school, which means that they
increase the probability that they become infected. On the other hand, strangers may not care about each
or they meet in places where the transmission is low, such as an open space park, so their total welfare
increases.

3. Results

Suppose that it is announced that the test is positive, so it becomes common knowledge that the group is
in danger, because at least one member might get infected if they meet. What will they do? We examine
this question in two settings. In a non-strategic setting, we show that it cannot be common knowledge
that they meet. In a strategic setting, not meeting is the unique Bayesian Nash equilibrium.

3.1. We cannot agree to meet

LetM be the event describing that everyone in the group decides to meet. A state ω belongs toM if each
agent i’s expected utility is strictly positive, given that everyone else also decides to meet.4 Because the
utility from not meeting is 0, a strictly positive expected utility implies that the individual would like to
meet. If the group decides to meet at ω∈M, this becomes common knowledge. That is, we assume that
members do not meet privately with each other, but everyone meets with everyone else and this is
common knowledge. Formally, we say that the group agrees to meet at state ω∈Ω if M is common
knowledge at ω.5 This implies that if only a few members meet, we do not consider that the group
has met.

This definition can also be interpreted as another aspect of social proximity. If the group is very large
andmembers do not know each other, or they do not have a common place where they meet, it becomes
more difficult tomonitor what everyone is doing, hence even if theymeet, this does not become common
knowledge, so they cannot agree to meet.

Suppose that the group test turns out positive and this is announcedwithin the group. Thismeans that
the eventD, ‘the group is in danger’, becomes common knowledge. More generally, in all states inD, the
group test turns out positive and eventD is common knowledge.Will themembers of the group decide to
meet? As the following Theorem shows, the answer is no.

Theorem 1. Under Assumptions 1 and 2, if at all states in D it is common knowledge that the group is
in danger, the group cannot agree to meet at any state in D.

3.2. The unique equilibrium is not to meet

Wenow examine the same question in a strategic setting. Suppose that after the group is publicly notified
that they are in danger, so D is common knowledge, they play the following standard Bayesian game. A
state ω∈D occurs, each agent receives her private information, updates her beliefs and plays a best
response. Could it be that meeting is a Bayesian Nash equilibrium?We show that the unique equilibrium
is that they do not meet.

4Recall from Assumption 1 that utility from not meeting is 0, irrespective of what everyone else is doing.
5See the Appendix on how we define common knowledge.
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Social proximity, defined as the property that members care about their collective welfare, is
expressed in this game by specifying that it is ex ante Pareto optimal not to meet, when the group is
in danger. The ex ante refers to the stage where the agents have not yet received their private information,
but they are informed that the group is in danger, so that it is common knowledge that one state in D is
true. In other words, there is a veil of ignorance about who might be infected if the group meets.

Recall that a strategy f i of agent imaps each partition cell to one of two actions: meet (1) or not meet
(0). Given a profile f of strategies, agent i’s ex ante expected utility is

P

ω ∈ D
p ωð Þui ω, f ωð Þð Þ. If

P

ω ∈ D
p ωð Þui ω, f ωð Þð Þ≥ 0, then agent i can do weakly better with f , than if she decides not to meet at

all states ω∈D.6 Ex ante Pareto optimality implies that although this could be true for some agents, it
cannot be true for all, because then it would be collectively better for the group tomeet, even though they
are in danger. Equivalently, ex ante Pareto optimality implies that if everyone’s ex ante expected utility
(givenD) is weakly greater than 0, then it is exactly zero and everyone chooses not tomeet.7We formalise
this in the following Assumption.

Assumption 3. If
P

ω ∈ D
p ωð Þui ω, f ωð Þð Þ≥ 0 for all i∈H, then f i ωð Þ¼ 0 for all i∈H and all ω∈D.

The following Theorem shows that if it is common knowledge that the group is in danger, then the
unique Bayesian Nash equilibrium is not to meet.

Theorem 2. Under Assumptions 1 and 3, if at all states in D it is common knowledge that the group is
in danger, then the unique Bayesian Nash equilibrium is not to meet.

4. Discussion and policy implications

Our results show that group testing can leverage social proximity and incentives, in order to induce social
distancing. If a group cares about their collective welfare, they will rationally choose not to meet, as soon
as they learn that somemembers are in danger of contracting the virus. This is true both in a strategic and
a non-strategic setting. If we also consider that group testing can scale considerably faster than individual
testing, it is evident that it can act as a complementary strategy for addressing the pandemic, alongside
the existing ones, such as individual testing, contract tracing, lockdowns and inoculations. This is
especially relevant for countries which cannot inoculate a big part of their population fast enough.

The policy implications are straightforward. As a first, step, we propose identifying groups of people
that are socially and geographically connected, such as students within a school, colleagues and
co-workers within a workplace, or neighbours, and testing them regularly. The geographical proximity
of the members of the group makes regular testing easier to implement. More importantly, geographical
proximity can induce social proximity, as it forces the group to care more about its total welfare, because
meeting when at least one member is infected may impact everyone.

On the other hand, group testing has some limitations. Although it can induce social distancing
within a group, it may not be as effective in limiting contact across different groups. For example,
although a worker may choose not to meet his colleagues if a positive group test is announced in the
workplace, he may still be willing to play football with his friends, as this group is not tested or has tested
negative. This creates a trade-off, between the scalability of group testing and its possibly reduced
effectiveness across groups, which would be an interesting direction for future research. It also raises the
question of what is the optimal way of choosing which further groups to test, based on the currently
positive tests and the membership of people across groups.

We conclude by making some comments on the interpretation of the model. First, although the SIR
model is a good starting point for thinking about how the condition of agent imight impact agent j if they

6Recall, from Assumption 1, that she gets 0 if she does not meet, irrespective of what the others are doing.
7We are implicitly assuming that there is no profile of strategies, other than 0, that gives a utility of 0 to everyone.
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meet, we do not use the three conditions explicitly in our model. Instead, we formalise our assumptions
and results within an abstract state space, so we can accommodate fewer or more conditions. Second, we
do not take a stance on whether a susceptible to infection individual will surely get infected if the group
meets. What matters for our results is how their utility will decrease, if they meet when the group is in
danger.

Second, the model does not preclude that some members develop symptoms. When some members
have symptoms, they may know that they are infected and maybe some other members know that too.
This would mean that the group is in danger, even without a positive test. In general, any private
information is allowed, so members can know something about the condition of others or of themselves.
However, since the model is static, it cannot describe a dynamic process where some members become
symptomatic and then they get quarantined. In such an extension, the quarantined members would be
removed from the group for some periods. If there is correlation between someone developing symptoms
and another one becoming infected (e.g. a spouse), then the quarantine could provide public information
about the condition of members that are not currently quarantined.

Finally, we discuss our implicit assumption that the announcement of a positive group test implies
that D becomes common knowledge. If we consider all possible combinations of the SIR conditions for
all agents, then there are two cases where a positive group test does not necessarily imply that someone
will get infected. The first is that everyone is infected. As we argue in Section 2.1, different agents may
have different variants of the virus, or different virus loads, someeting can still be dangerous. The second
is that one member is infected but everyone else is recovered, hence they are immune to being infected.
We implicitly assume that this is not possible. One could justify this assumption by saying that even if
everyone else is vaccinated, there is still the possibility that someone will be infected, so that the
probability that everyone is immune is zero. Alternatively, we could say that if everyone else is
100 per cent immune, they will know it so there is no uncertainty about who is infected, and the model
is trivial.
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A. Appendix

A.1. Preliminaries

The state spaceΩ is a subset of the Cartesian product S, I,Rf gH . At stateω∈Ω, agent i updates her beliefs

using Bayes’ rule, so that she assigns probability p ω0ð Þ
p Πi ωð Þð Þ to ω0 if ω0∈Πi ωð Þ and 0 otherwise. Let ui :

Ω�CH !ℝ be i’s utility, a function of the state and everyone’s action. At state ω and given a profile of
strategies f , agent i updates her beliefs using her private informationΠi ωð Þ and decides to meet with the
group if her expected utility is strictly greater than if she does not. Formally, i decides to meet at ω if

P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0,1, f �i ω

0ð Þ� �
>

P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0,0, f �i ω

0ð Þ� �
, where f �i ω

0ð Þ is the profile of

actions at ω0, for all agents except i.
Let the profile of actions where no one meets at any state to be 0, so that 0i ωð Þ¼ 0 for all i∈H and

ω∈Ω. The profile of strategies where everyone meets always is denoted 1, so that 1i ωð Þ¼ 1 for all i∈H
and ω∈Ω. To simplify the notation, we write i’s utility as ui ω,1ð Þ, instead of ui ω,1 ωð Þð Þ.

An eventE is a subset ofΩ. For example, the event ‘agent jmeetswith the group’ is the set of statesω0 such
that f j ω

0ð Þ¼ 1. Agent i knows event E at ω, if Πi ωð Þ⊆E. This means that in all states that she considers

possible atω, E is true. LetM be the event describing that everyone in the group decides to meet. A stateω
belongs toM if each agent i’s expected utility is strictly positive, given that everyone else also decides tomeet.

Formally,M consists of all states ω such that
P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0,1ð Þ> 0, for all i∈H. The event ‘agent j

knows that everyone meets within the group’ consists of all states ω such that Π j ωð Þ⊆M.
In order to define higher orders of reasoning about the knowledge of others, let Πi Fð Þ¼ ∪

ω0 ∈ F
Πi ω0ð Þ

be the set of all states that imight think are possible, if the true state is in F:Using this notation, we can say
thatΠ j Πi ωð Þð Þ is the set of states that, atω, agent i thinks that j considers possible. IfΠ j Πi ωð Þð Þ⊆F, then
we say that i knows that j knows F. An event E is common knowledge at ω if Πin Πin�1… Πi1 ωð Þð Þð Þ⊆E,
for any sequence of agents i1,…, in.8

We restrict the definition of Bayesian Nash Equilibrium to states in D, because D is common
knowledge after the public announcement of the positive test. A profile of strategies f is a Bayesian
Nash equilibrium if, for all states ω∈D, f i is a best response for agent i. Formally, we have that

P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0, f i ωð Þ, f �i ω

0ð Þ� �
≥

P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0,c, f �i ω

0ð Þ� �
for all c∈ 0,1f g.9

8These notions are explained clearly in Geanakoplos (1992).
9Recall that a strategy f i maps elements of Πi to C, hence f i ω

0ð Þ¼ f i ω
0 0� �

for all ω0 ,ω0 0 ∈Πi ωð Þ.
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A.2. Proofs

Proof of Theorem 1. Suppose that at all states in D it is common knowledge that the group is in
danger, but the group decides to meet at ω∈D. By definition, event M is common knowledge at ω.

Let M ωð Þ be the set of states that are reachable from ω. Formally, M ωð Þ is the union of sets
Πin Πin�1… Πi1 ωð Þð Þð Þ, for any sequence of agents i1,…, in. Say that an event is self-evident (within the
group) if whenever it occurs, everyone knows it. Formally, ifω0∈E0, thenΠi ω0ð Þ⊆E0 for all i∈H. Then,
M ωð Þ can be described as the smallest self-evident event that contains ω.10 Aumann (1976) shows that
an event E is common knowledge at ω, if and only if M ωð Þ⊆E.

We therefore have that M ωð Þ⊆M∩D, which implies that for each i∈H and all ω0∈M ωð Þ,
P

ω0 0 ∈Πi ω0ð Þ

p ω0 0ð Þ
p Πi ω0ð Þð Þui ω

00,1
� �

> 0. Because M ωð Þ is an element of the finest common coarsening of the

partitions of all agents within the group, we have that for each i∈H, M ωð Þ is partitioned by some
elements of i’s partition Πi. By noting that for every such element Πi ω0ð Þ, we have

P

ω0 0 ∈Πi ω0ð Þ

p ω0 0ð Þ
p Πi ω0ð Þð Þui ω

00,1
� �

> 0, and adding over all these elements, we get
P

ω0 ∈M ωð Þ
p ω0ð Þui ω0,1ð Þ> 0.

By adding over all agents in H, we have that
P

ω0 ∈M ωð Þ
p ω0ð ÞP

i ∈H
ui ω0,1ð Þ> 0. This implies that for some

state ω0∈M ωð Þ, we have that
P

i ∈H
ui ω,1ð Þ> 0. But this contradicts Assumption 2 and the fact that

M ωð Þ⊆D. Hence, the group cannot agree to meet at any ω∈D. □

Proof of Theorem 2. The proof is similar to that of Theorem 3 of Geanakoplos (1989).

Suppose that at all states inD it is common knowledge that the group is in danger, so one stateω∈D is
true. Let f 1,…, f H

� �
be a BayesianNash equilibrium. Fix fj for all j 6¼ i and look at the one-agent decision

problem for agent i. By choosing 0 at all states in D, all types of i can guarantee a payoff of 0, from
Assumption 1, irrespective of what other players are doing. Because each type of agent i plays best

response given f�i, we have that, for each ω∈D,
P

ω0 ∈Πi ωð Þ
p ω0ð Þ

p Πi ωð Þð Þui ω
0, f ω0ð Þð Þ≥ 0. Adding over all

partition elements of D, we have
P

ω0 ∈ D
p ω0ð Þui ω0, f ω0ð Þð Þ≥ 0. Because this is true for all agents,

Assumption 3 implies that f i ωð Þ¼ 0 for all i∈H and all ω∈D, hence no-one chooses to meet.

Cite this article: Galanis, S. (2021), ‘Group testing and social distancing’, National Institute Economic Review, 257, pp. 36–45.
https://doi.org/10.1017/nie.2021.26

10The partition generated by M is called the finest common coarsening of the partitions of all agents.
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