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User identification is an essential step in creating a personalised long-term interaction with robots. This

requires learning the users continuously and incrementally, possibly starting from a state without any known

user. In this paper, we describe a multi-modal incremental Bayesian network with online learning, which is

the first method that can be applied in such scenarios. Face recognition is used as the primary biometric, and

it is combined with ancillary information, such as gender, age, height and time of interaction, to improve the

recognition. The Multi-modal Long-term User Recognition Dataset is generated to simulate various human-

robot interaction (HRI) scenarios and evaluate our approach in comparison to face recognition, soft biometrics

and a state-of-the-art open world recognition method (Extreme Value Machine). The results show that the

proposed methods significantly outperform the baselines, with an increase in the identification rate up to 47.9%

in open-set and closed-set scenarios, and a significant decrease in long-term recognition performance loss.

The proposed models generalise well to new users, provide stability, improve over time, and decrease the bias

of face recognition. The models were applied in HRI studies for user recognition, personalised rehabilitation

and customer-oriented service, which showed that they are suitable for long-term HRI in the real world.
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1 INTRODUCTION
User identification is an important step towards achieving andmaintaining a personalised long-term

interaction with robots. For instance, a user may need to be identified for providing personalised

rehabilitation therapy [41]. When a robot is first deployed, it will start from a “tabula rasa” state

with no prior knowledge of users. As users are encountered over a possibly extended period of

time, their identity and information are stored by the robot. Hence, the system has to identify

enrolled and “unknown” users, which is known as open-set identification. Open-set identification is

a well-established field [48, 76, 77], but in a real-world setting, these unknown users might need

to be added into the system for future recognition. One solution is to retrain the system after

introducing a novel user. However, this requires storing the previous samples, which could create a

prohibitively large computational burden in long-term deployments. Furthermore, it would require

a significant amount of time to retrain with a growing number of users and samples [8]. Instead,

the system should allow scaling and support incremental learning of new classes, which is termed

open world recognition [8].

Face recognition (FR), i.e., identifying a person based on their face, has been the most prominent

technique in biometric identification due to its non-intrusive character. Most state-of-the-art

methods use deep learning based approaches [68, 79–81], but only a few approaches exist for

open-set recognition [9, 33]. Most models are not suitable for open world recognition due to the

catastrophic forgetting problem, which refers to the drastic loss of performance on previously

learned classes when a new class is introduced [62, 63, 66]. Existing approaches that could help to

overcome this problem often require a part of the previous data for retraining, which might not be

available.

Incremental learning is not sufficient for adapting to changes in the environment. For instance,

an algorithm designed for open world recognition may not be able to recognise a person after a

new haircut, because the model is not updated for known samples. Humans show a good model for

recognition because they can continuously adapt to changing circumstances by updating their prior

beliefs, known as online learning, and use multi-modal information instead of a single biometric
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Fig. 1. Robots can make use of multi-modal information to recognise users more accurately in long-term
interactions.
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(modality) for estimation of the identity, such as recognising a person from the voice in a dark room.

Biometric systems that combine multiple biometric traits or attributes obtained through the same

sensor (e.g., face and iris [16, 21, 83, 87]) or various sensors (e.g., face and voice [10, 17, 18, 58, 82])

for establishing identity are known as multi-modal biometric systems [24, 47]. Most robots are also

suitable for multi-modal recognition, as they have multiple sensors and perception algorithms (as

shown in Fig. 1), which allow them to recognise users even when data are inaccurate or noisy, for

example, in the case of image blur or illumination changes [85]. Moreover, the combination of multi-

modal data can help overcome issues related to similarities between users
1
, by differentiating on

additional available information, for example, age and gender. Such ancillary physical or behavioural

characteristics, called soft biometrics, can be used to improve the recognition performance [24, 45, 47].

Combining multi-modal recognition with online learning can improve recognition further in time.

For instance, a user can be initially mistaken for another in certain circumstances, but these

variations can be learned over time and combined with other modalities to improve recognition

where FR fails.

In our earlier work [43], we proposed a multi-modal weighted Bayesian Network with online

learning, which is the first approach for combining soft biometrics (gender, age, height and time

of interaction) with a primary biometric (face recognition) for open world user identification in

real-time human-robot interaction (HRI). This model, here referred to as Multi-modal Incremental

Bayesian Network (MMIBN), is the first method for sequential and incremental learning in open

world user recognition that allows starting from a state without any known users (i.e., it does not

require preliminary training to recognise users and it can learn new users incrementally). This work

showed that the proposed model is suitable for real-world human-robot interaction experiments

for user recognition in real-time. However, the limited population size (14 users) and the narrow

age range (24-40) of the users in that experiment prevented us from claiming that the results can

be generalised for application in larger populations. On the other hand, obtaining a dataset that

encapsulates a diverse set of characteristics for a large number of users over long-term interactions

is a laborious task in HRI. Thus, we created the Multi-modal Long-Term User Recognition Dataset
2
,

which contains images of 200 users (with age range 10 to 63) with name, gender, age and height

labels, along with artificially generated height estimations and various time of interactions to

simulate a long-term HRI scenario. We obtained the images from the largest publicly available

dataset of face images with gender and age labels, IMDB-WIKI dataset
3
[71, 72]. To obtain the

multi-modal biometric information from these images (face, gender and age estimations), we used

(NAOqi) proprietary algorithms of the Pepper robot
4
, similar to our earlier work.

Ourmain contribution is the extension of our earlier work [43] to take inmulti-modal information,

typically available in HRI, to markedly increase user identification and subsequently improve user

experience in long-term interactions for a large number of users in a variety of settings. We also

provide a detailed description of the Multi-modal Incremental Bayesian Network, highlighting the

mathematical formulations and assumptions behind the models that were not addressed in [43]. In

addition, we present our findings from applying the optimised models in long-termHRI experiments

in the real world [41–43]. Correspondingly, we make the following contributions (source code,

multi-modal dataset, trained models and results on the dataset are available online
2
):

1
https://www.wired.com/story/10-year-old-face-id-unlocks-mothers-iphone-x/

2
Latest version of the Multi-modal Incremental Bayesian Network: https://github.com/birfan/MultimodalRecognition

Multi-modal Long-Term User Recognition Dataset, source code used in this work and the corresponding results and the

trained models are available at: https://github.com/birfan/MultimodalRecognitionDataset

3
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

4
https://www.softbankrobotics.com/corp/robots/
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• creating the Multi-modal Long-Term User Recognition Dataset with 200 users of varying

characteristics

• introducing long-term recognition performance loss
• combining optimal normalisation methods for each parameter in the Bayesian network in a

hybrid approach

• formulating the proposed online learning in terms of Expectation Maximization (EM) and

Maximum Likelihood (ML)

• applying Bayesian optimisation on the weights of the soft biometric identifiers and the quality

of the estimation

• evaluating the proposed model against a state-of-the-art open world recognition method

(Extreme Value Machine [73])

• evaluating the stability of the model for learning users sequentially (similar to batch learning)

and at random intervals (similar to a real-world scenario)

• evaluating the generalisability of the model for new users (performance during training set

in comparison to open-set and closed-set recognition)

• evaluating the model for varying frequency of user appearances (modelled with uniform and

Gaussian timing of interaction, and varying dataset sizes)

• evaluating the progress of the model over time (with the increasing number of recognitions)

• analysing recognition bias in face recognition, the proposed approach and Extreme Value

Machine

• evaluating the models on the data from the real-world HRI study (4 weeks) in [43] in com-

parison to the corresponding optimised models

• evaluating the model in a real-world (5-day) HRI study with a personalised barista robot at

an international student campus in Paris (France)

• evaluating the models in a long-term (5-months) HRI study within a cardiac rehabilitation

programme at a hospital in Bogotá (Colombia)

The rest of the paper is organised as follows: Section 2 gives a brief overview of the current

practice of open world recognition, online learning, multi-modal biometrics algorithms, and user

recognition in human-robot interaction (HRI). Section 3 describes themethodology and the structure

of the proposed Bayesian network. Section 4 describes the recognition module for NAOqi that is

used to obtain the multi-modal biometric information for the proposed model. Section 5 explains

the procedure of the creation of the Multi-modal Long-Term User Recognition Dataset. Section 6

presents the empirical evaluation of the proposed methods on closed-set and open-set datasets.

Section 7 highlights the implications of the results and discusses the initial assumptions. Section 8

evaluates the optimised models in long-term HRI studies in the real world. Section 9 concludes

with a summary of the work.

2 RELATEDWORK
Our work lies at the intersection of open world recognition, online learning, multi-modal biometrics,

and HRI.

2.1 Open World Recognition
One of the first algorithms applied to open world recognition was Nearest-Non Outlier (NNO) [8],

which modified Nearest Class Mean (NCM) [64] for open-set classification and incremental learning.

Another approach is Extreme Value Machine (EVM) [73] based on Extreme Value Theory, which

outperformed NNO on the open world ImageNet benchmark [8, 73]. However, both of these

methods work with incrementally adding a batch of new classes (e.g., 100 at a time), as opposed
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to incremental learning of classes (one at a time). Similarly, the approach proposed in [29] is

based on a center-based similarity space learning method and 1-vs-rest strategy of Support Vector

Machines (SVM) for object classification. However, none of these methods has been evaluated on

user recognition.

2.2 Online Learning
Several online learning methods exist for various application areas [34]. In video-based recognition,

Lee and Kriegman [55] proposed an online learning algorithm of probabilistic appearances, but a

prior generic model is necessary for this approach. Boucenna et al. [13] used online and incremental

learning in two neural networks for facial expression recognition and face/non-face discrimination

in an HRI imitation game. The former neural network uses a k-means variant SAW (Self Adaptive

Winner takes all) [49] to categorise focus points in the image, whereas the latter predicts the

interaction rhythm [3] (i.e., timing for interaction) to detect whether the user is interacting with

the robot. While the face discrimination method was shown to generalise to new users successfully,

the facial expression recognition achieved low success rates for generalisation. In addition, both

approaches required preliminary training, and were evaluated on a low number of users (20). De

Rosa et al. [26] used online learning in open world (object) recognition for incremental learning of

a classification metric, the threshold for novelty detection and describing the space of classes. The

approach was applied to three existing algorithms, namely, NCM, NNO and Nearest Ball Classifier

(NBC) [27]. Their results showed that online learning increases classification performance.

2.3 Multi-Modal Biometrics
In a multi-modal biometric system, information from different identifiers, such as face recognition

or gender identification, is fused via prior or post classification [44]. Prior classification requires

access to the features or sensor values of the identifiers, which are generally not available for

proprietary algorithms. For post-classification, two approaches exist: classification and combination
of confidence scores. Classification methods, such as neural networks and SVM, combine non-

homogeneous data from individual classifiers into a feature vector for further classification without

the need for preprocessing. In the combination approach, individual matching scores from the

identifiers are combined into a scalar score in three steps: (1) normalisation of scores into a common

domain, (2) combination of scores based on Bayes decision rule and posterior probabilities, e.g.,

sum or product rule, and (3) thresholding for classification. The performance of these approaches

depends on the chosen method and threshold.

Bayesian approaches have been widely used for combining primary biometrics, such as face

and speaker recognition [10, 17, 82], as well as combining soft biometrics [25, 45, 46, 67, 78, 86].

For instance, Jain et al. [45] proposed a Bayesian network for combining fingerprints with soft

biometric traits, namely, gender, ethnicity, and height. They used a fixed weighting scheme, where

the biometrics with smaller variability and more substantial distinguishing capability were given

more weight and achieved slight improvement in recognition. Similarly, Scheirer et al. [78] used a

Bayesian network with Noisy-OR weighting that combines face recognition with ethnicity, hair

colour, gender, age, eyebrow type and non-soft biometric contextual information, such as the

occupation and location of the person. Contrary to the work in [45] and our approach, they used

the accuracy of estimators to adjust the FR match score.

2.4 User Recognition in Human-Robot Interaction
Similar to biometric recognition, the most common approach for user recognition in HRI is through

FR [4, 5, 23, 32, 38]. However, robots can take advantage of multi-modal recognition due to the

variety of different sensors they carry. Soft biometrics are especially important because they allow
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non-intrusive recognition, but only a few studies use soft biometrics. Martinson et al. [61] used a

weighted summation of soft biometrics (clothing, complexion and height) to identify users within a

short-term interaction from a group of only three users. Boucenna et al. [12] gathered extensive data

(100 images per person) during a game and later evaluated the recognition offline using a Hebbian

rule-based neural network. Ouellet et al. [65] combined face recognition, speaker identification,

and human metrology through Hampel estimators in closed-set identification using a substantial

time for training (3.5 minutes) and a small number of participants (pretraining on 22, test on 7).

Al-Qaderi and Rad [1] combined face, body and speech information using a spiking neural network

in closed-set identification and have evaluated on a simulated dataset. These approaches do not

apply to open world recognition, hence, their methods are not easily comparable to ours.

Our previous work [43] introduced a multi-modal weighted Bayesian network, which is the

first approach in combining multi-modal biometric information for sequential and incremental

learning of new users for open world recognition that allows starting from a state without any

known users. It is also the first approach in combining soft biometrics (gender, age, height and

time of interaction) with a primary biometric (FR) to identify a user in real-time HRI. Online

learning was used for learning the likelihoods of the network from sequential data to improve the

recognition over long-term interactions. The weights of the network were optimised to minimise

the number of incorrect recognitions. The quality of the estimation measure was introduced to

decrease the number of incorrect recognitions for unknown users. The results obtained in a user

study with 14 participants over four weeks showed a slight improvement in identification rate (up

to 1.4% in open-set and 4.4% in closed-set recognition) compared to 90.3% of FR. The optimised

weights suggested that age is the least effective soft biometric parameter, whereas height is the most

effective one. Moreover, the Bayesian network performed worse with online learning. However, we

concluded that the dataset might be biased towards the participants’ characteristics due to the low

number of participants and limited age range, and an evaluation with a bigger dataset is necessary

to understand the capabilities of the system entirely.

This paper extends the work in [43], for evaluating the approach within the Multi-modal Long-

Term User Recognition Dataset and two other real-world HRI experiments, and optimising the

weights of the Bayesian network through a long-term recognition performance loss criterion with

hybrid normalisation.

3 MULTI-MODAL INCREMENTAL BAYESIAN NETWORK
A Bayesian network is a probabilistic graphical model which represents conditional dependencies

of a set of variables through a directed acyclic graph. Bayesian networks are suitable for combining

scores of identifiers with uncertainties when the knowledge of the world is incomplete [78].

We developed a weighted multi-modal incremental Bayesian network (MMIBN), integrating

multi-modal biometric information for reliable recognition in open world identification through a

�

� � � � �

Fig. 2. The naive Bayesian network model with identity (I ), face (F ), gender (G), age (A), height (H ), and time
of interaction (T ) nodes.
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naive Bayes model (see Fig. 2). The naive Bayes classifier model assumes conditional independence

between predictors, which is a reasonable assumption for a multi-modal biometric identifier as the

individual identifiers do not affect each other’s results. The architecture for the estimation of the

user identity (I ) in MMIBN and the recognition process are presented in Fig. 14 and 15 in Appendix

A. The primary biometric in our system is face recognition (F ), which is fused with soft biometrics,

namely, gender (G), age (A), and height (H ) estimations, in addition to the time of interaction (T ),
which can be distinguishing if the users are encountered at patterned interaction times, such as for

weekly appointments in rehabilitation. We hypothesise that the integration of these soft biometrics

will reduce the effects of noisy data, as described in Section 1, and increase the identification rate.

Nonetheless, the MMIBN allows extension with other primary biometric traits, such as voice and

fingerprint, and other soft biometrics, such as eye colour and gait, to improve recognition. The

pyAgrum
5
[36] library is used for implementing the Bayesian network structure. Parts of MMIBN

were previously described in our prior work [43], however, this section provides the underlying

mathematical formulations and full details of the system for reproducibility, and introduces the

long-term recognition performance loss (Section 3.6) and hybrid normalisation (Section 3.7).

3.1 Structure
The number of states for each node depends on the modality: F and I nodes have ne+1 states, where
ne is the number of enrolled (known) users. A and H nodes are restricted to the available range

of the identifier, such as [0, 75] for A and [50, 240] (cm) for H . G has “female” and “male” states. T
is defined by the day of the week and the time, through time slots. For example, if each minute

corresponds to a time slot (i.e., time period, tp , is 1 min), there will be 10080 T states (there are

10080 minutes in a week).

When a user is encountered, the corresponding multi-modal biometric evidence is collected from

the identifiers. An example for the biometric evidence from the identifiers and the transformed

(weighted and normalised) evidence is shown in Fig. 16B in Appendix A. FR provides similarity

scores, which give the percentage of similarity of the user to the known faces in the database. Age,

height, and time are assumed to be discrete random variables with a discretised and normalised

normal distribution of probabilities, N (µ,σ 2), defined by (1), where V is the estimated value, Z is

the standard score, and C is the confidence of the biometric indicator for the estimated value.

µ = V , P(
−0.5

σ
< Z <

0.5

σ
) = C (1)

The time period and its standard deviation (σt in the normal distribution ofT ) can be set depending
on the precision required in the application. A smaller time period and standard deviation ensure

higher precision, however, this would increase the complexity of the Bayesian network, thereby

increasing the time to identify the user. In addition, a higher precision carries the risks of decreasing

the recognition rate, if the users are not encountered near the time slot that they were previously

seen. For example, if users in the application scenario will change every 5 minutes, then tp = 5 min

and σt = 15 min would be reasonable. On the other hand, in an HRI scenario, tp = 30 min with

σt = 60 min can allow better identification because it is less likely to encounter users around the

same time every day. Hence, we use the latter in this paper.

3.2 Weights of the Network
Soft biometric traits are characteristics that are not suited to identify an individual uniquely. We

can assume that the population will have similar characteristics, but the distribution is unknown.

However, some soft biometric features may contain more information about an individual than

5
https://agrum.gitlab.io/
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others, e.g., age is often more informative than gender. This can be modelled by using different

weights for the parameters in a Bayesian network [45].

Weights (wi ) are used as the exponential to the likelihoods of the child nodes (Xi ), similar to

the work in [88]. In contrast to our previous work [43], we optimise the weights of soft biometric

features (gender, age, height and time of interaction) through Bayesian optimisation, as described

in Appendix C.6, while the weight of the face node (wF ) is set to be 1, as it is the only primary

biometric in our system. The posterior probability P(I j |X1, ..,Xn) is approximated as in (2). I j stands
for the jth user (I = j), where I is the identity node.

P(I j |X1, ..,Xn) ∝
P(I j )

∏
i P(Xi |I

j )wi

P(X1, ..,Xn)
(2)

As in [45], we assume that the identifiers perform equally well on all users. Therefore, the

accuracy of an identifier is independent of the user and equal priors are assumed for each of the

identifiers. The posterior probability simplifies to the equation shown in (3).

P(I j |X1, ..,Xn) ∝ P(I j )
∏
i

P(Xi |I
j )wi

(3)

Because the distribution of users over time is not known, one approach for determining P(I j ) is
to use adaptive priors using frequencies of user appearance, however, this can create a bias in the

system towards the most frequently observed user as it affects the posterior probability directly,

thus, may result in a decrease in the identification rate. Therefore, we assume that the probability

of encountering user j is equally likely as encountering userm, hence, we assume equal priors for

P(I ), as shown in (4), where ne is the number of enrolled users, which is updated whenever a new

user is enrolled, as presented in Fig. 16 in Appendix A.

P(I j ) = P(I ) =
1

ne
(4)

3.3 Quality of the Estimation
Algorithms for open-set problems generally use a threshold (e.g., over the highest probability/score)

to determine if the user is already enrolled or “unknown”. However, the resulting posterior proba-

bilities in a Bayesian network can be low due to the multiplication of the conditionally independent

modalities and vary depending on the number of states. Hence, we use the two-step ad hoc mech-

anism introduced in [43] to transform the Bayesian network to allow open-set recognition: (1)

An “Unknown” (U ) state is used in both F and I nodes. The similarity score in FR of U is set to

the FR threshold (θFR ), such that when normalised, scores below/above the threshold will have

lower/higher probabilities than U . This allows maintaining the threshold for the FR system in use.

(2) We use the confidence measure called the quality of the estimation (Q). Given the evidence yt at
time t , it compares the highest posterior probability (Pw ) to the second highest (Ps ), as shown in (5).

The difference between the probabilities decreases, as the number of enrolled users (ne ) increases
since

∑
j P(I

j |yt ) = 1.0. A similar method was used in [31] for estimating the quality of localisation

based on different images.

Q = [Pw (I
j |yt ) − Ps (I

j |yt )] ∗ ne (5)

Using the quality of the estimation enables decreasing misidentifications. For example, the

highest posterior score can be very high, but if the second highest posterior is very close to it,

then it means that there are two possible strong candidates for the current user. If the system

were to identify the user in this case, the resulting misidentification could cause adverse effects
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on the current user especially in the case of different genders or age differences between the two

users, as well as security issues. Thus, it is more preferable to identify the user as unknown, if the

quality is zero or below a predetermined threshold (θQ ), or ifU has the highest posterior probability.

Otherwise, the identity is estimated with a maximum a posteriori (MAP) estimation, given in (6).

j∗ =


U , if Q = 0 or Q < θQ or

P(IU |yt ) > P(I j |yt ) for all j

argmaxj P(I
j |yt ), otherwise

(6)

3.4 Incremental Learning
For personalisation in long-term HRI applications, new users may often need to be enrolled in

a system to allow recognition in subsequent encounters, such as for admitting a new patient to

personalised robot therapy. However, in such applications, the intermediary (e.g., clinical staff)

and end users (e.g., patients) are often non-experts, hence, systems that require the least amount

of technical knowledge, effort and time are desirable, especially those that allow users to enrol

themselves. Thus, we developed an incremental learning system for the weighted multi-modal

Bayesian network, which expands the network upon new user enrolment. When the MMIBN

detects that the user is new, the robot requests to meet the user, and (verbally) asks for their name,

gender, birth year, and height, which the user can enter through a tablet interface, after which a

photo of the user is taken by the robot (step 9 in Fig. 15). This information, along with the time of

interaction, is gathered to have the ground truth values for recognition, and for setting the initial

likelihoods of the MMIBN.

Initially, the system starts from a “tabula rasa” state, where there are no known users. Bayesian

network is formed when the first user is enrolled: one state for the new user and one for the

“Unknown” (U ) state. Fig. 16A (in Appendix A) illustrates an example for the initial MMIBN after

the enrolment of the first user, e.g., a 25-years-old female who is 168 cm tall and encountered at

11:00 am on a Monday. The initial likelihood for F is set to be much higher for the true values as

shown in (7), wherewF is the weight of the face variable, and ne is the number of enrolled users.

The value was found based on preliminary experiments.

P(Fk |I j ) =

{
0.9wF , if k = j

[0.1/(ne − 1)]
wF , otherwise

(7)

The remaining likelihoods are set using the prior knowledge that the user entered in a similar

structure to the evidence for age, height and time variables with a discretised and normalised normal

distribution, N (µ,σ 2), where µ is the true value (e.g., age of the person), and σ is the standard

deviation of the identifier. Gender is set at [0.99wG , 0.01wG ] ratio, which is experimentally found.

For the unknown state, P(X k
i |I

U ) is set to be uniformly distributed, as an unknown user can be of

any age, height and be recognised at any time of the day, except for the face node, which follows

(7).

When a new user is enrolled, the Bayesian network is expanded by adding a new state to I and
F nodes. P(Fk |I j ) for each previous state in I (including U ) is updated by appending the value

corresponding to k , j condition in (7), and then probabilities are re-normalised. The likelihoods of

G , A, H and T nodes for the previously enrolled users remain the same. An example of the MMIBN

likelihoods during incremental learning of a new user, e.g., a 37-years-old male, 173 cm tall, and

encountered on a Wednesday at 8:00 pm, is illustrated in Fig. 16E in Appendix A.

The scalability feature removes the need to retrain the network when a new user is introduced,

hence, the time complexity is decreased, which can be crucial if the new user is introduced at
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a later step (e.g., after 1000 users). More precisely, if each image corresponding to no average

number of observations per user was to be recognised again after a new user is added to the face

database, it would take a significant amount of time to expand the network compared to scaling,

since ne ∗no ∗O(FR) ≫ ne ∗O(1) updates, where O(FR) is the time complexity of the FR algorithm,

and ne is the number of enrolled users.

In order to reduce the risk of confusing new users with known users, it is preferable to have

sufficient data within the MMIBN prior to making reliable estimations, hence, in the first few

recognitions (here, we chose N < Nmin = 5 recognitions, i.e., the first 4 recognitions)
6
, the identity

is declared as unknown, regardless of the estimated identity, as illustrated in Fig. 16C (Appendix A).

3.5 Online Learning of Likelihoods
Bayesian network parameters are generally determined by expert opinion or by learning from

data [51]. The former can cause incorrect estimations if the set probabilities are not accurate

enough. The latter, for which Maximum Likelihood (ML) estimation is commonly used, is not

possible when the Bayesian network is constructed with incomplete data. One solution is to

use offline batch learning, however, it requires storing data that can cause memory problems in

long-term interactions. Another approach is to update the parameters as the data arrive, which is

termed online learning. Variants of Expectation Maximization (EM) algorithm with a learning rate

(EM(η)) [6, 20, 57, 59] have been proposed for online learning in Bayesian networks.

We use a Bayesian network where the likelihoods are updated through EM(η) with an adaptive η
(learning rate) based on ML estimation, similar to Voting EM [20]. Adopting the notation in [6], the

formulation is given in (8). θ ti jk represents the likelihood of the modality Xi at time t , P(Xi = xki |I
j ).

Pθ t (x
k
i |yt , I

j ) represents the posterior probability of the modality Xi at time t given the current

evidence yt and the actual identity of the user I j . The difference between Voting EM and our

approach is that we work with continuous probabilities due to uncertainties in the identifiers.

We will refer to the proposed multi-modal incremental Bayesian network with online learning as

MMIBN:OL.

θ t+1i jk =

{
ηjPθ t (x

k
i |yt , I

j ) + (1 − ηj )θ
t
i jk , if P(I j ) = 1

θ ti jk , otherwise

(8)

Combining ML estimate to achieve an adaptive learning rate (given in (9)) allows the learning

rate to depend on the observation of the user j (noj ), which is more reliable than using a fixed

rate for all users. Also, each observation of the user creates a progressively smaller update on the

likelihoods, such that, the effect of a new observation decreases as the number of recognitions of

the user increases.

ηj =
1

noj + 1
(9)

Supervised learning is necessary to achieve accurate online learning. The identity of the user

should be known for updating the corresponding likelihoods, which can be achieved in HRI by

asking for a confirmation of the estimated identity.

If the user j is previously enrolled in the system, the likelihoods are only updated for user j,
as shown in Fig. 16D (in Appendix A) based on the evidence in Fig. 16B. On the other hand, if

6
This parameter can be set to another value (including 0) in the algorithm for MMIBN. Increasing this value would

allow the MMIBN to produce more reliable estimations of new users, however, this could also decrease the identification

performance of known users. Hence, we chose a sufficiently low value. It is also possible to use the identity estimated by

face recognition (instead of declaring unknown identity) in the algorithm for the first few recognitions.

ACM Trans. Hum.-Robot Interact., Vol. 11, No. 1, Article 6. Publication date: October 2021.



the user j is a new user, online learning is applied on the face likelihood for the unknown state

(P(Fk |IU )), followed by incremental learning by expanding the MMIBN (as described in Section

3.4), and finally by applying online learning for the new user, as illustrated in steps 8-18 in Fig. 15

and in Fig. 16F. The likelihoods of gender, age, height, and time remain the same forU to ensure

uniform distribution.

3.6 Long-Term Recognition Performance Loss
The standard metrics for open-set identification are Detection and Identification Rate (DIR) and

False Alarm Rate (FAR) [69]. DIR is the fraction of correctly classified probes (samples) within the

probes of the enrolled users (PE ), given in (10). FAR is the fraction of incorrectly classified probes

within the probes of unknown users (PU ), given in (11).

DIR =
|{argmaxj P(I

j |yt ) = j |j, j ∈PE }|

|PE |
(10)

FAR =
|{argmaxj P(I

j |yt ) = j |k, j ∈PE ,k ∈PU }|

|PU |
(11)

In other words, DIR represents the “true positive” (TP) of enrolled users, in which the current

probe (referring to the multi-modal biometric sample) belongs to a previously enrolled user and

identified correctly. FAR serves as a “false positive” (FP) for unknown users, that is, the probe

belongs to an unknown user, but he/she is identified as an enrolled user. However, TP and FP are

notions of verification problems, in which the probe is compared against a claimed identity, thus,

are generally not applicable to open-set identification. Instead, the trade-off between DIR and FAR

that depends on the threshold of the identifier, is generally represented by a Receiver Operating

Characteristic (ROC) curve. The standard practice in biometric identification is to determine the

desired FAR, which would then set the threshold and DIR.

Depending on the biometric application, the cost of incorrectly identifying a user as known may

be very different from the cost of incorrect identification of the enrolled user [47]. For short-term

interactions, in which a user will be encountered 1−2 times, FAR is as important or more important

than DIR. However, for long-term interactions, users will be encountered a greater number of

times. Thus, correctly identifying a user (in a closed-set) becomes more important than correctly

identifying an unknown user (open-set). Hence, we introduce the long-term recognition performance
loss (L) that creates a balance between DIR and FAR based on the average number of observations

per user (no ), as presented in (12), where α is the ratio of importance of DIR compared to FAR.
Weights of MMIBN are optimised through this loss function, for gender, age, height and time

in [0, 1] range, along with quality (Q) that can change within [0, 0.5] range. Ideally L = 0, where

all unknown users are identified as such (FAR= 0.0) and the known users are correctly identified

(DIR= 1.0).

L = α ∗ (1 − DIR) + (1 − α) ∗ FAR

α = 1 −
1

no

(12)

3.7 Normalisation Methods
The scores from each modality must be normalised into a common range (e.g., [0, 1]) to ensure

a meaningful combination. It is important to choose a method that is insensitive to outliers and

provides a good estimate of the distribution [44], such as, minmax, tanh [37], softmax [11], and

normsum (dividing each value by the sum of values). We introduce hybrid normalisation which
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combines the methods that achieve the lowest loss for each modality. In other words, hybrid

normalisation uses the best performing normalisation method for each modality. Extensive tests

were made on the dataset obtained from our previous work in [43] to get the optimal methods

for each modality (F ,G, A, H and T ). The long-term recognition performance loss was compared

for each combination of the individual modality with face recognition (F , F -G, F -A, F -H , F -T ) by
optimising the weights for each of the combinations. The resulting hybrid normalisation uses

normsum for face, gender, and height; tanh for age; softmax for time of interaction.

4 RECOGNITION MODULE
While MMIBN can be applied on other platforms, its main purpose is for enabling incremental

user recognition in long-term human-robot interaction in the real world. The proposed approach

does not require heavy computing, therefore, it is suitable for use on commercially available robots.

We employ this system on Pepper and NAO
7
robots, which are amongst the most commonly used

robots in HRI research [53], for our experiments (as described in Section 8). These robots are

operated by NAOqi
8
software, which includes different modules that allowed us to extract face

similarity scores, gender, height and age estimations from a single image through the Recognition

Module in Fig. 13 (Appendix A). The internal states of the proprietary algorithms (developed by

OKAO) are inaccessible, hence, we assume that the gender and age estimations are not used to

obtain the face similarity scores, and they are conditionally independent of the FR results, even

though they are obtained from the 2D image. The height estimation in NAOqi is measured through

the 3D sensor (in the eyes) of the Pepper robot, and based on the face position in the 2D image

and the geometric transformations (based on the camera relative to the robot) for the NAO robot.

Due to relying on only one primary biometric, in the absence of facial information, the user is not

recognised since soft biometric information would not be sufficient to estimate the identity.

MMIBN can be used with any identifier software. The reason NAOqi identifiers are chosen is

their capability for incremental recognition and their real-time performance, in other words, these

algorithms work on a single CPU on a robot without requiring preliminary training. In contrast,

the state-of-the-art deep learning methods for face recognition (such as Dlib [50]) are not optimised

for low computational power systems, hence, they may require a vast amount of time for encoding

images, recognition and retraining
9
, which makes them unsuitable for real-time open world user

recognition on a robot. Similarly, OpenFace
10
[2], which is an implementation of FaceNet [79] and

a popular closed-set face identification method, was found to be unsuitable for real-world HRI,

because the classifier needs to be retrained after a new user enrolment with all the available data

(instead of incremental learning) with batch learning of images for the new user, and the training

time (albeit small) increases with the increasing number of users [2]. In addition, preliminary

evaluations of OpenFace
11
provided unpromising results in new user identification. For instance,

7
https://www.softbankrobotics.com/corp/robots/

8
http://doc.aldebaran.com/2-5

9
An implementation of Dlib for open world recognition using retraining on a dataset with a small number of users

is explained in this link, which shows that a single recognition can take 6-7 seconds on a single CPU system: https:

//www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

10
https://cmusatyalab.github.io/openface

11
The classifier demos in https://cmusatyalab.github.io/openface/demo-1-web/ and https://cmusatyalab.github.io/

openface/demo-3-classifier/ were combined and applied on the Pepper robot. An image was taken from the robot’s

camera, identified with the pre-trained OpenFace celebrity classifier available at the latter link, and the confidence score of

the classifier was displayed on the Pepper’s tablet, along with the image of the user and the most similar celebrity. The

confidence score of the classification ranges from 0% (user does not resemble any user in the database) to 100% (user is

identical to a user in the database). If the confidence score is below (or equal to) 50%, the user is identified as unknown

(new), as defined in the script for the former demo.
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the first author was recognised consistently as Anne Hathaway with a high confidence (85 to 99.2%),
despite the fact that the classifier was trained on only 10 users with 600 images per user (i.e., the

classifier must be very accurate in identifying known users), and the author does not resemble her

that highly. Nevertheless, it is possible to use OpenFace or other identifiers, instead of the NAOqi

user recognition algorithms, for obtaining the multi-modal biometric information for MMIBN.

5 MULTI-MODAL LONG-TERM USER RECOGNITION DATASET
Our prior work provided evidence that the proposed model is suitable for long-term HRI in the

real world. However, the optimised parameters of the model could not be generalised to a larger

population due to the limited number of users and their narrow age range in that study. On the

other hand, collecting a diverse training set within a long-term real-world HRI scenario is very

challenging. To the best of our knowledge, the only publicly available dataset that contains the

soft biometrics used in our system (except for the time of interaction) with a dataset of faces is

BioSoft [74]. However, due to the low number of subjects (75), and the lack of numeric height

values, we decided to create our own Multi-modal Long-Term User Recognition Dataset.

Datasets that contain images in the form of “mugshots”, such as NIST Mugshot Identification

Database
12
, do not represent real-world HRI interactions in which the obtained images from the

robot’s camera may vary greatly depending on the users’ actions and the environmental conditions.

Therefore, it is important to use an image dataset with real-world variations, along with ground

truth values of identity, gender and age of users to assess the performance of our model and the

corresponding identifiers in similar conditions. The largest publicly available dataset of face images

with gender and age labels is the IMDB-WIKI dataset [71, 72], which contains more than 500k

images of 20k celebrities with a wide age range. As can be observed in Fig. 3, the images in this

dataset may contain bad lighting conditions, occlusions, oblique viewing angles, a variety of facial

expressions, partial faces of other people, face paint and disguise, and black and white images,

because the images come from movies, TV series and events.

In addition to images, the estimated height of the user and the time of interaction with the

robot would be necessary for user recognition in various HRI scenarios, where the users will be

encountered sequentially over time. Thus, we created the Multi-modal Long-Term User Recognition

Fig. 3. Samples of images from the IMDB-WIKI dataset [71, 72] that are used in creating the Multi-modal
Long-Term User Recognition Dataset.

12
https://www.nist.gov/srd/nist-special-database-18
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Dataset by (1) sampling a subset of the IMDB-WIKI image dataset, and (2) artificially generating

height estimations and various time of interactions to simulate repeated encounters of the users

with the robot. The resulting dataset contains 200 users (101 females, 98males, and one transgender

person, the age range is 10 to 63) with 10 to 41 images per user that adds up to 5735 images, height

estimations and various (patterned and random) time of interactions, along with a database of users’

names, genders, ages, and heights. Moreover, NAOqi identifier estimations (face similarity scores,

gender and age estimations) are obtained for each image, and provided alongside the artificial

height estimations and the time of interaction in order to simulate the information that would be

acquired from a robot (e.g., NAO or Pepper) in an HRI scenario. The Multi-modal Long-Term User

Recognition Dataset is available online
13
.

5.1 Image Sampling
In the scope of this work, only one user is assumed to be present in each image, hence, the cropped

faces of IMDB dataset is used. To simulate an open world HRI scenario, where the users will be met

in consecutive days or weeks, we chose images of users that are from the same year. Furthermore,

we assume that the average number of times a user will be observed isno ≥ 10, which is a reasonable

assumption for long-term HRI. Hence, we choose celebrities who have more than 10 images each

corresponding to the same age. Moreover, to assess the incremental learning capabilities of our

model with a user database that is more realistic for HRI (i.e., sufficiently large with 100 to 200

users instead of thousands of users), we (randomly) sampled 200 users out of 20k celebrities.

In order to create a diverse set of ages in the dataset, the images that correspond to an age that is

within the five most common ages (25, 26, 28, 30, 31) in the set were randomly rejected (with 50%

probability) during the selection. For instance, Anne Hathaway has sufficient images corresponding

to 25 and 27 years old in the IMDB-WIKI dataset. However, 25 is among the five most common ages,

thus, with a 50% chance, this set of images were excluded from the selection, hence, the images of

Anne Hathaway corresponding to 27 years old were chosen instead. This also resulted in some

celebrities who only have images corresponding to a certain age in the dataset to be excluded from

the selection. The resulting age range is 10 − 63, with the mean age of 33.04 (SD= 9.28).
Subsequently, the dataset is cleaned in three steps: by removing (1) images with a resolution

lower than 150x150, (2) images without a face detected by NAOqi, (3) images that erroneously

correspond to another person. Furthermore, in order of user appearance (as detailed further in

Section 6.2), NAOqi identifiers are applied on the selected images to obtain face similarity scores,

gender and age estimations. If the user has not been previously encountered, the same image is

used to identify the user before and after enrolment to the face database in NAOqi.

5.2 Height and Time of Interaction
Height was found to be the most important soft biometric in determining the identity in [43]. To

validate whether this finding persists for a large number of users with diverse characteristics, and

optimise its weight for applying it to real-world HRI experiments, we artificially created height data

for each user. To keep the data realistic and model the differences between the estimated heights,

Gaussian noise with σ = 6.3 cm (as found in [43] for NAOqi height estimation) is added to the

actual heights of the users obtained from the web.

Given our assumption that the users will be encountered at least 10 times in long-term HRI, we

created two datasets: (1) D-Ten, where each user is observed precisely ten times, e.g., ten return

visits to a robot therapist, and (2) D-All, in which each user is encountered a different amount

of times (10 to 41 times). Two types of distribution are considered for the time of interaction: (1)

13
https://github.com/birfan/MultimodalRecognitionDataset
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patterned interaction times in a week modelled through a Gaussian mixture model, where the

user will be encountered certain times on specific days, which applies to HRI in rehabilitation and

education areas, and (2) random interaction times represented by uniform distribution, such as in

domestic applications with companion robots, where the user can be seen at any time of the day in

the week. As a result, we created four (sub)datasets as part of the Multi-modal Long-Term User

Recognition Dataset: D-TenUniform, D-TenGaussian, D-AllUniform, D-AllGaussian.

6 EVALUATION
In this section, we evaluate our proposed models based on the hypotheses presented in Section

6.1. The procedure of creating the cross-validation sets is described in Section 6.2. Initially, the

parameters of the multi-modal incremental Bayesian network (Section 6.3) are optimised for open

world recognition in long-term interactions in Section 6.4. Using those parameters, the model is

compared to face recognition and soft biometrics on the Multi-modal Long-Term User Recognition

Dataset for the training set, closed-sets and open-set tests in Section 6.5.

6.1 Hypotheses
H1 Our proposed multi-modal incremental Bayesian network will improve user recognition

compared to face recognition alone. As measured by a decrease in the long-term recognition

performance loss (L) and an increase in the identification rate of known users (DIR).

H2 Online learning will improve user recognition over a non-adaptive model. As measured by a

decrease in L and an increase in DIR.

H3 Hybrid normalisation will outperform the individual normalisation methods.

H4 When assumptions are made about the temporal interaction pattern of the user, recognition

will improve. When the time of interaction is uniformly distributed, the loss L will be higher.

These hypotheses will be validated with various analyses, as provided in Table 1.

Table 1. The analyses for validating the hypotheses and the corresponding results. A check mark represents a
support for the hypothesis, a cross mark represents rejecting the hypothesis, and the crossed check mark
represents partial support for the hypothesis.

Analysis Section H1 H2 H3 H4

Normalisation methods Appendix C.5 ✗ ✓ ✓✗

Tukey’s HSD on loss Section 6.5.1 ✓ ✗ ✓
Tukey’s HSD on DIR Section 6.5.2 ✓ ✓
User identification in HRI Section 8.1 ✓ ✗
Barista robot Section 8.2 ✓
Socially assistive robot Section 8.3 ✓✗ ✓

6.2 Procedure
Repeated k-fold cross-validation is used to evaluate the model stability and performance. The

procedure is described in Algorithm 1 in Appendix B. Two methods for creating validation folds are

used, namely, OrderedKFold and ShuffledKFold. OrderedKFold is the case where users are introduced

one by one to the system without any repetitions of previous users during the enrolment. The order

of repeated interactions is random after the enrolment. In ShuffledKFold, there can be repetitions

of the previous user(s) before another user is introduced, because the order of overall samples is

random. OrderedKFold is similar to batch learning in an incremental learning sense, whereas, the
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iteration (repeat) created by ShuffledKFold is more similar to a real-world scenario. Our aim is

to evaluate if there are any performance differences between the two cases and to prove that the

model is stable across several repeats. A stratified random bin order is used for having a different

initial bin and final bin in each fold to ensure a different enrolment order of users and a different

test set, respectively. We chose K= 5 folds and R= 11 repeats.

Each dataset (D-Ten and D-All) is divided into two with 100 users each. The first set is then

divided through cross-validation procedure with 80 − 20% ratio of data to the training set (first four
bins, corresponding to 800 samples in D-Ten and 2308 in D-All) and closed-set (training) (final bin,
corresponding to 200 samples in D-Ten, 578 in D-All). The open-set is created from the remaining

100 users (800 samples in D-Ten, 2280 in D-All). The closed-set (open) is similar to the closed-set
(training), which corresponds to the final bin in each fold (200 in D-Ten, 569 in D-All). The open-set

evaluation is made by introducing the open-set samples after the training set, that is, 100 users are

enrolled in the system, and recognised multiple times before the introduction of 100 new users.

However, the results for the open-set do not include the results for training.

The only difference between Gaussian and uniform datasets is the time of the interaction for

each sample; that is, the order of the samples is the same.

For online learning, the likelihoods are learned during the training phase (training and open-set
cases), and the learned likelihoods are used without online learning for the closed-set cases.

6.3 Description of Variables
Given our datasets and the parameters of our model, we have four independent variables and three

dependent variables for analysing the results on the evaluation sets: training, open-set, closed-set

(training), closed-set (open). The dependent variables are DIR in (10), FAR in (11) and long-term

recognition performance loss (shortly, loss) in (12). The independent variables are as follows:

(1) Dataset size: ten samples per user (D-Ten), random amount of samples (D-All)

(2) Timing of interaction: patterned interaction times (Gaussian), random interaction times

(uniform)

(3) Model: non-adaptive MMIBN, MMIBN with online learning (MMIBN:OL)

(4) Normalisation method: softmax, minmax, tanh, normsum, and hybrid

6.4 Optimisation of Parameters
The parameters of the MMIBN need to be optimised to achieve the best recognition results. Corre-

spondingly, we conducted several evaluations on the Multi-modal Long-Term User Recognition

Dataset as described in detail in Appendix C. Here we summarise our findings for reasons of

perspicuity.

Initially, the loss parameter α is set as 0.9, based on our average number of observations as-

sumption (no = 10) for long-term interaction (Appendix C.1). Subsequently, the optimum face

recognition threshold with the lowest loss for (NAOqi) FR is found to be 0.4 (Appendix C.2).

MMIBN relies on the assumption that the multi-modal biometric information (face, gender, age,

height and time of interaction) are conditionally independent given the identity of the user, since

the individual identifiers do not affect each other’s results. Accordingly, we assumed that the NAOqi

identifiers (face, gender and age) are conditionally independent of each other, despite relying on

the same visual input (2D image). Structural learning of the Bayesian network on the Multi-modal

Long-Term User Recognition Dataset (in Appendix C.3) confirmed this assumption, showing that

the naive Bayes classifier model is sufficient and suitable for multi-modal user identification, even

when the modalities use the same input. Moreover, the average learned likelihoods in online

learning are very close to the initially assumed network parameters in Section 3.4.
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Fig. 4. ROC curve for MMIBN with hybrid normalisation in the all samples dataset with Gaussian times
(D-AllGaussian), with long-term recognition performance loss (Equation 12, represented with blue dots) for
varying known user identification rate (DIR, represented with orange diamond shapes) and incorrect new
user detection rate (FAR, x axis), for Bayesian optimisation of the weights and the quality of the estimation
for 303 iterations over 5-fold cross-validation. Face recognition (FR) values are given in dashed lines (orange
line representing DIR of FR, blue line for loss of FR, and black line for FAR of FR) for comparison. While
optimising parameters to reduce the loss, DIR increases at the cost of increasing FAR.

Bayesian optimisation
14
is applied with these parameters to minimise the loss for each combi-

nation of the independent variables (40 conditions) by optimising the weights for soft biometrics

and the threshold for the quality of the estimation (see Appendix C.6). Fig. 4 shows how the loss

decreases during the optimisation, which results in an increase in DIR at the cost of an in increase

FAR. The resulting loss of MMIBN is much lower than that of FR, and correspondingly DIR and

FAR are much higher. Note that α can be adjusted to give more importance to FAR or a FAR can be

set prior to optimisation, which may lead to a different set of optimised parameters.

While the average standard deviation of NAOqi age estimation is found to be higher (11.0)

than in [43] (9.3), the age is found to be the most important parameter and height the least (see

Appendix C.6), in contrast with the findings in [43]. Due to the higher number of users (200) and

the diverse age range (10-63) in the Multi-modal Long-Term User Recognition Dataset, these results

are more generalisable than our prior work. Moreover, when the ground truths are not taken into

account, the standard deviation of age within the estimations is found to be 8.2, which is less than

the average. This is due to the appearance of users (e.g., a 30-year-old person may look like 25),

which suggests that online learning of likelihoods (MMIBN:OL) may provide better recognition

performance over time, as the identifiers will get better at identifying users based on their own

estimations instead of ground truth values. In addition, NAOqi gender recognition is found to be

equally accurate for males and females with 0.9 as the recognition rate (i.e., users’ genders are

correctly recognised 90% of the time). Furthermore, using the confidence of the estimations instead

of exclusively the estimated biometric data (e.g., estimated gender or age, as described in Section

3.1) allows overcoming deviations in the estimations.

With these optimised parameters, 11 repeats of 5-fold cross-validation were applied for each

of the conditions (Appendix C.4), which showed that MMIBN models are stable across repeats

(i.e., no significant difference in loss between repeats), and the models perform equally well for

14
https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
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learning new users incrementally sequentially (OrderedKFold, similar to batch learning) and at

random intervals (ShuffledKFold, similar to a real-world scenario). On the other hand, the size of

the dataset, timing of interaction and normalisation method are found to have significant effects

on the performance of the model, however, the non-adaptive model and the model with online

learning performed equally well.

Hybrid normalisation is found to outperform the other normalisation methods in all conditions

(Appendix C.5), supporting our hypothesis H3. The models achieved lower loss in D-All than in D-

Ten, which showed that the proposed model gets better with the increasing number of recognitions.

However, hybrid normalisation with online learning (MMIBN:OL) is found to perform worse than

the non-adaptive model (MMIBN), in contrast with our hypothesis H2. Moreover, most methods

are found to perform significantly worse when there is no interaction pattern (uniform timing of

interaction), as compared to patterned (Gaussian) interactions, supporting our hypothesis H4.

6.5 Comparison to Baselines
On the grounds that the optimised parameters of our proposed MMIBN are found, we can compare

its results to face recognition (FR) and soft biometrics (SB). FR results are obtained from the NAOqi

estimations by setting FR threshold (θFR ) to 0.4. SB results are obtained by giving zero weight

to FR, that is, only gender and age estimates from NAOqi, artificial height estimates and time of

interaction are used for identifying a user. The weights of these modalities in SB are the same as

MMIBN, as shown in Fig. 19 (Appendix C.6). Similarly, the weights of SB:OL are the same as those

of MMIBN:OL.

We transformed a state-of-the-art open world recognition method, Extreme Value Machine
15
[73]

(EVM) to accept sequential and incremental data for online learning by adjusting its hyperparam-

eters to use it as a baseline, as described in Appendix D. In the original work, batch learning of

50 classes were used with an average of 63806 data points at each update, instead of a single data

point that we used in this work. We compared our methods with the performance of two EVM

models: (a) EVM:FR, using NAOqi face recognition similarity scores as data, (b) EVM:MM, using

multi-modal information in the same format as it is used for our methods.

Section 6.5.1 compares the long-term recognition performance loss (shortly, loss) between the

models. Appendix C.4 provides evidence that there is a significant correlation between loss and DIR,

and loss and FAR, but no significant correlation is found between DIR and FAR. Hence, the analysis

of loss is sufficient to determine how the model performs in comparison to others. Nevertheless,

we will report the results of FAR and DIR of the models in Section 6.5.2 to further observe how the

open-set recognition metrics are affected.

6.5.1 Long-term Recognition Performance Loss. As previously mentioned, the proposed models

perform better in terms of loss in D-All than in D-Ten, however, the results for D-Ten datasets

show similar patterns to that of D-All. Taken the same number of recognitions for both D-All and

D-Ten, that is equal to the number of samples in D-Ten for all evaluation sets, ANOVA shows that

there is no significant difference in the sample size (p = .67) as the models perform equally well for

D-All and D-Ten for the same number of samples. In other words, it does not matter if each user is

observed the same number of times or not. This also supports that a higher number of samples

increases the performance of the models. Hence, the following analysis will only be focused on

D-All, but any differences in performance between the two datasets will be noted.

We conducted Tukey’s Honestly Significant Differences (HSD) tests on the training, open-set,

closed-set (training), closed-set (open) evaluation sets for D-All datasets with Gaussian and uniform

timing of interaction. The corresponding plot is given in Appendix E.1.

15
https://github.com/EMRResearch/ExtremeValueMachine
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The results show that the proposed approaches (MMIBN and MMIBN:OL) decrease the long-term

recognition performance loss significantly (p < .001) and substantially compared to FR, supporting

the first part of our hypothesis H1. This finding is valid across all datasets (D-Ten and D-All for

Gaussian and uniform times).

MMIBN performs equally well between Gaussian and uniform timing for D-All evaluation sets

(i.e., no significant difference, but slightly worse in uniform), whereas, it does not perform at the

same significance in D-Ten evaluation sets (performs significantly worse). MMIBN:OL performance

changes depending on the dataset size and the evaluation set (performs equally well only in closed-

sets in D-Ten, and for training and closed-set open in D-All). Nevertheless, the models have slightly

or significantly higher loss in uniform timing as compared to Gaussian, supporting hypothesis H4.
Online learning does not perform better than MMIBN, because it increases the loss at all con-

ditions. In fact, except for training set in D-All and D-Ten and closed-sets in D-Ten for uniform

timing where MMIBN and MMIBN:OL perform at the same significance level, online learning is

significantly worse, which is in contrast with our hypothesis H2.
Furthermore, the results show that soft biometric features (SB and SB:OL) are not able to identify

a user on their own. In general, they perform significantly worse than FR. However, when the

interaction is time patterned (Gaussian), SB performs better and closer to FR as compared to uniform

timing. Especially for closed-set training in D-All, it is remarkable that SB features identify the

user with the same significance level performance as FR. SB and SB:OL perform mostly equally

well in D-All datasets, but SB:OL performs significantly worse in several evaluation sets in D-Ten.

EVM:FR performs significantly better (p < .005) than FR across all conditions. EVM:MM is

significantly worse than EVM:FR (p < .01) and it does not perform better than FR in most conditions.

This shows that although EVM is a good method for clustering face recognition data, it does not

perform well with multi-modal data.

MMIBN significantly outperforms (p < .001) both EVMmodels across all conditions in both D-All

and D-Ten. This proves that our proposed approach is significantly better than the state-of-the-art

method for incremental open world recognition with multi-modal biometric information. However,

EVM models use online learning instead of fixed learning rates, which could potentially lead to

worse performance as observed for our model. Nevertheless, comparing EVMmodels to MMIBN:OL

shows that MMIBN:OL significantly outperforms EVM models (p < .05 to p < .001) in most cases,

except for uniform timing for open-set and closed-set (open) in D-All and open-set in D-Ten, in

which, it performs equally well with EVM:FR.

MMIBN performs equally well between training and open-set cases as well as between closed-sets,

which shows that the model scales well for an increase in users (from 100 to 200 users), suggesting

that the proposed approach and the optimised weights can generalise. Similar to the results in [73],

EVM performs equally well between those sets, showing that the change in model from batch

updates to incremental updates have not changed its structure for scaling well. The models perform

significantly better in closed-sets as compared to training or open-set due to the lack of unknown

users in closed-sets (FAR= 0.0). Hence, loss only depends on DIR.

The models are trained on several examples of the users before the closed-set. The model

performance improves with the increasing number of recognitions and stabilises towards the

end (around 2000), as can be observed in Fig. 5. This supports our initial finding of performance

difference between D-All and D-Ten, given that they perform equally well for the same number of

recognitions. Initially, loss increases with increasing FAR, when the users are introduced to the

system (represented by dots in the plot). As the number of recognitions increases, the introduction

of a new user does not notably increase the loss as can be observed by the final three new users in the

training set. Even though MMIBN models get better over time, they start performing consistently
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Fig. 5. The change of loss with the increasing number of recognitions for all samples dataset with Gaussian
times (D-AllGaussian) for training and closed-set (training). The loss decreases with the increasing number of
recognitions.

better than both FR and EVM models throughout both training and closed-set after only a small

number of recognitions (15 − 48 in training, 1 − 6 in closed-set).

The sudden change at the beginning for the training set is due to the sequential calculation of

loss for time plots: a previously enrolled person has not been identified correctly for the first time

that changes DIR from 1.0 to 0.5 (one out of two enrolled users was incorrectly identified). Note

that the introduction of new users is at random order due to ShuffledKFold function described in

Section 6.2. The results for the open-set, as given in Appendix F, show a similar pattern of loss

between open-set and closed-set (of the open-set cross-validation).

6.5.2 Open-Set Identification Metrics: DIR and FAR. The previously presented results confirm our

claims that our proposed multi-modal Bayesian networks perform significantly better than FR,

SB and EVM in long-term interactions. Nonetheless, analysing the open-set identification metrics

allows us to understand how the models perform for enrolled and unknown users through DIR and

FAR, respectively. The detailed presentation of Tukey’s HSD results is shown in Appendix E.2.

The results show that the increase in DIR is significant (p < .001) and drastic, from 0.268 of FR to

0.657 with MMIBN and 0.561 with MMIBN:OL averaging over all the conditions in D-All (timing of

interaction and evaluation set). That is a 38.9% increase in identifying the users correctly by using

MMIBN, no matter the condition, which is more than double what FR is capable of providing. Hence,

our hypothesis H1 that the loss will be reduced and DIR will be increased using our proposed

models as compared to FR alone is fully and strongly supported.

It should be noted that the increase in DIR provided by our network is significantly higher

(p < .001) than DIR of soft biometrics (0.226 on average for Gaussian timing in D-All). This

shows that soft biometric data are not sufficient to identify an individual, yet when combined

with the primary biometric, they improve the identification rate significantly (38.9% in D-All, and

31.8% in D-Ten). This conclusion is supported by the datasets where the time of interaction is

uniformly distributed (DIR of SB is 0.013 on average), that is, due to the high variability of time, the

identification rate of SB is close to zero. Nevertheless, MMIBN performs equally well in Gaussian,
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and uniform timing within all evaluation sets in D-All, and MMIBN:OL performs equally well in

D-Ten. As previously noted in H4, the loss is (slightly or significantly) higher and DIR is (slightly

or significantly) lower for all datasets and MMIBN models between Gaussian and uniform timing.

MMIBN significantly outperforms both EVM methods in DIR in all datasets (p < .001). EVM:FR

has significantly higher DIR than FR and EVM:MM (p < .001). EVM:FR performs equally well

between uniform and Gaussian timing in all datasets, because it is trained only on FR data. DIR of

EVM:MM drops below that of FR for uniform timing for both D-All and D-Ten, which shows that

EVM is not a model to be used with time information, since the pattern of interaction with the user

might not be known beforehand. Similarly, MMIBN:OL provides worse performance for uniform

timing in D-All, but it always performs significantly better than or equally well with EVM:FR.

FR performs similarly in open and closed-sets in terms of loss, because it has significantly low

FAR compared to MMIBN models. While low FAR is a desirable feature, the underlying reason for

low FAR is that FR has very poor recognition performance on larger datasets and fails to recognise

the users, because the highest similarity score returned by the identifier is lower than the threshold

(θFR = 0.4). However, as described in Appendix C.2, this threshold ensures the lowest loss for FR.

FAR of the proposed models is high because of the combination of all modalities, which increase

the probability of mixing the unknown user with an enrolled user. Possible solutions to this problem

will be proposed in Section 7. For our proposed models, FAR in the training set is generally slightly

less than that of open-set, because of the higher number of users enrolled, but there are no significant

differences across the datasets for MMIBN, supporting that the model scales well to a larger dataset

without a significant decrease in performance.

In the training set, there is no significant difference between MMIBN and EVM models for FAR,

and MMIBN:OL performs significantly better than EVM models for uniform timing. In contrast

to MMIBN, EVM provides significantly lower FAR in open-sets than in training sets. The authors

state in [73] that this is due to its ability to tightly bound class hypotheses by their support.

6.5.3 User-Specific Analysis. Confusion matrices presented in Fig. 6 show how users were identified

throughout the training set in D-All for a fold of the cross-validation, with 0 as the ID of the unknown

user and the remaining numbers corresponding to IDs of the enrolled users. The heat map represents

the percentage of identification of the user as the estimated user. Ideally, the diagonal should be

all dark red if users are correctly identified. However, FR (item A) mostly identifies the users as

unknown, resulting in the corresponding vertical axis of 0 to be mostly red and in a low FAR and a

low DIR. MMIBN (item B) has mostly red coloured dots on the diagonal but has mixed users with

other enrolled users as can be seen from light blue dots all over the matrix. MMIBN:OL shows a

similar pattern with slight deviations.

Even though EVM:FR (item C) only uses FR information, its confusion matrix is different from

that of FR. The misidentifications are highly concentrated on the final ten users, suggesting that

either FR or EVM might be subject to the catastrophic forgetting problem. Using multi-modal data

overcomes that problem, as can be seen for EVM:MM (item D) as misclassifications are evenly

distributed, similar to MMIBN. However, the diagonals in EVM models have notably fewer reds

than MMIBN.

The significant differences in identification of users over the 5-folds of cross-validation, as

presented in Appendix E.3, shows another striking result. FR does not perform equally well amongst

the users in that there are significant differences of identification. Our proposed approach MMIBN

balances the performance amongst users, thereby, reducing any recognition bias in the system

while improving the performance of the overall system significantly as compared to FR. Online

learning (MMIBN:OL and EVM:FR) balances the performance further, in contrast to the decrease in

performance compared to MMIBN. EVM:MM shows a similar pattern.

ACM Trans. Hum.-Robot Interact., Vol. 11, No. 1, Article 6. Publication date: October 2021.



! "
!
"
#$
%
&'
()
*
+
#(
#,

-.#(/%#*)'()*+#(#,

!
"
#$
%
&'
()
*
+
#(
#,

-.#(/%#*)'()*+#(#,

!
"
#$
%
&'
()
*
+
#(
#,

!
"
#$
%
&'
()
*
+
#(
#,

-.#(/%#*)'()*+#(#,-.#(/%#*)'()*+#(#,

# $

Fig. 6. Confusion matrices of user identification for second fold of cross-validation on D-AllGaussian: (A) face
recognition (FR), (B) proposed model (MMIBN), (C) incremental Extreme Value Machine (EVM) with FR data
(EVM:FR), (D) incremental EVM with multi-modal data (EVM:MM). The heat map represents the percentage
of identification as the estimated user. Ideally, if all users are correctly identified, the diagonal should be dark
red, and the remaining of the matrix should be dark blue.

Fig. 7 demonstrates examples from D-AllGaussian where face recognition fails to recognise the

user due to the low similarity score (< θFR = 0.4), whereas, our proposed model identifies the user

correctly based on soft biometric information. The quality of the estimation (Q) varies depending
on the highest FR similarity score, as well as the disagreement between modalities. For example,

for the third user (Sandra Oh), the highest FR similarity score (rank 1) is very low, corresponding to

David Schwimmer who is 28 years old in the dataset, has a height of 185 with the enrolment time of

interaction on Tuesday at 18:16. Age did not provide information to differentiate the user from the

incorrect estimation, whereas, height and time of interaction increased the probability that the user

is Sandra Oh, resulting in a correct estimation, but with a low quality score (0.35 > θQ = 0.013).
The second user (Gary Coleman) was identified correctly by FR with the highest similarity score

close to, but slightly lower than θFR . This was enforced by the age estimation, and the time of

interaction, which compensated for the incorrect recognitions of gender and height, to get a high

quality score (7.44).

6.5.4 Real-Time Capabilities. In contrast to the state-of-the-art deep learning methods, the pro-

posed models can run on a commercial robot with low computational power (on a single CPU

of Pepper robot), and only require a small amount of time for execution. In addition to the time

required from FR and other modalities (M= 0.14 s, SD= 0.001), MMIBN models take 0.01 second
for recognition, significantly outperforming both EVM:FR and EVM:MM, which take 0.32 and 0.34,
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Fig. 7. Examples of true values and estimated values of modalities from our Multi-modal Long-Term User
Recognition Dataset with Gaussian times (confidence values are given in brackets) using proposed non-
adaptive multi-modal incremental Bayesian network with hybrid normalisation (referred to as BN in the
figure). Highlights in red show the incorrect detection values. Face recognition was unable to recognise
the users (0 represents unknown user) because the similarity scores were below the threshold (40%). Our
proposed model is successful (highlighted in green) in correctly identifying the users with varying quality
of estimations (shown in brackets underneath the ID) as a result of the information gathered from soft
biometrics highlighted in blue. 8% confidence value of height corresponds to the σ = 6.3 cm in NAOqi.

respectively
16
. For enrolling new users, MMIBN requires a significantly lower amount of time (0.39

s, p = .002) for scaling the Bayesian network, compared to MMIBN:OL which takes 0.54 s, for

which 0.17 s is due to online learning. There is no significant difference between MMIBN:OL and

EVM models for enrolling (EVM:FR takes 0.48 and EVM:MM takes 0.52 s), with 0.20 and 0.23 s
for online learning, respectively. The higher amount of time required for EVM:MM compared to

EVM:FR shows that online learning takes longer time when there is more information to be learned

per user. Note that the time required for MMIBN has decreased from 0.3 s in [43] to 0.01, as a result
of optimising the MMIBN algorithm.

Moreover, in comparison to deep learning approaches, which require “big data” to be pretrained,

our proposed models are able to start from a state of no enrolled users, learn users continuously

and incrementally, and improve performance compared to FR after a small number of recognitions

(e.g., 48 in Fig. 5).

16
The results are given for D-All with Gaussian timing on the open-set.
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7 DISCUSSION
Our findings showed that from our initial hypotheses H1 and H3 are fully supported, H4 is

supported for hybrid normalisation, andH2 is rejected (Table 1). In this section, we will discuss the

implications of our results, validate our assumptions, and offer other approaches for our models.

7.1 Dataset Size
In general, FAR and DIR is higher, and loss is lower in D-All than in D-Ten. The increase in DIR

and the decrease in loss can be explained by the higher number of recognitions, which increases

the performance over time. The increase in FAR can be due to different optimised weights for each

dataset (see Fig. 19 in Appendix C.6). However, both datasets show similar patterns in differences

between FR, SB and MMIBN models. Even though the number of samples per user is not the same

in D-All, the fact that it performs equally well as D-Ten for the same number of recognitions shows

that our equal priors assumption (Equation 4), which states that each user is equally likely to be

seen, does not have any adverse effect on our proposed models.

While the weights of the biometric information differ based on the dataset size and the model,

their positive values indicate that each modality is beneficial and effective in identifying users, and

conditionally independent of each other, as supported by the learned structure (Appendix C.3).

We suggest using the optimisation parameters (weights and quality threshold) that are optimised

for D-All datasets since this dataset contains more samples. If the application is based on users

appearing at specified times during a week (e.g., long-term therapy in a hospital), the optimised

parameters for D-AllGaussian should be used; otherwise, it is better to use that of D-AllUniform (e.g.,

for companion robots). These optimised parameters generally perform significantly equivalent in

both timing conditions in D-All for both models, as shown in Fig. 20, even though the timing of

interaction does not provide enough information in the uniform timing case. Nonetheless, using

different (or more accurate) identifiers for soft biometrics may result in a different set of weights

and better recognition performance.

7.2 High False Alarm Rate
High FAR of the models is due to the trade-off between recognition and spotting unknown people,

which is visible in Fig. 4. The value of α determines the importance of this trade-off in the loss

function to ensure a higher number of correct recognitions in a long-term interaction. We found

α = 0.9 based on our assumption, that the average number of interactions is 10. Using a varying

amount of samples (D-All) did not change the overall performance in terms of long-term recognition

loss for the same number of total samples, when we compared D-All and D-Ten at the same amount

of samples (800 for training and open-set and 200 for closed-sets). In Fig. 5, 71% of the users had less

than 10 recognitions and 20% had more than 10, before the 800th recognition in D-All dataset. This

finding shows that our choice of α did not negatively affect the results. Thus, instead of changing

α for decreasing FAR, we would suggest using a variable threshold of quality (θQ ) based on the

number of users in the dataset to ensure that the quality is higher when the number of users is low.

The presented results are dependent on the noise level of the identifiers and the characteristics of

the population (e.g., the distribution of parameters within the population). By using other algorithms

for the identifiers or by setting a desired FAR depending on the application from Fig. 4, a different

set of weights can be achieved with lower/higher FAR and consequently lower/higher DIR.

7.3 Online Learning
We initially assumed that all identifiers work equally well on all users based on the work in [45].

However, there can be changes in the person’s appearance, the similarity between users, as well as
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changes in time of interaction, which could negatively affect the visual identifiers and the time

component of our models, respectively. We claimed that our online learning approach would adjust

to these changes and perform better than the non-adaptive model (H2), but the second part of

the hypothesis is not supported because online learning (MMIBN:OL) performed significantly

worse or at the same significance as the non-adaptive MMIBN. The underlying reason might be the

accumulating noise in the identifiers. We suggest three possible solutions for improving online

learning: (a) identifiers with lower noise can be used, which can be difficult to achieve in real-world

scenarios, (b) similar to the work in [20, 59], the learning rate η can be increased when there is a

large error between the estimated parameter and its mean value, and decreased when convergence

is reached, (c) confidence value of the identifiers or the quality of the estimation can be used to

determine if the likelihoods should be updated at each iteration, to avoid updating when the noise is

high. However, the average learned likelihoods in online learning showed that the initial parameter

assumptions in Section 3.4 hold valid.

Online learning can also be applied to the weights of the MMIBN nodes to improve recognition

performance over time based on the identifier accuracy, through decreasing or increasing the

weights of the identifiers that are less or more accurate based on the data. We suggest applying

online learning, similar to [40] or [56], on top of the optimised weights found in this work, which

would allow adapting the MMIBN to work equally well (or better) with any (i.e., NAOqi or other)

identifiers. However, a simpler approach is to apply Bayesian optimisation (of the weights and

the quality of the estimation) on the Multi-modal Long-Term User Recognition Dataset, before

deploying the MMIBN with other identifier algorithms to the real-world HRI applications.

FR does not perform equally well on users, as shown in Appendix E.3. Our proposed MMIBN

models decrease the recognition bias in the system using multi-modal information. This finding is

also confirmed for the uniform timing of interaction. Moreover, the first part of our hypothesis that

online learning will adjust to these changes is supported, which allowed decreasing the bias of FR

further. We can conclude that for long-term recognition our multi-modal incremental Bayesian

networks not only perform better than FR alone in all datasets but also increases performance on

each user to identify them equally well.

8 USER RECOGNITION IN LONG-TERM HUMAN-ROBOT INTERACTION IN THE
REALWORLD

8.1 User Identification Study
In our prior work [43], we proposed and applied a multi-modal weighted Bayesian network with

online learning (MMIBN:OL) to a long-term HRI scenario (through the recognition architectures in

Appendix A), where 14 participants (4 female, 10 male, of age range 24-40) interacted with the robot

for 4 weeks in an office at the University of Plymouth (Fig. 8). The video showing the interaction

for a known user is available online
17
. The study showed that our proposed approach enables

and facilitates incremental identification in a real-world HRI scenario. Moreover, the optimised

parameters on the real-world data showed an improvement (1.4% increase in DIR for closed-set

and 4.4% in open-set) over face recognition (DIR= 0.903). Furthermore, MMIBN using minmax

normalisation (MMIBNMinmax) and MMIBN:OL with softmax (MMIBN:OLSoftmax) were the best

performing methods on the data using zero weights on age and time of interaction. However, the

resulting dataset was limited in terms of the number of participants and the characteristics of the

participants, hence, the results and the optimisation parameters could not be generalised.

Correspondingly, we created the Multi-modal Long-Term User Recognition Dataset to optimise

the parameters of our models and validate them on a large number of users in varying conditions

17
Known user interaction: https://youtu.be/Ix98k6_-2Zc
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Fig. 8. A user is interacting with the Pepper robot (SoftBank Robotics Europe) to confirm the identity that is
estimated, during the user identification study in [43].

with a high variability of subject age and heights, which are highly challenging to obtain in an

HRI experiment. The previous sections provided conclusive evidence that our proposed models

are suitable for long-term user recognition, generalise well to new users and provide significantly

more reliable identification than the state-of-the-art open world recognition model (Extreme Value

Machine) and (NAOqi) face recognition alone. This section evaluates how the baselines and the

optimised models in this work performed on the raw HRI data in comparison to the models in [43].

McNemar test is the best statistical method for comparing two classification algorithms that

are run only once [28]. Cochran’s Q test is an extension of the McNemar test for more than two

groups. Thus, Cochran’s Q test is applied to compare the identification of enrolled users (i.e., DIR)

and new users (FAR) of all methods separately, and pairwise McNemar using Benjamini-Hochberg

adjustment for multiple comparisons is applied as the post-hoc test [60]. The results show that there

Table 2. Pairwise McNemar test results on the identification of known users (DIR) for raw user identification
data from [43]. Significant differences (p < .05) are highlighted in bold.

Model FR EVM:FR EVM:MM

MMIBN

Minmax

MMIBN:OL

Softmax

MMIBN

Uniform

EVM:FR

p < .001
(Z = −4.91)

- - - - -

EVM:MM

p = 0.06

(Z = 2.06)

p < .001
(Z = 6.67)

- - - -

MMIBN

Minmax

p < .001
(Z = −7.25)

p = .57
(Z = −0.742)

p < .001
(Z = −6.99)

- - -

MMIBN:OL

Softmax

p < .001
(Z = −6.47)

p = .75
(Z = 0.404)

p < .001
(Z = −6.15)

p = .04
(Z = 2.29)

- -

MMIBN

Uniform

p < .001
(Z = −6.63)

p = .76
(Z = −0.308)

p < .001
(Z = −6.62)

p = .14
(Z = 1.63)

p = .23
(Z = −1.35)

-

MMIBN:OL

Uniform

p < .001
(Z = −5.74)

p = .64
(Z = 0.606)

p < .001
(Z = −5.87)

p = .01
(Z = 2.71)

p = .75
(Z = 0.365)

p = .07
(Z = 1.96)
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Fig. 9. Model performance on (A) known user identification (DIR) and (B) new user (incorrect) detection
(FAR) on the raw data (1272 samples) from the user identification in HRI study [43] over 4-weeks for the
optimised models in [43] (MMIBNMinmax and MMIBN:OLSoftmax), baselines (FR, EVM:FR, EVM:MM), and
the optimised MMIBN models on the D-AllUniform dataset.

is a significant difference between all models (p < .001,Q = 161.44, df= 6) for DIR and the pairwise

comparisons are shown in Table 2. MMIBN models with optimised parameters on the D-AllUniform

dataset are used as the users were randomly encountered, however, no significant differences are

observed between the models that were trained on the D-AllGaussian dataset (not shown for brevity).

The results confirm that the optimised models in this work perform equally well as those that were

optimised on the real-world data when the learning method is the same (e.g., comparing online

learning models). Moreover, all MMIBN models significantly outperform FR (DIR= 0.881, L= 0.127)
(supporting hypothesisH1) and EVM:MM (DIR= 0.858). Furthermore, the losses of MMIBN models

are less than FR after only 39 recognitions. While the DIR of MMIBNMinmax is slightly higher

(DIR= 0.932, L= 0.135) than MMIBNUniform (DIR= 0.929, L= 0.117), MMIBNUniform has the lowest

loss. Similar to the previous results, online learning does not outperform the non-adaptive model,

in contrast to our hypothesisH2. EVM:FR does not perform significantly different than the MMIBN

models, however, it does not reach their performance over time (Fig. 9). Moreover, EVM models

take substantially higher time to identify users (0.12 s for EVM:FR and 0.13 s for EVM:MM) than

the MMIBN models (0.01 s for MMIBN and 0.03 s for MMIBN:OL). While there does not exist

significant differences between the models in terms of FAR due to the low number of enrolled users,

FR performs best (FAR= 0.2), followed by MMIBNUniform and EVM:MM (FAR= 0.53).

8.2 Personalised Barista Robot
In a typical coffeehouse, baristas serve hundreds of customers per day and would not be able to

recognise return customers or recall their preferences. A personalised robot could recognise a high

number of customers, refer to them by name and recall and recommend their favourite orders,

which could improve the customer experience and reduce the order time. In such an application,

the customers will arrive sequentially at random times, and they need to be autonomously and

incrementally added to the system with minimum time and effort from the customer. MMIBN

corresponds to these requirements for incremental long-term user recognition in real-time. Conse-

quently, the non-adaptive MMIBN with the optimised parameters on the D-AllUniform dataset was

applied for identifying customers with a personalised barista robot (using the Adapted Pepper
18

robot) that recalls customer preferences [42].

18
Created for MuMMER project: http://mummer-project.eu
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Fig. 10. Personalised barista robot [42] at the coffee bar of an international student campus, Cité Internationale
Universitaire de Paris (France).

A 5-day HRI study with a generic (non-personalised) and a personalised barista robot was

conducted in the coffee bar of an international student campus, Cité Internationale Universitaire de

Paris (France), with 18 non-native English speakers (11 male, 7 female) within the age range of 22-47

(Fig. 10). Speech recognition was used to make the interaction more natural, and the confirmation of

the estimated identity was implicitly taken through the dialogue (i.e., if the user does not oppose the

estimated identity, the identity was assumed to be correct), in contrast to [43] where the user needed

to explicitly confirm the identity through the tablet interface (as shown in Fig. 8). Also, ground

truth values (gender, age, height, and an explicitly taken image) were not requested to reduce the

effort required by the customer (i.e., step 9 in Fig. 15 was not used), thus, only the estimated values

were used for enrolling users. However, users either did not realise that the estimated identity

was incorrect or the identity was incorrectly confirmed due to speech recognition errors
19
, which

resulted in a high FAR (FAR= 0.786 for MMIBN, FAR= 0.286 for FR) and prevented some of the

new users to be enrolled, showing the necessity of explicit user confirmation. Nonetheless, MMIBN

performed better (DIR= 0.75, L= 0.304) than NAOqi FR (DIR= 0.5, L= 0.479 for 12 known user

recognitions), supporting our hypothesis H1. Moreover, personalisation was found to mitigate the

negative user experience, which suggests that user recognition plays an important role in long-term

HRI. On average, 3.1 seconds (SD= 0.9) were taken to recognise users, which includes the time for

user detection and the recognition module (Fig. 13) to obtain the biometric samples and the time

for MMIBN to identify the user (0.01 s).

8.3 Personalised Socially Assistive Robot
Another area where personalisation can have an impact on long-term HRI is rehabilitation. Previous

research shows that personalising the therapy improves user motivation and engagement, helps

clinical staff in monitoring the progress of the patient, and facilitates rapport and trust over long-

term interactions [19, 70, 75, 84]. Such improvements are desirable to improve adherence in cardiac

rehabilitation, which is a long-term programme offered to those who suffered a cardiovascular event

to accelerate recovery and reduce the risk of suffering recurrent events through structured exercise,

education, and risk factor modification [35, 52]. Thus, in collaboration with medical specialists,

a personalised socially assistive robot and a sensor interface [14, 15, 41, 54] were designed and

deployed for long-term (18weeks) cardiac rehabilitation programme at the Fundación Cardioinfantil-

Instituto de Cardiología (Bogotá, Colombia), as shown in Fig. 11, for 5 months before the outbreak of

19
Due to the errors in data, we could not apply statistical comparison between the MMIBN models and the baselines.
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Fig. 11. Personalised socially assistive robot (using the NAO robot from SoftBank Robotics Europe) for
long-term cardiac rehabilitation programme [14, 15, 41, 54] at the Fundación Cardioinfantil-Instituto de
Cardiología (Bogotá, Colombia).

COVID-19 (which halted the programme at the clinic in March 2019). Because the robot is deployed

in rehabilitation with non-expert users (e.g., doctors, nurses, patients), it should be autonomous

and require minimal effort from users and medical staff [30]. Accordingly, an incremental user

recognition system that does not need preliminary training is necessary for personalisation of the

interaction, thus, MMIBN was chosen as the user recognition method. However, because the users

will be generally encountered at patterned times (i.e., at their appointments twice per week), MMIBN

with online learning with the optimised parameters on the D-AllGaussian dataset (MMIBN:OLGaussian)

was used to evaluate its performance in a real-world interaction.

In contrast to the previous experiment [42], we used explicit confirmation of identity, in addition

to the ground truth values for user enrolment, to avoid errors. The average recognition response

time, which includes user detection, estimation of biometrics and identity, request of identity

confirmation, the confirmation by the user on the tablet interface, and the updating of the model

parameters (steps 1 to 10 in Fig. 15), was 24.8 seconds (SD= 15.5) for known user recognition, and

83.6 s (SD= 39.3) for new user enrolment, including the user to enter the ground truth values on

the tablet (steps 1 to 18). Considering that the system is used by non-experts (patients), the time

required is not substantial, especially because the patients take on average 9.39 s (SD= 17.46) to
give a response to the tablet. MMIBN:OL took 0.04 s (SD= 0.01) for recognition.

Fig. 12 shows the performance of MMIBN:OL over time (with the increasing number of recogni-

tions), and the performance of the other models on the real-world data is presented for comparison.

13 patients participated in the cardiac rehabilitation programme with the personalised robot, how-

ever, as observable from the figure, 30 enrolments were made to the system. The reason was a

recurrent NAOqi face recognition failure that was never experienced in any of the prior studies,

which resulted in erroneous user enrolments without registering the user’s image to the face

recognition database, thus, DIR dropped considerably. The experimenters at the hospital addressed

the issue by re-enrolling some of the patients as new users, and the issue was resolved completely

after the study by adding a threshold (e.g., 0.4) on NAOqi face recognition confidence. Nonetheless,

Cochran’s Q test shows significant differences between all models (p < .001, Q = 21.49, df= 4) for

identifying enrolled users. Table 3 shows that there are significant differences between the MMIBN

models and FR (DIR= 0.34, L=0.61), in addition to FR and EVM:MM. In contrast to our results in Sec-

tion 6.5, MMIBN:OL performed slightly better than MMIBN in identifying known users (DIR= 0.38
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Fig. 12. Model performance on (A) known user identification (DIR) and (B) new user (incorrect) detection
(FAR) throughout the cardiac rehabilitation programme with the personalised socially assistive robot, lasting
5 months (535 recognitions). MMIBN with online learning using optimised weights on the D-AllGaussian
dataset (MMIBN:OLGaussian) was used for user identification during the programme. The performance of the
other models on the real-world data are presented here for comparison.

for MMIBN:OL, DIR= 0.36 for MMIBN), notably better in identifying new users (FAR= 0.56 for
MMIBN:OL, FAR= 0.67 for MMIBN), and achieved lower loss (L= 0.62 for MMIBN:OL, L= 0.64 for
MMIBN), supporting our hypothesis H2, however, no significant differences are observed between

the models. On the other hand, FR performed significantly better in FAR (FAR= 0.13, p < .001)
than all baselines, because it identified most (63%) of known users as new. Because of the lower

FAR and improving FR with re-enrolments, FR achieved a slightly lower loss than MMIBN:OL after

260 recognitions, thus, providing only partial support for our first hypothesis (H1).
While EVM:MM performs best overall in DIR and loss (DIR= 0.42, FAR=0.67, L=0.57), EVM:FR

performs the worst of all models (DIR= 0.36, FAR= 0.8, L= 0.66), which is in contrast with the

findings in Sections 6.5 and 8.1. Moreover, users were not recognised for the first 29 recognitions

with EVM because of its tail size parameter that was optimised on the multi-modal dataset, and

lowering it gave erroneous results. In contrast, only the first 4 estimations of MMIBN are discarded

(i.e., users were identified as new, regardless of the model estimation), as in the multi-modal dataset.

Furthermore, EVM models take 0.12 s for user recognition, which is substantially higher than

MMIBN models (0.01 for non-adaptive model and 0.04 with online learning). These findings further

Table 3. Pairwise McNemar test results on the identification of known users (DIR) for the socially assistive
robot study. Significant differences (p < .05) are highlighted in bold.

Model FR EVM:FR EVM:MM MMIBNGaussian

EVM:FR

p = .44
(Z = −0.853)

- - -

EVM:MM

p < .001
(Z = −4)

p = .02
(Z = −2.8)

- -

MMIBNGaussian

p = .02
(Z = −2.56)

p = .68
(Z = −0.413)

p = .02
(Z = 2.68)

-

MMIBN:OLGaussian

p = .02
(Z = −2.65)

p = .44
(Z = −0.971)

p = .07
(Z = 2.01)

p = .44
(Z = −0.849)
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support that MMIBN models are the most reliable state-of-the-art open world user recognition

method for HRI.

Overall, our findings on the Multi-modal Long-Term User Recognition Dataset and the real-world

HRI experiments show that both of our proposed approaches perform better in recognising users

than the state-of-the-art open world recognition method (Extreme Value Machine) and the NAOqi

face recognition alone, supporting that our proposed user recognition models are suitable for

incremental user identification in real-world HRI, and that they improve the recognition even when

the identifiers are malfunctioning.

9 CONCLUSION
User identification is mostly regarded as a solved problem in the computer vision field. What

remains unsolved is its application to the real world on low-computational power systems, such as

commercial robots. The core problem that we face within HRI for personalising the interaction

is to recognise unknown users and enrol them incrementally, which is classified as open world

recognition. However, there exists a limited amount of research on this topic, and none of the

available methods is evaluated on user identification. These methods use batch learning of classes

instead of sequential learning, which is unlikely to be the case for HRI, because the users might not

be available at the same time. In contrast, it is more likely that the same users will be encountered

several times before the introduction of another.

Moreover, the computer vision field is not generally concerned with long-term interactions.

Hence, correct identification of the enrolled users (DIR) and incorrect identification of the unknown

users (FAR) are of equal value, whereas, the former is more valuable in long-term interactions

since the same user is expected to be recognised several times, and the fraction of newly enrolled

users will be much less. Furthermore, the appearance of the user may change over time, which

requires updating the user database accordingly through online learning. In addition, combining

soft biometrics, which are ancillary physical or behavioural characteristics (e.g., age) that can be

extracted from primary biometric data (e.g., face) or available through other sources of information

(e.g., time of interaction), can improve recognition accuracy.

In this work, we addressed these open challenges and presented a multi-modal incremental user

recognition approach with online learning that is suitable for long-term HRI in the real world.

We validated the approach within a variety of settings using an artificially generated multi-modal

dataset, and through three real-world HRI experiments, thereby, extending the findings in our prior

work [43] for a large number of users.
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A RECOGNITION ARCHITECTURE
The recognition architectures presented in Fig. 13, 14, and 15 were used for the HRI experiments

described in Section 8, namely, user identification in a research office [43], the personalised socially

assistive robot for cardiac rehabilitation [41] and the personalised barista robot [42], as well as for

evaluations on the Multi-modal Long-Term User Recognition Dataset (Section 6). The Recognition

Module (Fig. 13) for NAOqi proprietary software was used to obtain the face similarity scores

and gender, age and height estimations, along with the time of interaction, however, the last

two parameters were artificially generated for the multi-modal dataset, as described in Section

5. The identifiers in the Recognition Module can be replaced with any software providing the

same biometric estimations. The image, estimated and true identity, and ground truth values are

automatically and incrementally fed into the system for the multi-modal dataset; in contrast, the

image is taken (via the camera on the robot’s or the tablet) when a user arrives, the estimated

identity was announced to the user by a robot and confirmed by the user, and the ground truth

values are entered by the user (through a tablet interface) in the HRI experiments. Fig. 16 illustrates

user estimation and how the prior and likelihoods of the MMIBN change for incremental and online

learning based on known and new users and the evidence from the identifiers.

Start Recognition

Face DetectionTake Picture

Face Recognition
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Age Estimation

Height Estimation

Estimated
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Time of 
interaction

Face similarity
scores

Gender with
confidence
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confidence

Person 
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Person Detection

Recognition

Module

Fig. 13. Diagram of the recognition module. The yellow highlighted modules are proprietary software within
NAOqi that are used to obtain the estimated modalities.
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B REPEATED K-FOLD CROSS-VALIDATION GENERATION
As described in Section 6.2, two methods are used to create the cross-validation repeats, as presented

in Algorithm 1: OrderedKFold, where users are enrolled one after another and the enrolment

order is different in each fold, and ShuffledKFold, where the user samples (probes) are shuffled,

hence, users may be repeatedly seen before another user is enrolled.

Algorithm 1 Repeated K-Fold Cross-Validation Generation

1: function OrderedKFold(K ,M) ▷ K is number of folds, M is the samples for each user in the

dataset

2: k ← 1

3: while k <= K do ▷ Create initial cross-validation set

4: SM ← shuffle order ofM ▷ Enrollment order is different across each bin

5: B[k] ← SM[i][j : j+length(SM[i])/K] ▷ Divide user samples equally across each bin

6: V [k] ← stratified randomise order B ▷ Initial and final bins are different across K folds

7: k ← k + 1
8: return V ▷ Validation set

9: function ShuffledKFold(K ,O) ▷ K is number of folds, O is the (previous) validation set

10: SP ← shuffle O ▷ Shuffle the order of the user samples in previous validation set

11: k ← 1

12: while k <= K do ▷ Create initial cross-validation set

13: B[k] ← SP[j : j+length(SP)/K] ▷ Divide shuffled validation set across each bin

14: V [k] ← stratified randomise order B ▷ Initial and final bins are different across K folds

15: return V ▷ Validation set

16: procedure RepeatedKFold(R,K ,M) ▷ R is number of repeats, K is number of folds, M is the

samples for each user in the dataset

17: C[1] ← OrderedKFold(K ,M)
18: r ← 2

19: while r <= R do ▷ Create cross-validation set for number of repeats

20: C[r ] ← ShuffledKFold(K ,C[r − 1])
21: r ← r + 1
22: return C ▷ Repeated K-Fold Cross-Validation
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C OPTIMISATION OF PARAMETERS
Initially, the loss parameter α and face recognition threshold is set as described in Sections C.1 and

C.2. Furthermore, structural learning is applied to the data to validate the assumption of conditional

independence in the Bayesian network (Section C.3). Subsequently, Bayesian optimisation is used

to optimise the weights of the network and the threshold for the quality of the estimation (θQ ). A
total of 303 iterations is used for 5-fold cross-validation for each combination of the independent

variables (for 40 conditions). The parameters are optimised by minimising the loss on the training

set. By using the optimised parameters, 11 repeats of 5-fold cross-validation are conducted for each

of the conditions to evaluate the effects of the independent variables on the open-set. For clarity

of the presentation of results, we will initially analyse the results for 11-repeats of 5-fold cross-

validation (in Section C.4), before presenting the optimised parameters from Bayesian optimisation.

This would allow us to later analyse only the optimisation parameters (Section C.6) for the best

performing normalisation method (Section C.5).

C.1 Loss Parameter
The loss parameter α (Equation 12) should be set to find the optimum FR threshold (θFR ) and
optimise the parameters in our network. As α increases, the fraction of correct recognitions of

enrolled users (DIR) increases, but the fraction of the incorrect recognitions of unknown users (FAR)

will increase. Based on our average number of observations assumption for long-term interaction

(no = 10), α becomes 0.9. For applications with fewer observations per user, α can be set accordingly.

C.2 Face Recognition Threshold
In FR, if the highest similarity score is below the face recognition threshold, θFR , the identity is

classified as unknown. We examined how θFR influences the long-term recognition performance

loss for the NAOqi FR in both D-Ten and D-All datasets, and noticed a decrease in performance

(i.e., increase in loss) for θFR > 0.4. Hence, we chose θFR = 0.4 because it is the highest threshold
giving the lowest loss to decrease FAR in our model, in agreement with our previous work in [43].

C.3 Bayesian Network Structure
In order to determine whether the conditional independence of the modalities (face, gender, age,

height and time of interaction) given the identity of the user holds when the same input (i.e., image)

is used to obtain multi-modal data, we applied structural learning of the Bayesian network on the

Multi-modal Long-Term User Recognition Dataset using the pyAgrum [36] library. We used the all

samples dataset with Gaussian times (D-AllGaussian) with the identification estimations obtained

from NAOqi proprietary algorithms (for face, gender and age estimations) and the artificially

generated height estimations and time of interactions, as described in Section 5. Based on the

requirements of the pyAgrum library, the multi-modal data is “simplified” by taking the best

match evidence for modalities (i.e., confidence scores are not used) to allow structural learning. For

instance, the most similar user (or unknown) is taken as the face recognition estimate by taking into

account the face recognition threshold, and the evidence for gender, age and height are taken as

the estimated values. Mandatory arcs (e.g., I -> F ) between the identity node and the modalities are

provided as prior structural knowledge, since the multi-modal information is used to determine the

identity. Based on the Bayesian Dirichlet equivalent uniform (BDeu) score [39], all three methods

available in the library (K2 algorithm [22], greedy hill-climbing search and local search with tabu

list) found no other dependencies between the modalities, confirming the conditional independence.

We initially set the likelihoods to have much higher values for the true values, such as 0.9 for the
face node (Equation 7) corresponding to the actual user and 0.99wG

for the true gender. Average
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learned likelihoods in online learning for 200 users confirm this assumption, with the mean for

face node as 0.913 (SD=0.126), and the mean for the gender likelihood as 0.978 (SD=0.058).

C.4 Analysis of Variance of Independent Variables
Levene’s test on the loss reveals (F (10, 2189) = 0.026,p = 1) that there is no significant difference in

variances between the repeats, which indicates that our models are stable across repeats. ANOVA

(Type-I) supports that there is no significant difference between repeats (F (10, 2189) = 0.044,p = 1),

which shows that there is no significant difference between the ordered k-fold cross-validation

and the shuffled k-fold, indicating that the model performs equally well for learning new users

incrementally sequentially (similar to batch learning) and at random intervals (similar to a real-

world scenario). Hence, we will only analyse the results of a single randomly selected repeat of

5-fold cross-validation. Since the model is stable across repeats, using a single repeat of cross-fold

validation instead of independent test sets does not violate ANOVA assumption [7].

Due to the linear relation of loss with DIR and FAR in (12), there will be a correlation between

the parameters. Pearson’s product-moment partial correlation coefficient was computed to assess

their relationships. The results show that there is a negative correlation between loss and FAR,

r (200) = −0.18,p = .009, a positive correlation between loss and DIR, r (200) = 0.99,p < .001, but
no significant correlation between FAR and DIR, r (200) = 0.08,p = .25.
A factorial ANOVA is conducted for analysing the primary and interaction effects of our inde-

pendent variables. The results show that there are no significant primary effects for the model,

F (1, 160) = 1.50,p = .22, and no significant interaction effects are found between the dataset size,

timing of interaction, and model combination, F (1, 160) = 0.01,p = .91. Every other independent

variable and their interactions are found to be significant (p < .001). This shows that the size of the
dataset, timing of interaction and normalisation method have significant effects on the performance

of the model, but online learning by itself does not provide significant improvement.

C.5 Normalisation Methods
A post-hoc analysis using Tukey’s Honestly Significant Differences (HSD) test was conducted in

which D-All and D-Ten datasets have been analysed separately for clarity, however, the results

show similar patterns in both datasets. The corresponding Tukey’s HSD test plots are presented in

Fig. 17 and 18 (see Appendix E for the description of significance levels).

In both of D-All and D-Ten datasets, hybrid normalisation provides significantly lower loss

(p < .05) in all conditions except for online learning in Gaussian timing for D-All (p = .78 in

D-AllGaussian), in which case it still provides the lowest mean for loss. Hence, our hypothesis H3 is

strongly supported, and the hybrid normalisation method is chosen for the remaining analyses.

While no significant differences are found in the primary effect of the learning method, there are

significant differences between online learning and the non-adaptivemodel for hybrid normalisation.

Online learning results in a higher loss for both datasets, which is in contrast with our hypothesis

H2. The other methods do not show a stable pattern across conditions or datasets.

Most methods perform significantly worse in uniform timing of interaction (random interaction

times), as compared to patterned interactions (Gaussian times), supporting our hypothesis H4.
Softmax performs equally well on both models for D-All, but performs worse in uniform timing for

D-Ten. Hybrid normalisation performs equally well for MMIBN in D-All but performs significantly

worse in other conditions.

Hybrid normalisation performs better in all conditions and shows stability across varying

conditions compared to the other methods. It achieves lower loss in D-All than in D-Ten, as a result

of a higher number of samples in D-All (2280 in open-set) as compared to D-Ten (800 samples),

which shows that the proposed model gets better with the increasing number of recognitions.
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Fig. 17. Results of Tukey’s HSD test of loss in the open-set for normalisation methods with optimised weights
for all samples (D-All) dataset: softmax, minmax, tanh, normsum, and hybrid. Lower loss is better.

C.6 Weights andQuality of the Estimation
It seems to be self-evident that in the case of uniformly distributed time of interaction, online

learning would provide worse results because the information provided by time will be unreliable.

Hence, Bayesian optimisation should find a lower weight for the time parameter. The parameters

corresponding to the optimum loss presented in Fig. 19, show otherwise. Weight for the uniform

time is higher than that of the Gaussian for online learning in both datasets.

While the average standard deviation of NAOqi age estimation from the true age of the users
20

(i.e., the average standard deviation of error) is found to be 11.0 (which was 9.3 in [43]), age is

found to be the most important parameter and height the least. This is in contrast with our findings

in [43]. However, the results on the Multi-modal Long-Term User Recognition Dataset are more

generalisable to larger populations, because of the higher number of users (200) and the diverse age

range (10-63), in comparison to the limited number of users (14) and the narrow age range (24-40)

in our prior work. Note that in the multi-modal dataset, we used the same standard deviation of

height estimations (6.3 cm) as [43]. The standard deviation within age estimation (i.e., without

using ground truths) is found to be 8.2, which is less than the standard deviation of error. NAOqi

gender recognition rate
21
is found to be 0.9, and no difference is found between genders, that is,

females and males are recognised equally accurately.

The optimised threshold for the quality of the estimation (θQ ) is found to be less than 0.1 in each

condition. The underlying reason is the disagreement of the modalities, which can decrease the

20
The standard deviation of age estimation from the ground truth values are calculated per user, averaged over 200

users, and then averaged over 5-folds within the all samples dataset with Gaussian times (D-AllGaussian).

21
The gender recognition rate is the fraction of correctly estimated gender in the images (based on ground truths) of 200

users, averaged over 5-folds within the all samples dataset with Gaussian times (D-AllGaussian).
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Fig. 18. Results of Tukey’s HSD test of loss in the open-set for normalisation methods with optimised weights
for ten samples (D-Ten) dataset: softmax, minmax, tanh, normsum, and hybrid. Lower loss is better.

differences in posterior probabilities because the results are combined through the product rule in

the Bayesian network. When the modalities agree with high confidences (probabilities), the quality

can be very high, such as Q = 7.44 as shown in Fig. 7 in Section 6.5 for the second user.
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threshold for the quality of the estimation) through Bayesian optimisation of 303 iterations over 5-fold
cross-validation for hybrid normalisation for all samples (D-All, represented with dark colours) and ten
samples (D-Ten, represented with light colours) training sets.
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D EXTREME VALUE MACHINE FOR INCREMENTAL ONLINE LEARNING
Extreme Value Machine

22
[73] (EVM) is a state-of-the-art open world classifier based on the Extreme

Value Theory (EVT). However, it was only evaluated using batch learning, which is not suitable

in a real-world HRI application, because the users will be encountered sequentially. Hence, we

transformed the method for using sequential data and incremental online learning in order to

compare the performance to our proposed methods
23
.

The hyperparameters of EVM are tail size (τ , the number of points that constitute extrema for

EVT), number of models to average (k), coverage threshold (ς , probabilistic threshold to designate

redundancy between points), and open-set threshold (δ , if the maximum probability is below this

threshold, the identity is estimated as unknown). The ranges considered for these hyperparameters

in [73] are as follows: 100 − 32000 for τ (can be minimum 2), 1 − 10 for k , [0.008, 0.186, 0.492, 1.0]
for ς , and [0.05, 0.1, ..., 0.3] for δ . Moreover, Euclidean distance or cosine similarity can be used as

the distance function to compute margins for EVM.

As described in Section 3.4, we set MMIBN to declare the user as unknown in the first 4 recog-

nitions, in order to allow the network to make meaningful estimations. This was achieved for

EVM by setting τ = 3. After the initial training, sequential learning is achieved by updating the

model with a single data point (i.e., a single recognition) at each recognition, by setting k = 1. We

optimised ς and δ over the ranges given, and found that ς = 1.0 and δ = 0.05 resulted in the lowest

long-term recognition performance loss. Cosine similarity is used as the distance function, as it is

stated in [73] that Euclidean distance led to poor performance for EVM.

It is important to note that in [73], τ = 33998, k = 6, and ς = 0.5. However, the authors stated
that ς and k had a slight impact on performance (2% increase in accuracy and F1 score), whereas,

the vast majority of performance variation was attributed to τ .
We use the same data with the structure described in Section 3.1 for evaluating MMIBN and EVM

models. Note that for EVM models, the data is not normalised for face recognition similarity scores,

and the normal curves for the remaining modalities are normalised through norm-sum (dividing

by the total sum) because hybrid normalisation is a feature that we introduced in this paper for

MMIBN and it is optimised for that structure. Using normalisation for face recognition does not

change the performance of EVM:FR, but hybrid normalisation results in a poor performance for

EVM:MM (DIR is 0.029).

22
https://github.com/EMRResearch/ExtremeValueMachine

23
Modified version of the Extreme Value Machine is provided online: https://github.com/birfan/

MultimodalRecognitionDataset
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E TUKEY’S HONESTLY SIGNIFICANT DIFFERENCES TEST PLOTS
In this manuscript, a letter representation is adopted for Tukey’s HSD test plots. Levels that are not

significantly different from each other at 0.95 confidence level (p < .05) are represented with the

same letter over all the conditions, that is, each method is compared to all the other methods in

different conditions. In other words, if two methods do not share a common letter, then there is a

significant difference in performance between them. Multiple letters mean that the method is at

the same significance level as multiple other methods.

E.1 Long-Term Recognition Performance Loss
Fig. 20 presents Tukey’s HSD test results on the training, open-set, closed-set (training), closed-set

(open) evaluation sets for D-All datasets with Gaussian and uniform timing of interaction. The

results show that the proposed MMIBN model significantly outperforms FR and EVM in all of the

datasets.
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Fig. 20. Comparison of Tukey’s HSD test results on loss for the proposed multi-modal incremental Bayesian
network (MMIBN), face recognition (FR), soft biometrics (SB) with online learning condition (:OL), Extreme
Value Machine with FR data (EVM:FR) and with multi-modal data (EVM:MM). The results are presented
for training (100 users), open-set test (200 users), closed-set (training) (100 users) and closed-set (open) (200
users) for all samples dataset (D-All) for Gaussian and uniform timing of interaction. Lower loss is better.

ACM Trans. Hum.-Robot Interact., Vol. 11, No. 1, Article 6. Publication date: October 2021.



E.2 Open-Set Identification Metrics: DIR and FAR
Tukey’s HSD test results for DIR and FAR are presented in Fig. 21 and 22, respectively. The plot for

DIR resembles highly that of Fig. 20 in a reversed direction, because of α ∗ (1 − DIR) component of

loss, whereby, α = 0.9. DIR of MMIBN is significantly higher than FR and EVM in all datasets. The

detailed analysis is presented in Section 6.5.2.
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Fig. 21. Tukey’s HSD test results for detection and identification rate (DIR) of all models for D-All datasets.
Higher DIR is better.
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FAR = 0 in closed-sets because all the users are previously enrolled. FR has a very low FAR in

large datasets, because it predominantly identifies users as unknown. The combination of several

modalities increases the probability to mistake a user for another user, which increase FAR in

MMIBN.
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Fig. 22. Tukey’s HSD test results for false alarm rate (FAR) of all models for D-All datasets. Lower FAR is
better.
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E.3 User-Specific Analysis
Fig. 23 presents the significant differences between the identification of users within the all samples

dataset with patterned times. FR significantly performs better or worse for some of the users,

whereas the combination of multi-modalities through our proposed model decreases the bias of FR.

Online learning (EVM and MMIBN:OL) further mitigates the user recognition bias, in exchange for

the performance, due to the accumulating noise in the identifiers.
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Fig. 23. Tukey’s HSD test results for significant differences of user-based identification over 5-fold cross-
validation on D-AllGaussian: (A) face recognition (FR), (B) proposed model (MMIBN), (C) proposed model
with online learning (MMIBN:OL), (D) Extreme Value Machine with face recognition data (EVM:FR). The
darker blue colours represent significant differences, whereas lighter blue colours mean that the users are
identified equally well.
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F TIME PLOT FOR OPEN-SET RECOGNITION
The time plot for open-set recognition in Fig. 24 shows the change in long-term recognition loss

with the increasing number of recognitions. The results are consistent with the results for the

training set, presented in Section 6.5.1. MMIBN and MMIBN:OL have a higher loss in the open-set

compared to the training, due to the higher number of users to recognise. EVM:FR has a lower

loss during the enrolment period due to lower FAR compared to MMIBN models, and a higher

DIR compared to EVM:MM, but the MMIBN models significantly outperform it overall and in the

closed-set.
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Fig. 24. The change of loss with increasing number of recognitions for all samples dataset with Gaussian times
(D-AllGaussian) for open-set and closed-set (open). The loss decreases with increasing number of recognitions.
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