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Single Shot Lightweight Model For The Detection
of Lesions And The Prediction of COVID-19 From

Chest CT Scans
Aram Ter-Sarkisov

Abstract—We introduce a lightweight model derived from
Mask R-CNN that segments lesions and predicts COVID-19
from chest CT scans in a single shot. The model requires a
small dataset to train, and is evaluated on a large set of images
to achieve a 42.45% average precision on the segmentation
test split, and 93.00% COVID-19 sensitivity and F1-score of
96.76% on the classification test split across 3 classes: COVID-
19, Common Pneumonia and Negative. We introduce an aug-
mented Region of Interest layer that disentangles lesion detec-
tion functionality for segmentation and classification problems.
Efficiency of the solution is confirmed by comparing it to a
suite of the state-of-the-art models across both problems. Full
source code, models and pretrained weights are available on
https://github.com/AlexTS1980/COVID-Single-Shot-Model.

Index Terms—COVID-19, Instance Segmentation, Object De-
tection, Regions of Interest, Image Classification

I. INTRODUCTION

Examination of chest CT scans is one of the most popular

and accurate ways of predicting COVID-19, alongside x-ray

radiography (CXR) and real-time polymerise chain reaction

(RT-PCR): it is faster than RT-PCR and more accurate than

CXR. Depending on the stage of the virus, it can have

higher sensitivity to COVID-19 than RT-PCR too, see [11],

[1]. Since the onset of the COVID-19, a large number of

convolutional neural networks (convnets) and other deep

learning (DL) models for the detection of COVID-19 from

chest CT scans and segmentation of lesions was introduced.

Classifiers typically use a feature extractor like ResNet with

a problem-specific logit output, e.g. COVID-19, Common

Pneumonia (CP), like in [4], [7], [11], [2]. Most segmentation

models use a model like U-Net with an encoder-decoder

architecture to predict lesion masks at a pixel level, e.g. [3],

[20], or fuse them with deep features for simultaneous lesions

segmentation and image classification, e.g. in [18].

Recently introduced COVID-CT-Mask-Net, see [15], fuses

advanced object detection and segmentation Mask R-CNN and

Faster R-CNN models ([5], [12]) with image classification

that exploits Mask R-CNN’s functionality for predicting

objects’ bounding boxes, classes and masks from the regions

of interest (RoIs). Batch of these predictions is converted into

a ranked vector of features that the image classification layer
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in COVID-CT-Mask-Net can learn. In [16], [17] a number of

modifications were presented, including truncated lightweight

versions of the base model that achieve a higher accuracy

of COVID-19 prediction and lesion segmentation. The main

drawback of this approach is that it is split into two stages:

first, Mask R-CNN is trained on the segmentation dataset,

then, a classification model is initialized from its weights to

train on the classification dataset.

In this paper we present a solution that fuses lesion

segmentation in chest CT scans and prediction of the class of

the input image (COVID-19, Common Pneumonia, Control)

in a single shot (single shot model, SSM). The solution relies

on Mask R-CNN’s RoI functionality and consists of four

main stages: backbone (ResNet feature extractor + Feature

Pyramid Network, FPN), Region Proposal Network (RPN),

Region of Interest (RoI) and an image classifier.

In our new solution we introduce the following novelties:

1) We disentangle instance (regional) detection functional-

ity for segmentation and classification problems by aug-

menting RoI layer with a parallel classification branch,

which has the same architecture as the segmentation

branch. At training time, this disentangles the learning at

instance (segmentation) and image (classification) levels,

2) We fuse lesion segmentation and COVID-19 prediction

from chest CT scans in a single shot using the aug-

mented RoI layer and achieve high precision across both

problems outperforming a number of benchmark open-

source solutions applied to our problem,

3) All backbone feature extractors are lightweight (trun-

cated) and have less than 14M parameters; as a re-

sult, training and evaluation are very fast. On a CPU,

processing of a single 512 × 512 chest CT scan slice

takes between 3.81 - 7.08s, which includes the full

segmentation output and the image class prediction.

Full solution is available in a Github repository: https://github.

com/AlexTS1980/COVID-Single-Shot-Model. To the best of

our knowledge, this is the first paper that presents a fusion

of lesion instance segmentation and COVID-19 classification

in a single shot. The rest of the paper is structured as

following: in Section II we discuss datasets for both problems,

in Section III we present the methodology, in Section IV

we discuss experimental setup and results, in Section V we

explain methodological limitations of our approach, Section



VI concludes.

II. DATA

We require two separate sets of the training and

evaluation data: segmentation data and classification

data. Both of these sets are taken from CNCB-NCOV [19],

http://ncov-ai.big.ac.cn/download resource. Segmentation data

(750 images labelled at pixel level) is split randomly into

650 training and validation and 100 test images. Masks

for the lesion classes, Ground Glass Opactity (GGO) and

Consolidation (C) are merged into a single positive lesion

class. Clean lung masks are merged with the background.

Therefore, we have a total of 1+1 classes (background

and lesions). All 750 images (scan slices) were taken from

COVID-19-positive patients, but some of the slices are

negative (no lesions present). They are discarded in the

training stage, and labelled as a single negative (no lesions)

observation at test stage.

For the 3-class (COVID-19, CP, Normal) classification

data we use the COVIDx-CT [4] test and validation splits in

full, and the training sample of 3000 images (1000/class) from

the train split in [17], see Table I. The splits are consistent

across classes and patients. This means that negative slices

taken from the positive (COVID-19 or CP) patients were

removed from the data altogether, and only those with lesions

were kept, and every patient was randomly assigned only

to one of the splits, see [4] and [16] for the details. Table

I reports the segmentation/classification data properties. The

ratio of the test to training split for the classification problem

is very high, 7.06. This is one of the key advantages of SSM:

it generalizes very well to the unseen data while using only

a small portion of the training dataset.

III. METHODOLOGY

Mask R-CNN is one of the state-of-the-art models that

detects and segments instances of objects in images using

Region Proposal (RPN) and Region of Interest (RoI) layers.

This is different to semantic segmentation that predicts

classes at a pixel level, such as FCN [10] and UNet [14].

Unlike semantic segmentation models, Mask R-CNN detects

separate objects, defined by their classes, bounding boxes and

masks, and is therefore efficient at handling problems like

partial occlusion or distinguishing between adjacent objects

of the same class. At the same time, Mask R-CNN does not

make global predictions, i.e. classification of the whole input

image. Some previous solutions, e.g. [15], [16] fuse Mask

R-CNN instance predictions with the global prediction for

COVID-19 data, albeit in two stage (first segmentation, then

classification).

The model we present in this study fuses segmentation

and classification functionality for training and testing in a

single shot. For comparison, we present two main approaches:

1) Pretraining Mask R-CNN on segmentation data, fol-

lowed by the joint training on the segmentation and

classification data,

2) Training the model from scratch in a single shot on

segmentation and classification data through disentan-

glement of lesion detection for segmentation and classi-

fication problems.

Training time for all pretrained models in Table I includes the

pretraining time. Each ResNet feature extractor is followed by

a single FPN layer (see [8]), connected only to the last ResNet

block (for simplicity we reduce this term to block).

A. Region of Interest layer

We briefly discuss RoI layer in Mask R-CNN, which is

at the core of both fusion of segmentation and classification

functionality and disentanglement of RoI detection in different

types of images. Its segmentation branch is fully inherited

from Mask R-CNN, see Figure 2 (light gray background).

First, RoI layer accepts β1 raw box candidates from

RPN and image-level features from FPN. At training time,

RoIDetectBatch samples a batch of β2 candidates to compare

it to the gt labels. RoIAlign maps these candidates to

FPN features to extract a batch of regional features using

RoIAlign algorithm. This batch of RoIs with dimensionality

β2 × C ×H ×W (β2 is the batch size, C is the number of

channles/feature maps, H and W are the height and width

of each feature map) is filtered through the fully connected

BoxHead layer to predict refined boxes and classes for

objects in the input image in BoxClass Prediction layer.

For the segmentation step, RoIAlign(Mask) and MaskHead

convolution layer have the same functionality as RoIAlign

and BoxHead for masks, and MaskPrediction layer predicts

mask for each object.

At test time, all raw candidates from RPN are filtered

through RoIAlign, BoxClass, RoIAlign(Mask) and MaskHead

to output a set of at most β3 object predictions (class

confidence scores + boxes + masks) with class confidence

scores exceeding a preset threshold.

In [15] RoIBatchSelection method was added to the

RoI layer, in order to extend its regional outputs to image

classification. This functionality is explained in greater details

in Sections III-B and III-C.

B. Fusion of Segmentation and Classification Functionality
(base RoI layer)

In this setup, Mask R-CNN is pretrained on the

segmentation data in Table I. Next, it is converted into

SSM in Figure 1 by augmenting it with an image classifier

S, Figure 3. Weights from Mask R-CNN are copied into

the SSM, which then trains using both segmentation and

classification data from Table I interchangeably. This means,

that one iteration consists of two stages: first, the model

samples an observation and trains on the segmentation data,

then it repeats this step for the classification problem. The

first stage is the same as in Mask R-CNN.

At classification training stage, following [15],



TABLE I: Comparison of models’ sizes and datasets. Values are for the segmentation/classification data. One asterisk: two

ResNet blocks (first and second). Two asterisks: three ResNet blocks (first, second and third). Superscript of 2 are models with

the augmented RoI layer.

Model (Backbone)
#Total

Training Validation Test
Ratio Training

parameters Test to Train split Time(min)
ResNet18+FPN∗ 4.51M

650/3K 650/20.6K 100/21.1K 0.15/7.06

355
ResNet18+FPN∗∗ 6.64M 359
ResNet34+FPN∗ 5.17M 370
ResNet34+FPN∗∗ 12.04M 380
ResNet18+FPN∗,2 6.13M 341
ResNet18+FPN∗∗,2 8.27M 348
ResNet34+FPN∗,2 6.80M 361
ResNet34+FPN∗∗,2 13.66M 371

RoIBatchSelection method accepts β1 predictions from

BoxClass prediction layer, extracts top B predictions thereof

(ranked by class confidence), and outputs batchified object

predictions with dimensions B × 5 (4 box coordinates +

confidence score) with the following properties:

1) The batch contains a set of box coordinates (x, y, height,

width),

2) For each box, the batch contains a normalized (softmax)

class confidence score,

3) Predictions (boxes+scores) are ranked in the decreasing

order of their class confidence scores.

Image classification layer S (see Figure 1) is expected to

learn this distribution, which applies certain restrictions

on the weights in RoI layer. Clearly, early in the training,

these object predictions are inaccurate, slowing down the

overall training of the model. As explained earlier, to address

this deficiency, we first pretrain the model only on the

segmentation data.

From the point of view of the model’s architecture,

there is only one RoI branch (gray area in Figure 2), i.e. all

RoI weights are shared between both problems, and the only

architectural difference between Mask R-CNN and SSM is

still the image classifier S. In the segmentation stage, all SSM

weights (i.e., backbone, RPN, RoI) except S are updated.

In the classification stage, only backbone and S weights are

updated.

Also, the main functional difference between segmentation

and classification stages are still RoIDetectBatch and

RoIBatchSelection batch functionalities (see Figure 2). As

explained in Section III-A, in the segmentation training

stage, RoIDetectBatch samples β2 RoIs from RPN candidates

(box coordinates) for loss computation. It is not used in

the segmentation evaluation and classification stages. Also,

as discussed earlier, RoIBatchSelection is only used in the

classification to construct the batch size B of predictions for

the image classification.

For the purpose of image classification it is important

to point out that ‘objects’ in the RoiBatchSelection are not

necessarily lesions. Obviously, there are none of them in

Negative images, i.e. the whole Negative image is background,

and the lesion confidence scores of ‘objects’ extracted from

it will be very low, most likely well below any acceptance

threshold. To maintain the size of the batch, we set acceptance

threshold to −0.01, that guarantees acceptance of all ‘objects’.

For a more detailed discussion of RoIBatchSelection see [15].

The main drawback of this approach is that RoI layer fuses

the learning of instance data (labelled at object level) and

image data (labelled at image level) in a single branch. As

a result, the model’s accuracy on both problems erodes,

because features for the classification problem distort regional

detection functionality. The opposite is also true. Also, there

are 5 loss functions for instance-level data, and one loss

function for image-level data, which also biases training

progress in favor of instance segmentation, see Section III-D

and Appendix A. In Section III-C we explain how we resolve

this problem.

C. Augmented RoI layer

In this approach, we disentangle instance-level detection

for segmentation and classification problems through the

transformation of the RoI layer.

First, we observe, that images in the classification dataset

contain the same class-specific regional features (lesions,

clean lungs, background), as the segmentation dataset, because

they follow the same distribution, the difference is only in

labels. Therefore, detection of such regions of interest will

improve the accuracy of image-level prediction. To achieve

this, we need an architecture that is capable of extracting such

information from the classification dataset without training

using instance-level labels. At the same time, RPN and RoI

layers cannot be trained by the image-level labels either,

because it distorts their local detection functionality and

accuracy, as explained in Section III-B.

To satisfy these requirements, we augment RoI layer with a

second branch for the classification data, that runs parallel to

the segmentation branch, see light beige background in RoI

in Figure 2, and it possesses the following properties:

1) Its parametrized architecture is identical to the detection

part of the segmentation branch, which consists of two

fully connected layers in BoxHead and a single one

in BoxClass layer. BoxHead (image) and BoxClass

(image) layers have the same number of weights and

the same dimensionality as in the segmentation branch.

The key idea of the new classification branch, is that



Fig. 1: Architecture of the Single Shot Model with the augmented RoI layer. Normal arrows: data and features, broken

arrows: batches, dotted arrows: labels. Light beige background, blocks and arrows: both segmentation and classification. Green

background, blocks and arrows: only classification. Purple background, blocks and arrows: only segmentation. CT scan source:

CNCB-NCOV. Best viewed in color.

Fig. 2: RoI layer with two parallel branches for the disentanglement of RoI detection for segmentation and classification

problems. Gray background: segmentation branch (training stage), light beige background: classification branch. Pink blocks:

layers with trainable weights, light green blocks: layers with non-trainable weights, yellow blocks: RoIAlign, purple blocks:

batches (RoIDetectBatch for segmentation and RoIBatchSelection for classification), bright green blocks: RPN batch and RoI

image batch. Normal black arrows: features, normal red arrow: labels, broken black arrows: batches/samples, dotted maroon

arrows: weight copy from the segmentation into the classification branch. Best viewed in color.

none of the weights in the BoxHead (image) and

BoxClass (image) layers are trainable at any stage.

Instead, we copy BoxHead and BoxClass weights from

the segmentation branch into the classification branch,

which is possible due to the identical architecture of

the two, see Figure 2. As a result, classification branch

inherits instance detection functionality, but applies it

to the classification data and problem.

2) RoIAlign (image) has the same functionality as

RoIAlign. It accepts all β1 RPN proposals, crops and

resizes corresponding areas in the FPN output to a

fixed dimensionality and creates a batch of regions of

interest with dimensions β1 × C × H × W . Features

in the next two layers, BoxHead (image) and BoxClass

(image) are extracted from each region of interest.

3) RoIBatchSelection functionality is the same as in

[15]. It accepts β1 predictions from BoxClass (image),

extracts a ranked batch with dimensions B × 5 and

passes it to the image classification layer S.

4) Disentanglement of these functionalities in RoI does

not negatively affect the model’s capacity to solve both

problems. At segmentation training stage, classification

branch weights are frozen. At classification training

stage, its weights are also frozen, hence its regional

functionality does not erode due to the the image-level

loss. At the same time, it is capable of an accurate

detection of the regions of interest in all CT scans,

regardless of the problem at hand.

5) Careful empirical investigation confirmed that the ap-

proach does not suffer from the vanishing or exploding



Fig. 3: RoI Batch to Feature Vector and image classification

module S. Black arrows: features, dotted arrow: image label.

Each bounding box (green blocks) has a softmax confidence

score, that varies from ≈ 1 (red) to ≈ 0 (blue). CT scan source:

CNCB-NCOV. Best viewed in color.

TABLE II: Precision results on the segmentation data. AP1:

AP@0.5IoU, AP2: AP@0.75IoU, mAP: AP@[0.5:0.95]IoU,

main MS COCO criterion. Bold+italicized: best, bold:second-

best, italicized: third-best. One asterisk: two ResNet blocks

(first and second). Two asterisks: three ResNet blocks (first,

second and third). Superscript of 2 are models with the

augmented RoI layer. Bold+italics: best, bold: second-best,

italics: third-best.

Model AP1 AP2 mAP
ResNet18+FPN* 0.4585 0.3175 0.3516
ResNet18+FPN** 0.4253 0.3222 0.3415
ResNet34+FPN* 0.5635 0.3942 0.3993
ResNet34+FPN** 0.5243 0.2984 0.3565
ResNet18+FPN∗,2 0.5095 0.3927 0.3923
ResNet18+FPN∗∗,2 0.5799 0.3828 0.4245
ResNet34+FPN∗,2 0.6291 0.4648 0.4535
ResNet34+FPN∗∗,2 0.5152 0.3381 0.3579
Mask R-CNN (head only) 0.5110 0.3010 0.2980
Mask R-CNN (full) 0.5650 0.4130 0.3520

gradients, heavy overfitting or large overheads, both in

terms of the number of parameters and training and

evaluation time.

In Section IV we compare results achieved by methods dis-

cussed in Sections III-B and III-C.

D. Loss Functions

The model computes and backpropagates LTotal, Equation

1, a linear combination of LSEG, segmentation loss in

Equation 2 and LCLS , classification loss in Equation 3.

LTotal = LSEG + LCLS (1)

In the segmentation training stage, RPN solves an object vs

background binary problem, using overlaps of predictions

extracted from the set of anchors (boxes with predefined

dimensions) and gt objects to determine positives and

background (box coordinates and objectness), Equation 4a.

RoI solves a multiclass problem (box coordinates, classes and

masks) for each prediction, Equation 4b and 4c. Therefore,

Equation 2, loss of the segmentation branch, is the same as in

[5], [12]. Loss function for the image classification problem,

binary cross-entropy, are Equations 3 and 5.

A detailed discussion of the loss function computation

is presented in Appendix A.

IV. EXPERIMENTAL SETUP AND RESULTS

We test empirically the following three hypotheses in order

to determine the best model overall:

1) Reducing ResNet18 and ResNet34 depth from the full

architecture with 4 blocks to 3 and 2 with a single FPN

layer does not degrade performance (see [17] on the

matter of model truncation for this problem),

2) Compare the frameworks introduced in Section III: RoI

layer with a single segmentation branch with pretraining

vs augmented RoI layer without pretraining to determine

the one that achieves better accuracy on both problems,

3) SSM achieves stronger results in both problems com-

pared to OS baseline models.

For the experimental setup we selected two feature extractors

for SSM: ResNet18 and ResNet34, because in [17] it was

shown that smaller models achieve the classification accuracy

close or better than that of the larger models like ResNet50

with just a fraction of the model’s size. It was also shown

in [17] that truncating models, i.e. deleting either the last or

the last two blocks, in fact, improves the predictive quality

of the model compared to the full model (see [6] for the

explanation of ResNet residual architecture and Torchvision

implementation,

https://pytorch.org/docs/stable/torchvision/models.html).

We also considered three rules for updating model weights at

classification training stage:

1) Layer S only,

2) Layer S + full backbone,

3) Layer S + batch normalization layers in the backbone.

Rule 1 requires the least number of weights updates, and rule

3 is in line with the highest COVID-19 sensitivity in [15].

Nevertheless, with rule 2, we achieved top results across all

architectures and problems in this study, so we discarded the

outputs obtained with rules 1 and 3.

In total, we trained 8 different variants of the model:

4 base models with a single RoI segmentation branch (with

pretraining) and 4 augmented models with two parallel

RoI branches (trained from scratch). In the first approach,

segmentation model was pretrained for 50 epochs with Adam

optimizer, learning rate of 1e−5 and weight decay coefficient

of 1e − 3. Important Mask R-CNN hyperparameters such

as non-maximum suppression (NMS) thresholds and RoI

classification confidence threshold were the same relevant as

in [17]. All SSMs with either architecture were trained in a

similar way, with an Adam optimizer, learning rate of 1e− 5
and weight decay coefficient of 1e− 3.

We do not compare our results to publicly available

COVID-19 solutions due to a long list of methodological

differences (see Section V for their discussion). Instead, we

trained and evaluated several state-of-the art models on our



TABLE III: Class sensitivity, overall accuracy and F1-score results on COVIDx-CT test data for 3 classes (21192 images).

One asterisk: two ResNet blocks (first and second). Two asterisks: three ResNet blocks (first, second and third). Superscript

of 2 are models with the augmented RoI layer. Bold+italics: best, bold: second-best, italics: third-best.

Model COVID-19 CP Normal Overall F1 score
ResNet18+FPN∗ 90.20% 89.52% 89.34% 89.58% 0.8969
ResNet18+FPN∗∗ 83.00% 89.55% 98.62% 92.25% 0.9220
ResNet34+FPN∗ 88.70% 83.35% 94.54% 89.43% 0.8941
ResNet34+FPN∗∗ 87.13% 96.75% 88.04% 91.23% 0.9138
ResNet18+FPN∗,2 93.16% 95.68% 96.18% 95.38% 0.9542
ResNet18+FPN∗∗,2 93.00% 96.53% 98.64% 96.75% 0.9676
ResNet34+FPN∗,2 89.62% 89.99% 96.76% 92.93% 0.9293
ResNet34+FPN∗∗,2 91.44% 95.33% 92.48% 93.26% 0.9333
ResNet18 92.59% 96.25% 92.03% 93.58% 0.9361
ResNeXt50 91.94% 88.45% 84.21% 87.25% 0.8731
ResNeXt101 91.58% 92.13% 94.02% 92.87% 0.9286
DenseNet169 89.37% 96.78% 98.12% 95.81% 0.9586

Fig. 4: Segmentation (red) and Classification (blue) accuracy

for base model (broken line) and augmented model (normal

line) across all architectures.

data: Mask R-CNN, ResNet18, ResNeXt50, ResNeXt101,

DenseNet169 using the same hyperparameters as in SSM.

For the segmentation accuracy, we used MS COCO criteria

[9]: AP@0.5 intersect over union (IoU) threshold (AP1 in

Table II), AP@0.75 IoU threshold (AP2 in Table II) and AP

averaged across 10 IoU thresholds, AP@[0.5:0.95]IoU with a

step of 0.05 (mAP in Table II). For the classification accuracy

in Table III, we used well-known metrics: class sensitivity,

overall accuracy and class-adjusted F1 score. Details of both

test splits is presented in Table I.

Although at present there is no unified metric that balances

detection and classification results, from the results presented

in Table II and III we can infer several things. First, for

the classification problem, adding the third block gave a

stable improvement in F1 score and overall accuracy for

each architecture. At the same time, performance on the

segmentation data deteriorated. Second, switching from

ResNet18 to ResNet34 with the same number of blocks

overall improves mAP, but causes deterioration of the model’s

performance on the classification data. This means that neither

depth, nor the feature extractor architecture or the number of

parameters are good predictors of the model’s accuracy.

Most importantly though, the results in Tables II and

III, visualized in Figure 4, demonstrate the strength of the

models with the augmented RoI layer across all architectures

and problems. For the segmentation problem, augmented

ResNet34 with 2 blocks reports the highest precision across

all critera, and augmented ResNet18 with three blocks

the second-highest for AP@50% IoU and mAP. For the

classification problem, augmented ResNet18 with three

blocks achieves top results for the Normal class, overall

accuracy and F1 score, second-best COVID-19 sensitivity

and third-best CP sensitivity. Augmented ResNet18 with 2

blocks achieves top COVID-19 sensitivity.

For mAP, augmented ResNet34 with two blocks beats

the best base model by 0.054, for AP2 by 0.07, and for AP1

by 0.065. For COVID-19 sensitivity, augmented ResNet18

with two blocks beats the best base model, ResNet18 with

2 blocks, by 2.95%, for Normal class augmented ResNet18

with 3 blocks beats base ResNet18 with three blocks by

0.02%. Measured by the overall accuracy, it beats base

ResNet18 with 3 blocks by 4.50% and measured by F1 score

it also beats the same model by 4.56%. The only criteria, for

which all models with the augmented RoI underperform the

best base, ResNet34 with 2 blocks model is CP sensitivity,

by 0.22%. Also, for this criterion, top benchmark model,

DenseNet169, achieved top result beating base ResNet34

with 2 blocks further by 0.03%.

V. METHODOLOGICAL AND EXPERIMENTAL MILESTONES

AND LIMITATIONS

At present, COVID-19 benchmark dataset like MS COCO

or Pascal VOC, on which different models could be compared,

does not exist. This is the consequence of a rapid spread of

the infection, and the difference in the methods of collection

and processing of CT data across OS studies. On top of

that, to the best of our knowledge, none of the OS models

generalizes to other datasets and real-life applications in

radiology departments with good enough accuracy.

This problem is thoroughly investigated in [13], which

presents a systematic review of 62 models for CXR and



CT data reported in publicly available studies. According to

this study, due to a long list of methodological flaws and

overfitting, no model can be used for real-life implementation.

Another observation in this context, is that publications rarely

address these limitations. Following the recommendations in

[13], in our study, we attempted to overcome some of them:

1) Full source code, trained models and protocols are

available on a Github repository, hence, our results can

be easily verified,

2) We provide the full list of hyperparameters we used to

train and evaluate our models, both in the paper and on

Github,

3) In our study we worked with a large OS dataset, that

includes both classification and segmentation data,

4) The ratio of test to train splits for classification is one

of the highest available in the literature, all images were

resized to 512× 512 pixels, we did not use the weights

from models pretrained on large benchmark datasets,

such as ImageNet or MS COCO,

5) All methodology is clearly explained in sufficient details,

6) The models were compared to a suite of the state-of-

the-art OS models for both problems.

Despite our best efforts, the presented SSM still suffers from

the data bias, and in its current form may not be implementable

in a real-life setting, without additional finetuning. This is

the main limitation of our approach so far, and it is our best

intention to address it in the follow-up studies. Nevertheless,

methodology and results achieved in this study imply that the

model has a strong potential for generalization, For example,

the ratio of test to training splits in classification data, and

the ability of the model to solve two problems in a single shot.

Also, in our experiments, we could not establish a single

backbone architecture that could achieve the highest precision

and accuracy for both problems. Augmented ResNet34 with

2 blocks achieved top results on the segmentation task,

but could not outperform a number of other architectures

on classification problem. At the same time, augmented

ResNet18 with 3 blocks achieved the highest F1 score,

overall accuracy and Control sensitivity and second-highest

COVID-19 sensitivity and third-highest CP sensitivity, and

two strong results on the segmentation data. Augmented

ResNet18 with 2 blocks achieved top COVID-19 sensitivity.

Also, we established that key backbone hyperparameters:

number of weights, depth, architecture have no effect on the

accuracy for either problem.

VI. CONCLUSIONS

In this paper we presented a fast and accurate lightweight

single shot model model that fuses lesion instance

segmentation and chest CT scans classification (COVID-19,

Common Pneumonia, Control). Conceptual novelties include

the disentanglement of lesion instance detection functionality

for segmentation and classification tasks through the

augmentation of the RoI layer with a separate classification

branch. To the best of our knowledge, this is the first solution

in the COVID-19 deep learning community that fuses

lesion instance segmentation and COVID-19 classification a

single shot. Our experiments show with confidence that this

innovation strongly improves the model’s performance across

both tasks and all architectures.

So far we achieved strong results by only exploring the

localization (bounding box) and the class strength (confidence

score) of the objects (either lesions or background). One

of the key differences between COVID-19 and CP is the

configuration of lesions and features: diffuse distribution,

attenuation, crazy-paving patterns, etc, that rectangular

bounding boxes cannot capture. In our future research we

intend to exploit the differences in these configurations for

COVID-19 prediction by using masks (mask features) that

capture the objects’ shapes more accurately than bounding

boxes. Full source code, model interfaces and pretrained

weights are available on

https://github.com/AlexTS1980/COVID-Single-Shot-Model.
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APPENDIX A

EQUATIONS

Here npos
RPN/RoI is the number of positive predictions in

the RPN/RoI samples, nRPN/RoI is the total number of

predictions in the RPN/RoI samples, C refers to all classes,

C∗ are the incorrect classes, C∗∗ is the correct class, σ is the

sigmoid function. Since RPN and RoI train by constructing

batches from each image, all sums in Equations 4a and 4b

are over candidates sampled into the batch. Positive (non-

background) predictions are determined by their overlaps with

the gt boxes.

1) RPN box coordinates: xbox
j is the box coordinates

predictions, the absolute difference is computed only for

the box coordinates of the correct positive class, tbox

are box coordinates for the corresponding gt object,

2) RPN classes: qCj (x), Equation 5, is binary cross-entropy

loss for both background and object, x is the class logit

score,

3) RoI box coordinates: L1smooth is a variation of abso-

lute distance function, the difference is computed only

for the box coordinates of the correct positive class,

xbox,C∗∗
j and the corresponding gt box,

4) RoI classes: cross-entropy loss, with xC∗∗
j is the logit

score for the correct class in each RoI prediction,

including the background,

5) RoI masks: pixelwise binary cross-entropy between gt

binary mask for the correct class, mj and the logits for

the correct class, xC∗∗
j

LSEG = LRPN + LRoI + LMask (2)

LCLS = − log σ(xC∗∗
)−

∑

j∈C∗
log(1− σ(xC∗

j )) (3)

LRPN =

npos
RPN∑

j=1

|xbox
j − tbox|+

nRPN∑

j=1

qCj (x) (4a)

LRoI =

npos
RoI∑

j=1

L1smooth(|xbox,C∗∗
j − tbox|)

−
nRoI∑

j=1

log softmax(xC∗∗
j ) (4b)

LMask = −
npos
RoI∑

j=1

mj log σ(x
C∗∗
j ) (4c)

qCj (x) = − log(1− σ(xC∗
j ))− log σ(xC∗∗

j ) (5)


