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Abstract

This thesis investigates the economic value of incorporating intraday volatility estimators into

the volatility forecasting process. The increased reliance on volatility forecasting in the �nan-

cial industry has intensi�ed the need for more rigorous analysis from an economic perspective

instead of merely statistical point of view. A better understanding of the available methods has

implications for portfolio optimization, volatility trading and risk management. More recently,

volatility of asset returns was once again under spotlight during the 2008-2009 �nancial crisis.

One of the most visible indicators of the crisis that captured the attention of the �nancial in-

dustry was the extremely high level of asset return volatility. This uncertainty prompted much

interest for a more accurate, yet practically applicable approach for volatility forecasting.

The study contributes to the extant volatility forecasting literature in three areas. First, it

addresses the question of how to practically and e¤ectively exploit intraday price information

for variance and covariance modelling and forecasting. Second, it addresses the development

of an �optimal�intraday volatility model that accommodates market practitioners�preferences.

Third, it evaluates the economic value of combining realized (intraday) volatility estimators for

utilizing unique information embedded in each estimator. The thesis is organised as follows.

Chapter 2 introduces the various realized volatility estimators, volatility forecasting proce-

dures and their corresponding realized extensions used in our subsequent empirical investiga-

tions.

Chapter 3 evaluates the economic value of various intraday covariance estimation approaches

for mean-variance portfolio optimization. Economic loss functions overwhelmingly favour intra-

day covariance matrix models instead of their daily counterparts. The constant conditional

correlation (CCC) augmented with realized volatility produces the highest economic value when

applied with a time-varying volatility timing strategy.

Chapter 4 compares the practical value of intraday based single index (univariate) and

portfolio (multivariate) models through the lens of Value-at-Risk (VaR) forecasting. VaR pre-

dictions are generated from standard daily univariate or multivariate GARCH models, as well

as GARCH models extended with ARFIMA forecasted realized measures. Conditional coverage

test results indicate that intraday models, both univariate and multivariate ones, outperform

their daily counterparts by providing more accurate VaR forecasts.

Chapter 5 investigates the economic value of combining intraday volatility estimators for

volatility trading. The simulated option trading results indicate that a naive combination of

an intraday estimator and implied volatility cannot be outperformed by the best individual

estimator. In addition, trading performance can be further boosted by applying more complex

combination models such as a regression based combination of 42 single volatility estimators.
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CHAPTER 1: INTRODUCTION

1.1 Overview of the Research

Volatility and correlation are key inputs to asset pricing, portfolio selection and risk

management. Asset pricing models such as the Black-Scholes option pricing formula and

its various extensions use volatility estimate as an important factor. Portfolio managers

seek to determine the weights of assets that provide the optimal return/risk trade-o¤

given a particular utility function. For hedging against risk and managing investment

risk, accurate volatility forecasts are also crucial. Furthermore, the establishment of Basel

II Accord in 2004, e¤ectively, rendered volatility and correlation forecasting a mandatory

risk-management exercise for many �nancial institutions.

More recently, volatility of asset returns was once again under spotlight during the

2008-2009 �nancial crisis, a major disruption to the �nancial sector and global econ-

omy. One of the most visible signs of the crisis that captured the attention of both the

academia and �nancial industry was the extremely volatile stock markets. This uncer-

tainty prompted much interest for more accurate, yet practically applicable frameworks

for volatility modelling and forecasting.

Motivated by this interest, the thesis investigates how intraday information can be

exploited to improve volatility forecasting models from an economic viewpoint. A number

of features make the current study distinct. First, a systematic analysis of the economic

value of realized (intraday) covariance matrix in portfolio optimization is carried out.

Second, the practical value of intraday volatility measures is rigorously evaluated by Value-

at-Risk (VaR) forecasting performance. Third, the economic value of realized forecast

combination is analysed in the related context of volatility trading. The dataset for the

empirical studies include real market tick-by-tick data for several important stock and

commodity indices in the United States spanning the period from 06 January 1997 to 30

September 2011. The �ndings from this study will be useful for practitioners in �nancial
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institutions, hedge funds and proprietary trading houses interested in the development of

intraday volatility models for economic applications.

The remainder of this chapter is structured as follows. Section 1.2 discusses the con-

cepts of volatility forecasting and its application. Section 1.3 describes the motivation

and objective of this thesis. Finally, section 1.4 outlines the layout of the study.

1.2 Literature on Volatility Forecasting

1.2.1 The Concepts of Volatility Forecasting

Volatility is a crucial concept in �nance but a challenging one because, unlike returns,

volatility is latent or unobserved. Therefore, it needs to be proxied. An asset with rela-

tively high volatility, hence greater uncertainty, is often regarded as a riskier investment,

since larger price variation brings greater uncertainty to the investment returns.

Volatility of �nancial asset return series is central to �nancial economics. Indeed, as

noted by Campbell, Lo and MacKinlay (1997):

� ... what distinguishes �nancial economics is the central role that uncertainty plays in

both �nancial theory and its empirical implementation ... Indeed in the absence of uncer-

tainty, the problems of �nancial economics reduce to exercises in basic microeconomics�.

Given volatility�s central role in �nancial economics and practical applications, a vast

literature on modelling the conditional variance of asset returns has emerged. Among

the most popular are the autoregressive conditional heteroskedasticity (ARCH) models,

stochastic volatility (SV) models, and regime-switching models; see comprehensive surveys

by Bollerslev et al. (1994) for GARCH-type models, Ghysels et al. (1996) for stochastic

volatility models, and Franses and van Djik (2000) for regime-switching models. Due to

the space limitation, this thesis focuses on GARCH models and their realized extensions.

The popularity of GARCH models, introduced by Engle (1982), is attributed to both

their intuition and their ability to capture several stylized facts about asset return volatil-

2



ity, such as volatility clustering1 and mean reversion. Furthermore, GARCH models can

be �exibly augmented to measure additional stylized facts such as volatility asymmetry2

and jumps, or to incorporate additional information such as trading volume and intraday

volatility estimators.

GARCH models are not con�ned to a univariate context. They can be naturally ex-

tended to a multivariate setup which enables modelling and forecasting the conditional

covariance matrix for a portfolio of assets. It is now widely accepted that �nancial volatil-

ities move together over time across assets and markets. Recognizing this characteristic

through a multivariate GARCH framework leads to more relevant empirical models than

working with separate univariate GARCH models.

1.2.2 Intraday Volatility Measures

One limitation of standard univariate and multivariate GARCH models is that they em-

ploy only daily or lower frequency data of asset returns, which may limit the accuracy

of volatility forecasting. First, although the squared daily return generates an unbiased

estimate for the realized integrated volatility, it is a very noisy estimator, and foreseeable

variation in the real latent volatility process is often dwarfed by measurement error (see,

e.g., ABDE, 2001). Second, daily volatility models neglect possibly dramatic intraday

price movements, such as those shown during the peak of the 2008-2009 �nancial crisis,

omitting valuable information about the market sentiment, risk signal and the magnitude

of intraday return variation.

The search for a better framework for the estimation and prediction of the conditional

variance of asset returns has therefore led to the study of intraday volatility measures.

1Large innovations tend to be followed by large innovations in either direction, and small innovations

tend to follow small innovations. It is a case of heteroskedasticity, where variances of the error terms are

not equal. This phenomenon is widely found in volatility of �nancial asset returns.
2Negative shocks have typically a stronger e¤ect on future volatility than positive shocks. This asym-

metry is sometimes ascribed to a leverage e¤ect. The theory explains that when price of a stock falls, its

debt-to-equity ratio increases, adding the risk of returns to equity holders.
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The most commonly used intraday estimator, realized volatility (RV), is the sum of �nely-

sampled squared return realizations over a �xed time interval. Many other nonparametric

realized (intraday) volatility estimators have recently been proposed (see Andersen and

Bollerslev, 1998; Andersen et al., 2001; Barndo¤-Nielsen and Shephard, 2004).

One direction to improve the accuracy of daily GARCH models is to augment them

with intraday volatility estimators, which is the main theme of this thesis. The e¤ective-

ness of this augmentation can be judged by two distinct types of evaluation methods. The

�rst one consists of statistical loss functions, which is extensively applied in the literature.

The second method uses economic criteria, which is relatively new and has not been ex-

plored in depth. This study focuses on the second framework, which is brie�y introduced

in the next subsection.

1.2.3 Economic Value of Volatility Forecasting

The economic importance of volatility modelling and forecasting in many market appli-

cations implies that the success or failure of a volatility model will depend on its ability

to generate economic value when applied to real market decision making. Therefore, it is

arguably more relevant to evaluate volatility forecasts directly in an economic framework

using real market data.

The economic value generated by a volatility model can be de�ned as the economic

bene�t of switching to it from another volatility speci�cation, a base model. This economic

bene�t can be relevant to many important areas of the �nancial industry, such as portfolio

optimization, proprietary trading and risk management. For example, the economic value

can be quanti�ed as the increase in investor�s utility in mean-variance asset allocation,

the additional clarity obtained about tomorrow�s Value-at-Risk (VaR) of a portfolio, or

the Sharpe ratio increase in volatility trading strategies.

4



1.3 Motivation and Objective of the Thesis

This thesis empirically investigates the forecasting performance of univariate and multi-

variate intraday volatility models and provides insights on their relative ability to generate

economic value when applied to portfolio optimization, risk management and volatility

trading. For this purpose, it utilizes a variety of intraday volatility measures, forecasting

techniques as well as combination methods. The importance of volatility forecasting for

portfolio managers and market practitioners, together with the need to �ll existing gaps

in the empirical high-frequency literature, constitute the primary motivation of the thesis.

One shortcoming of conventional GARCH models is that they use the squared daily

return, an extremely noisy estimator of ex post volatility, as proxy for the day�s variance

in forecast evaluation. Andersen and Bollerslev (1998) show that when GARCH forecasts

are compared with the sum of intraday squared returns, as the true volatility proxy,

they appear far more accurate than when compared with the squared daily close-to-close

returns.

Empirically, several studies have explored the issue of utilizing intraday information in

forecasting daily volatility by incorporating intraday volatility estimator as an additional

regressor of the daily GARCH models. For example, Fuertes, Izzeldin and Kalotychou

(2009) incorporated realized volatility (RV), realised range (RR), realized power variation

(RPV) and realized bipower variation (RBP) into the daily GARCH model. The authors

�nd that intraday information increases statistical accuracy of GARCH forecasts and, in

particular, RPV enhances the GARCH forecasting ability the most.

However, the extant literature on the merit of incorporating intraday data in volatility

forecasting mostly rests on a univariate framework. There is very limited empirical re-

search on using intraday information for modelling and forecasting the entire conditional

covariance matrix. Covariance between asset returns is a crucial input in mean-variance

portfolio selection. In this setting univariate intraday volatility models are simply not

capable of achieving the goal.

5



In addition, although in some cases portfolio management decisions can be made

based on univariate intraday models, it is worth to question whether the investment per-

formance would further improve by utilizing multivariate intraday models. For example,

some �nancial institutions are required to make Value-at-Risk (VaR) predictions for their

investment portfolio according to the Basel II Accord. This can be done either using

univariate models which regard the whole portfolio as a single asset, or by multivariate

analysis which forms volatility forecasts using information of each portfolio constituent.

So far no consensus has been reached about the �best�approach using daily data, univari-

ate or multivariate ones for VaR prediction (Berkowitz and O�Brien, 2002; McAleer and

da Veiga, 2008; Dumitrescu, 2012). Furthermore, in an intraday context, the univariate

and multivariate debate is yet to be informed empirically.

A number of other important issues in the empirical literature on intraday volatility

modelling warrant further analysis. Above all, intraday volatility speci�cations have not

been fully evaluated from an economic perspective, while most of the empirical studies

that use intraday information to forecast volatility are evaluated statistically. Statistical

evaluation of intraday models show overwhelming improvement in forecasting performance

compared with daily speci�cations (Andersen et al., 2001; Barndo¤-Nielsen and Shephard,

2004; Fuertes, Izzeldin and Kalotychou, 2009). But whether the intraday models would

bene�t market practitioners is still open to debate.

A priori, intraday models exploit more information and therefore are expected to out-

perform their daily counterparts. But in practice intraday data are harder to collect

and proceed and intraday models are more demanding computationally. Given the com-

plexity of intraday speci�cations, it is arguable that they are useful for fund managers

and market practitioners only if they can generate signi�cant economic value. Against

this backdrop, it is important to empirically analyse the performance of intraday models

for di¤erent �nancial applications such as portfolio optimization, risk management and

volatility trading.

6



Another issue worth considering is forecast combination. The empirical literature on

forecast combination mostly rests on daily or lower frequency data. Research shows that

combination forecasts often outperform the forecasts generated by the best individual

model (see Clemen, 1989; Makridakis and Hibon, 2000; Stock and Watson, 2004; and

Becker and Clements, 2008). The bene�t of forecast combination is three-fold. First, it

integrates di¤erent models that may di¤er in the information they exploit and/or how

they exploit it. Second, it mitigates the e¤ect of structural breaks. Third, it reduces the

impact of parameter estimation uncertainty and model uncertainty.

Given that forecast combination has been shown to be worthwhile in a variety of ap-

plications with low frequency data, it is natural to further the research on this topic in an

intraday context. Over the last decade a variety of intraday volatility estimators has been

proposed. Each of these estimators is formulated in a di¤erent way and can be sampled

at di¤erent intraday frequencies. Combining the intraday estimators could incorporate

unique pieces of information as well as reduce the e¤ect of structural breaks su¤ered by

individual forecasting model, therefore producing better forecasting performance. How-

ever, the literature of forecast combination has seldom reached intraday level, let alone

the economic value of combining intraday information.

The objective of the thesis is to bridge the gaps that exist in the literature by address-

ing the aforementioned issues using three distinct empirical studies. First, in a portfolio

optimization context, a variety of multivariate intraday volatility models are evaluated

by the maximum return that an investor with quadratic utility function would be will-

ing to sacri�ce annually in order to capture the performance gains associated with the

intraday covariance estimators. Second, the performances of univariate and multivariate

intraday-based VaR models are compared. Third, in an options trading framework, the

economic value of combining a battery of intraday volatility estimators is evaluated via

the incremental Sharpe ratio brought by volatility trading based on realized combinations.

7



1.4 Layout of the Thesis

The remainder of the thesis is divided into 3 parts. Firstly, Chapter 2 presents a common

methodology to be applied in the subsequent empirical studies. Secondly, Chapters 3 to

5 contain three distinct empirical studies on the economic value of intraday (co)variation

estimators for di¤erent �nancial applications. Finally, Chapter 6 concludes the thesis and

provides recommendations for further research.

Chapter 2 provides a methodological review of the background technical materials to

be applied in our subsequent empirical research. First, a variety of realized variance and

realized covariance matrix estimators are introduced. Second, univariate and multivari-

ate volatility models and their corresponding realized extensions are explained. These

estimators and models form the foundation of our three empirical essays.

Chapter 3 evaluates the economic value of intraday information in the context of

portfolio optimization, in which the economic loss function chosen to compare their per-

formance is the quadratic utility function implicit in mean-variance asset allocation. In

this empirical study we propose a novel forecasting framework to employ intraday infor-

mation for predicting the conditional covariance matrix. The purpose is to evaluate the

proposed intraday estimators as well as to explore the optimal volatility timing strategy

that best exploits the covariance forecasts for portfolio weighting decisions.

Chapter 4 compares univariate (single index) and multivariate (portfolio) intraday

volatility models in a risk management setting. We assess the volatility estimators�per-

formance in predicting portfolio Value-at-Risk (VaR) with single index models vis-à-vis

portfolio models. The volatility models are also augmented with intraday information to

form the realized (intraday-based) single index and portfolio speci�cations. Out-of-sample

VaR predictions of the daily or intraday volatility models are evaluated by a number of

conditional coverage tests.

Chapter 5 moves a step further by investigating the economic value of combining

realized volatility estimators. The economic value of a combination estimator is assessed

8



directly through the return accrued and standard deviation in return occurred in the

context of volatility trading. We address two issues in this chapter. First, we are interested

in whether simple combination models, which combine a realized volatility estimator and

the implied volatility, can outperform the best individual volatility measure. Second, can

further combination models which combine a variety of intraday volatility estimators and

the implied volatility using di¤erent combination methods provide additional economic

gains compared with simple combination models.

Chapter 6 concludes the thesis by providing an overview of our study and a summary

of the �ndings. Finally, the chapter recommends potential directions for future research.

9
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CHAPTER 2: Common Methodology

2.1 Realized Volatility Estimators

This chapter lays out the background literature and methodology to be used throughout

the thesis. We �rst introduce realized (intraday) univariate and multivariate volatility

measures, which are used as major inputs to all the three empirical studies. Inspired by

the work of Schwert (1989b) and Hsieh (1991), Andersen and Bollerslev (1998) de�ne

the realized volatility for the day as the sum of squared intraday returns. The idea is

that if the sample path of volatility is continuous, then increasing the sampling frequency

yields arbitrarily precise estimates of volatility at any given point in time (Merton, 1980).

Therefore, the unobserved ex post volatility eventually becomes observable. A variety of

realized volatility measures have been proposed and applied in academia and �nancial

industry after Andersen and Bollerslev�s (1998) initial work. A review of literature on

commonly used realized volatility estimators are given by Andersen et al. (2008), and

Barndor¤-Nielsen and Shephard (2006).

Since the early 1990s intraday data have become increasingly available to academic

research. This development has made possible a wide range of empirical studies investi-

gating intraday information. The literature makes use of realized volatility measures and

evaluate their properties for various asset classes. For instance, ABDE (2001) examine the

Dow Jones Industrial Average, ABDL (2001) evaluate currencies, and Areal and Taylor

(2002) study stock index futures. These empirical studies suggest that accurate measures

of volatility can be generated using high frequency data, and realized volatility is a better

proxy for spot volatility than lagged squared returns.

Each intraday based volatility measure may contain unique information that is not

captured by competing estimators. This thesis therefore utilizes a wide range of realized

volatility measures to exploit intraday information. In detail, �ve broad categories are

considered: realised volatility (RV), realised range (RR), realised power variation (RPV),
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realized bipower variation (RBP) and realized kernel (RK) measures. Di¤erent sampling

frequencies are applied to these estimators. For RV, RR, RPV and RBP the sampling

frequencies considered are 1, 5, 15, 30 and 60 minutes. For RK models the frequencies are

set to 1 and 5 minutes. In total 41 realized volatility measures are applied in this study.

The �ve classes of realized volatility estimators are set out below.

The realized variance (RV) is the most widely used estimator. It is de�ned as

RVt =
XM

j=1
r2t;j (2.1)

where M is the number of intra-daily returns used, and rt;j is the jth return on day t.

Andersen and Bollerslev (1998) note that RV provides a relatively accurate measure of

volatility compared with daily squared returns. Theoretical properties of RV can be found

in Andersen and Bollerslev (1998) and Barndor¤-Nielsen and Shephard (2002).

Based on the range estimator of Parkinson (1980), Christensen and Podolskij (2005)

propose to improve upon the RV estimator by replacing each intraday squared return

with the high-low range. The proposed realized range (RR) estimator is de�ned as

RRt =
1

4 log 2
[
XM

j=1
100� (log(pht;j)� log(plt;j))2] (2.2)

where log(pht;j) and log(p
l
t;j) are the high and low prices of the jth interval. Christensen

and Podolskij (2005) �nd that RR is more e¢ cient than other variance estimators based

on squared returns in an ideal world without market frictions (no bid-ask bounce, discon-

tinuous trading or jumps). The asymptotic variance of the RRmeasure is 0:4
R t
t�1 �(u)

4du,

where the integral is de�ned as integrated quarticity, which is 5 times smaller than the

variance of RV at 2
R t
t�1 �(u)

4du. Christensen and Podolskij (2005) and Martens and van

Dijk (2006) suggest that, as M ! 1 the RR estimator converges in probability to the

quadratic variation (RRt
p! QVt). However, the result does not hold in a jump-di¤usion

context as with jumps RR is not a consistent estimator of QV. Martens and van Dijk

(2006) show that for plausible market frictions the optimal RR has a lower MSE than the

optimal RV. But both RR and RV are upward biased, and infrequent trading may lead
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to downward bias in RR but not RV.

The Realized Power Variation (RPV) was introduced by Barndor¤-Neilsen and Shep-

hard (2004) to accommodate return series with large jumps. A RPV of order z can be

expressed as

RPVt(z) = �
�1
z �

1�z=2
XM

j=1
jrt;jjz (2.3)

where 0 < z < 2, �z = E j�j
z = 2z=2

�( 1
2
(z+1))

�( 1
2
)
, � v N(0; 1). In a special case of z = 1 RPV

becomes the realised absolute variation. Liu and Maheu (2005) examine the 1-day-ahead

forecasting properties of RPV for di¤erent orders z = f0:25; 0:5; : : : ; 1:75g and �nd that

0.5, 1, and 1.5 yield the lowest RMSE. Fuertes, Izzeldin and Kalotychou (2009) suggest

that absolute return measures are more persistent than those squared estimators so RPV

could outperform RV in forecasting �nancial risk. Furthermore, RPV may yield better

forecasts than RV when the sample period contains large jumps. We therefore estimate

RPV for di¤erent orders z = f0:5; 1; 1:5g.

The realised bipower variation (RBP), an intraday volatility measure proposed by

Barndor¤-Neilsen and Shephard (2006), can be expressed as

RBPt = �
�2
1

XM

j=1
jrt;jj jrt;j�1j (2.4)

where �1 = E(j�j) =
p
2=
p
� and � v N(0; 1). The authors show that RBP converges in

probability to the integrated variance (RBPt
p! IVt) so it is also immune to jumps.

A disadvantage of realized variance estimators is that they can be very sensitive to

market frictions when applied to high frequency noisy data. Barndor¤-Nielsen et al.

(2008, 2009) propose a variety of realized variance measures of quadratic variation, the

realized kernel (RK) estimators, to combat market frictions in noisy high-frequency data.

In this paper we apply six popular RK estimators: Barlett, Epanechnikov, 2nd Order,

Cubic, Parzen and Tukey-Hanning.

We consider the case where Y is a Brownian semimartingale plus jump process (BMSJ)
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as

Yt =

tZ
0

audu+

tZ
0

�udWu + Jt (2.5)

where Jt =
PNt

i=1Ci is a �nite activity jump process. Nt is the total number of jumps

occurred in time interval [0,t] and Nt < 1 for any t. a is a locally bounded drift, � is a

c�adl�ag1 volatility process and W is a Brownian motion.

The quadratic variation of Y can be expressed as

[Y ] =

TZ
0

�2udu+

NTX
i=1

C2i (2.6)

where
R T
0
�2udu is the integrated variance that can be estimated from the observations

X�0 ; :::; X�n, 0 = � 0 < � 1 < ::: < �n = T , where X�j is a noisy observation of Y�j ,

X�j = Y�j + U�j (2.7)

Assume U is a noise term with E(U�j) = 0 and V ar(U�j) = !2. U can be caused

by market frictions such as liquidity e¤ects, bid/ask spread and recording mistakes. We

apply the realized kernels to estimate the process of Y�j . The estimators take on the

following form:

K(X) =
XH

h=�H
k( h

H+1
)
h; 
h =

nP
j=jhj+1

xjxj�jhj (2.8)

where k(x) is a kernel weight function, xj is the jth high frequency return over the

interval � j�1 � � j and h = �H; : : : ;�1; 0; 1; 2; : : : ; H. H is the optimized bandwidth.

Barndor¤-Nielsen et al. (2008) note that as n!1 if K(U)
p! 0 and K(Y )

p! [Y ] then

K(X)
p! [Y ] =

TZ
0

�2udu+

NTX
i=1

C2i (2.9)

The weight functions of the 6 RK estimators to be applied are listed in the table below:

1A function de�ned on the real numbers (or a subset of them) that is everywhere right-continuous

and has left limits everywhere.
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k(x)

Bartlett 1� x
Epanechnikov 1� x2

2nd Order 1� 2x+ x2

Cubic Kernel 1� 3x2�2x3

Parzen
1� 6x2 + 6x3;
2(1� x)3;

0 � x � 1=2
1=2 � x � 1

Tukey-Hanning (1� cos (�x))=2

Barndor¤-Nielsen et al. (2008) note that H / n3=5 is the best trade-o¤ between

asymptotic bias and variance2. The optimal choice of bandwidth is

H� = c��4=5n3=5 (2.10)

with c� =
�
k
00
(0)2

k0;0�

�1=5
and �2 = !2p

T
R T
0 �4udu

, where k0;0� =
R 1
0
k(x)2dx.3 c� can be directly

calculated for the RK measures, for example, c� =
�
(12)2

0:269

�1=5
= 3:5134 for the Parzen,

2.28 for Barlett and 3.42 for 2nd order kernel. The bandwidth H� then depends on the

unknown quantities !2 and
R T
0
�4udu, where the latter is the integrated quarticity. We

estimate � very simply by

� =
!̂2cIV (2.11)

where !̂2 is an estimator of !2, which is estimated by the realized variance using every

trade or quote, !2 = RVtick
2n

, where n is the number of non-zero returns that were used to

compute RVtick. cIV is estimated by RV15min, the realized variance based on 15 minute

returns. The use of cIV is motivated by the assumption that �2u does not vary too much

over the interval [0; t].

2This means that K(X)
p! [Y ] at a rate n1=5, which has the advantage of being non-negative with

probability 1.
3The non-stochastic weight function k(x) is characterized by:

(i) k(0) = 1; k0(0) = 0;

(ii) k is twice di¤erentiable with continuous derivatives;

(iii) k0;0� , k1;1� , k2;2� <1, where k0;0� =
R 1
0
k(x)2dx, k1;1� =

R 1
0
k0(x)2dx, k2;2� =

R 1
0
k00(x)2dx;

(iv)
R1
�1 k(x) exp(ix�)dx � 0 for all � 2 R.
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2.2 Realized Covariance Estimators

Two realized covariance matrix estimators, realized covariance (RC) and realized kernel

covariance (RKC) are considered for the empirical studies.

2.2.1 Realized Covariance (RC)

Let us assume that log prices follow a multivariate continuous-time stochastic volatil-

ity process and let N denote the number of assets in a portfolio. De�ne St as the

value of the N � N positive-de�nite di¤usion matrix at time t. The integrated di¤u-

sion matrix
R 1
0
St+�d� represents the latent covariance matrix of the vector of contin-

uously compounded returns over daily time interval t to t + 1. Let us divide this in-

terval into M subintervals of length �. The theory of quadratic variation implies thatPM
j=1 rt;jr

0
t;j�

R 1
0
St+�d� ! 0 as � ! 0, where rt;j represents the N�1 returns vector over

the jth (intraday) subinterval of day t. This motivates the model-free realized covariance

estimator for day t de�ned as

RCt �
MX
j=1

rt;jr
0

t;j (2.12)

which is asymptotically consistent for the latent covariance matrix.

2.2.2 Realized Kernel Covariance (RKC)

We follow the procedure of Barndor¤-Nielsen et al. (2008) to calculate the realized kernel

covariance (RKC). Suppose the k-dimensional e¢ cient log-price Y (t) follows a continuous

time di¤usion process as

Y (t) =

Z t

0

a(u)du+

Z t

0

�(u)dW (u) (2.13)

where a(t) is a vector of drift components, �(t) is the instantaneous volatility matrix,

andW (t) is a vector of independent Brownian motions.4 For reviews of the theory of this

4Jumps are not discussed in this work. Handling individual asset jumps and common jumps among

several assets is an open question which we leave for future research.

16



type of process see Ghysels, Harvey and Renault (1996). Stochastic process theory (e.g.

Protter, 2004) implies that the integrated covariance of Y (t),
R 1
0
�(u)�0(u), is equal to its

quadratic variation over the same interval,

[Y ](1) = plim
n!1

nX
j=1

fY (tj)� Y (tj�1)g fY (tj)� Y (tj�1)g0 (2.14)

for any sequence of partitions 0 = t0 < t1 < ::: < tn = 1 with supj ftj+1 � tjg ! 0 for

n!1.

Barndor¤-Nielsen et al. (2008) observe the log price processX = (X(1); X(2); :::; X(k))0,

which is generated by Y , but is contaminated with market microstructure noise. Prices

are quoted at di¤erent times and at di¤erent frequencies for di¤erent assets over the

trading day, t 2 [0; 1]. We apply the idea of refresh time used in Barndor¤-Nielsen et al.

(2008) to synchronize the data.

Suppose the observation times for the i-th stock are written as t(i)1 ; t
(i)
2 ; :::; i = 1; 2; :::; k:

Let N (i)
t count the number of distinct price observations for the i-th asset up to time t.

The quoted prices for the day is X(i)(t
(i)
j ), for j = 1; 2; :::; N

(i)
1 . For example, the j-th

price update for asset i, X(i)(t
(i)
j ) arrives at t

(i)
j .

Let � 1 = max(t
(1)
1 ; :::; t

(k)
1 ) represents the �rst refresh time of the trading day and

� j+1 = max(t
(1)

N
(1)
�j
+1
; :::; t

(k)

N
(k)
�j
+1
) the subsequent refresh time. � 1 is the time when the

prices of all the assets have been updated at least once. � 2 is then the �rst time when all

the prices are again updated, etc. These refresh times � j form a new time clock for each

trading day to synchronize the data. The number of observations of the synchronized

price vector is n + 1, which is no larger than the number of quates of the asset with

the fewest price observations. We then de�ne the synchronized high frequency return

vector as xj = X(� j) � X(� j�1), j = 1; 2; :::; n, where n is the number of refresh return

observations for the day.

The daily positive semi-de�nite realized kernel RKCt is then calculated as

RKCt =
nX

h=�n

k

�
h

H + 1

�
�h (2.15)
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where the non-stochastic k(x) is one of the 6 RK weight functions introduced in section

2.1. The h-th realized autocovariance is

�h =

Pn
j=jhj+1 xjx

0
j�hPn

j=jhj+1 xj�hx
0
j

h � 0
h < 0

(2.16)

For full details along with the calculation of bandwidth H see Barndor¤-Nielsen et al.

(2008). We calculate the multivariate realized kernel estimation for our intraday data,

generating a series of daily RKCt matrices, which will be used to augment the standard

daily multivariate GARCH models.

2.3 Univariate Volatility Model

Starting with Engle�s (1982) autoregressive conditional heteroskedasticity (ARCH) spec-

i�cation, a wide range of volatility models have been proposed, such as the generalized

ARCH (GARCH) (Bollerslev, 1986), exponential ARCH (Nelson, 1991), stochastic volatil-

ity and implied volatility models, for modelling and forecasting the volatility of �nancial

asset returns. Among the models, GARCH speci�cations are widely applied in both

academia and industry. The popularity of GARCH models can be attributed largely to

their ability to accommodate several stylised facts of �nancial data, such as time-varying

volatility, volatility clustering and asymmetric responses to positive and negative surprises

of equal magnitude.

While GARCH models are mainly estimated using daily return series in practice, over

the past decade a number of studies have focused on improving the forecasts from GARCH

models by exploiting intraday information (see Martens, 2001; Engle, 2002; Koopman et

al., 2005). Intraday volatility estimators may contain unique information about asset

return variations that is not captured by the daily squared return, a noisy estimator of

ex post volatility.

The empirical literature indeed suggests that high-frequency information could be em-

ployed to improve daily volatility forecast accuracy. A popular method is use intraday
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information as an additional regressor to extend daily GARCH models. Instances of aug-

mentation variable are the daily high-low price range (Parkinson, 1980; Taylor, 1987), the

number of intraday price changes (Laux and Ng, 1993), daily trading volume (Bessem-

binder and Seguin, 1993) and the standard deviation of intraday returns (Taylor and

Xu, 1997). More recently, Fuertes, Izzeldin and Kalotychou (2009) investigate individual

NYSE/Nasdaq stocks, and provide statistical evidence in favour of intraday based volatil-

ity models. They incorporate nonparametric estimators of daily price variability into a

GARCH model. Four estimators are compared: RV, RR, RPV and RBP. Test results

show that RR �ts relatively well in the in-sample �t analysis and RPV provides the best

out-of-sample performance.

This thesis applies four popular GARCH models, ARCH, GARCH, GJRGARCH and

PGARCH, for modelling and forecasting the conditional variance of the portfolio returns.

Alongside the original version of these four standard GARCH models based on daily

returns we implement a realized version that incorporates intraday information into the

volatility forecasts by adding a realized volatility estimator as an additional regressor into

the daily speci�cations.

Let the condtional mean be captured by the following ARMA(p, q) equation

rt = �0 +
Xp

i=1
�irt�i +

Xq

j=1
�jut�j + ut; utj
t�1 v iid(0; ht) (2.17)

where rt are daily returns, ut are whitened returns and ht is the conditional variance of

returns. The lag orders of the conditional mean equation can be appropriately selected so

as to remove all the return autocorrelation and volatility clustering. We use the Ljung-

Box and ARCH LM test for these purposes. The conditional variance ht is captured by

the following GARCH models.

The autoregressive condtional heteroskedasticity (ARCH) model is proposed by Engle

(1982), which assumes that the variance of the current innovation to be a function of the

actual size of past innovations. An ARCH model is formulated as

ht = w +
Xr

i=1
�iu

2
t�i (2.18)
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and the realized ARCH is de�ned as

ht = w +
Xr

i=1
�iu

2
t�i + 
v̂t (2.19)

where v̂t can be an ARFIMA forecasted realized estimator based on past intraday prices,

or an ARFIMA forecasted combination of realized estimators.

The GARCH model, proposed by Bollerslev (1986), is a generalization of Engle�s

(1982) ARCH speci�cation. A GARCH model is usually expressed as GARCH(p; q),

where p gives the number of autoregressive lags and q shows the quantity of moving average

component lags. The day t conditional variance is a weighted average of a constant mean,

information about volatility and squared errors on the past. A GARCH speci�cation is

formulated as

ht = w +
Xr

i=1
�iu

2
t�i +

Xs

j=1
�jht�j (2.20)

and the corresponding realized GARCH model is

ht = w +
Xr

i=1
�iu

2
t�i +

Xs

j=1
�jht�j + 
v̂t (2.21)

Glosten, Jagannathan and Runkle (1992) augment the GARCH model to accommo-

date possible asymmetries between the e¤ects of positive and negative shocks of the same

magnitude on the conditional variance. The proposed GJRGARCHmodel adds a dichoto-

mous dummy variable into the standard GARCH speci�cation. The �rst-order threshold

speci�cation can be expressed as

ht = w +
Xr

i=1
�iu

2
t�i +

Xs

j=1
�jht�j + �u

2
t�1It�1 (2.22)

The dummy variable I(�) stands for the indicator function, where It�1 = 1 if ut�1 < 0

and = 0 otherwise. The realized GJR-GARCH model is speci�ed as

ht = w +
Xr

i=1
�iu

2
t�i +

Xs

j=1
�jht�j + �u

2
t�1It�1 + 
v̂t (2.23)

PGARCH is an asymmetric Power GARCH model proposed by Ding, Granger and

Engle (1993) based on the standard deviation GARCH models of Taylor (1986) and
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Schwert (1989a). The PGARCH model is given by

h�t = w +
Xr

i=1
�i(jut�ij � � iut�i)� +

Xs

j=1
�jh

�
t�j (2.24)

where � is the power parameter that can be estimated rather than imposed, and � is

included to capture the e¤ects of asymmetric shocks. The realized PGARCH model is

speci�ed as

h�t = w +
Xr

i=1
�i(jut�ij � � iut�i)� +

Xs

j=1
�jh

�
t�j + 
v̂t (2.25)

2.4 Multivariate Volatility Models

This section outlines the di¤erent covariance matrix forecasts considered in the thesis. On

the one hand, following Foster and Nelson (1996) we deploy a parsimonious rolling window

(ROLL) approach, which can be regarded as a special case of a multivariate GARCH

speci�cation, as the benchmark model. On the other hand, we apply three covariance

modeling approaches within the MGARCH family: the scalar CCC model (Bollerslev,

1990), scalar DCCmodel (Engle, 2002) and the diagonal BEKKmodel (Engle and Kroner,

1995). Alongside the original version of these four covariance forecasting approaches based

on daily returns we implement a realized version that embeds intraday return information

in the covariance forecasts through the realized covariance matrix.

2.4.1 Rolling conditional covariance estimator

The rolling conditional covariance estimation approach advocated by Foster and Nelson

(1996) constructs daily estimates of the covariance matrix using the following backward-

looking rolling approach

Ĉt =

1X
i=1


t�i � rt�ir0t�i; (2.26)

where 
t�i is a symmetric (N � N) matrix of weights, � denotes element-by-element

multiplication, and rt�i is an N � 1 dimentional vector of demeaned daily returns. Al-

though the above equation admits a wide range of weighting schemes, following Fleming
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et al. (2001; 2003) and Martens et al. (2008) we let the weights decline in an expo-

nential fashion as the returns move further away into the past (i.e. as the magnitude

of i increases) according to 
t�i = � exp(��i)110 where 1 denotes an N � 1 vector of

ones. This approach is consistent with the results in Foster and Nelson (1996) showing

that exponentially decaying weights produce the smalles MSE asymptotically. Thus the

elements of Ĉt can be equivalently obtained as5

Ĉt = exp(��)Ĉt�1 + � exp(��)rt�1r0t�1: (2.27)

As in Fleming et al. (2003) the realized rolling conditional covariance estimator, called

RROLL hereafter, exploits the intraday returns by replacing the N �N matrix rt�1r0t�1

with the realized covariance matrix RCt�1: Thus equation (??) becomes

~Ct = exp(��)~Ct�1 + � exp(��)RCt�1: (2.28)

where RCt�1 can be the realized covariance, equation (2.12), or the realized kernel covari-

ance, equation (2.15). The decay factor (0 < � < 1) is optimally selected through a �ne

grid search in step of 0.001 so as to minimize the MSE over the in-sample period.6 For

this purpose, we initialize the rolling approach by estimating Ĉt over the �rst 100 days of

the in-sample period and the window is rolled forward up to the last available in-sample

day.

2.4.2 Multivariate GARCH forecasts

In contrast to univariate GARCH speci�cations, multivariate GARCH (MGARCH) mod-

els specify the risk of one asset as depending dynamically on its own past volatility as

5It can be shown that this nonparametric rolling window estimator is nested under the Engle and

Kroner (1995) multivariate GARCH model, that is, the EWMA covariance estimator can be seen as a

restriced M-GARCH model.
6On each in-sample day, from day 101 onwards, an overall squared error measure is obtained by

aggregating the squared di¤erences between each forecast (variance or covariance) and the �observed�

realized values. The average of the overall squared error measures over the in-sample window provides

the MSE.
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well as on the historical volatility of other assets. Multivariate extensions from univariate

volatility models enable modelling of the relationship between components of a portfolio

and allow for scenario and sensitivity analysis.

This section lists out three alternative models, diagonal BEKK, scalar CCC and DCC,

that can be applied to estimate the conditional variance of each asset and the conditional

correlation of each pair of assets. In the MGARCH class of models, the return process is

speci�ed as
rt = �t(�) + �t

�t = C
1=2
t (�)zt

(2.29)

where rt is an N � 1 vector denoting the day t asset returns, �t(�) are the conditional

mean returns which are a function of a parameter vector �, the innovation vector is

�t, and C
1=2
t is an N � N positive de�nite matrix such that Ct is an estimator of the

conditional variance matrix of rt. The standardized innovations are assumed to be iid

and uncorrelated across assets, that is, the mean of zt is the N � 1 zero vector, and its

covariance is given by the identity matrix of order N .

The most basic multivariate GARCH model is the VEC speci�cation, a direct gener-

alization of the univariate GARCH model, proposed by Bollerslev et al. (1988). In the

general VEC model, each component of the conditional covariance matrix Ct is a linear

function of the lagged squared errors, cross-products of errors and lagged values of the

components of Ct. There are two problems associated with the VEC. First, it does not

guarantee positive de�niteness of the conditional covariance matrix. Second, it needs to

estimate a large number of parameters, which becomes computationally di¢ cult when the

number of assets in the assessing portfolio exceeds three or four.

A number of MGARCH models have been proposed to address the problems. We

�rst introduce the diagonal Baba, Engle, Kraft and Kroner (BEKK) model proposed by

Engle and Kroner (1995). The model parameters are estimated by the maximum likeli-

hood procedure under the assumption of conditional multivariate normality. It reduces

the parameters to be estimated and guarantees the positive de�niteness of Ct, which is
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necessary for generating realistic covariance matrix forecasts. A BEKK(1,1) model para-

meterizes Ct as a function of its own lagged values and lagged errors of the mean equation

as follows

Ct = S
0
S+A

0
�t�1�

0
t�1A+B

0
Ct�1B (2.30)

where S is an upper N�N triangular parameter matrix with a positivity restriction on its

diagonal elements, and A and B are N � N positive diagonal parameter matrices. The

covariance matrices thus obtained are positive de�nite and stationary by default. The

realized BEKK model (RBEKK hereafter) is de�ned as

Ct = S
0
S+A

0
�t�1�

0
t�1A+B

0
Ct�1B+ �

0RĈt� (2.31)

By imposing a diagonal restriction on parameter matrices the number of parameters

in the diagonal BEKK model is 3N + N(N + 1)=2. However, the number of unknown

parameters is still high and as a consequence the model is rarely used when the number of

series is larger than 3 or 4. This problem can be alleviated by using estimators within the

Conditional Correlation (CC) family, described below, which can be easily computed in

a two-step approach by decomposing the conditional covariance into conditional variance

and conditional correlation matrices.

In the context of modelling conditional correlations rather than conditional covari-

ances, Bollerslev (1990) introduces a Constant Conditional Correlation (CCC) model to

reduce the number of unknown parameters in the BEKK formulation by assuming that

the conditional correlations, Q = (�ij); to be time constant. The CCC model estimates

the conditional variances and correlations using a simple two-step routine. In this rou-

tine, the conditional variance of the ith series, hii;t i = 1; :::; N; is calculated in the �rst

step by �tting univariate GARCH(1,1) models to each series. The second step involves

calcuating the covariances from the product of the corresponding conditional GARCH

standard deviations and conditional correlations as

Ct � DtRDt = (�ij
p
hii;thjj;t) (2.32)
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where Dt = diag(h
1
2
11;t:::h

1
2
NN;t) is a diagonal matrix constructed by the conditional vari-

ances of the N series; and Q = (�ij) is a symmetric positive de�nite matrix with o¤-

diagonal elements �lled by the long-run return correlations. Similar to the BEKK model,

the CCC speci�ation also guarantees the positive de�niteness of the conditional covariance

matrix. The realized CCC covariance matrix (RCCC hereafter) is calculated through an

intraday-augmented GARCH(1,1) approach

hii;t = !i + �i"
2
i;t�1 + �ihii;t�1 + 
iv̂i;t; i = 1; :::; N (2.33)

where v̂i;t is the ith diagonal entry of the realized covariance matrix RĈt:

As an extension of the CCC model, Engle (2002) introduced the Dynamic Conditional

Correlation (DCC) model, which permits the conditional correlation between portfolio

components to vary parsimoniously over time as Qt = (�ij;t). DCC is estimated from

a two-step approach in a way similar to the CCC model, the �rst step involves �tting

univariate GARCH(1,1) models to each series to obtain the standardized errors, zit =

"it=
p
hii;t; i = 1; :::; N . The second step calculates the time-varying correlation matrix

Qt = diag(p
� 1
2

11;t:::p
� 1
2

NN;t)Ptdiag(p
� 1
2

11;t:::p
� 1
2

NN;t), where Pt = (pij;t) is a N � N symmetric

positive de�nite matrix de�ned as

Pt = (1� �� �)�P+ �zt�1z
0

t�1 + �Pt�1: (2.34)

� and � are non-negative scalar parameters satisfying (� + �) < 1, and �P is a N � N

unconditional covariance matrix of the standardized errors zt. The DCC covariance matrix

is estimated as follows

Ct � DtQtDt (2.35)

with Dt = diag(h
1
2
1t:::h

1
2
Nt). The realized DCC covariance matrix (RDCC hereafter) is

formulated by adding a lagged realized covariance matrix as a additional explanatory

variable to the Pt regression

Pt = (1� �� �)�P+ �zt�1z
0

t�1 + �Pt�1 + 
RĈt (2.36)
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where RĈt is day t realized covariance matrix and 
 is a non-negative scalar. A drawback

of the DCC model (versus the BEKK approaches) is that all the conditional correlations

are assumed to follow the same dynamics.
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CHAPTER 3: Decision-Based Evaluation of Realized

Covariance Forecasts

3.1 Introduction

Over the last decade, the use of high frequency data in volatility forecasting has been ad-

vocated and many nonparametric realized volatility estimators have been proposed (see

Andersen and Bollerslev, 1998; Andersen et al., 2001; Barndor¤-Nielsen and Shephard,

2004). Consistent with Clark�s (1973) propositions, a number of empirical �ndings (see

Ebens, 1999; Areal and Taylor, 2002) provide support for intraday volatility estimators.

For example, as noted in Fleming et al. (2003), realized volatility tends to be lognor-

mally distributed and daily returns standardized by realized volatility follow a normal

distribution. Furthermore, realized volatility exhibits long-memory dynamics, volatility

clustering, and obeys precise scaling laws under temporal aggregation.

Although the literature supports the intraday volatility approach, it is mainly statis-

tical in nature, which brings a separate question of whether the gains in accuracy are

su¢ cient to have an economic value on decisions that depend on conditional volatility

forecasts. Indeed, applications such as risk management should bene�t since performance

in this context depends largely on the statistical accuracy of the forecasts. However,

whether using intraday information leads to better investment management decisions is

a question yet to be fully addressed. It is possible that daily volatility models provide

su¢ cient information of volatility characteristics for these purposes so that switching to

intraday volatility yields only negligible bene�ts. In contrast, perhaps intraday volatility

models could produce signi�cant economic value by assisting investment decisions with

an extra layer of information.

Despite growing popularity of intraday volatility models, few studies have explored

the value of intraday data for modelling and forecasting the entire conditional covariance

matrix and on the relative economic value of di¤erent multivariate covariance estimation

27



approaches (see Bauwens, Laurent and Rombouts, 2006, for a review on multivariate

ARCH-type models). Since the initial study of Fleming et al. (2001) on the economic

value of volatility timing, several papers have furthered the research by delving into issues

such as the use of intraday data (Fleming et al., 2003), the choice of optimal sampling

frequency for realized covariances and the best portfolio rebalancing frequency (Martens,

van Dijk, and de Pooter, 2008). However, the literature that makes use of intraday

price information is based only on nonparametric rolling window covariance estimators.

On the other hand, a number of studies have provided evidence in favour of Multivariate

GARCH (MGARCH, hereafter) estimators in the context of dynamic asset allocation (see

Engle and Colacito, 2006; Kalotychou, Staikouras and Zhao, 2009; Della Corte, Sarno and

Tsiakas, 2009).

This empirical study contributes to the literature in three directions. First, we assess

the statistical vis-à-vis economic value of augmenting daily historical covariance matrices

with additional information. By �economic value�we refer to the maximum return that

an investor with quadratic utility function would be willing to sacri�ce each day in order

to capture the performance gains associated with the augmented covariance estimators.

To this end, we deploy three distinct MGARCH models and augment them with realized

covariance measures (the resulting speci�cations are called RMGARCH hereafter). In

this respect, our study is a direct extension of Fuertes, Izzeldin and Kalotychou (2009)

by considering the entire covariance matrix, as opposed to variances only, and adopting

a portfolio mean-variance framework instead of a volatility-trading one. The incremen-

tal role of intraday information is assessed by comparing the one-day-ahead covariance

forecasts using, on the one hand, a battery of statistical forecast accuracy measures and,

on the other, a dynamic asset allocation framework that accounts for transaction costs

and short-selling restrictions. The main question of interest is whether the statistical

advantage (if any) translates into improved performance in a volatility-timing framework.

Second, we address the research question that whether more sophisticated intraday
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models, the realized MGARCH (RMGARCH hereafter) speci�cations, can outperform

the naive intraday based rolling conditional covariance (RROLL hereafter) model. On

the one hand, RMGARCH models may produce better results given that the model pa-

rameters are optimally estimated. On the other hand, if the dimension of the portfolio

increases, RMGARCH models become harder to implement due to usually large number

of parameters to be estimated. Given the numerical di¢ culties, the practical value of im-

plementing RMGARCH models would be limited if there is no signi�cant economic merit

in switching from RROLL to RMGARCH. Third, we focus on the issue of rebalancing

frequency by comparing several rebalancing strategies where the frequency of rebalancing

is either time-constant (i.e. daily, weekly and monthly) or time-varying. In the latter

case rebalancing is triggered by changes in asset returns or market conditions beyond a

threshold level.

To preview our key results, a general phenomenon across all forecasting approaches,

ROLL and MGARCH models, is that the covariance forecasts that exploit intraday in-

formation provide consistent superior performance to their daily counterparts which is

robust to transactions costs and the presence of short-selling constraints. Statistical ac-

curacy of covariance forecasts is not tantamount to forecasting ability for market timing

purposes. Under time-constant rebalancing frequency strategies the RROLL produces

the highest basis points hence the largest economic value. While under time-varying re-

balancing strategies the RCCC generates the best performance from the same economic

point of view. Regarding to the rebalancing frequency, we �nd that more economic bene�t

can be extracted from following an optimal time-varying rebalancing strategy rather than

rebalancing the portfolio on a daily basis.

The remainder of the chapter is organized as follows. Section 3.2 summarizes the

relevant literature. Section 3.3 presents the covariance forecasting methodology and the

evaluation framework. Section 3.4 introduces the dataset. Section 3.5 discusses empirical

results and Section 3.6 concludes.
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3.2 Literature Review

3.2.1 Market Timing Strategy

Market timing strategy often refers to the investment decision that investors strategically

make after observing and forecasting market conditions. For instance, investors can shift

their portfolio completely between risky and risk-free assets based on the one-step forecasts

of the excess return of the stocks (Pesaran and Timmermann, 1994), or reallocate asset

weights in their portfolio according to one-day ahead volatility predictions (Fleming et al.

2001, 2003). The market timing literature (see Grant, 1977; Breen, 1989; Chen and Knez,

1996) suggests that simple market timing strategies often perform signi�cantly better

than buy-and-hold policies thanks to utilization of forecasting power in asset returns or

volatilities.

The value of implementing market timing strategies is determined by the forecasting

capability. Extensive empirical studies show that although asset returns may not follow

random walk (see Fama and French, 1988; Poterba and Summers, 1988), they are ex-

tremely hard to model and predict. In contrast, the literature suggests that the volatility

of asset returns can be predicted in a degree of accuracy using standard volatility models

(see Andersen and Bollerslev, 1998). Inspired by the relative predictability of asset re-

turn variations, vast literature studied volatility timing, a market timing strategy based

on volatility forecasts, over the past decade.

Volatility timing strategies for a portfolio of assets often employ a mean-variance

optimization framework. The mean-variance approach proposed by Markowitz (1952)

is a cornerstone of modern portfolio theory. The approach is still the most widely used

risk-return analysis framework in both academic research and �nancial practice because it

provides an easy to implement tool for investors to optimize asset allocation by considering

the trade-o¤ between risk and return.

A static mean-variance analysis will optimize investors�portfolio allocation for a sin-
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gle upcoming period. This static framework has been extended to dynamic settings for

discrete-time and continuous-time model, respectively (see Korn and Trautmann, 1995;

Li and Ng, 2000; Leippold et al., 2004). For example, in daily dynamic mean-variance

optimization, an investor will be concerned with strategies in which the portfolio is re-

balanced to a speci�ed allocation at the end of each trading day. The goal here is to

minimize the portfolio volatility for a target return, or maximize the portfolio return for

a target level of volatility.

3.2.2 Economic Value of Volatility Timing

A vast literature exists on statistical accuracy of volatility forecasts in a portfolio context.

For a survey of such literature see (Poon and Granger, 2003, 2005), or for a more detailed

comparison of forecasts, see Hansen and Lunde (2005) or Becker and Clements(2008).

In contrast, few researches examine the economic value of volatility forecasting within

the context of portfolio optimization. West, Edison, and Cho (1993) employ a utility

based evaluation of the economic value of a variety of volatility forecasts. Graham and

Harvey (1996) and Copeland and Copeland (1999) assess trading rules based on volatility

changes.

Fleming et al. (2001) are among the �rst to explore the economic value of volatility

timing in a mean-variance context. Conditional mean-variance analysis is used to assess

the short-horizon gains of volatility timing. They optimize a portfolio that consists of

four asset classes (stocks, bonds, gold and cash) with the assumption that the investor�s

objective is to maximize expected return (or minimize volatility) while matching a target

volatility (or expected return). The �nding is that the performance of a dynamic trading

strategy, which estimates the optimal asset weights over time, is signi�cantly better than

the unconditionally e¢ cient static portfolios with the same target expected return and

volatility.1

1Using actual returns, Fleming et al. (2001) generate an arti�cial (bootstrap) sample of 4,000 obser-

vations from which the mean returns, volatilities, and covariances for each asset are estimated. For the
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Chou and Liu (2008) use a range-based volatility (volatility calculated from the high-

low range of daily price) model to study the economic value of volatility timing in the

framework of Fleming et al (2001) and �nd that the proposed volatility model outperforms

the return-based one. Della Corte, Sarno and Tsiakas (2009) investigate how dynamic

correlations in exchange rate returns a¤ect the optimal portfolio choice of risk-averse in-

vestors. The �nding is that economic value in correlation timing is robust to reasonable

transaction costs as well as model uncertainty and asymmetric correlations. Mancino

and Sanfelici (2008) �nd signi�cant economic value in Fourier covariance estimation ap-

proaches in the presence of strong microstructure e¤ects.

Fleming et al. (2003) build upon Fleming et al. (2001) and emphasize the economic

value of realized volatility relative to daily volatility estimates. The authors use intraday

returns on three actively traded futures contracts (S&P 500 index, Treasury bonds, and

gold) to demonstrate that a mean-variance e¢ cient investor would be willing to pay

50 to 200 basis points per annum to capture the observed gains from the optimized

portfolio based on intraday estimated covariances instead of choosing unconditionally

e¢ cient static portfolios. In addition, the realized volatility based estimator at the 5-

minute sampling frequency also outperforms the daily returns based estimator. The

result is robust to transaction costs, estimation risk regarding expected returns and the

performance measurement horizon. In contrast, Liu (2004) studies the performance of

the minimum variance portfolio and the minimum tracking error portfolio (tracking the

S&P 500 index) using 5-minute intraday returns for the 30 Dow Jones index components

and �nds that an investor will not switch from daily to intraday returns to estimate the

conditional covariance matrix if she rebalances her portfolio monthly and has more than

volatility-timing strategies, the inputs are the estimated mean returns and the daily covariance matrix

estimates to determine the daily optimal portfolios. For the static strategies, the inputs are the estimated

mean returns, volatilities, and covariances from the bootstrap sample to deter- mine the unconditional

optimal portfolio. For the volatility-timing strategies, daily rebalancing is carried out to track the time-

varying portfolio weights whereas for the static portfolios it is need to maintain a constant weight in each

asset.
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6 months of past data available.

More recently, De Pooter et al. (2008) focus on the issue of determining the optimal

sampling frequency as judged by the performance of S&P 500 equity portfolios where

performance is de�ned in terms of switching fees as in Fleming et al. (2001). The

�nding is that the optimal sampling frequency ranges between 30 and 65 minutes, much

lower than the often used 5-minutes. The optimal sampling frequency is lower as a

result of the trade-o¤ between more accurate covariance estimates and the bias caused

by market microstructure e¤ects. Their �ndings are robust to transaction costs and

rebalancing frequency. They show that using realized volatility computed at 30- to 65-

minute frequency and adopting a monthly rebalancing strategy yields the best portfolio

performance. Clements and Silvennoinen (2012) �nd support for the use of intraday data

for volatility timing and portfolio selection. They also �nd that the choice of loss function

is important to form optimal portfolios.

3.3 Methodology

We compare di¤erent covariance models in a mean-variance e¢ cient framework with a

view to evaluate their relative economic merit. More speci�cally, we confront the perfor-

mance of the daily- and intraday-based rolling conditional covariance estimators (Fleming

et al., 2001, 2003) to that of MGARCH models with lagged realized volatility (RV) and

realized covariance (RCV) as additional regressors. These MGARCH speci�cations, di-

agonal BEKK (Engle and Kroner, 1995), scalar CCC (Bollerslev, 1990) and DCC (Engle,

2002), extend the univariate GARCH study of Fuertes et al. (2009) to a multivariate

context and an economic (as opposed to purely statistical) loss function. In order to

incorporate intraday information in the MGARCH models we augment them by 5-minute

sampled realized variances and covariances.

We evaluate the incremental gains of intraday information in covariance forecasting

by assessing its impact on the performance of daily dynamic asset allocation strategies.
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The evaluation builds on the framework developed in Fleming et al. (2001). Accordingly,

we consider an investor who adopts a mean-variance optimization method to invest in

a portfolio of stocks. The investor�s objective is to minimize volatility while matching a

target expected return. The investor treats expected return as constant as it is reasonable

to assume that the expected returns do not change on a daily basis. The investor therefore

adopts a volatility-timing strategy with daily rebalancing according to the changes in the

covariance matrix estimates.

3.3.1 Volatility Timing Strategies

Consider an investor with a quadratic utility function who wants to minimize portfolio

volatility while matching a speci�c expected return over a certain time horizon. Treating

the expected return as constant, we can construct the optimal weights with one-step-ahead

estimates of the conditional covariance matrix.

Let rt � (r1t; r2t; :::; rNt)
0 denote the day t return vector on N risky assets de�ned

as the logarithmic open-to-close price. De�ne �t�1 to be the information set available at

the end of day t � 1, then �t � E[rt j �t�1] and �t � E[(rt � �t)(rt � �t)0 j �t�1] are,

respectively, the N � 1 conditional expected return vector and the N � N conditional

covariance matrix of rt. At the open of day t, the investor formulates the target return

quadratic optimization problem

min
wt

w
0
t�twt

s:t: w0
t�t + (1�w

0
t1)rf = �p

(3.1)

with closed-form solution

wt =
(�

p
� rf )��1

t (�t � rf1)
(�t � rf1)

0��1t (�t � rf1)
(3.2)

where 1 is a N � 1 unit vector, wt � (w1t; w2t; :::; wNt)
0 is an N � 1 vector of optimal

weights on the risky assets, �
p
is the target portfolio return and rf denotes the risk-free

rate of return. We set the target return between 8% and 16% per annum, similar to the
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range assumed in Fleming (2001), and there are no limitations on short-selling. The case

where short-selling is constrained is considered as a robustness check.

Expression (3.2) shows that the optimal weights change through time as the expected

returns, �t, and covariance matrix, �t, vary. We estimate �t using one-day-ahead fore-

casts (denoted Ct) in a rolling-window approach which yields a time-series of daily co-

variance estimates � each one day-ahead-forecast leads to the determination of a daily

portfolio weight wt: The covariance estimators applied in the study are those described

in Chapter 2.2. In line with previous studies we treat the N � 1 vector �t as constant

with each element equal to the average return of the corresponding index over the out-of-

sample period. This implies that the portfolio weights only depend on the daily covariance

forecasts and in this sense we focus on pure volatility-timing strategies.

By evaluating the performance of volatility timing strategies, we can directly mea-

sure the economic gain of incorporating additional information (intraday returns) when

predicting the daily covariance matrix. Fleming et al. (2003) investigate the merits of

high-frequency intraday data when forming mean-variance e¢ cient stock portfolios with

daily rebalancing. For this purpose, they compare rolling covariance forecasts based on

daily and on realized (intraday) data. We extend the analysis of the merits of additional

(intraday return) information to three parametric (MGARCH) covariance forecasting ap-

proaches, BEKK, CCC and DCC outlined in Chapter 2. Alongside the dynamic portfo-

lios, we also consider a passive Buy-and-Hold (BH) strategy which assumes a constant

covariance matrix estimated unconditionally in-sample.

3.3.2 Economic Evaluation Framework

Following Fleming et al. (2003), we assess the performance of a given estimator of the con-

ditional covariance matrix, Ct, using a utility-based evaluation. Consider the quadratic

utility function of a representative investor who strategically allocates an initial wealth
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W0 into the risk-free asset and N risky assets. The daily utility of the investment is

U(rp;t) =W0[(1 + rp;t)�



2(1 + 
)
(1 + rp;t)

2] (3.3)

where rp;t � (1 � w0
t1)rf + w

0
trt is the ex post portfolio return, and 
 is the investor�s

relative risk aversion.

Thus a utility-based comparison of two conditional variance estimators, Ca;t and Cb;t,

can be expressed as XT

t=1
U(rpa;t) =

XT

t=1
U(rpb;t �4) (3.4)

where rpa;t and rpb;t denote the portfolio returns associated with the two estimators over

the investment horizon T , and 4 is the maximum annualized fee in basis points (bp)

that the representative investor would be willing to pay each day in order to switch from

the daily Ca;t to the realized Cb;t. In line with the assumptions made in Fleming et al.

(2003), we consider two levels of risk aversion 
 = 1 and 
 = 10.

3.3.3 Transaction Costs and Rebalancing Frequency

With active rebalancing, it is important to bring transaction costs into the picture. The

relative performance of the various trading strategies will depend considerably on their

trade intensity and associated transaction costs. We account for transaction costs as

follows. After rebalancing at the start of day t using the optimal weights from (3.2) based

on the covariance forecasts for day t, the ith asset has a new weight wi;t in the portfolio,

i = 1; :::; N . The portfolio return on day t is rp;t =
PN

i wi;tri;t. On the instant just

before rebalancing at the start of day t (denoted t�) the actual weight of the ith stock

in the portfolio is wi;t� = wi;t�1
1+ri;t�1
1+rp;t�1

. The change in weight at the start of day t (after

rebalancing) is given by wi;t�wi;t�. Following Martens et al. (2008), we assume that the

transaction cost is a �xed percentage c on each traded dollar. With an initial wealth W0,

the total $ value of the transaction costs on day t is

Ct = W0 � c
NX
i=1

jwi;t � wi;t�j (3.5)
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and the net portfolio return is rt;p � ct where ct � Ct=W0 denotes the total transaction

costs in percentage.2 We adopt c = 20% annualized percentage points, which amounts to

a daily transaction cost of 8bp.

Daily rebalancing incurs large turnover and the impact of transaction costs on the

performance of the market timing strategies is likely to be substantial so we also consider

weekly and monthly rebalancing approaches where the portfolio is rebalanced on the �rst

day of each week and a monthly rebalancing approach where the portfolio is rebalanced

on the �rst day of each month. In addition to �xed rebalancing strategies we introduce a

return-driven rebalancing strategy which serves two purposes. First, it introduces time-

variation in the frequency of rebalancing throughout the trading period. Second, it reduces

the daily turnover and thus transaction costs. Intuitively, it is not necessary to rebalance

the portfolio on day t if the optimal N � 1 weight vector wt does not di¤er much from

wt�1. If the actual weight change from day t � 1 end to day t end in the portfolio is

equal or higher than a cut-o¤ �, i.e.
PN
i=1 jwi;t�wi;t� j

N
� �; we rebalance the portfolio on

day t using the optimal wt based on the day t+1 covariance forecasts. We adopt several

values for the weight change cut-o¤, � = f10%; 15%; 20%g. In addition, we also introduce

a volume-driven rebalancing strategy that rebalances on day t if transaction volume of

the market (approximated by volume of the S&P500 stock index) exceeds a threshold of

the in-sample period of estimation on day t� 1. We apply two values for the rebalancing

threshold, S = f25th; 50thg percentiles, which means we rebalance on day t if the market

volume exceeds S of the in-sample volume on day t� 1.

3.3.4 Covariance Forecasting

This empirical work applies four di¤erent covariance matrix forecasts, a rolling (ROLL)

approach, equation (2.27), and three models within the MGARCH family: the scalar CCC

2The quantity
PN

i=1

��wi;t � wi;t� �� is the % of the portfolio rebalanced at the end of day t and henc,

W0 �
PN

i=1

��wi;t � wi;t� �� is the $ value of the portfolio rebalanced. By multiplying the latter by c

(transaction costs per $ traded) we get the total $ transaction costs for day t.
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model, equation (2.32), scalar DCC model, equation (2.35), and the diagonal BEKK

model, equation (2.30). Alongside the original version of these four covariance matrix

models based on daily returns we implement a realized version that incorporates intra-

day information in the covariance forecasts through the realized covariance matrix, RC,

equation (2.12). See Chapter 2 for a detailed disscussion of the realized covariance matrix

models.

The sample is divided into an estimation period (T0 = T � T1) of 1759 days, and a

holdout window (T1) of 500 days. Each of the forecasting approaches described below

is deployed over an initial window, denoted [1, T0] and a 1-day-ahead covariance matrix

is forecasted. The window is rolled forward, [2, T0 + 1]; to obtain a second covariance

matrix forecast and so forth over 500 iterations. This parameter updating approach o¤ers

a �shield�against structural (breaks) in the covariance process during the out-of-sample

period.

3.3.5 Statistical Evaluation Methods

Several statistical loss functions have been deployed in the literature to gauge the out-

of-sample forecast performance of volatility models. For instance, in a recent volatility

forecast competition using high-frequency realized measures, Fuertes et al. (2009) adopt

the following measures:

Mean absolute error MAE = 1
T1

PT1
t=1

��~�2t � ht;m��
Mean squared error MSE = 1

T1

PT1
t=1(~�

2
t � ht;m)2

(3.6)

where ~�2t denotes the day t realized variance and ht;m denotes the variance forecast from

the mth model. MAE and MSE belong to the family of symmetric loss functions, in the

sense that they equally penalize over- and under-predictions. The most widely adopted,

MSE, proposed by Bollerslev et al. (1994) is based on a quadratic loss function and so

it is particularly good where large forecast errors are disproportionately more worrisome

than smaller errors. MAE is less sensitive to severe mispredictions than MSE.

38



In the present study we extend these volatility forecast accuracy measures in order to

compute �overall�versions for the entire covariance matrix Ct: Accordingly, we aggregate

the corresponding losses associated with the di¤erent variance and covariance forecasts

on each day of the forecasting period. For instance, the MSE of the covariance matrix

forecasts from model m is calculated as MSE = 1
T1

PT1
t=1

�PN
i;j=1(i�j)

(~�2t;ij�hmt;ij)2

N(N+1)=2

�
where

T1 = 500 days and N is the number of portfolio constituents.

3.4 The Dataset

A portfolio of three popular �nancial indices (NASDAQ 100, Russell 2000 equity indexes

and the CRB commodity index) is studied in this chapter. The three indices are chosen

for the purpose of diversi�cation. The NASDAQ 100 is a large-cap index which incorpo-

rates large (non-�nancial) companies both inside and outside the US. Empirical literature

suggests that large cap stocks exhibit lower volatility in returns while small cap compa-

nies yield higher pro�t. The Russell 2000 is therefore selected to diversify our portfolio

by including small cap securities. The CRB index diversi�es the portfolio further as com-

modity prices tend to have low correlation with equity prices. The main characteristics

of the three indices are outlined in Appendix 3.1.

The data consists of tick-by-tick price quotes spanning the period from 4 January

1999 to 31 December 2007, a total of T = 2259 trading days.3 Although NASDAQ and

NYSE have a pre-market session from 7:00am to 9:30am and a post-market session (in

these session the securities are traded between banks and dealers, without stock exchange

control) from 4:00pm to 8:00pm, we focus on the normal trading session from 9:30am to

4:00pm (390 minutes) as usually major transactions are done during the normal trading

times. We convert the daily prices to returns rt by the conventional log-di¤erencing

method:

rt = 100� log(pt=pt�1); t = 1; ::::; T days, (3.7)

3The data are obtained from the Disk Trading database. See http://www.is99.com/disktrading/.

39



where Pt�1 and Pt denote, respectively, the opening and closing price on trading day

t:4 Our proxy for the risk free rate rf is 4.5% per annum which is equal to the average

3-month Treasury Bill rate over the in-sample period.

In order to construct intraday returns, the trading day [9:30am-4:00pm] is divided

into M intervals of 5-minute length. The 5-minute sampling interval has been shown to

be small enough to accurately capture price dynamics and large enough to dampen down

the adverse e¤ects of market microstructure frictions.5 The price at the start of the jth

intraday interval is computed as the average of the closing and opening prices of intervals

j � 1 and j; respectively. The jth intraday return on day t for the ith asset is therefore

computed as

rt;j =

�
log(pct;j) + log(p

o
t;j+1)

2
�
log(pct;j�1) + log(p

o
t;j)

2

�
; j = 2; :::;M � 1 (3.8)

where pct;j (p
o
t;j) is the closing (opening) price of the jth intraday interval: The extreme-

interval returns are rt;1 =
�
log(pct;1)+log(p

o
t;2)

2
� log(pot;1)

�
and rt;M =

�
log(pct;M)�

log(pct;M�1)+log(p
o
t;M )

2

�
:

The price pct;M is the closing price on day t; simply denoted pt in (3.7), de�ned as the last

price observed before 4:00pm. Likewise, pot;1 is the observed opening price on day t; simply

denoted pt�1 in (3.7), de�ned as the �rst price recorded after 9:00am. The intraday closing

price pct;j is similarly de�ned as the last seen tick before the jth 5-min mark; likewise for

pot;j with reference to the 5-min mark j-1. The aggregation of allM intraday returns gives

the daily open-to-close return rt =
PM

j=1 rt;j = log(
pct;M
pot;1
) = log(

pct
pot
). Typically; we have

M = 78 intraday returns with the exception of days with delayed openings and/or early

4In this study the daily return is de�ned as open-to-close (instead of close-to-close) because we seek to

avoid the inclusion of the overnight return. A practical problem with the inclusion of the overnight return

is that they weight it should deserve in realised volatility (covariance) measures is somewhat arbitrary as

Hansen and Lunde (2006) and Engle et al. (2006) emphasize. It is well known that the overnight return

is more volatile than the intraday 5-min returns, which could introduce extra �noise� into the realised

covariance estimators. See also Ahoniemi et al. (2012).
5Andersen et al. (2001), Barndo¤-Nielsen and Shephard (2002), and Taylor and Xu (1997), inter alios,

advocate this grid also because daily returns standardized by 5-min realised volatility are approximately

normal. Forecasting studies that use 1-, 5-, 15- and 30-min data report mixed results but overall they

also tend to favour the 5-min sampling (Martens and van Dijk, 2006; Pong et al., 2004; Ghysels et al.,

2006).
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closures of the exchanges. The inter-daily (close-to-close) return can be decomposed as

the sum of the overnight return and the daily return, i.e. log( pct
pct�1

) = log(
pot
pct�1

) + log(
pct
pot
).

The present study focuses on comparing the e¤ectiveness of di¤erent models to forecast

the covariance of daily (as opposed to intraday) returns. Choosing the daily return, which

excludes the overnight return, as the modelling object of interest, allows us to sidestep

the practical problem of having to determine the weight that the overnight return should

deserve in realised covariance measures, a somewhat arbitrary choice (Hansen and Lunde,

2006).

Figure 3.1, Panels A to D, plots the daily returns, realized volatilities, dynamic rolling

30-day window correlations and realized covariances. The �gures provide prima facie

evidence that, although the returns of the indices are essentially iid, the variances, cor-

relations and covariances exhibit signi�cant clustering. From 2000 to 2002, there was a

period of high volatility driven by the September 11th terrorist attacks and the burst of

the dot-com bubble. In particular, NASDAQ 100 show extreme price movements during

the period as it consists of many IT and internet companies. During the period between

2003 and 2007 all three indices exhibit low volatilities. Correlations among portfolio com-

ponents show clear time-variation. The daily correlation between NASDAQ 100 and

Russell 2000 is relatively high averaging 0.79 over the sample period whereas CRB and

NASDAQ 100 (or Russell 2000) are not highly correlated.

Table 3.1 reports summary statistics of the return distribution alongside the Jarque-

Bera normality test and the Ljung-Box autocorrelation test for daily returns (rt), squared

daily returns (r2t ) and the cross-products of daily returns (e.g. r
Nasdaq
t � rCRBt ). The

table corroborates the main stylized facts of the daily returns distribution, namely, large

deviations from normality particularly in the form of fat tails, and strong memory in the

second moment of the returns distribution.

Over the sample period CRB index yields the highest return (6.8% annually) and

lowest variance, backed by the long-lasting commodity boom. In contrast, NASDAQ 100
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return stays relatively �at and has a higher volatility. Normality of all the returns are

rejected, which is expected since non-normality is a common characteristic of �nancial

asset returns. Panel B of Table 3.1 presents the historical correlation matrix. NASDAQ

100 and Russell 2000 have a correlation of 0.79 percent, not a surprise as both are US stock

indices. The inclusion of CRB index in the portfolio is justi�ed by the low correlation

between itself and the NASDAQ 100 (0.014) or Russell 2000 (0.072) indices.

3.5 Empirical Results

3.5.1 Statistical Evaluation of Covariance Forecasts

In this section we evaluate the statistical accuracy of the competing covariance forecasts.

In particular, we rank them by the mean loss over the 500-day out-of-sample period using

the statistical loss functions, namely the mean square error (MSE) and the mean absolute

error (MAE), outlined in Section 3.3. Table 3.2 sets out the results. The covariance

forecasts are assessed by two common loss functions: the Mean Square Error (MSE) and

the Mean Absolute Error (MAE). 500 daily forecasts of the three indices are generated

and the average MSE and MAE of the variance and covariance terms are taken. The

in-sample modelling period is 4th January 1999 to 4th January 2006 and the 500-day

out-of-sample forecasting period is 5th January 2006 to 31st December 2007.

The results of statistical evaluation in Table 3.2 suggest that three realized models,

namely RROLL, RCCC and RDCC, produce similarly superior performances compared

with other competing volatility models. Pairwise comparison between each daily estimator

and its intraday counterpart reveals similar results: all the realized models yield smaller

forecast errors than their daily counterparts, showing that realized models can provide

statistically more accurate volatility forecasts by utilizing intraday information. However,

in practice, the ranking of covariance forecasting models is useful to investors only if

it leads to tangible economic gains. The economic value of the volatility forecasts is

evaluated in the section below.
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3.5.2 Estimation Results of the Conditional Covariance Models

The left columns in Table 3.3 and 3.4 report the resulting daily and intraday based covari-

ance models�parameter estimates, together with robust standard errors in parentheses

and p-values in square brackets. In general, the coe¢ cients of the covariance models are

signi�cant at 5% signi�cance levels. However, a few insigni�cant parameters are detected.

For instance, the correlation coe¢ cients between CRB and Russell 2000 (�12), and be-

tween CRB and NASDAQ 100 (�13), are not always signi�cant in the CCC, DCC, RCCC

and RDCC estimations. This is because the actual correlations between the commodity

index and stock indices were not particularly strong, making the correlation coe¢ cient

statistically indi¤erent from zero. For the RMGARCH models, the estimation results

con�rm the signi�cance of all the coe¢ cients of the realized matrix at 5% signi�cance

level. The results suggest that the realized variance and covariances have explanatory

power in the corresponding RMGARCH equations.

3.5.3 Economic Evaluation of Covariance Forecasts

In this section the optimal-weight selection problem is solved iteratively using as inputs

the daily covariance matrix forecasts Ĉt over the 500-day out-of-sample period. Thus we

compare the competing forecasting approaches by assessing the performance of volatility-

timing strategies and the incremental value of switching from one forecasting method

to another. Throughout the analysis, we assume a known constant conditional mean

vector, �, equals to the long-run or unconditional mean of each index over the in-sample

period. We start by assuming daily rebalancing with zero transaction costs (c = 0)

which are subsequently increased to an annualized percentage points of 20% (c = 20%).

For each strategy we report the portfolio turnover (TO), the average short selling and

the percentage of rebalancing days over the 500-day trading window. TO is de�ned as

the proportion of the portfolio value that is rebalanced in total over the out-of-sample

period which, following the notation of Section 3.3, in annualized terms is given by TO =
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P500
t=1(
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i=1jwi;t�wi;t�j)
500

� 252.

The optimal weights over the 500-day out-of-sample period obtained through the daily-

returns-based ROLL, BEKK, DCC and CCC forecasts and realized-covariance-based fore-

casts are plotted in Figure 3.2, Panel A and B, respectively. The graphs suggest smaller

weight variations for the daily models and, on this basis, one would expect that the asset

allocation strategies based on the realized covariances are more trade-intensive and, in

turn, more heavily penalized by transactions costs. This issue will be examined below.

Table 3.5 shows the weights that minimize conditional volatility while setting the

expected return equal to 12%. The sample period is 5th January 2006 through 31st De-

cember 2007. The portfolio weights are constructed based on the one-step-ahead forecasts

of the conditional covariance matrix. As expected, the sign and magnitude of each of the

weights depends on the forecasted expected returns and the conditional volatility and cor-

relation estimates. For instance, the weight in NASDAQ 100 is generally negative because

the average return on the stock index was negative in the forecast period. The swings in

the weights are signi�cant in all the models as a high level of risk exposure is needed to

match the target return of 12%. However, the swings are more pronounced in realized co-

variance models. By incorporating intraday information the realized models appear to be

more sensitive compared with their daily based counterparts. The table also presents the

implicit weights in cash. A negative cash weight implies that the corresponding position

in the underlying asset is levered.

The performance of a target return portfolio with a 12% annual target return is pre-

sented in Table 3.6 and Figure 3.3.A6 (for a detailed numeric display of the model per-

formance see Appendix 3.2). The results show that realized forecasting approaches which

exploit intraday information perform consistently better than their daily-return-based

counterparts. Figure 3.3.B reports the annualized basis points fee (�) that an investor

6The static portfolio falls far behind all the active rebalancing strategies in terms of the return and

volatility generated. The performance of the static portfolio is not displayed in the �gures hereafter for

the purpose of showing the comparison among the competing covariance forecasts in a larger scale.
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with quadratic utility and a relative risk aversion level (
) would pay to switch from the

covariance models based exclusively on daily data to the realized-augmented models. In

a zero transaction costs setting, an investor with low relative risk aversion (
 = 1) would

be willing to pay at least 44.7 basis points per year to switch from the daily ROLL co-

variance matrix estimate to the RROLL one. An investor with high relative risk aversion

(
 = 10) would be willing to pay even more (142.7bp) to switch from the daily to the

realized framework.

What do we learn from these results? First, the active rebalancing strategies are better

than the passive buy & hold (BH) one in terms of Sharpe ratio and economic value. An

BH strategy produces 12% annualized return and yields a high standard deviation of

33.2%, delivering inferior performance compared with all the competing active strategies.

Second, adding realized covariance does improve the performance (in terms of economic

gains) of the covariance forecasts. The economic value produced by switching from daily

models to corresponding realized speci�cations are all positive.

Third, there is no economic value in switching from the realized rolling covariance

model to more sophisticated MGARCH models when risk aversion is relatively high. For

example, an investor with high relative risk aversion (
 = 10) would be willing to pay

60.34bp to switch from the RBEKK to RROLL. Forth, among the parametric forecasting

approaches, the RCCC model gives the best overall result with the highest return and

lowest volatility. These �ndings are robust to the presence of transaction costs. In the

context of an annualized 20% daily transaction cost as shown in the right panel of Table

3.6 and Figure 3.3.C, an investor with high relative risk aversion (
 = 10) would be willing

to pay at least 141.51 basis points per year to switch from the daily ROLL covariance

matrix to the RROLL counterpart.

By comparing the DCC and RDCC model we �nd disagreement between the Sharpe

ratio and switching fee. The Sharpe ratio of DCC is higher than RDCC while there

is still economic value in switching from DCC to RDCC. This is because the quadratic
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utility function penalizes risk more than Sharpe ratio when standard deviation of return

is relatively high. In this case although the return of DCC model is higher but a risk

averse investor will still choose RDCC for risk reduction.

3.5.4 The Impact of Rebalancing Frequency

The analysis thus far is based on daily rebalancing. The performance of the models

with a weekly rebalancing strategy is shown in Table 3.7 and Figure 3.4. According

to this strategy we rebalance the portfolio every Monday according to the calculated

optimal portfolio weights and then keep the weights unchanged until next Monday. The

proportion of rebalancing days has reduced signi�cantly from 100% to 20% for the dynamic

models and turnover has lowered to around 16% from 22%. Net of transaction costs, the

RROLL now occupies the top forecasting approach generating a Sharpe ratio at 0.513.

Interestingly the results of economic value are very similar to the daily rebalancing case,

where the realized measures dominate the table according to the positive switching fees.

The RROLL are now the best under both the low and high risk aversion assumptions.

Table 3.8 and Figure 3.5 present the model performances under target return strategy

with monthly rebalancing. We rebalance the portfolio at the beginning of each month

according to the optimal portfolio weights and then keep the weights unchanged until

next month. The pattern between economic value of the realized versus daily models

remains the same as the realized models once again outperform their daily counterparts.

The proportion of rebalancing days has reduced further from 20% to 5% for the dynamic

models and turnover has lowered to around 13%. Now the di¤erence lies in the inter-

comparison between realized models. From daily rebalancing to monthly rebalancing we

see a gradual improvement of RROLL model. The model is outperformed by the RDCC

and RCCC under a low risk aversion assumption under daily rebalancing strategy. With

weekly rebalancing the RROLL provides the best economic value among all the realized

models under both risk aversion assumptions. Now with monthly rebalancing the RROLL
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not only dominates the economic value but also provides the highest Sharpe ratio.

Table 3.11 and Figure 3.6 show the model performances under a return-driven strategy

with a rebalance threshold of 10%7, which means that we rebalance the portfolio on day

t only if the overall percentage change in returns exceeds 10% on day t � 1. The results

pattern is similar to the daily rebalancing case. All the realized measures perform better

than their counterparts according to the switching fee. Generally the RCCC model has

the highest basis points and the RROLL ranks the second. Again the results are similar

with or without transaction costs. As the rebalancing threshold increases from 5% to 20%8

we see a gradual reduction in the proportion of rebalancing days. Cases with alternative

rebalancing thresholds at 5% (Table 3.9), 8% (Table 3.10) and 20% (Table 3.12) show

similar results.

The results of a volume driven strategy with 25th percentile threshold9 are presented in

Table 3.13 and Figure 3.7. We rebalance on day t if transaction volume on day t�1 exceeds

the 25th percentile of the in-sample period. S&P 500 volume is used as a representative

of the market volume. The model performances are consistent with those adopting other

strategies. Realized models outperform their daily counterparts again and the RCCC

and RROLL are the top performers under both the low and high risk aversion scenarios

according to the switching fee criteria. Table 3.14 presents the results of a volume driven

strategy with 50th percentile threshold and shows similar results.

From the results shown in Table 3.6 to 3.14 and Figure 3.3 to 3.7 we can conclude

that under time-constant (i.e. daily, weekly and monthly) rebalancing frequency strategy

the RROLL model generally produce the highest basis points hence the largest economic

7The 10% case is presented as a representative for the return-driven strategy. Model performances

under target return strategies with the rebalance threshold of 5%, 8%, 10% and 15% are evaluated and

shown in Appendix 3.2.
8Covariance ranking under a return-driven strategy with a 20% rebalance threshold is presented in

Appendix 3.3.1
9The 25th percentile threshold case is presented as a representative for the volumn-driven strategy.

Model performances under target return strategy with a rebalance threshold of 50th percentile is also

evaluated and shown in Appendix 3.2. In addition, covariance ranking of the 50th percentile case is

presented in Appendix 3.3.2
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value; while under time-varying ones (i.e. return-driven and volume-driven) the RCCC

shows the best performance from the same economic point of view.

Table 3.18 provides a comparison of the economic value of the di¤erent rebalancing

strategies after transaction costs deduction. The annualized basis points fee an investor

would pay to switch from the daily rebalancing strategy to less frequent ones are pre-

sented. As the realized models outperform their daily counterparts throughout the em-

pirical study, we compare the realized models only. For all the models, generally a less

frequent rebalancing strategy performs better as in 60 out of 72 cases lower frequency

rebalancing strategies outperform their daily counterparts. For example, the results for

RROLL and RDCC show clearly that almost all the listed frequencies outperform their

daily counterparts. In addition, the results for RBEKK and RCCC suggest that the

time-varying rebalancing strategies are economically better than the daily rebalancing

one.

The return-driven strategy with a 20% threshold works well for the RROLL and

RBEKK while a 5% threshold gives relatively good results for the RCCC and RDCC

model. If there is an overall best rebalancing strategy it is the return-driven with 10%

to 20% threshold. Under this strategy we have positive basis points in all cases across

the four realized models under two di¤erent risk aversion levels. This result indicates

that more economic bene�t can be extracted from following an appropriate time-varying

rebalancing strategy rather than rebalancing the portfolio on a daily basis.

3.5.5 Robustness Checks

Back to the daily rebalancing we do robustness checks by setting a range of target returns

from 8% (Table 3.16) to 16% (Table 3.15). In line with Fleming et al. (2001) we �nd that

the pattern of model performances remains largely the same across the di¤erent target

returns. With higher target return the standard deviation is increased as more short

selling transactions are needed to meet the target return. As a result of high risk and
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greater di¤erence in the standard deviations produced by competing modes, the switching

fees in a high target return case are generally larger than those in a low target return one.

As an example, the switching fees an investor is willing to switch from ROLL to RROLL

are 76.4 and 198.5 under low and high risk aversion assumptions respectively for a target

return of 16%, while the fees are signi�cantly lower, 20.2 and 87.5 correspondingly, for

a target return of 8%. The high switching fees generated in the 16% target return case

show clearly that with a high target return the realized models are better suited than

their daily counterparts economically.

We carry the realized and daily performance comparison further by imposing a no

short-selling constraint. Table 3.17 shows the performance of the models. Although the

target return of 12% does not change, we can see that the returns are reduced signi�cantly

as a result of the constraint. However, the pattern that realized models perform better

than their daily counterparts remains unchanged. All the realized models yield positive

switching fees, signalling relatively high economic value.

Strong performances of the realized models in the cases of di¤erent target return rates

and no short-selling constraint further con�rm the economic value of intraday covari-

ance estimators. In short, realized models perform better than their daily counterparts

and a risk averse investor would be willing to pay to switch from the daily models to

corresponding realized ones.

3.6 Conclusion

This chapter presents an empirical study to compare di¤erent daily and intraday covari-

ance models in a mean-variance e¢ cient framework with a view to evaluate their relative

economic value. By "economic value" we refer to the maximum return that an investor

with quadratic utility function would be willing to sacri�ce each day in order to capture

the performance gains associated with the augmented covariance estimators. The eco-

nomic loss function chosen to compare their performance is the quadratic utility function
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implicit in mean-variance asset allocation. A dynamic optimal-weight portfolio strategy is

deployed, which is based on one-day-ahead covariance matrix forecasts from a model-free

ROLL approach and three competing MGARCH formulations (BEKK, CCC, DCC). In

order to exploit intraday information, we extend each of these estimators with realized

covariances into RMGARCH models (RBEKK, RCCC, RDCC).

The study contributes to the literature in three directions. First, we evaluate the

statistical vis-à-vis economic value of augmenting daily historical covariance models with

additional information. The main question of interest is whether the statistical advantage

(if any) translates into improved performance in a volatility-timing framework. Second,

we address the research question that whether more sophisticated intraday models, the

RMGARCH models, can outperform the naive intraday based rolling approach. Although

a number of studies have provided evidence in favour of MGARCH speci�cations, the lit-

erature that makes use of intraday information for volatility timing is based only on naive

rolling window covariance estimators. This chapter seeks to complement the literature in

this respect. Third, we focus on the issue of rebalancing frequency by comparing several

rebalancing strategies where the frequency of rebalancing is either time-�xed or time-

varying. In the latter case rebalancing is triggered by changes in asset returns beyond a

threshold level and by market conditions.

A general result across all forecasting approaches, rolling estimators and MGARCH

models, is that the covariance forecasts that exploit intraday information provide con-

sistent superior performance to their daily counterparts which is robust to transactions

costs and the presence of short-selling constraints. In addition, all the active rebalancing

strategies perform better than the passive buy & hold one in terms of Sharpe ratio and

economic value, a result that is in line with Fleming et al. (2001, 2003). We also �nd

that statistical accuracy of covariance matrix forecasts is not tantamount to forecasting

ability for market timing purposes.

Under time-constant rebalancing frequency strategies (i.e. daily, weekly and monthly
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ones) we �nd strong economic evidence in support of the RROLL estimator based on the

realized covariance matrix. While under time-varying rebalancing strategies (i.e. return-

driven and volume-driven) the RCCC stands out in the same economic point of view. The

highest Sharpe ratio is generated by the RCCC forecasts with a volume-driven rebalancing

strategy with a 50th percentile threshold.

Regarding to the rebalancing frequency, we �nd that more economic value can be

generated by following an optimal �exible rebalancing strategy rather than rebalancing

the portfolio on a daily basis. The return-driven approach with 10-20% threshold is

generally the best rebalancing strategy as it consistently yields positive basis points (the

annualized fee for switching from daily rebalancing strategy to the return-driven one) for

all cases across the four realized models under both high and low risk aversion levels.
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TABLE 3.1 
Summary Statistics of Daily Index Returns  

 

A. Individual Statistics    

 NASDAQ 100 Russell 2000 CRB 

Mean 0.004  0.026  0.027 

Median  0.094  0.095  0.026 

Maximum  16.71  5.79  3.74 

Minimum -11.64 -7.54 -3.46 

StDev  2.18  1.30  0.76 

Skewness  0.22 -0.14 -0.11 

Kurtosis  7.22  4.12  3.85 

Jarque-Bera  1696***  126***  72*** 

LB Statistic    

   (daily return) 20.66** 12.99** 2.45 

  
  (Squared return) 549.54*** 483.60*** 63.916*** 

  
      

  
     14.03**  

  
         

      
  467.96**  

  
         

     5.27  

    

B. Correlation Matrix 
 

   

 NASDAQ 100 Russell 2000 CRB 

NASDAQ 1  0.794  0.013 

Russell 2000 0.794  1  0.072 

CRB 0.014  0.072  1 
 

Notes: The table provides summary statistics for the returns of the NASDAQ 100, Russell 2000 and CRB indices. The 

sample period is 4th January 1999 to 31st December 2000. LB denotes the Ljung-Box test statistic for the null hypothesis 

of no autocorrelation in daily returns up to 5 days. *, ** and *** denote significance at the 10%, 5% and 1% level 

respectively. LB(squared returns) gives an indication of volatility persistence.    
      

  
    is the LB test applied to the 

cross product of daily returns and gives an indication of autocorrelation in covariances. 
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TABLE 3.2 
Statistical Evaluation of Covariance Estimators 

 

A.  Mean Square Error 

 
C11 C22 C33 C12 C13 C23 Overall 

Static 1.907 0.127 22.726 0.003 6.584 0.000 5.225 

ROLL 1.194 0.352 0.790 0.059 1.293 0.031 0.620 

RROLL 1.076 0.118 0.775 0.000 1.310 0.000 0.547 

BEKK 1.151 0.271 0.809 0.015 1.714 0.002 0.660 

RBEKK 1.168 0.293 0.783 0.016 1.381 0.006 0.608 

DCC 1.159 0.291 0.802 0.015 1.286 0.004 0.593 

RDCC 1.087 0.266 0.779 0.001 1.131 0.000 0.544 

CCC 1.159 0.291 0.802 0.004 1.278 0.000 0.589 

RCCC 1.091 0.249 0.772 0.003 1.153 0.000 0.544 

        

B.  Mean Absolute Error 

Static 1.128 0.234 4.677 0.053 2.566 0.021 1.446 

ROLL 0.686 0.507 0.544 0.174 1.005 0.143 0.510 

RROLL 0.674 0.451 0.549 0.011 1.134 0.001 0.470 

BEKK 0.742 0.456 0.605 0.099 1.168 0.035 0.518 

RBEKK 0.718 0.472 0.566 0.094 1.082 0.063 0.499 

DCC 0.733 0.475 0.554 0.098 1.047 0.052 0.493 

RDCC 0.716 0.454 0.551 0.079 1.031 0.014 0.474 

CCC 0.733 0.475 0.554 0.059 1.044 0.006 0.479 

RCCC 0.719 0.452 0.546 0.064 1.053 0.006 0.473 
 

Notes: The table provides statistic evaluation of the covariance forecasting models. C11, C22 and C33 represent the 

forecasted variances of Russell 2000, CRB and NASDAQ 100 respectively. C12, C13 and C23 represent the forecasted 

covariances of the three indices. The top panel of the table reports the estimated loss associated to each covariance 

forecasting model using Mean Square Error. The bottom panel shows the estimated loss associated to each model using 

Mean Absolute Error. The models with a prefix of "R-" represent realized models that incorporated intra-day information; 

other models are based on daily data. The in-sample modeling period is 4th January 1999 to 4th January 2006 and the 

500-day out-of-sample forecasting period is 5th January 2006 to 31st December 2007.   
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TABLE 3.3 
Estimation Results of Daily Based Covariance Estimators 

 

     BEKK       CCC         DCC     

   0.156 (0.021) [0.000]   0.035 (0.011) [0.002]   0.035 (0.011) [0.002] 

   0.246 (0.019) [0.000]   0.071 (0.011) [0.000]   0.071 (0.011) [0.000] 

   0.961 (0.006) [0.000]   0.905 (0.015) [0.000]   0.905 (0.015) [0.000] 

   0.032 (0.017) [0.052]   0.004 (0.003) [0.159]   0.004 (0.003) [0.159] 

   0.202 (0.017) [0.000]   0.040 (0.011) [0.000]   0.040 (0.011) [0.000] 

   0.977 (0.004) [0.000]   0.959 (0.011) [0.000]   0.959 (0.011) [0.000] 

   0.021 (0.015) [0.163]   0.002 (0.002) [0.382]   0.002 (0.002) [0.382] 

   0.093 (0.012) [0.000]   0.023 (0.014) [0.099]   0.023 (0.014) [0.099] 

   0.995 (0.001) [0.000]   0.973 (0.018) [0.000]   0.973 (0.018) [0.000] 

      - -   0.057 (0.022) [0.011]   0.055 (0.029) [0.058] 

      - -   -0.012 (0.021) [0.567]   -0.014 (0.027) [0.611] 

      - -   0.774 (0.008) [0.000]   0.779 (0.009) [0.000] 

    - -     - -   0.016 (0.005) [0.002] 

    - -     - -   0.931 (0.024) [0.000] 

Log    -8962.222     -8892.272     -8882.360 

    1758       1758       1758     
 

Notes: The table provides estimation results of the conventional daily data based covariance forecasting models.  

  ,    and    represent the diagonal elements of the intercept matrix in the covariance equation for CRB, Russell 2000 

and NASDAQ 100 respectively.   ,    and    represent the coefficients of the previous squared errors and cross-product 

of errors.   ,    and    represent the coefficients of the previous conditional variances and covariances. 

   ,     and     represent the estimated correlation coefficients. The left column reports the resulting parameter 

estimates for BEKK, CCC and DCC, together with robust standard errors in parentheses and p-values in square brackets. 

The modeling period is 4th January 1999 to 4th January 2006.  
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TABLE 3.4 
Estimation Results of Intraday based Covariance Estimators 

 

      RBEKK                RCCC     RDCC     

   0.129 (0.032) [0.000]   0.013 (0.011) [0.238]   0.013 (0.011) [0.238] 

   0.003 (0.001) [0.015]   0.001 (0.031) [0.965]   0.001 (0.031) [0.965] 

   0.423 (0.076) [0.000]   0.157 (0.117) [0.180]   0.157 (0.117) [0.180] 

   -0.928 (0.028) [0.000]   0.879 (0.066) [0.000]   0.879 (0.066) [0.000] 

   -0.001 (0.000) [0.001]   0.037 (0.016) [0.021]   0.037 (0.016) [0.021] 

   0.238 (0.017) [0.000]   0.056 (0.010) [0.000]   0.056 (0.010) [0.000] 

   -0.228 (0.042) [0.000]   0.116 (0.056) [0.038]   0.116 (0.056) [0.038] 

   0.946 (0.011) [0.000]   0.863 (0.038) [0.000]   0.863 (0.038) [0.000] 

   0.000 (0.000) [0.003]   0.000 (0.000) [0.057]   0.000 (0.000) [0.057] 

   0.211 (0.016) [0.000]   0.000 (0.000) [0.000]   0.000 (0.000) [0.000] 

   -0.183 (0.037) [0.000]   0.161 (0.055) [0.003]   0.161 (0.055) [0.003] 

   0.956 (0.010) [0.000]   0.872 (0.042) [0.000]   0.872 (0.042) [0.000] 

      - -   0.058 (0.029) [0.045]   0.052 (0.071) [0.465] 

      - -   -0.014 (0.047) [0.772]   -0.023 (0.029) [0.424] 

      - -   0.770 (0.023) [0.000]   0.774 (0.027) [0.000] 

    - -     - -   0.012 (0.005) [0.027] 

    - -     - -   0.915 (0.032) [0.000] 

Log      -8852.815   -8844.324            -8856.448 

        1758       1758 
 

              1758     
 

Notes: The table provides estimation results of the intraday data based covariance forecasting models.  

  ,    and    represent the diagonal elements of the intercept matrix in the covariance equation for Russell 2000, CRB 

and NASDAQ 100 respectively.   ,    and    represent the coefficients of the previous squared errors and cross-product 

of errors.   ,    and    represent the coefficients of the previous conditional variances and covariances.       and    

represent the coefficients of the realized covariance matrix. The left column reports the resulting parameter estimates for 

RBEKK, RCCC and RDCC, together with robust standard errors in parentheses and p-values in square brackets. The 

modeling period is 4th January 1999 to 4th January 2006.  
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TABLE 3.5 
Summary Statistics of Portfolio Weights 

 

  RM BEKK CCC DCC 

 

RUS CRB NAS CASH RUS CRB NAS CASH RUS CRB NAS CASH RUS CRB NAS CASH 

Mean 116% 7% -136% 113% 119% 7% -134% 107% 113% 11% -135% 112% 113% 9% -136% 113% 

S.E. 0.01 0.01 0 0.01 0 0.01 0 0.01 0.004 0.003 0.002 0.007 0.004 0.005 0.003 0.009 

Median 1.18 0.03 -1.36 1.14 1.2 0.05 -1.34 1.09 1.138 0.088 -1.359 1.137 1.141 0.062 -1.368 1.161 

S.D. 11% 21% 8% 24% 7% 11% 5% 16% 8% 6% 5% 16% 8% 12% 7% 20% 

Var. 0.01 0.05 0.01 0.06 0.01 0.01 0 0.03 0.007 0.004 0.003 0.025 0.007 0.014 0.005 0.039 

Kurt. -0.1 0.3 -0.09 -0.09 -0.04 1.78 1.56 1.55 -0.02 0.74 0.62 0.62 0.02 0.71 0.37 0.36 

Skew. -0.38 0.65 0.32 -0.32 -0.31 1.19 1.02 -1.01 -0.409 1.16 0.647 -0.642 -0.432 1.141 0.53 -0.526 

Range 0.57 1.07 0.44 1.29 0.42 0.64 0.34 0.99 0.471 0.298 0.334 0.975 0.478 0.562 0.384 1.119 

Min. 88% -40% -155% 40% 96% -11% -145% 42% 83% 1% -151% 59% 84% -9% -152% 47% 

Max. 144% 67% -111% 169% 138% 53% -111% 142% 130% 31% -117% 157% 131% 48% -113% 159% 

  

 

RRM RBEKK RCCC RDCC 

 

RUS CRB NAS CASH RUS CRB NAS CASH RUS CRB NAS CASH RUS CRB NAS CASH 

Mean 66% 107% -109% 35% 117% 11% -133% 105% 102% 16% -138% 120% 102% 17% -138% 120% 

S.E. 0.009 0.015 0.005 0.015 0.004 0.007 0.003 0.009 0.01 0.01 0 0.01 0.01 0.01 0 0.01 

Median 0.655 0.977 -1.109 0.411 1.179 0.061 -1.345 1.096 1.02 0.13 -1.38 1.2 1.01 0.13 -1.38 1.2 

S.D. 20% 35% 11% 33% 8% 16% 7% 21% 15% 10% 8% 22% 14% 20% 10% 29% 

Var. 0.041 0.12 0.013 0.11 0.007 0.026 0.005 0.043 0.02 0.01 0.01 0.05 0.02 0.04 0.01 0.08 

Kurt. -0.41 -0.36 0.86 0.86 0.31 0.47 0.55 0.55 5.76 6.16 6.81 6.83 12.88 161.01 45.49 44.93 

Skew. 0.457 0.653 0.91 -0.907 -0.694 0.943 0.638 -0.636 -0.48 1.47 -0.84 0.84 -1.31 9.18 2.75 -2.72 

Range 0.843 1.6 0.6 1.746 0.486 0.849 0.411 1.199 1.49 1.01 0.8 2.34 1.61 4.64 1.91 5.56 

Min. 31% 35% -133% -69% 89% -19% -149% 32% 0% -6% -197% 60% -14% -119% -210% -226% 

Max. 116% 195% -73% 106% 138% 66% -108% 152% 149% 95% -117% 294% 147% 345% -19% 330% 

Obs. 500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 

 

Notes: The table provides the weights that minimize conditional volatility while setting the expected return equal to 12%. 

RUS, CRB, NAS and CASH represent the corresponding statistics of Russell 2000, CRB, NASDAQ 100 and Cash respectively. 

The sample period is 5th January 2006 through 31st December 2007. The top panel of the table reports the portfolio 

weights constructed based on the daily covariance models. The bottom panel the portfolio weights estimated based on 

the intraday based covariance models. 
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TABLE 3.6 
Covariance Ranking · 12% Target Return, Daily Rebalancing 

 
 No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12 33.2333 0.3611 
 

  12 33.2333 0.3611 
 

  0% 0% 
ROLL 15.1189 29.066 0.5202 

 
  13.2392 29.066 0.4555 

 
  23% 100% 

RROLL 14.4917 27.4159 0.5286 44.6540 142.7182 12.9919 27.4159 0.4739 44.7950 141.5113 19% 100% 
BEKK 13.8927 29.1632 0.4764 

 
  12.043 29.1632 0.413 

 
  22% 100% 

RBEKK 15.0299 28.8983 0.5201 9.2465 53.4762 13.3158 28.8983 0.4608 9.3450 52.1004 20% 100% 
  

   
-38.0405  -60.3435  

   
-38.1545  -60.3898  

  DCC 15.0146 28.5317 0.5262 
 

  13.4498 28.5317 0.4714 
 

  19% 100% 
RDCC 13.9065 27.2926 0.5095 31.3707 120.1193 12.8065 27.2926 0.4692 30.2753 118.1861 33% 100% 
  

   
0.4344  2.0924  

   
-0.5144  1.1994  

  CCC 14.1591 28.4474 0.4977 
 

  12.7195 28.4474 0.4471 
 

  17% 100% 
RCCC 15.0388 27.1163 0.5546 37.7453 126.6908 13.02 27.1163 0.4802 36.4750 124.6168 26% 100% 
        7.5642  10.5038        6.9455  9.8460      

 

Notes: The table summarizes the model performances under a target return strategy. Each day a new set of portfolio weights is obtained by solving a portfolio optimization problem in which the expected 

return for each index equals its in-sample mean return and the conditional covariance matrix is estimated out of sample using different covariance forecasting models. Each day, we calculate the optimal 

portfolio weights that minimize conditional volatility subject to a target return of 12%. Except the Static model, which keeps its first day optimal portfolio weights with no rebalancing throughout the 

forecasting period, all other 8 models adopts a active volatility timing strategy that rebalances portfolio weights daily. The left panel reports the model performance in terms of return, standard deviation, 

Sharpe ratio and the switching fee. The switching fee is an annualized basis points fee (∆γ) an investor with quadratic utility and relative risk aversion of γ would pay to switch from a daily returns 

covariance matrix forecast to its corresponding realized one. We use γ=1 and γ=10 to represent investors with low and high risk aversion respectively. The middle panel report the results with transaction 

costs which is 20% annualized percentage points. The right panel provides additional information on annualized turnover and the percentage of days of rebalancing. Switching fees in italics represent basis 

points that an investor would be willing to pay to switch from RROLL to another realized model. 
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TABLE 3.7 
 Covariance Ranking · 12% Target Return, Weekly Rebalancing 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 15.2625  29.1419  0.5237     14.4588  29.1419  0.4961     17% 20% 

RROLL 14.0602  27.3908  0.5133  46.5650  146.9651  13.3484  27.3908  0.4873  46.5043  146.2733  17% 20% 

BEKK 13.7178  29.2384  0.4692     13.1204  29.2384  0.4487     14% 20% 

RBEKK 15.0258  29.0417  0.5174  7.3374  44.9778  14.4417  29.0417  0.4973  7.3500  44.5829  14% 20% 

     -42.3650  -68.3104     -42.1279  -68.0294    

DCC 15.1390  28.8131  0.5254     14.5801  28.8131  0.5060     14% 20% 

RDCC 13.1396  27.9567  0.4700  22.5315  98.9529  12.5504  27.9567  0.4489  22.4786  98.4857  16% 20% 

     -14.7208  -21.2475     -14.4872  -20.9663    

CCC 13.9835  28.7647  0.4861     13.4695  28.7647  0.4683     13% 20% 

RCCC 13.6263  27.9610  0.4873  22.6659  96.2026  13.0602  27.9610  0.4671  22.5549  95.6583  16% 20% 

        -14.3378  -20.9182        -14.0839  -20.6179      
 

Notes: The table presents the model performances under target return strategy with weekly rebalancing. We rebalance the portfolio at the beginning of the week according to the calculated optimal 

portfolio weights and then keep the weights unchanged until the following week. See note to table 3.6. 
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TABLE 3.8 
 Covariance Ranking · 12% Target Return, Monthly Rebalancing 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 16.5640  29.4036  0.5633     16.1388  29.4036  0.5489     14% 5% 

RROLL 14.9355  27.3532  0.5460  53.9863  161.0680  14.5352  27.3532  0.5314  53.8421  160.5401  14% 5% 

BEKK 14.5776  29.4333  0.4953     14.2710  29.4333  0.4849     12% 5% 

RBEKK 15.7424  29.2631  0.5380  6.4437  41.9942  15.4482  29.2631  0.5279  6.5075  42.0373  12% 5% 

     -50.0696  -82.4761     -49.8471  -82.1900    

DCC 14.0448  28.9411  0.4853     13.7653  28.9411  0.4756     12% 5% 

RDCC 11.0019  27.9656  0.3934  24.6554  104.4340  10.7316  27.9656  0.3837  24.6606  104.2465  13% 5% 

     -18.9475  -26.0240     -18.6886  -25.7069    

CCC 13.0638  28.7185  0.4549     12.8076  28.7185  0.4460     12% 5% 

RCCC 11.1110  27.9107  0.3981  21.0177  93.8545  10.8440  27.9107  0.3885  21.0064  93.6700  13% 5% 

        -17.4538  -23.8175        -17.2012  -23.5117      
 

Notes: The table presents the model performances under target return strategy with weekly rebalancing. We rebalance the portfolio at the beginning of the week according to the calculated optimal 

portfolio weights and then keep the weights unchanged until the following month. See note to table 3.6. 
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TABLE 3.9 
 Covariance Ranking · 12% Target Return, Return-Driven Rebalancing with a 5% Threshold 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 15.3192  29.0817  0.5268     13.9553  29.0817  0.4799     21% 47% 

RROLL 14.5130  27.4205  0.5293  44.6921  143.2771  13.4810  27.4205  0.4916  45.0209  142.7352  18% 44% 

BEKK 13.9058  29.1630  0.4768     12.6936  29.1630  0.4353     20% 39% 

RBEKK 15.2270  28.9128  0.5267  8.9326  51.7525  14.1480  28.9128  0.4893  9.0892  51.1493  18% 36% 

     -38.1689  -60.7485     -38.3005  -60.9525    

DCC 14.9808  28.5569  0.5246     13.9990  28.5569  0.4902     17% 42% 

RDCC 13.5902  27.2713 0.4983  31.9309  121.3004  12.2000  27.2713  0.4474  30.7707  119.5057  31% 62% 

     0.4618  2.0719     -0.5858  1.0561    

CCC 14.2664  28.4471  0.5015     13.5223  28.4471  0.4754     15% 30% 

RCCC 15.1742  27.1368  0.5592  36.8064  125.9039  13.5814  27.1368  0.5005  35.7978  124.2471  24% 58% 

        7.3267  10.1284        6.6289  9.3761      
 

Notes: The table presents the model performances under target return strategy with return-driven rebalancing. We rebalance the portfolio on day t if the overall percentage change in returns exceeds 5% 

on day t-1. See note to table 3.6. 
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TABLE 3.10 
 Covariance Ranking · 12% Target Return, Return-Driven Rebalancing with a 8% Threshold 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 15.3535  29.1752  0.5263     14.2925  29.1752  0.4899     19% 28% 

RROLL 15.4561  27.4402  0.5633  47.5632  147.7752  14.6987  27.4402  0.5357  47.8656  147.4046  17% 22% 

BEKK 15.5626  29.0538  0.5356     14.6035  29.0538  0.5026     18% 23% 

RBEKK 15.2851  28.9389  0.5282  3.2218  32.0355  14.4281  28.9389  0.4986  3.2060  30.8111  17% 22% 

     -39.3597  -62.3367     -39.4890  -62.4880    

DCC 15.2465  28.5037  0.5349     14.5918  28.5037  0.5119     15% 21% 

RDCC 13.9097 27.2084 0.5112  29.3146  116.3517  12.9301  27.2084 0.4752  28.0352  114.4533  29% 32% 

     -0.9289  0.4789     -2.1020  -0.7646    

CCC 14.3530  28.3899  0.5056     13.8606  28.3899  0.4882     13% 15% 

RCCC 15.7393  27.1547  0.5796  35.3619  122.5257  14.5709  27.1547  0.5366  34.3405  120.8126  22% 29% 

        6.9895  9.8226        6.2551  8.9563      
 

Notes: The table presents the model performances under target return strategy with return-driven rebalancing. We rebalance the portfolio on day t if the overall percentage change in returns exceeds 8% 

on day t-1. See note to table 3.6. 
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TABLE 3.11 
 Covariance Ranking · 12% Target Return, Return-Driven Rebalancing with a 10% Threshold 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 14.5817  29.2299  0.4989     13.6459  29.2299  0.4668     19% 21% 

RROLL 15.2501  27.4928  0.5547  48.1607  147.9089  14.6106  27.4928  0.5314  48.4175  147.5448  16% 16% 

BEKK 15.2672  29.1051  0.5246     14.4368  29.1051  0.4960     17% 17% 

RBEKK 15.3939  28.8589  0.5334  7.5779  50.8744  14.6441  28.8589  0.5074  7.6463  50.3172  16% 16% 

     -35.5131  -56.1571     -35.5766  -56.1909    

DCC 15.8186  28.5689  0.5537     15.3009  28.5689  0.5356     14% 13% 

RDCC 14.0384  27.2981  0.5143  29.1973  116.7622  13.0192  27.2981  0.4769  28.1168  115.2520  27% 21% 

     -0.6750  0.6374     -1.6453  -0.3710    

CCC 14.4845  28.3793  0.5104     14.1041  28.3793  0.4970     12% 10% 

RCCC 15.6794  27.1386  0.5778  35.2997  122.6868  14.7028  27.1386  0.5418  34.4420  121.3014  20% 20% 

        8.7572  12.2941        8.1061  11.5171      
 

Notes: The table presents the model performances under target return strategy with return-driven rebalancing. We rebalance the portfolio on day t if the overall percentage change in returns exceeds 10% 

on day t-1. See note to table 3.6. 
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TABLE 3.12 
Covariance Ranking · 12% Target Return, Return-Driven Rebalancing with a 20% Threshold 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 17.8490  29.8267  0.5984     17.3344  29.8267  0.5812     16% 6% 

RROLL 14.1863  27.6536  0.5130  55.8844  166.4286  13.9163  27.6536  0.5032  56.2350  166.5287  13% 3% 

BEKK 14.0804  29.0210  0.4852     13.6045  29.0210  0.4688     14% 6% 

RBEKK 16.0170  28.6744  0.5586  12.3354  62.7870  15.5733  28.6744  0.5431  12.4832  62.8859  14% 6% 

     -24.7350  -39.8172     -24.8771  -39.9271    

DCC 14.4575  28.2368  0.5120     14.2546  28.2368  0.5048     11% 2% 

RDCC 13.2213  27.1791  0.4865  22.8442  104.6326  12.6011  27.1791  0.4636  22.1241  103.8163  22% 5% 

     5.0873  9.9452     4.4821  9.3706    

CCC 13.4398  28.3476  0.4741     13.2587  28.3476  0.4677     11% 2% 

RCCC 13.2227  27.1168  0.4876  33.4566  119.6990  12.7329  27.1168  0.4696  32.9216  118.8033  16% 5% 

        11.6951  17.1886        11.1879  16.5626      
 

Notes: The table presents the model performances under target return strategy with return-driven rebalancing. We rebalance the portfolio on day t if the overall percentage change in returns exceeds 20% 

on day t-1. See note to table 3.6. 

 
 
 
 
 
 
 
 
 
 
 



64 
 

TABLE 3.13 
Covariance Ranking · 12% Target Return, Volume-Driven Rebalancing with 25th Percentile 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 15.0360  29.0563  0.5175     13.3267  29.0563  0.4587     22% 83% 

RROLL 14.0392  27.4378  0.5117  53.0881  191.0566  12.6452  27.4378  0.4609  51.7310  189.7150  19% 83% 

BEKK 13.8028  29.1537  0.4735     12.1262  29.1537  0.4159     21% 83% 

RBEKK 14.6918  28.9000  0.5084  15.6504  131.5145  13.1874  28.9000  0.4563  14.2798  130.2482  19% 83% 

     -37.4377  -59.5422     -37.4512  -59.4668    

DCC 15.1735  28.5398  0.5317     13.7412  28.5398  0.4815     18% 83% 

RDCC 13.5810  27.2801  0.4978  53.9404  193.8074  12.0039  27.2801  0.4400  51.6422  191.5727  32% 83% 

     0.8522  2.7507     -0.0888  1.8577    

CCC 14.3191  28.4536  0.5032     12.9982  28.4536  0.4568     17% 83% 

RCCC 14.3965  27.1199  0.5308  60.8938  201.9942  12.5085  27.1199  0.4612  58.9364  200.0089  25% 83% 

        7.8057  10.9376        7.2055  10.2939     
 

Notes: The table presents the model performances under target return strategy with volume-driven rebalancing. We rebalance on the day t if transaction volume on day t-1 exceeds 25th percentile of the in-

sample period. S&P500 volume is used as it is more representative of the market the three indices we have. See note to table 3.6. 
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TABLE 3.14 
A.3.2.9 Covariance Ranking · 12% Target Return, Volume-Driven Rebalancing with 50th Percentile 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 12.0000  33.2333  0.3611     12.0000  33.2333  0.3611     0% 0% 

ROLL 15.7627  29.0942  0.5418     14.5335  29.0942  0.4995     20% 50% 

RROLL 15.5948  27.4475  0.5682  45.0951  143.7685  14.5952  27.4475  0.5318  45.1651  142.9180  17% 50% 

BEKK 13.9221  29.2002  0.4768     12.8602  29.2002  0.4404     17% 50% 

RBEKK 15.1528  28.9465  0.5235  8.9492  52.0978  14.1509  28.9465  0.4889  9.0550  51.6095  16% 50% 

     -39.7064  -62.8045     -39.6796  -62.8193    

DCC 15.0907  28.6268  0.5272     14.1163  28.6268  0.4931     16% 50% 

RDCC 14.1175  27.5968  0.5116  24.1622  103.9231  13.2919  27.5968  0.4816  23.3476  102.5630  29% 50% 

     -8.7694  -11.1850     -9.4845  -11.8272    

CCC 13.8901  28.5527  0.4865     13.0111  28.5527  0.4557     15% 50% 

RCCC 18.5757  27.2433  0.6818  40.7682  129.8060  17.2538  27.2433  0.6333  40.0852  128.3085  22% 50% 

        7.8939  9.9955        7.4766  9.5432      
 

Notes: The table presents the model performances under target return strategy with volume-driven rebalancing. We rebalance on the day t if transaction volume on day t-1 exceeds the average of the in-

sample period. S&P500 volume is used as it is more representative of the market the three indices we have. See note to table 3.6. 
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TABLE 3.15 
Covariance Ranking · 16% Target Return, Daily Rebalancing 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 16.0000  44.3529  0.3607     16.0000  44.3529  0.3607     0% 0% 

ROLL 20.1625  38.7912  0.5198     17.4441  38.7912  0.4497     33% 100% 

RROLL 19.3254  36.5890  0.5282  76.3752  198.5478  17.1264  36.5890  0.4681  76.3444  196.6214  28% 100% 

BEKK 18.5260  38.9210  0.4760     15.8218  38.9210  0.4065     32% 100% 

RBEKK 20.0436  38.5674  0.5197  15.9136  78.3554  17.5353  38.5674  0.4547  16.0755  76.4688  30% 100% 

     -67.7171  -181.0207     0.4088  0.4088    

DCC 20.0232  38.0781  0.5258     17.7240  38.0781  0.4655     28% 100% 

RDCC 18.8931  36.4012 0.5190  55.6749  168.5080  16.0911  36.4012 0.4420  54.0616  165.2739  46% 100% 

     1.9290  6.2500     -6.0360  -6.0360    

CCC 18.8816  37.9656  0.4973     16.7467  37.9656  0.4411     26% 100% 

RCCC 20.0556  36.1892  0.5542  63.9377  177.1802  17.1796  36.1892  0.4747  62.5894  174.1339  37% 100% 

        12.4945  20.0021        0.0532  0.0532     
 

Notes: The table summarizes the model performances under a target return strategy with a target return of 16%. See note to table 3.6. 
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TABLE 3.16 
Covariance Ranking · 8% Target Return, Daily Rebalancing 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 8.0000  22.1138  0.3618     8.0000  22.1138  0.3618     0% 0% 

ROLL 10.0753  19.3408  0.5209     8.9115  19.3408  0.4608     14% 100% 

RROLL 9.6580  18.2428  0.5294  20.1640  87.4659  8.7410  18.2428  0.4791  20.3461  86.7929  12% 100% 

BEKK 9.2595  19.4055  0.4772     8.1294  19.4055  0.4189     13% 100% 

RBEKK 10.0161  19.2292  0.5209  4.2793  29.2767  8.9678  19.2292  0.4664  4.3784  28.8298  12% 100% 

     -6.8226  -18.9338     -10.5200  -12.0668    

DCC 10.0059  18.9852  0.5270     9.0558  18.9852  0.4770     11% 100% 

RDCC 8.9506  18.1251  0.4938  13.2724  72.6508  7.8055  18.1251  0.4306  12.5416  71.2259  21% 100% 

     -1.5225  -0.2911     -1.8263  -1.6597    

CCC 9.4367  18.9291  0.4985     8.5720  18.9291  0.4528     10% 100% 

RCCC 10.0221  18.0434  0.5554  17.0403  77.0286  8.7573  18.0434  0.4853  16.5070  75.6957  16% 100% 

        1.7701  3.9944        2.0796  2.3663     
 

Notes: The table summarizes the model performances under a target return strategy with a target return of 8%. See note to table 3.6. 
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TABLE 3.17 
Covariance Ranking · 12% Target Return, No Short-Selling, Daily Rebalancing 

 
  No transaction cost With transaction cost     

    Switching fee    Switching fee   

  Return StDev Sharpe γ= 1 γ= 10 Return StDev Sharpe γ= 1 γ= 10 TO Rebalan. Days 

Static 3.1643  13.2763  0.2383     3.1643  13.2763  0.2383     0% 0% 

ROLL 4.0217  16.5611  0.2428     3.1670  16.5611  0.1912     7% 60% 

RROLL 5.1866  12.3005  0.4217  57.3084  157.3148  4.5881  12.3005  0.3730  57.4036  163.8000  5% 100% 

BEKK 3.8975  16.6563  0.2340     2.8721  16.6563  0.1724     9% 76% 

RBEKK 3.9783  16.4475  0.2419  3.5589  25.5960  3.0732  16.4475  0.1868  3.6641  25.1581  8% 79% 

     -23.4921  -610.9757     -33.4460  -37.1827    

DCC 3.9372  16.5079  0.2385     3.1769  16.5079  0.1924     6% 87% 

RDCC 2.8990  15.3465  0.1889  17.0900  76.5661  1.5079  15.3465  0.0983  16.0272  74.3115  14% 100% 

     -17.9516  -36.2506     -25.6131  -28.1863    

CCC 3.9934  16.1704  0.2470     3.3358  16.1704  0.2063     4% 100% 

RCCC 5.4436  15.0536  0.3616  18.6005  76.4251  4.2556  15.0536  0.2827  18.0696  75.4985  11% 98% 

        -13.7212  -29.9051        -20.2181  -22.4738     
 

Notes: The table summarizes the model performances under a target return strategy with a no short-selling constraint. See note to table 
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TABLE 3.18 
Evaluation of Alternative Rebalancing Strategies Relative to Daily Rebalancing 

 

 
RROLL RBEKK RDCC RCCC 

  γ= 1 γ= 10 γ= 1 γ= 10 γ= 1 γ= 10 γ= 1 γ= 10 

Weekly 9.724 12.761 0.875 -1.037 1.667 2.520 -4.215 -4.631 

Monthly 17.062 27.028 0.033 -3.582 3.849 8.281 -5.764 -6.619 

RD 5% 8.241 9.223 2.614 5.530 9.959 23.540 9.028 23.958 

RD 8% 11.085 13.893 -3.269 -14.809 7.224 18.488 7.571 20.524 

RD 10% 11.637 14.033 1.171 4.698 7.305 19.287 7.672 21.013 

RD 15% 11.636 15.284 1.652 2.074 5.162 17.042 10.294 24.218 

RD 20% 19.455 33.017 6.008 17.266 1.313 7.851 6.152 18.515 

VOL 25th 6.979 12.336 0.534 3.785 2.281 3.242 4.779 11.978 

VOL 50th 8.385 9.406 2.580 5.990 2.536 6.598 13.315 28.020 

VOL 75th 15.620 19.700 -1.931 -7.811 7.084 -8.840 3.859 -3.937 
 

Notes: The table presents the annualized basis points fee (∆γ) an investor with quadratic utility and relative risk aversion 

of γ would pay to switch from the daily rebalancing strategy to weekly, monthly, or time-varying rebalancing approaches. 

We use γ=1 (blue bar) and γ=10 (orange bar) to represent investors with low and high risk aversion respectively. The 

transaction cost is 20% annualized percentage points. RD stands for a return-driven volatility timing strategy. The 

percentage following each strategy name indicates the rebalancing threshold assigned to the corresponding strategy. For 

instance, a RD 5% approach rebalances the portfolio weights on day   if the absolute return of the portfolio on day     

exceeds 5%. VOL stands for a volume-driven strategy. The 25th, 50th and 75th indicate rebalancing conditions based on 

historical trading volumes explained in section 3.3. 
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FIGURE 3.1 
Time Series Properties of Stock Indices 

 

 

A. Daily Return Plot 

 
B. Realized Volatility 

 
C. Rolling Correlation 

 
D. Realized Covariances 

 

Notes: Panel A shows the daily return of NASDAQ 100, Russell 2000 and CRB indices over the whole sample period. Panel B and C represent the realized 

variances cross-market dynamic correlations. The dynamic correlation each day is calculated by a rolling window correlation of the past month between 

the indices. Panel D shows the realized covariance. 
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FIGURE 3.2.1 
Daily models Portfolio Weights from Daily Target Return Portfolio Optimization 

 

 
A) Portfolio weights of the DCC Model 

 

 
B) Portfolio weights of the CCC Model 

 

 
C) Portfolio weights of the BEKK Model 

 

 
D) Portfolio weights of the ROLL Model 

 

Notes: The figures show optimal weights generated by the daily models DCC, CCC, BEKK and ROLL. Negative weights are allowed as we adopt an 
unconstrained optimization approach. 
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FIGURE 3.2.2 

Realized Models’ Portfolio Weights from Daily Target Return Portfolio Optimization 

 

 
A) Portfolio weights of the realized DCC Model 

 

 
            B) Portfolio weights of the realized CCC Model 

 

 
             C) Portfolio weights of the realized BEKK Model 

 

 
            D) Portfolio weights of the realized RROLL Model 

 

Notes: The figures show optimal weights generated by the realized models RDCC, RCCC, RBEKK and RROLL. 
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FIGURE 3.3 
Covariance Ranking · 12% Target Return, Daily Rebalancing 

Notes: Each day the optimal portfolio weights are allocated to minimize conditional volatility subject to a target return of 12%. The left panels report the model performance in terms of return, standard 

deviation and Sharpe ratio. The right panels show switching fees, an annualized basis points fee an investor with quadratic utility and constant relative risk aversion of γ would pay to switch from a 

covariance matrix forecast on the left hand side to one on the right. We use γ=1 (blue bar) and γ=10 (orange bar) to represent investors with low and high risk aversion respectively. The transaction cost is 

20% annualized percentage points. The brackets after each model name provides additional information on annualized turnover. 
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FIGURE 3.4 
Covariance Ranking · 12% Target Return, Weekly Rebalancing 

Notes: The portfolio is rebalanced at the beginning of the week according to the calculated optimal portfolio weights and then keep the weights unchanged until the following week. See note to Figure 3.3. 
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FIGURE 3.5 
Covariance Ranking · 12% Target Return, Monthly Rebalancing 

Notes: The portfolio is rebalanced at the beginning of the month according to the calculated optimal portfolio weights and then keep the weights unchanged until the following month. See note to Figure 

3.3. 
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FIGURE 3.6 
Covariance Ranking • 12% Target Return, Return-Driven Rebalancing with a 10% Threshold 

Notes: We rebalance the portfolio on day 𝑡 if the overall percentage change in returns exceeds 10% on day 𝑡 − 1. See note to Figure 3.3. 
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FIGURE 3.7 
Covariance Ranking • 12% Target Return, Volume-Driven Rebalancing with a 25th Percentile 

Notes: We rebalance on the day 𝑡 if transaction volume on day 𝑡 − 1 exceeds the 25th percentile of the in-sample period. S&P500 volume is used as a volume proxy since it is more representative of the 

market the three indices we have. See note to Figure 3.3. 
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CHAPTER 4: Single Index and Portfolio Models for

High-Frequency VaR Prediction

4.1 Introduction

Value-at-risk (VaR) is a widely used tool, which indicates the possible loss of an asset

portfolio at a certain risk level over a certain period, for estimating and reporting �nancial

risk (see Jorion, 2000, for a detailed interpretation of VaR). The technique has become

increasingly important since the 1995 amendment to the Basel Accord that permitted

banks and other authorized deposit-taking institutions (ADIs) to use internal models to

calculate VaR. After that, numerous VaR estimation and evaluation approaches have

been proposed and widely applied in risk management. Hence, it was supposed that VaR

estimation has been well developed and can provide reliable portfolio risk assessment.

However, the 2008-2009 global �nancial crisis called the entire risk management system

into question. Reputable �nancial institutions with perceived sounding risk management

faced survival di¢ culties. For instance, Lehman Brothers �led for bankruptcy protection,

Merrill Lynch was sold, and Fannie Mae and Freddie Mac were taken over by the US

federal government. Given that VaR is the industrial standard risk measure, the dramatic

�nancial turmoil made it necessary to at least investigate the adequacy of VaR�s estimation

procedure and the accuracy and robustness of its predictions.

From a statistical point of view, calculation of VaR thresholds of a portfolio involves

estimating the variance of portfolio returns, which can be modelled either by (1) treating

the portfolio returns as a univariate process or (2) forecasting the conditional variances

and covariances of the portfolio components. The former is termed as single index model

and the latter portfolio model.1

The single index (univariate) volatility model is by and large the conventional method

1A comprehensive review of alternative single index and portfolio models can be found in McAleer

and da Veiga (2008) and Kuester et al (2006).
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for predicting daily VaR. Among numerous single index volatility models, the ARCH spec-

i�cations are widely-used by academicians and market practitioners. Starting with Engle�s

(1982) original ARCH model, a variety of ARCH volatility models have been developed,

such as GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991) and GJRGARCH models,

seeking to improve forecast accuracy. These ARCH speci�cations alongside Gaussian or

Student-t quantiles have been widely used by �nancial managers for daily VaR estimation;

e.g. see the recent RiskMetrics methodology (Zumbach, 2007).

From both statistical and practical aspects, it is also necessary to analyse and evaluate

portfolio models. Single index models may produce limited accuracy by ignoring the com-

plicated correlation among the component returns. As a result, univariate speci�cations

give out less information on the source of risk. Furthermore, portfolio models could be

used as a complement to single index models and could help in assessing the accuracy

of VaR predictions made by single index models. Nevertheless, �nancial institutions are

only starting to consider portfolio models due to the computational di¢ culties in the

covariance and joint density estimation.

Since both the single index and portfolio models can be used to estimate VaR, the ques-

tion that emerges is: which model makes more accurate VaR predictions? The empirical

literature has studied the univariate and multivariate contest extensively (see Berkowitz

and O�Brien, 2002; Brooks and Persand, 2003; Bauwens et al., 2006; McAleer and da

Veiga, 2008; Christo¤ersen, 2009; McAleer, 2009; Dumitrescu, 2012; Santos et al., 2012),

but a clear conclusion is yet to be drawn. As the accuracy of VaR predictions is vital

for risk management, the contest between single index and portfolio models warrants fur-

ther study. In addition, the contest has mainly been studied using daily asset returns,

while rarely has the question been investigated in a high-frequency context. Given that

intraday volatility estimators are suggested by numerous studies (see Andersen et al.,

2008; Barndor¤-Nielsen and Shephard, 2006) to be statistically superior to their daily

counterparts, it is worth to reassess the contest based on intraday information.
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This chapter contributes to the literature by comparing single index and portfolio

models in a high frequency context. With intraday information incorporated, single in-

dex models may improve forecast accuracy by adding an extra dimension of information

while no much noise is added (much less parameters are added compared with portfo-

lio models). In contrast, the e¤ect of adding intraday information into portfolio models

could be mixed. On one hand, high-frequency forecasts provide more relevant information

about the volatility and correlation of the portfolio components; on the other hand, more

parameter estimation adds estimation noise and potential microstructure problems to the

model. Therefore the additional trade-o¤s between noise and signal is not clear at a �rst

glance. In addition, intraday based covariance is needed for estimating high-frequency

portfolio models, which is a potential source of additional microstructure problems.

We propose to extend both the single index and portfolio GARCH models with a

realized (co)variation estimator. For single index models, we incorporate a realized ker-

nel measure by adding an extra variable into the standard GARCH, GJRGARCH and

PGARCH speci�cations. For portfolio models, we add a realized kernel covariance (RKC)

estimator into multivariate GARCH speci�cations such as BEKK, CCC, and DCC. The

performance of these augmented GARCH class models will be compared with the bench-

mark ones, single index or portfolio models using daily data. To make the comparison

between single index and portfolio models clear, we �rst analyse two representative mod-

els, the standard GARCH and DCC, and their realized versions, RGARCH and RDCC.

Next, we provide backtesting results for other single index and portfolio models to verify

further the conclusion made from assessing the representative models.

To preview the key results, we show that in a high-frequency context, both the single

index and portfolio models provide adequate VaR forecasts. However, no group of models

is statistically superior based on the results of the backtesting tests. Generally the port-

folio models yield more accurate coverage ratios while the single index models provide

smaller average and maximum absolute deviation of violations. The intraday models in
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both groups are statistically superior to their daily counterparts, which is in line with the

�ndings of Fuertes and Olmo (2012). Nevertheless, the result adds credit to the appli-

cation of realized single index models as they are more parsimonious and computational

friendly.

The rest of the paper is organized as follows. Section 4.2 explains the VaR and

backtesting methods, volatility models and combination techniques. Section 4.3 discusses

the data to be used in the empirical test. Section 4.4 presents the empirical results, and

Section 4.5 concludes.

4.2 Literature Review

4.2.1 Single Index versus Portfolio Models

The main concern about the choice between single index (univariate) and portfolio (mul-

tivariate) model for VaR estimation is the signal-to-noise ratio (see McAleer and da Veiga,

2008). The Single index model needs only a univariate speci�cation to estimate the vari-

ance of the single index, obviating the need for covariances or correlations. There is little

signal, meaning that univariate models may yield low predictive accuracy, but there is

also little noise. Portfolio models have more signals because they exploit covariances and

correlations, but there is more estimation noise, possibly compromising their forecasting

ability.

In addition, each of these two alternatives has pros and cons computationally. First,

single index models have to be estimated again whenever the vector of weights changes,

as the change produces a di¤erent univariate time series of portfolio returns. This re-

quirement is not necessary when a portfolio model is employed. But, if the dimension of

the portfolio increases, portfolio models become harder to implement due to usually large

number of parameters to be estimated. Therefore the trade-o¤s between noise and signal,

and between forecast accuracy and numerical di¢ culty, are not clear at a �rst glance.

McAleer and da Veiga (2008) �nd mixed results using daily data of four international
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stock market indices. They show that the single index model leads to excessive and often

serially dependent violations (hence monetary penalty), while the portfolio model leads

to too few violations (hence more capital charges). Dumitrescu et al. (2012) compare

the VaR forecasting performance between the univariate GARCH model and multivariate

DCC model. Judged by dynamic binary (DB) backtesting criteria, they �nd that the two

volatility models are too similar for the backtests to discriminate between them. In other

words, the correlation amongst assets does not have any impact on the calculation of the

VaR and implicitly on its validity.

Few studies argue in favour of either the single index or portfolio approaches. Berkowitz

and O�Brien (2002) evaluate the performance of banks�trading risk models by examining

the statistical accuracy of the multivariate VaR forecasts made by 6 large U.S. banks.

Bank�s multivariate risk models usually conduct structural modelling that measure the

joint distribution of all material risks conditional on current information, or employs

approximations to reduce computational burdens if portfolios are large and complex.

However despite the detailed information employed in the banks models, VaR forecasts

generated by banks do not outperform the forecast made by a standard univariate GARCH

model, which provides lower VaRs and is better at predicting changes in volatility. They

conclude that the results may re�ect substantial computational di¢ culties in constructing

large-scale structural models of trading risks for large and complex portfolios. Christof-

fersen (2009) also agrees that single index models are more appropriate if the purpose

is calculating VaR, whereas portfolio models are more suitable for portfolio selection.

Bauwens et al. (2006) conjecture that, under the present state of the art, it is better to

adopt univariate framework when facing large and complex portfolios.

In contrast, Santos et al. (2012) compare multivariate and univariate GARCH models

to forecast portfolio VaR in the context of large and diversi�ed portfolios. The results

of predictive performance for one-step-ahead VaR obtained with both Monte Carlo sim-

ulations and with real market data show that multivariate GARCH models outperform
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competing univariate models on an out-of-sample basis.

4.2.2 VaR Backtesting Approaches

Various statistical tests of predictive accuracy to compare alternative VaR forecasts have

been developed in the literature. Dumitrescu et al. (2012) suggest that a proper VaR

backtesting method needs to address three main issues. First, the power of the backtesting

technique, which is the probability of rejecting a model that is not valid, should be

reasonably high. Hurlin and Tokpavi (2008) show that some backtesting procedures are

too optimistic in the sense that they do not reject the validity of a model as often as they

should. Second, the evaluation methodology needs to be model-free. Evaluation must be

implementable whatever the volatility model applied to estimate the series of VaR. Third,

estimation risk must be evaluated since risk of estimation error present in the estimates

of corresponding model parameters pollutes VaR forecasts.

A number of backtesting tests have been proposed to take into account the three

criteria over the past 20 years, and among them three popular approaches can be applied

to examine the validity of VaR forecasts generated by single index and portfolio models.

The �rst one is the LR conditional coverage (LRCC) test introduced by Christo¤ersen

(1998). The method examines the quality of VaR forecasts through parameter restrictions

on the transition probability matrix associated with a two-states Markov chain model

(violation/no violation). Two elements of the test, the unconditional coverage and the

independence hypotheses, are derived from the martingale di¤erence hypothesis.

The Second one is the Dynamic Quantile (DQ) test proposed by Engle and Manganelli

(2004). The method is based on a linear regression model which projects VaR violations

onto a set of independent variables and subsequently examines di¤erent restrictions on

the coe¢ cients of the regression model.

The third technique is the non-linear Dynamic Binary (DB) model developed by

Dumitrescu et al. (2012). They argue that in view of the dichotomic character of the series
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of violations, a non-linear model seems more appropriate. The DB model is a nonlinear

extension of the DQ test. The extended model is based on a dynamic binary regression

model which links the sequence of violations to a set of explanatory variables including

the lagged VaR and the lagged violations in particular. Monte-Carlo experiments show

that the DB test exhibits good small sample properties in realistic sample settings (5%

coverage rate with estimation risk).

4.3 Methodology

In this section, we present a brief de�nition of VaR, a description of the volatility fore-

casting procedure, and the evaluation methods used for assessing the forecast accuracy of

a number of alternative volatility models. Three commonly applied single index models,

GARCH, equation (2.20), GJRGARCH, equation (2.22), and PGARCH, equation (2.24),

and their corresponding realized extensions, RGARCH, equation (2.21), RGJRGARCH,

equation (2.23), and RPGARCH, equation (2.24), are studied in the empirical study.

Alternatively, three standard portfolio models, diagonal BEKK, equation (2.30), scalar

CCC, equation (2.32), and DCC, equation (2.35), and their corresponding realized exten-

sions, RBEKK, equation (2.31), RCCC, equation (2.33), and RDCC, equation (2.36), are

also applied.

The intraday based regressor selected for each realized single index model is the

ARFIMA forecasted realized kernel (RK) estimator with a Parzen kernel weight function

(equation 2.8). Correspondingly, the intraday based covariance estimator deployed in

each realized portfolio model is the ARFIMA forecasted realized kernel covariance (RKC)

with a Parzen kernel weight function (equation 2.15). The choice of RK and RKC esti-

mators are motivated by their statistical consistency in estimating noisy high-frequency

data (see Barndor¤-Nielsen et al., 2008, 2009). The single index and portfolio models will

be applied on a portfolio of three �nancial assets. We assume an equal weighted portfolio,

which has been commonly used in the empirical literature; see, for instance, Za¤aroni

84



(2007), DeMiguel et al. (2009) and Santos et al. (2012).

4.3.1 VaR Modelling Approach

Our VaR modelling approach builds upon the contributions of Clements et al. (2008)

and Fuertes and Olmo (2012). Let us assume that log return at day t on a single asset,

rt, follows a pure multiplicative process rt =
p
�2t "t, where �

2
t is either a GARCH-type

conditional variance of the daily return, a realized volatility conditional expectation, or

a combination of both. "t is an iid unit variance random variable with probability dis-

tribution F", "t v F" (�). The VaR of rt is de�ned as the �-percentage quantile of the

conditional distribution of asset returns given the investment manager�s information set


t�1. The forecasted 1-day-ahead VaR, a measure of the worst case 1-day-ahead loss, is

calculated as

V aRt+1;��
r
�̂2t+1

�
�̂t

�
F̂�1" (�) (4.1)

where �̂t is a consistent estimator of the model parameters needed to calculate �̂
2
t+1, and

F̂�1" (�) is the �-quantile estimate associated with F".

Equation (4.1) implies that the adequacy of VaR forecasts impinges, in principle,

on two factors: the volatility model selected to produce the daily volatility forecasts,

�̂2t+1, and the approached used for the �-quantile calculation. The candidates that we

consider for belongs to one of the two classes of estimation method for forecasting portfolio

volatility, the single index and portfolio models. The single index models considered are

daily GARCHmodels and GARCHmodels augmented with intraday volatility estimators.

The portfolio models applied are multivariate GARCH speci�cations and their augmented

versions with intraday volatility estimators.

In this study we choose �, the level of signi�cance chosen for the VaR, at 1%. Two

probability distributions are adopted for the �-quantile calculation. First, F" (�) is spec-

i�ed as the standard Gaussian density so that jumps are not properly accounted for in

the quantile estimate F̂�1" (�). Second, standardized (unit variance) student-t densities
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with degrees of freedom parameters estimated by maximum likelihood from the in-sample

returns are used to account for fat tails.

Nonparametric distributions are not considered as they are beyond the scope of this

empirical study. For example, Engle and Gonzalez-Rivera (1991) calculate quantiles from

the empirical distribution function (edf) of the innovation series of a GARCH model;

McNeil and Frey (2001) employ a semiparametric approach that combines the edf and an

extreme value density which includes the parametric Student-t distribution.

4.3.2 Volatility Forecasting

The out-of-sample daily volatility forecasts for the RK and RKC estimators are made

by rolling window autoregressive fractionally integrated moving average (ARFIMA) esti-

mations. A stochastic process st is called an ARFIMA(p; d; q) process if the fractionally

di¤erenced process is an autoregressive moving-average (ARMA) process as

(1� �L� :::� �pL
p)(�dXt) = (1� �1L� :::� �qL

q)("t) (4.2)

where d is not restricted to integral values. ARFIMA is associated with long-memory

process, a stationary series whose autocorrelation function decays slowly. An ARFIMA

speci�cation yields a parsimonious parameterization of long-memory processes that nests

the ARMA model, which is commonly used for short-memory processes. The ARFIMA

model can also be considered as an extension of the ARIMA model as the former allows

for fractional degrees of integration.

As noted in Fuertes and Olmo (2012), the ARFIMA modelling framework has been

successfully used in the literature to capture the stylized slow, less than exponentially,

decay in autocorrelations of daily realized volatilities. For example, Bhardwaj and Swan-

son (2006) investigated the usefulness of ARFIMA models in practical prediction-based

applications, and �nd evidence that such speci�cations often outperform a wide class of

the benchmark non-ARFIMA models, including AR, ARMA, ARIMA, random walk, and

related models. This paper focus on the homoscedastic ARFIMA (1; d; 0) model, which
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has been employed in Andersen et al. (2003), Koopman et al. (2005), and Fuertes and

Olmo (2012). The model is proved to be an e¢ cient competitor to other time series

methods of forecasting realized volatility. The model speci�cation is

(1� �L)(1� L)d(st � w) = "t (4.3)

where st is one of the the daily realized estimators, w is the unconditional mean of st,

and L is the lag operator (Lst = st�1). Estimation of the coe¢ cients in the equation

including d is carried out by exact maximum likelihood under the normal assumption and

forecasts are calculated from the autoregressive and moving average representation of the

process (see Fuertes and Olmo, 2012). In the ARFIMA models �tted to the log measures,

the forecasted volatility is obtained through the common exponential transformation (see

Forsberg and Ghysels, 2007; Clements et al., 2008).

4.3.3 VaR Backtesting Framework

Three main criteria are used to compare the forecasting performance of the conditional

volatility models, namely: (1) the LR conditional coverage test (LRCC); (2) the dynamic

quantile (DQ) test; (3) the dynamic binary response (DB) model. We also complement

the backtesting by providing the result of the linear regression approach introduced by

Pagan and Schwert (1990), and statistics of the percentage of violation, average and

maximum absolute deviation of violations.

4.3.3.1 Likelihood Ratio Test

Christo¤ersen (1998) proposes likelihood ratio (LR) tests of unconditional coverage, serial

independence and conditional coverage, which are subsequently used by Lopez (1998) to

assess VaR forecasts. An appropriate VaR model should display the property that the

unconditional coverage, estimated as the number of observed violations divided by the

sample size, should equal �, the level of signi�cance selected for the VaR. The probability

87



of having X violations in T trading days is formulated as

Pr(X) = C250X (0:01)x(0:99)T�x (4.4)

The LR statistic for examining whether the unconditional coverage is equal to alpha

is:

LRUC = 2[log(�
x(1� �)N�x)� log((0:01x)(0:99N�x))] (4.5)

where � = x=N , x is the number of violations and N is the number for forecasts. The

LR statistic is asymptotically distributed as �(1).

But a model with correct unconditional coverage may still be sub-optimal if the vi-

olations are serially dependent, as consecutive large losses may cause bankruptcy. Inde-

pendence can be tested by the LR statistic with a null hypothesis of serial independence

against the alternative of �rst-order Markov dependence as follows.

Assume the violation is dependent over time and can be described as a �rst order

Markov sequence with transition probability matrix

�1 =

"
�00 �01

�10 �11

#
(4.6)

where �ij is the transition probability

�ij = P [It = i and It+1 = j] (4.7)

where It is an indicator variable which equals to 1 if there is a violation at time t and 0

otherwise. For example, �01 is the probability of a violation after a non-violation, and �11

is the probability of two consecutive violations. With a total sample of T observations,

the likelihood function of the �rst-order Markov process is

L(�1) = �T0000 �
T01
01 �

T10
10 �

T11
11 (4.8)

where Tij is the number of observations with a j following an i.

Taking �rst derivatives with respect to �01 and �11 and equating to zero, the maximum

likelihood estimates are
�̂01 =

T01
T00+T01

�̂11 =
T11

T10+T11

(4.9)
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Since Ti0 + Ti1 = Ti, the estimated matrix can be written as

�̂1 =

"
T00=T0 T01=T0

T10=T1 T11=T1

#
(4.10)

We can then test the independence hypothesis using a likelihood ratio test as

LRIND = �2 log[L(�̂)=L(�̂1)] v �21 (4.11)

where �̂ is the transition matrix under independence (with �01 = �11),

�̂ =

"
1� T1=T T1=T

1� T1=T T1=T

#
(4.12)

which can be calculated in a similar fashion as the calculation of �̂1.

The conditional coverage (LRCC) test can �nally be applied to jointly assessing un-

conditional coverage and independence. The LRCC statistic is formulated as the sum of

the LRUC statistic and the LRIND statistic, which is asymptotically distributed as �(2).

The LRCC test can be denoted as

LRCC = LRUC + LRIND (4.13)

4.3.3.2 Dynamic Quantile (DQ) Test

TheDQ test is a linear regression based model introduced by Engle and Manganelli (2004)

to assess the quality of VaR forecasts. Let It(�) be the binary variable associated with

the ex-post observation of an �% VaR violation at time t, where

It(�) = f
1

0

if rt < �V aRtjt�1(�)
otherwise

(4.14)

LetHitt(�) = It(�)�� denotes the demeaned process of violation. From the de�nition

of the VaR, the conditional expectation of Hitt(�) given the information known on day

t � 1 must be zero. Engle and Manganelli (2004) suggest that the conditional coverage

assumption can be tested in the following linear regression as

Hitt(�) = � +
KX
k=1

�kHitt�k(�) +
KX
k=1


kg[Hitt�k(�); Hitt�k�1(�); :::; zt�k; zt�k�1; :::] + "t

(4.15)
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where g[�] is a function of past violations and of the instrument variables zt�k belonging

to the entire informational set available 
t�1, and "t is a i:i:d: process. In this study

the instruments used in the DQ speci�cation are a constant, the VaR forecast and the

�rst four lagged hits. Testing for the null hypothesis of conditional coverage is then

implemented by testing the joint nullity of the parameters �k, 
k, 8k = 1; :::; K, and that

of the intercept � as

H0 : � = �1 = ::: = �k = 
1 = ::: = 
k = 0;8k = 1; :::; K (4.16)

If we denote 	 = (�; �1; :::; �k; 
1; :::; 
k)
0 as the vector of the 2K+1 coe¢ cients of the

model and Z as the matrix of independent variables of the regression, the test statistic of

DQ test satis�es the following relation:

DQ =
	̂

0
Z 0Z	̂

�(1� �)
L

����!
T!1�

2(2K + 1) (4.17)

4.3.3.3 Dynamic Binary (DB) Model

Dumitrescu et al. (2012) extend the DQ method by considering a non-linear approach,

the dynamic binary (DB) model, to accommodate the dichotomic character of the series

of violations. let us consider a dynamic binary response model as

Pr[It(�) = 1j
t�1] = E[It(�)j
t�1] = F (�t) (4.18)

where F (�) denotes a cumulative distribution function and �t is a index function. Assume

�t satis�es the following autoregressive representation:

�t = c+

q1X
j=1

�j�t�j +

q2X
j=1

�jIt�j(�) +

q3X
j=1

 jl(xt�j; ') +

q4X
j=1


jl(xt�j; ')It�j (4.19)

where l(�) is a function of a �nite number of lagged values of observables, and xt is a

vector of explicative variables. We apply four DB speci�cations proposed by Dumitrescu
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et al. (2012), denoted by DB1 to DB4:

DB1 : �t = c+ �1�t�1;

DB2 : �t = c+ �1�t�1 + �1It�1(�);

DB3 : �t = c+ �1�t�1 + �1It�1(�) +  1V aRt�1;

DB4 : �t = c+ �1�t�1 + �1It�1(�) +  1V aRt�1 + 
1V aRt�1It�1:

(4.20)

The �rst two equations correspond to a DB model including the lagged index as an

explanatory variable and some additional information through the past values of the vio-

lation process. The third model is derived from the autoregressive quantile speci�cations

proposed by Engle and Mangenelli (2004) and the fourth introduces an asymmetry in the

response of the index to past VaR.

The general form of the model is Prt�1(It(�) = 1) = F (�t), where �t is one of the four

DB models. The log-likelihood function can be expressed as:

lnL(�; I(�) lnF (�t(�; Zt)) + (1� It(�)) ln(1� F (�t(�; Zt)))] (4.21)

where � = [�
0
; �

0
;  

0
; 


0
] is the vector of coe¢ cients of the model except for the intercept

and Zt is the vector of explanatory variables at time t corresponding to a certain equation

from the four models applied in the study. The models are estimated through constrained

maximum likelihood estimation2.

Similar to theDQ test, aDB model tests the nullity of the coe¢ cients of the regression

to assess the null hypothesis of conditional coverage (Pr[It = 1j
t�1] = F (F�1(�)) = �):

H0 : � = 0; � = 0;  = 0; 
 = 0 and c = F�1(�) (4.22)

A dynamic binary LR (DBLRCC ) test can be used in such a context. DBLRCC tests the

e¢ ciency assumption of the VaR model as:

DBLRCC = �2
n
lnL(0; F�1(�); I(�); Zt)� lnF (�̂; ĉ; It(�); Zt)

o
d

����!
T!1�

2(dim(Zt)) (4.23)

where �̂ is the the vector of estimated coe¢ cients of the binary-choice speci�cation (under

the alternative hypothesis, by maximum-likelihood) and ĉ is the estimated intercept of

the speci�ation.
2See Dumitrescu et al. (2012) for a detailed discussion on constrained maximum likelihood estimation.
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4.3.3.4 Linear Regression Method

Pagan and Schwert (1990) introduce a forecast evaluation approach whereby the volatility

forecasts are regressed on the actual volatility. In this study, Realized Variance (RV)

sampled at 5-minute frequency is used as a proxy for the actual volatility. RV is one of

the most commonly used realized volatility measure and the 5-minute sampling frequency

has been shown to be small enough to accurately capture price dynamics while large

enough to dampen down the adverse e¤ects of microstructure frictions. The auxiliary

regression formula is then given by:

yt = �+ ��̂2t + "t (4.24)

Where yt is the actual volatility of day t and �̂
2
t is the forecasted volatility. In this

auxiliary regression, a perfect forecast will produce an � of zero and a � of 1. Forecast

accuracy is compared on the basis of the R2 criterion.

4.3.3.5 Magnitude of Violation

For each model we present the percentage of violations, the maximum and average ab-

solute deviations of violations from the VaR forecasts. A set of adequate VaR predictions

would violate about �N times spanning the forecasting period, produce relatively low

average absolute deviation and small maximum absolute deviation. In addition to from

comparing each volatility models based on these three measures, we will also compare the

average of the three measures produced by each group of estimators, i.e. the single index

and portfolio volatility speci�cations.

4.4 The Dataset

Daily prices for three major stock market indices, namely S&P 500, Russell 2000 and

NASDAQ Composite, are used in the empirical study. The data were obtained from

DiskTrading database for the period 8 January 1998 to 30 September 2011, which yields
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3449 observations. The three indices are chosen for diversi�cation purposes. S&P 500

is one of the most commonly followed equity indices, which mainly concentrates on US

based large publicly held companies. NASDAQ composite is another large-cap index that

incorporates large companies both in and outside the US. Majority of the stocks included

in the index are technology and growth ones. Russell 2000 is a small-cap index of the

bottom 2000 stocks listed in the US. The portfolio of these three equity indices largely

represents the broad stock market of US listed companies.

Tick-by-tick price quotes for the same period are collected from the same source and

subjected to scrubbing methodologies to detect and repair bad ticks. At the time the

data were collected, this period was the longest for which high-frequency data on all three

indices were available. For each trading day, we use data in the normal trading session

from 9:30am to 04:00pm (390 minutes) and exclude the pre-market session from 7:00am

to 9:30am and post-market session from 4:00pm to 8:00pm.

Figure 4.1 plots the price evolvement of the three indices selected. For comparison

purposes we rescale each series to a base of 100 on 8 January 1998. NASDAQ Composite

decoupled from the other two indices during the �rst �ve years of our sample. NASDAQ

increased 300% from 1998 to 2000 before its subsequent crash, which is famously known

as the collapse of the dot-com bubble, around the millennium. S&P 500 and Russell 2000

were not a¤ected too much as the emerging IT and internet companies were mostly listed

in NASDAQ. Moving through the timeline we can see synchronized tumbles experienced

by all the three indices at the end of 2008 caused by the credit crunch and global �-

nancial crisis. Since 2003, Russell 2000, the small cap index, mildly outperformed the

two alternatives, showing strong momentum in start-up companies. However, S&P 500

bottomed the performance rank during the same period, which has barely increased value

since 2008, signalling a broad stagnation in the main economy.

The plots of returns are shown in Figures 4.2A-C. Each of the index returns exhibits

clustering e¤ect, which will be accounted by appropriate time series models. The de-
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scriptive statistics for the return series of the three indices are given in Table 4.1.A. All

returns have similar means and medians, which are close to zero, minima which di¤er

between -9.482 and -12.578, and maxima vary between 8.786 and 13.232. The three stan-

dard deviations di¤er slightly, ranging from 1.350 for S&P 500 to 1.830 for NASDAQ

Composite. Skewness varies among all three indices while kurtosis is similar for all series.

Jarque-Bera test strongly rejects the null hypothesis of normality for all the series, which

may be caused by fat-tail positioned, or extreme, observations.

Figure 4.3 plots daily volatilities over the sample period using RV sampled at 5 minute

frequency. All the series exhibits volatility clustering, which will be captured by GARCH

class models. The volatility of all indices appears to be high during the 08-09 �nancial

crisis, while only NASDAQ show a high level during the millennium. The descriptive

statistics for the volatility of the three series are given in Table 4.1.B. NASDAQComposite

gives the largest mean (median) volatility at 3.348 (0.790), while S&P 500 displays the

lowest mean (median) volatility at 1.822 (0.409). The maxima of the three volatility

series vary signi�cantly, with Nasdaq Composite having the highest maxima and S&P 500

showing the lowest. All volatility series display high degree of kurtosis and substantial

skewness, indicating the existence of extreme observations.

4.5 Empirical Results

This section compares the forecasting performance of the single index and portfolio models

and their intraday based extensions. The benchmark models are univariate GARCH and

multivariate GARCH speci�cations based on daily data. The realized models are the

benchmark ones augmented with a realized kernel (RK) estimator. We �rst assess the

volatility models�out-of-sample forecasting performance.

Although the previous chapter suggests that an actively managed portfolio produces

higher economic value, in this empirical study it is assumed that the portfolio weights

are equal and constant over time. There are two reasons behind the simpli�cation. First,
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with the simpli�ed assumption, we can compare our empirical results directly with the

empirical literature. The case of a long position in an equally-weighted portfolio has

been extensively applied in the literature; see, for instance, Veiga and McAleer (2005),

DeMiguel et al. (2009) and Santos et al. (2009).

Second, in the case of an actively managed portfolio, a model�s volatility forecasts not

only a¤ect the VaR predictions but also the portfolio weights, hence producing a unique

portfolio in terms of asset weights for every volatility speci�cation. Since it is more

straightforward to compare the VaR adequacy of di¤erent volatility models based on a

portfolio with identical assets and weights, we assume equal weights to avoid additional

complications. Nevertheless, these assumptions can be relaxed to jointly assess a volatility

model�s performance on economic value and VaR adequacy, although that is beyond the

scope of this empirical study.

To make the comparison of univariate and multivariate models clear, we �rst compare

the performance of two representative models from each group of speci�cations, namely

GARCH, RGARCH, DCC, and RDCC. Backtesting results of the alternative single index

(GJRGARCH, PGARCH, RGJRGARCH, and RPGARCH) and portfolio models (CCC,

DCC, RCCC, and RDCC) will be provided as supplement information for the comparative

study.

4.5.1 Estimation Results of the Single Index and Portfolio Models

The left columns in Table 4.2 report the resulting univariate GARCH models�parameter

estimates and regression statistics. The numbers in square brackets are the p-values of the

corresponding parameters. In estimation we do not impose arti�cial constraints on the

signs of individual coe¢ cient. As a result, some of the parameters of the lagged squared

error in the conditional variance equations are shown to be negative. However, none of

the negative parameters are proved to be statistically signi�cant. All other estimated

parameters are strictly positive, including those of the asymmetric term and realized
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volatility. Leverage e¤ects are detected in both the TGARCH and RTGARCH, implying

that a negative surprise will have greater impact on volatility than a positive shock of the

same magnitude. Highly signi�cant coe¢ cients of the realized volatility in all the realized

models statistically justify the use of intraday information.

Table 4.3 and 4.4 show the resulting MGARCH and RMGARCH models�parameter

estimates, together with robust standard errors in parentheses and p-values in square

brackets. The subscripts 1, 2 and 3 denote S&P 500, Russell 2000 and NASDAQ 100,

respectively. The coe¢ cients of all the models are largely signi�cant at 5% signi�cance

level, showing satisfactory estimation results. Di¤erent from the results in Chapter 3,

correlation estimates for both the MGARCH and RMGARCH models in this study are

highly signi�cant. This is because the data now include three highly liquid stock indices

in the U.S. market, while not including the previously used CRB commodity index. The

correlations between these stock market indices have been pretty strong and the multi-

variate covariance models are capable at estimating them. In line with the estimation

results of Chapter 3, the estimation output con�rms the signi�cance of all the coe¢ cients

of the realized covariance matrix at 5% signi�cance level, suggesting that the intraday

information have signi�cant explanatory power in the corresponding RMGARCH equa-

tions. Nevertheless, for some models the parameters of intercept and previous squared

errors are not statistically signi�cant, which is similar to the single-index case.

4.5.2 Out-of-Sample VaR Backtesting

The forecast period includes the last 947 days of our sample, covering a period from 2

January 2008 to 30 September 2011. The reason to produce forecasts for the prolonged

period is to include the days with dramatic market volatility during the worst �nan-

cial crisis (2008-2009) since the great depression. The spectacular price movements in

the wake of the �nancial crisis challenges the adequacy of VaR forecasts predicted by

the volatility models studied in this chapter. A consistent VaR forecasting performance
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for the volatile forecasting period would enhance our con�dence in recommending the

corresponding volatility model.

Table 4.5 presents the conditional coverage test results for the four representative

volatility models (GARCH, DCC, RGARCH and RDCC) considering a coverage rate

of 1%. Both the GARCH and DCC speci�cations fail the conditional coverage test by

providing high test statistics far exceeding the 1% signi�cance level following a �(2) dis-

tribution. They lead to signi�cantly greater number of violations than expected, ranging

from DCC�s 2.64% to GARCH�s 2.85%. The models also fail the conditional coverage test

for the same reason.

The performance of the daily models is coincident with what happened during the

2008-2009 �nancial crisis. The risk taken by the largest banks and investment �rms

in much of the Western world were too excessive which threatened to bring down the

entire �nancial system. Inadequately calculated VaR is possibly one of the causes of

the �nancial turmoil. VaR models have been criticized for ignoring the possibility of a

systemic �nancial meltdown and the magnitude of losses when the 1% or 5% (commonly

applied levels of signi�cance chosen for the VaR) events occur. Although the validity of

VaR as a risk measure is beyond the scope of this study, we can at least �nd that standard

daily VaR models generate biased VaR estimates for the portfolio returns and therefore

are indeed inadequate in forecasting daily VaR over the volatile forecasting period.

In contrast, the two realized models, RGARCH and RDCC, both produce adequate

VaR predictions according to the conditional coverage test results, signalling practical

value in incorporating realized estimator into standard GARCH-type models. Both spec-

i�cations produce insigni�cant LRCC test statistics at 1% signi�cance level. Therefore

we do not reject the null hypothesis that the number of observed violations divided by

the number of trading days is equal to �, the level of signi�cance chosen for the VaR.

In terms of the percentage of violations, the conditional coverage tests suggest that the

daily models leads to excessive violations (2.85% for GARCH and 2.64% for DCC) while
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the realized models leads to too few violations (0.64% for GARCH and 0.74% for DCC).

The test results indicate that VaR forecasts generated by both the single index and

portfolio models could be improved signi�cantly if intraday information is utilized. And

the risk measurement for the forecast period is now, statistically speaking, adequate.

Given its relative superior forecast accuracy, VaR estimated by intraday based models is

arguably a useful tool for risk management. It could at least be used to assists risk man-

agers understand what they should expect to happen on a daily basis in an environment

that is roughly the same. In addition, when VaR started to "miss" on a regular basis, it

might imply that the market is experiencing a structural change, hence signalling need for

risk-o¤ adjustments (to reduce the proportion of risky assets in an investment portfolio).

Let us now focus on the contest between single index and portfolio models in a high-

frequency context. The �nding that RDCC produces slightly more accurate percentage of

hits out-of-sample (0.74%), better than RGARCH�s 0.64%, is not statistically signi�cant

according to the results of the LRCC test. This conclusion is in line with the performance

of daily GARCH and DCC studied by Dumitrescu et al. (2012), who �nd that the two

volatility models statistically identical. In other words, the correlation amongst assets

does not have any impact on the calculation of the VaR and implicitly on its validity.

Furthermore, the average absolute deviation of violations for RGARCH (0.24%) is

lower than that of the RDCC (0.52%), and we observe the same pattern in the maximum

and median absolute deviation of violations. Therefore, the result of the comparison

between RGARCH and RDCC is not a clear cut. This result is in line with the �ndings

of Berkowitz and O�Brien (2002). Their comparison of single index and portfolio models

in a daily context show that despite the detailed information used in the multivariate

speci�cations, VaR forecasts generated by portfolio models do not outperform the forecast

made by a standard univariate GARCH model, which provides lower VaRs and is better

at predicting changes in volatility.

Table 4.6 gives the corresponding p-values of the DQ and DB test results for the four
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representative models considering a coverage rate of 1%. The results vary severely from

one speci�cation to another, but the conclusion is the same: The realized models provide

superior VaR forecasts compared with their daily counterparts. All the DQ and DB test

results show highly signi�cant p-values for GARCH and DCC models, rejecting the null

hypothesis of conditional coverage at 1% signi�cance level. So the daily models are again

proved to be incapable at forecasting VaR in the period of extraordinary volatility. In

contrast, the validity of RGARCH and RDCC model is recon�rmed by the tests, with

p-values surpassing 26% for all the cases, showing that the two realized models did a good

job describing the evolution of the left tail for the portfolio under study.

For the comparison of RGARCH and RDCC, the results of the DQ and DB tests are

in line with what we found in the LRCC test. RDCC fares better in general according to

the p-values, but not statistically signi�cant, which means that we cannot make a de�nite

conclusion on the comparison between the two realized volatility models.

Next, we extend our study by testing more realized speci�cations to see whether

the conclusion drawn on the representative intraday based models is universal. Table

4.7 represents the p-values of the LRCC , DQ and DB tests for four additional realized

models: two single index ones (RGJRGARCH and RPGARCH) and two portfolio models

(RBEKK and RCCC) All the additional realized speci�cations pass the 6 conditional

coverage tests with p-vales higher than 30%, signalling validity of the models in forecasting

VaR. Similar to the result of GARCH and DCC, the validity of the daily versions of

the additional models, namely GJRGARCH, PGARCH, BEKK and CCC, is rejected by

the conditional tests. All the daily models tend to provide excessive and often serially

dependent violations according to the test results of out-of-sample forecasting. The results

of daily models are therefore not provided here given that our main focus is on the

comparison of realized single index and portfolio models.

In terms of the superiority of VaR forecasts, the test results show that the four realized

models are too similar for the p-values to discriminate among them. Again, the correlation
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amongst assets does not play an important role on the calculation of the VaR forecasts.

In conclusion, the di¤erence between the VaR forecasts generated by realized single index

speci�cations and portfolio models is not statistically signi�cant.

4.5.3 Robustness Checks

Robustness tests are composed of in-sample VaR prediction for the whole sample period

of 3449 trading days, and out-of-sample VaR forecasting for the last 947-day sample

period using forecasts relying on Student-t rather than Normal densities for the quantile

computation. The in-sample �tting consists of 10 years of data which is aimed at providing

a broader assessment of the forecasting power of di¤erent volatility models. Student-t

distribution is often used in VaR prediction since the distribution contains fatter tails

that are suitable for modelling volatility of �nancial asset returns. At last, the out-of-

sample forecasting performance of the volatility models are assessed by a linear regression

method.

4.5.3.1 In Sample Fitting

Table 4.8.A provides the p-values of the LRCC , DQ and four DB tests for the four

representative models, GARCH, DCC, RGARCH and RDCC based on in-sample �tting.

The in-sample period covers 10 years from 1998 to 2007, which is relatively calmer than

the volatile out-of-sample period since 2008. The in-sample �tting performance judged

by the conditional coverage tests show that both the daily and realized models are able

to describe the evolution of the left tail for the portfolio under study. The daily models

performed better than in the out-of-sample case by providing p-values surpassing the 5%

critical value for all the 6 conditional coverage tests. This result shows that the daily

models are capable at modelling VaR for a relatively less volatile period.

The realized models once again provide superior performance compared with the daily

models in the in-sample �tting. However, the contrast between the two groups becomes

smaller. This is partly due to an improvement in the performance of daily models, and
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partly attributed to too few violations in the VaR forecasts made by intraday-based

portfolio models over the 10 years period. Nonetheless, the conditional coverage tests for

RGARCH and RDCC produce p-values higher than 30%, implying validity of the realized

models. In a high-frequency context, RGARCH and RDCC produce very similar quality

of in-sample forecasts, which once again cannot be separated statistically according to

the backtesting evaluation. This result is in line with the conclusion drawn on the case

of out-of-sample forecasting.

4.5.3.2 Student-t Equity Returns

It is well-known that the Normal density tends to underestimate the probability of ex-

treme variations (the collapse of the hedge fund, Long Term Capital Management, was

a particular reminder of this; see Jorion (2000)). Consequently we evaluate the VaR

forecasts relying on Student-t densities, the most commonly used fat-tailed distribution

as a model for asset returns, for the quantile F̂�1" (�) computation. In detail, we use

standardized (unit variance) Student-t distribution with degrees of freedom parameter

(4.04) estimated by ML from the in-sample standardized returns. The model estimation

is now based on student-t densities. Table 4.8.B presents the model performance judged

by LRCC , DQ and four DB conditional coverage tests for the out-of-sample forecasting

period. Daily models once again generate too many violations for the period and therefore

are incapable at prediction accurate VaR. Both the GARCH-t and DCC-t model fail all

the tests.

Table 4.8.B shows that there is signi�cant improvement in VaR predictions from us-

ing daily models to intraday models. RGARCH-t and RDCC-t produce adequate VaR

forecasts for the forecasting period and pass all the backtesting criteria. But, no one

speci�cation is statistically superior between the two realized models, which leads to the

same conclusion drawn under normal densities for the quantile F̂�1" (�) computation.
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4.5.3.3 Linear Regression Test

Table 4.9 presents the out-of-sample forecasting performance of the 4 representative mod-

els assessed by the linear regression test. The test is applied to complement the backtesting

procedures by directly assessing the forecasting power of the volatility models. The P-

values in Table 4.9 shows the probability values of the joint coe¢ cient test of � = 0 and

� = 1. Both the GARCH and DCC test results show insigni�cant p-values. In contrast,

both intraday based models, RDCC and RGARCH present highly signi�cant p-values and

as a result the null hypothesis of unbiasness is rejected. However, Realized speci�cations

outperform their daily counterparts according to the R2 generated. RDCC performs the

best by generating a R2 = 0:489. RGARCH ranks the second by producing a R2 of

0.432. In contrast, the 2 daily models, GARCH and DCC, generate substantially lower

R2s (0.226 and 0.218 for DCC and GARCH respectively) hence cannot compete with

their intraday counterparts. This inconsistency in test results shows that the intraday

based volatility models are not perfect in theory. However, judged by practice value, the

realized models are the better ones as they produce more accurate volatility forecasts.

Indeed, the strong forecast power is translated into more adequate VaR predictions. The

result of the linear regression test further con�rms the practical value of the two intraday

based volatility speci�cations from a di¤erent viewpoint.

4.6 Conclusion

This study compares the quality of VaR forecasts between single index models and port-

folio models in a high-frequency context. A number of daily univariate and multivariate

GARCH class models, namely GARCH, GJRGARCH, PGARCH, BEKK, CCC and DCC,

are used as the benchmark models in the chapter. The �rst three models are single index

ones and the remaining are portfolio models. These daily models are augmented with

a realized kernel (RK) estimator to construct the realized models, namely RGARCH,

RGJRGARCH, RPGARCH, RBEKK, RCCC and RDCC. Three main backtesting crite-
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ria are used to compare the forecasting performance of the conditional volatility models:

the LR conditional coverage (LRCC) test, the dynamic quantile (DQ) test, and the dy-

namic binary response (DB) model. In order to make the comparison clear, we focused

our analysis on two representative daily models, GARCH and DCC, and two intraday

based models, RGARCH and RDCC.

We �rst study whether intraday volatility models can signi�cantly improve the pre-

dictive power of classical daily GARCH models. An intraday volatility estimator may

contain unique information about past price variations that are not captured by daily

squared returns. A volatility model incorporated with a realized (intraday) estimator

therefore could provide superior forecasting performance. Our �nding con�rms this hy-

pothesis. The realized models outperform their daily counterparts by providing adequate

VaR forecasts for a prolonged and volatile out-of-sample forecasting period. The four

intraday based volatility models all produce reasonable VaR predictions according to the

conditional coverage test result, signalling practical value of incorporating realized estima-

tor into standard GARCH-type models. Daily models, in contrast, fail all the conditional

coverage tests, implying that they are incapable at forecasting VaR for the volatile out-

of-sample forecasting horizon.

The comparison between realized single index and portfolio models, however, shows

mixed results. For example, the RDCC model produces slightly more accurate percentage

of hits out-of-samples (0.74%) compared with RGARCH�s 0.64%. However, the advantage

is not statistically signi�cant according to the results of the conditional coverage tests.

This conclusion is similar to the result of daily GARCH and DCC comparison studied by

Dumitrescu (2012). In addition, the average absolute deviation of violations for RGARCH

(0.24%) is lower than that of the RDCC (0.52%), and we observe the same pattern in

the maximum absolute deviation of violations. This result is in line with the �ndings of

Berkowitz and O�Brien (2002). In a word, the comparison between RGARCH and RDCC

is not a clear cut.
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To sum up, augmented single index models generally perform as good performance

compared to their portfolio counterparts. It seems that the correlation amongst assets

does not have signi�cant impact on the calculation of the VaR and implicitly on its va-

lidity. This is possibly because while assessing more information and estimating more

parameters, portfolio models are also subject to greater noise in individual asset vari-

ances and covariances. In addition, further noise in data is added by the incorporating of

realized variances and covariances into the portfolio models. In conclusion, both standard

univariate and multivariate GARCH class models augmented with a well-structured real-

ized estimator can provide adequate out-of-sample VaR forecasts. Nevertheless, given the

parsimonious nature of the realized single index models, they are probably more suited

for forecasting VaR in daily practices.
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TABLE 4.1 
Descriptive Statistics for Returns and Volatility 

 

A. Returns 

 S&P 500 Russell 2000 NASDAQ Composite 

Mean 0.004 0.011 0.012 

Median 0.061 0.074 0.115 

Maximum 10.771 8.786 13.232 

Minimum -9.482 -12.578 -10.207 

Std. Dev. 1.350 1.622 1.830 

Skewness -0.178 -0.321 -0.010 

Kurtosis 9.722 7.347 7.110 

Jarque-Bera 6514 2776 2429 
 

B. Volatility of Returns 

 S&P 500 Russell 2000 NASDAQ Composite 

Mean 1.822 2.629 3.348 

Median 0.409 0.742 0.790 

Maximum 116.020 158.200 175.091 

Minimum 0.000 0.000 0.000 

Std. Dev. 5.379 6.619 8.276 

Skewness 10.371 9.038 7.908 

Kurtosis 161.143 138.057 103.209 

Jarque-Bera 3657955 2669798 1479899 
 

Notes: Panel A provides summary statistics for the returns of the S&P 500, Russell 2000 and NASDAQ Composite indices. 

Panel B provides summary statistics for the volatility of returns of the S&P 500, Russell 2000 and NASDAQ Composite 

indices. The sample period is 8 January 1998 to 30 September 2011 (3449) Observations. 

 
TABLE 4.2 

Estimation Results of Single Index Models 
 

  GARCH 
 

RGARCH 
 

TGARCH 
 

RTGARCH 
 

PGARCH 
 

RPGARCH 
   0.015 [0.000] 0.038 [0.002] 0.015 [0.000] 0.044 [0.000] 0.016 [0.000] 0.105 [0.002] 

  0.069 [0.000] -0.010 [0.410] -0.006 [0.413] -0.109 [0.000] 0.071 [0.000] -0.021 [0.130] 

 
0.921 [0.000] 0.728 [0.000] 0.939 [0.000] 0.750 [0.000] 0.922 [0.000] 0.723 [0.000] 

  - - - - 0.109 [0.000] 0.176 [0.000] - - - - 

  - - - - - - - - 1.851 [0.000] 1.482 [0.000] 

   - - 0.465 [0.000] - - 0.434 [0.000] - - 0.343 [0.000] 

             S.E. 1.212 1.212 1.212 1.212 1.212 1.212 

Log   -3794 -3754 -3757 -3726 -3794 -3751 

DW 2.005 2.006 2.006 2.006 2.005 2.006 

AIC 3.011 2.981 2.982 2.960 3.012 2.979 

Obs 2523 
  

2523 
  

2523 
  

2523 
  

2522 
  

2522 
   

Notes: The table provides estimation results of the univariate volatility forecasting models.   represents the intercept of 

the conditional variance equation.   represents the coefficients of the previous squared errors.   represents the 

coefficients of the previous conditional variances.   represents the power coefficient of the PGARCH specification. The 

upper panel reports the resulting parameter estimates for GARCH, TGARCH and PGARCH and their realized counterparts, 

together with robust standard errors in parentheses and p-values in square brackets. The lower panel reports the 

corresponding regression outputs. The modeling period is 8 January 1998 to 30 September 2011.  
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TABLE 4.3 
Estimation Results of MGARCH Models 

 

  BEKK 
  
  

  CCC 
  
  

  DCC 
 
 

   0.093 (0.012) [0.000]   0.014 (0.005) [0.004]   0.035 (0.011) [0.002] 

   0.267 (0.013) [0.000]   0.086 (0.011) [0.000]   0.071 (0.011) [0.000] 

   0.962 (0.004) [0.000]   0.907 (0.012) [0.000]   0.906 (0.015) [0.000] 

   0.073 (0.007) [0.000]   0.036 (0.008) [0.000]   0.004 (0.003) [0.159] 

   0.254 (0.011) [0.000]   0.099 (0.011) [0.000]   0.040 (0.011) [0.000] 

   0.963 (0.003) [0.000]   0.884 (0.012) [0.000]   0.959 (0.011) [0.000] 

   0.033 (0.009) [0.000]   0.011 (0.004) [0.004]   0.002 (0.002) [0.382] 

   0.222 (0.012) [0.000]   0.083 (0.013) [0.000]   0.023 (0.014) [0.099] 

   0.973 (0.002) [0.000]   0.915 (0.012) [0.000]   0.973 (0.018) [0.000] 

      - -   0.856 (0.004) [0.000]   0.862 (0.029) [0.000] 

      - -   0.827 (0.006) [0.000]   0.807 (0.038) [0.000] 

      - -   0.847 (0.005) [0.000]   0.842 (0.033) [0.000] 

    - -     - -   0.015 (0.005) [0.006] 

    - -     - -   0.983 (0.008) [0.000] 

Log   -11687.818   -11861.571   -11616.427 

    2523       2523       2523     
 

Notes: The table provides estimation results of the conventional daily data based covariance forecasting models.  

  ,    and    represent the diagonal elements of the intercept matrix in the covariance equation for S&P 500, Russell 

2000 and NASDAQ Composite indices respectively.   ,    and    represent the coefficients of the previous squared 

errors and cross-product of errors.   ,    and    represent the coefficients of the previous conditional variances and 

covariances.    ,     and     represent the estimated correlation coefficients. The left column reports the resulting 

parameter estimates for BEKK, CCC and DCC, together with robust standard errors in parentheses and p-values in square 

brackets. The modeling period is 8 January 1998 to 30 September 2011. 
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TABLE 4.4 
Estimation Results of Intraday Based MGARCH Models 

 

  RBEKK 
 
 

 
RCCC 

 
 

 
RDCC 

 
 

   0.215 (0.037) [0.000]   0.015 (0.008) [0.068]   0.015 (0.008) [0.068] 

   0.252 (0.020) [0.000]   0.000 (0.000) [0.999]   0.000 (0.000) [0.999] 

   0.257 (0.044) [0.000]   0.383 (0.060) [0.000]   0.383 (0.060) [0.000] 

   0.917 (0.017) [0.000]   0.701 (0.044) [0.000]   0.701 (0.044) [0.000] 

   0.072 (0.047) [0.129]   0.055 (0.015) [0.000]   0.055 (0.015) [0.000] 

   0.266 (0.027) [0.000]   0.073 (0.013) [0.000]   0.073 (0.013) [0.000] 

   0.306 (0.083) [0.000]   0.201 (0.059) [0.001]   0.201 (0.059) [0.001] 

   0.922 (0.028) [0.000]   0.799 (0.034) [0.000]   0.799 (0.034) [0.000] 

   0.000 (0.000) [0.280]   0.032 (0.017) [0.056]   0.032 (0.017) [0.056] 

   0.240 (0.043) [0.000]   0.009 (0.022) [0.679]   0.009 (0.022) [0.679] 

   0.317 (0.151) [0.036]   0.423 (0.145) [0.003]   0.423 (0.145) [0.003] 

   0.920 (0.055) [0.000]   0.707 (0.080) [0.000]   0.707 (0.080) [0.000] 

      - -   0.848 (0.021) [0.000]   0.856 (0.026) [0.000] 

      - -   0.824 (0.022) [0.000]   0.826 (0.025) [0.000] 

      - -   0.836 (0.021) [0.000]   0.847 (0.023) [0.000] 

    - -     - -   0.034 (0.006) [0.000] 

    - -     - -   0.905 (0.028) [0.000] 

Log   -11562.855   -11807.476 
  
  

  -11605.577 
  
  

    2523       2523       2523     
 

Notes: The table provides estimation results of the intraday data based covariance forecasting models.  

  ,    and    represent the diagonal elements of the intercept matrix in the covariance equation for S&P 500, Russell 

2000 and NASDAQ Composite indices respectively.   ,    and    represent the coefficients of the previous squared 

errors and cross-product of errors.   ,    and    represent the coefficients of the previous conditional variances and 

covariances.       and    represent the coefficients of the realized covariance matrix. The left column reports the 

resulting parameter estimates for RBEKK, RCCC and RDCC, together with robust standard errors in parentheses and p-

values in square brackets. The modeling period is 8 January 1998 to 30 September 2011. 
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TABLE 4.5 
LRCC Test for GARCH, RGARCH, DCC and RDCC (Out-of-Sample) 

 

 
LRCC p-value % of Violations V.Mean V.Maxima V.Median 

RDCC 0.710 0.701 0.007 0.521 1.736 0.352 

RGARCH 1.265 0.531 0.006 0.241 0.720 0.128 

DCC 17.770 0.000 0.026 0.540 2.432 0.400 

GARCH 21.884 0.000 0.029 0.627 3.578 0.325 
 

Notes: LRCC stands for the LR conditional coverage test. % of Violation is the percentage of violation occurred based on the 

VaR forecasts generated by the corresponding model. V.Mean stands for the average absolute deviation of violation, 

V.Maxima stands for the maximum absolute deviation of violation, and V.Median stands for the median absolute deviation 

of violation.  

 
 
 
 

TABLE 4.6 
DQ and DB Test for GARCH, RGARCH, DCC and RDCC (Out-of-Sample) 

 

 
DQ DB1 DB2 DB3 DB4 

RDCC 0.690 0.517 0.696 0.806 0.527 

RGARCH 0.451 0.467 0.565 0.696 0.480 

DCC 0.000 0.001 0.001 0.001 0.000 

GARCH 0.000 0.000 0.000 0.000 0.000 
 

Notes: DQ stands for the dynamic quantile test and DB1 to DB4 are the different versions of the dynamic binary test. The 

table gives the corresponding p-values of the test results for the models considering a coverage rate of 1%. 

 
 
 
 

TABLE 4.7 
LRCC, DQ and DB Test for RGJRGARCH, RPGARCH, RCCC and RBEKK (Out-of-Sample) 

 

 
LRCC DQ DB1 DB2 DB3 DB4 

RCCC 0.637 0.590 0.516 0.672 0.632 0.611 

RBEKK 0.583 0.516 0.489 0.562 0.617 0.575 

RGJRGARCH 0.569 0.496 0.486 0.636 0.586 0.564 

RPGARCH 0.411 0.377 0.399 0.406 0.412 0.308 
 

Notes: The table provides the LRCC, DQ and DB conditional coverage test results for out-of-sample VaR forecasts 

generated by four realized models RGJRGARCH, RPGARCH, RCCC and RBEKK. See note to Table 4.5. 
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TABLE 4.8 
LRCC, DQ and DB Test for RDCC, RGARCH, DCC and GARCH 

 

A. In Sample 

 
LRCC DQ DB1 DB2 DB3 DB4 

RDCC 0.482 0.316 0.514 0.550 0.562 0.511 

RGARCH 0.368 0.256 0.353 0.344 0.526 0.410 

DCC 0.153 0.121 0.162 0.171 0.140 0.162 

GARCH 0.125 0.094 0.136 0.162 0.133 0.183 
 

B. Out-of-Sample, Student-t Densities 

 
LRCC DQ DB1 DB2 DB3 DB4 

RDCC-t 0.609 0.355 0.596 0.537 0.501 0.577 

RGARCH-t 0.438 0.312 0.408 0.511 0.450 0.393 

DCC-t 0.000 0.000 0.000 0.000 0.000 0.001 

GARCH-t 0.000 0.000 0.000 0.000 0.000 0.000 
 

Notes: Panel A provides the LRCC, DQ and DB conditional coverage test results for in-sample VaR forecasts generated by 

four representative models RDCC, RGARCH, DCC and GARCH. Panel B provides the LRCC, DQ and DB conditional coverage 

test results for out-of-sample VaR forecasts generated by four representative models RDCC-t, RGARCH-t, DCC-t and 

GARCH-t based on the student-t densities. See note to Table 4.5. 

 
 
 
 

TABLE 4.9 
Linear Regression Test Results for GARCH, RGARCH, DCC and RDCC (out-of-sample) 

 

 
alpha t-ratio beta t-ratio P-value R2 

RDCC 0.141 0.565 1.163 4.204 [0.000] 0.489 

RGARCH -0.038 -0.142 1.389 7.505 [0.002] 0.433 

DCC 0.183 0.531 1.033 0.526 [0.553] 0.227 

GARCH 0.275 0.797 0.979 -0.346 [0.714] 0.218 
 

Notes: See equation (4.24) for the linear regression formula. The null hypothesis α = 0 is tested against the alternative α 

≠ 0. The null hypothesis β =1 is tested against the alternative β ≠1. The P-value represents the results of a joint 

coefficient test. The null hypothesis α = 0 and β = 1 is tested against the alternative α ≠ 0 and β ≠1.     
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FIGURE 4.1 
Rebased Index Prices 

 

 
 

Notes: The figure illustrates the daily return of NASDAQ Composite, Russell 2000 and S&P 500 indices over the whole sample period. Indices prices are 

rebased at 100 at the beginning of 1998 for comparative purposes.  
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FIGURE 4.2 
Return Series of NASDAQ Composite, Russell 2000 and S&P 500 Indices 

 

 
A) S&P 500 Return 

 

 
B) Russell 2000 Return 

 

 
C) NASDAQ Composite Return 

 

Notes: Daily return plot of the three indices from 8 January 1998 to 30 September 2011 (3449) Observations. 
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FIGURE 4.3 
Volatility of NASDAQ Composite, Russell 2000 and S&P 500 Indices 

 

 
A) S&P 500 Volatility 

 

 
            B) Russell 2000 Volatility 

 

 
B) NASDAQ Composite Volatility 

 

Notes: Daily squared return plot of the three indices from 8 January 1998 to 30 September 2011 (3449) Observations. 
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CHAPTER 5: The Economic Value of Combining In-

traday Volatility Estimators and Implied Volatility

5.1 Introduction

The largest source of edge in volatility trading is in trading our predicted volatility against

the market�s volatility expectation. The predicted future volatility can be obtained either

by volatility forecasts generated by econometric models, or implied volatility derived from

option pricing models. Given the practical importance of volatility forecasting, the contest

between the two forecast categories, model predicted and implied volatility, has attracted

great attention in both academia and the �nancial industry.

Empirical studies have provided mixed results for the volatility forecasting contention.

Some suggest that implied volatility estimates generally provide better volatility predic-

tions, and model predicted volatility is unable to add to the information already contained

in market forecasts (see Poon and Granger, 2003; Kinlay, 2005). In contrast, several pa-

pers indicate that implied volatility forecasts show evidence of a consistent and substantial

bias, and they do not contain any information relevant to future volatility beyond that

re�ected in model-forecasted volatility (see Kinlay, 2005; Becker, Clements and White,

2007).

Given the mixed stories shown in the literature, it might be worth tackling the prob-

lem from a di¤erent perspective, which is forecast combination. If model-forecasted and

implied volatility each contains unique information about future volatility, a combination

estimator that combines the two individual volatility forecasts may provide superior sta-

tistical accuracy than any of the individual models. A couple of studies have examined

this combination recently. For instance, Becker and Clements (2008) combine the implied

volatility and econometric model forecasts and indeed �nd the combination forecasts,

equal weighted and regression-based, to be statistically superior.

Forecast combination has become a popular research subject since the initial work
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of Bates and Granger (1969), and has been shown to be able to produce more accurate

volatility forecasts than individual models by many empirical studies. Just as a board

of diverse people tends to make better decisions than each individual does, forecast com-

bination tends to perform better than a single forecast. Hendry and Clements (2004)

suggest that forecast combination o¤ers a �shield�against of misspeci�cation and struc-

tural breaks.

The literature to date on combining forecasted volatility and implied volatility is

mainly based on daily data. However, it is worthwhile to examine the forecasting perfor-

mance in a realized context as recent studies show a signi�cant improvement in forecast

accuracy when intraday information is incorporated into the daily volatility models (see

Fuertes, Kalotychou and Izzeldin, 2009).

Furthermore, the literature has, to our knowledge, evaluated only the statistical ac-

curacy of combination estimators that combine model-forecasted volatility and implied

volatility. A separate question is whether the advantages in statistical accuracy are suf-

�cient to have a meaningful impact on decisions that based on conditional volatility

estimates. Given the central role of volatility forecasting in volatility trading, a direct

pro�t and risk evaluation of the trading strategies using di¤erent volatility forecasts would

arguably be a better alternative to statistical loss functions.

This study bridges the gap between the literatures by assessing the economic value

of a comprehensive set of intraday volatility measures, implied volatility and their com-

binations. Over 12 years of tick-by-tick data for the S&P 100 index price is used and

42 individual realized and implied volatility measures are applied in the empirical study.

The economic value of the individual and combination volatility estimators are assessed

out-of-sample according to their performances in simulated volatility trading exercises.

The forecast combinations used in the chapter can be divided into two broad categories:

simple combinations and further combinations. A simple combination forecast combines

ARFIMA forecasted realized volatility measure and predicted implied volatility estimator
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using ordinary least squares (OLS) regression, whereas a further combination forecast

combines 42 individual estimators including 41 distinct intraday volatility estimators and

the implied volatility. Five di¤erent combination approaches are used to determine the

weight of each individual volatility estimator in a further combination estimator: the

equal weighted, geometrical mean, regression-based, Akaike information criterion (AIC)

based, and multiple indicators model (MIM).

Two research questions are addressed in the empirical study. The �rst one is that

whether forecast combination can outperform the best possible single volatility measure

in terms of economic value, after transaction cost being deducted. On the one hand,

an optimal combination of the realized volatility measures with implied volatility might

improve trading performance as more relevant information about price variations is in-

corporated into the trading signal generation process. On the other hand, the economic

value of implementing forecast combination would be limited if there is no signi�cant

pro�t gain after transaction cost.

The second research question is that whether more sophisticated further combination

models can outperform simple combination models judged by economic loss functions.

The fundamental question on which the literature of forecast combination focuses on is to

determine the optimal weights attributed to combination forecasts. The optimal weights

depend on each model�s out of sample performance, and thus should vary over time

according to the changes in forecast errors. However, a signi�cant number of empirical

studies (Clemen, 1989; Stock and Watson, 1999, 2001, 2004; Hendry and Clements, 2004;

Smith and Wallis, 2009; Huang and Lee, 2010; Aiol� et al., 2010) �nd that the equal

weighted forecast combination turns out to be hard for most sophisticated competing

procedures to beat. This �nding is often referred as �forecast combination puzzle�. In this

empirical study we will investigate if the puzzle exists in a realized context.

The rest of the chapter is organized as follows. Section 5.2 provides a brief literature

review on forecast combination. Section 5.3 explains the volatility estimators, combination
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models and the economic evaluation methods. Section 5.4 discusses the data to be used

in the paper. Section 5.5 presents the results, and Section 5.6 concludes.

5.2 Literature Review

The broad volatility literature can be grouped in three strands: model-forecasted, im-

plied, and stochastic volatility. Our review below focuses primarily on model-forecasted

and implied volatilities, which are both applied in this empirical study. The statistical

accuracy and economic value of forecast combination are also discussed in the section.

5.2.1 model-forecasted Volatility versus Implied Volatility

Volatility forecasts can either be generated by econometric models given historical data,

or derived from option prices using implied volatility. The former are based on statistical

adequacy and the latter is drawn on market prediction. Surveys of standard econometric

volatility models can be found in Campbell, Lo and MacKinlay (1997) and Gourieroux

and Jasiak (2001). A comprehensive discussion of implied volatility is given by Jorion

(1995) and Poon and Granger (2003, 2005).

Forecasting performance of econometric models and implied volatility has received a

great deal of research attention. Fleming (1998) corrects for serial dependence and goes

on to �nd that the implied volatility from S&P 100 index options produces superior fore-

casts of future realized volatility compared with forecasts made using historical volatility.

Blair, Poon and Taylor (2001) claim almost all the useful predictive information is in

option prices when forecasting S&P 100 index volatility one or more days into the fu-

ture. In a similar vein, Corrado and Miller (2005) show that implied volatility of indices

dominate historical index volatility in providing forecasts of future volatility in the S&P

100 and NASDAQ 100 indices. Poon and Granger (2003, 2005) summarise the results

of 93 papers that study the performance of volatility forecasts. They �nd that implied

volatility estimates generally provide better volatility predictions.
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In contrast, Becker, Clements and White (2006) study the volatility forecasts in a

di¤erent context and �nd contradicting results. They test whether the VIX, implied

volatility index derived from S&P 500 option prices, contains any information relevant to

future volatility beyond that re�ected in forecasts generated by econometric models. The

conclusion is that the VIX does not contain any such information. In addition, Taylor

and Xu (1997) compare the forecast accuracy of implied and historical volatility for the

Deutschemark/Dollar exchange rate and �nd that when intraday 5-minute returns are

used, historical volatility outperforms implied volatility in predicting realized volatility.

Martens and Zein (2004) suggest that high-frequency forecasts do have incremental in-

formation over that contained in implied volatility for the S&P 500 index futures and

options. Pong, Shakelton, Taylor and Xu (2004) indicate that model-forecasted volatility

have incremental information not found in implied volatility, for forecast horizon of up to

one week.

Becker and Clements (2007) examine the contention between model-forecasted volatil-

ity and implied volatility from a di¤erent perspective by combining the implied volatility

and econometric model forecasts using S&P 500 data. Two combination forecasts, equal

weighted and regression-based, are applied. The result indicates that combination volatil-

ity forecasts are statistically superior to individual approaches, indicating that the VIX1

cannot simply be regarded as a combination of various forecasts produced by econometric

models. Therefore, each class of volatility forecasts may contain di¤erent yet relevant

information in predicting future volatility.

5.2.2 Forecast Combination

There is now a growing body of literature on forecast combination, since the initial work of

Bates and Granger (1969) suggests that combination of forecasts is an e¤ective approach

1VIX is a trademarked ticker symbol for the Chicago Board Options Exchange Market Volatility

Index, a widely used measure of the implied volatility of S&P 500 index options. VIX represents the

market�s expectation of stock market volatility over the next 30 day period.
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of improving the accuracy of forecasts regarding a certain target variable. Combination

procedures, such as shown in Clemen (1989), Makridakis & Hibon (2000), Stock and

Watson (2004), Becker and Clements (2008) and Bjornland et al. (2012), generally out-

perform the forecast generated by the best individual model. For reviews of forecast

combination from a classical perspective see Clemen (1989), Newbold and Harvey (2002),

and Timmermann (2006).

Timmermann (2006) summarizes three main bene�ts of using forecast combination.

First, a well-combined forecast integrates di¤erent pieces of information attached in each

individual estimator. Second, the neutralizing nature of forecast combination reduces

e¤ect of structural breaks su¤ered by individual forecasting models. Third, forecast

combination reduces the possibility of parameter estimation errors and model misspec-

i�cation. Furthermore, time series data often exhibits time-varying conditions such as

regime switching and parameter drifts, make choosing the best model among various in-

dividual approaches extremely hard. Forecast combination can practically reduce these

unfavourable e¤ects since it relies on a pool of di¤erent models.

Since the introduction of realized volatility by Andersen and Bollerslev (1998), a num-

ber of recent studies have explored the bene�t of combining intraday volatility estimators.

Given there is no consensus about a "best" measure of volatility, Engle and Gallo (2006)

propose to jointly consider absolute daily returns, daily high-low range and daily realized

volatility to develop a forecasting system based on their conditional dynamics. They run a

regression with VIX as the dependent variable and generate the one-month-ahead volatil-

ity forecasts according to the system speci�cations as independent variables. The result

shows that one-month-ahead forecasts match well the market-based volatility measure

provided by the VIX index.

Fuertes, Izzeldin and Kalotychou (2009) examine individual NYSE/NASDAQ stocks,

and provide statistical evidence in favour of high frequency data. They incorporate non-

parametric estimators of daily price variability into a GARCH model. Four estimators are
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compared: realised volatility (RV), realised range (RR), realised power variation (RPV)

and realized bipower variation (RBP). Their results show that forecast combination of

the four intraday volatility estimates is worth considering as the combination of all four

intraday measures produces the smallest forecast error in about half of their sampled

stocks.

Patton and Sheppard (2009) �nd that a simple equally-weighted average of 32 di¤erent

realized estimators generally cannot be outperformed by any individual estimator. They

also show that none of the individual estimators encompasses the information in all other

measures, providing further support for realized combination. Fuertes and Olmo (2012)

investigate the practical importance of several volatility forecasting issues addressed in

a Value-at-Risk (VaR) context. The empirical results show that combined GARCH and

ARFIMA forecasts produce quite competitive VaR measures.

5.2.3 The Economic Value of Forecast Combination

While the statistical accuracy of volatility forecasts has been analysed extensively, the

direct pro�tability of them is a relatively new area of interest. The idea is that opti-

mal volatility measures assessed by statistical evaluation methods are not guaranteed to

generate superior returns when used in volatility trading activities. Harvey and Whaley

(1992) study the pro�tability of a trading rule based on forecasting implied volatility and

�nd supportive evidence on option market e¢ ciency after allowing for transaction costs.

In contrast, Noh and Engle (1994) argue that a straddles trading strategy on the S&P

500 index based on GARCH model volatility forecasts can make signi�cant pro�ts after

transaction costs. Martens and Zein (2002) note that intraday based estimators do have

incremental information over that contained in implied volatilities for futures and options

on the S&P 500 index.

Kinlay (2005) investigates the potential for generating abnormal pro�ts using a simple

straddle trading strategy, based on ARFIMA and GARCH generated volatility forecasts,
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taking into account both transaction and (delta) hedging costs. The empirical results

show that forecasted volatility is unable to add to the information already contained in

implied volatility. However, model-forecasted volatility correctly foresees the direction of

volatility change about 62% of the time whereas implied volatility have very poor direction

prediction ability. Simulation in purchase or sale of at-the-money straddles based on the

volatility forecasts yields a net annual compound return of 18.64% over 4 years from 2000

to 2003, during which the annual return on the S&P 500 index itself was -7.24%.

5.3 Methodology

In this section, we �rst present the forecast combination techniques to be applied. Next,

we introduce the ARFIMA based volatility forecasting framework. Finally, we study the

loss functions for statistical evaluation, and trading strategies for economic assessment of

the combination estimators.

5.3.1 Forecast Combination Techniques

This chapter applies �ve combination techniques for the empirical study: equal weights,

geometric mean, regression-based, Akaike information criterion based (AIC) and the mul-

tiple indicators model (MIM). In total 42 individual volatility estimators are available

for forecast combination, including the implied volatility and 41 realized volatility mea-

sures (see Chapter 2 for a detailed explanation) constructed using di¤erent methods and

sampled with a range of time frequencies from 1-minute to 60-minute.

5.3.1.1 Equal Weights

The benchmark combination approach is the equal weights model, which assumes equal

probability to each individual estimator, and considers a simple average of the predictions

from each estimator. Thus, the weight assigned to each volatility estimator is

wi =
1

N
(5.1)
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where N is the number of individual estimators to be combined.

5.3.1.2 Geometric Mean

Similar to the equal weights, the geometric mean is an averaging model, except that the

numbers are multiplied and then the nth root of the calculated product is taken. The

weight for individual estimator si is

wi =

�
NQ
i=1

si

� 1
N

(5.2)

5.3.1.3 Regression-Based

Stock and Watson (2004) applied the method of discounted mean squared forecast error

(MSFE) to combine a large number of individual forecasts. The regression-based combi-

nation is a special case of the discounted MSFE with a unit discount factor, which also

corresponds to the optimal weighting scheme introduced in Bates and Granger (1969).

In detail, the regression-based model is a standard parametric combination estimator,

namely a linear combination:

yt = ŵ0 +
XN

i=1
ŵisi;t + "t; "tj
t�1 v iid(0; �2) (5.3)

where si;t is the ith realized estimator at time t. We consider an unconstrained combi-

nation framework as a constraint of nonnegative weights distorts the optimality of the

parameter estimation. yt is the realize volatility (RV) in the future 22 trading days sam-

pled at 5-minute frequency, and is considered as the actual monthly volatility. For a

six-and-half hour market, the monthly volatility is therefore the sum of the 1716 intraday

squared 5-minute returns. There are two underlying concerns relate to the approximation

of actual volatility. First, the 5-minute RV is generally considered an unbiased repre-

sentative of real volatility by empirical literatures. Second, since we are measuring the

real volatility over a long period, the di¤erence in estimation among standard volatility

estimators is often negligible.
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5.3.1.4 Akaike Information Criterion Based (AIC)

The AIC-based combination is introduced by Kapetanios et al. (2008) using Monte Carlo

experiments on UK in�ation data. The authors �nd that the model performs as well

as or better than Bayesian averaging. A brief explanation of the AIC-based approach is

provided in below.

In a classical view of probability, there is a true model, albeit one that may be varying

through time. The hard part is how to estimate it. Given this true model, the uncertainty

lies with the accuracy of data and parameter estimation. In contrast, instead of assuming

there is a true model, Bayesian probabilities measure the degree of belief that an object has

in an event. Parameters themselves are random variables with a probability distribution,

rather than the estimated parameters being �tted around a given value. Bayes�theorem

shows how new information can be used to update the conditional probability of a state

occurring. In our study, the information comes from historical returns and the state is a

future value of monthly volatility. Our forecast is conditional on the past data and our

initial guess. Moreover, there is uncertainty over models. As none of our models is the

"true" model, we characterise our views by means of probabilities related to each model.

A high probability therefore signals a strong belief in the model. Given the probabilities,

we can form the average forecast.

Bayesian model averaging has a key notion that the conditional probability of a model

si being the true model, given the data, Dt, is pr(sijDt). But there is a frequentist

analogue, and a weight scheme based on this has been studied by Akaike (1979). Akaike�s

suggestion derives from the Akaike information criterion (AIC). AIC is an asymptotically

unbiased measure of minus twice the log likelihood of a given model. It is an unbiased

estimator of the Kullback and Leibler (KL, 1951) distance of a given model where the KL

distance is formulated as

I (f ; g) =

Z
f (x ) log (

f(x)

g(xj�̂)
)dx (5.4)
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where f (x ) is the unknown true model generating the data, g(xj:) is the entertained model

and �̂ is the estimate of the parameter vector for g(xj:). The KL distance is important in

model selection. Within a given set of models, the di¤erence of the AIC for two di¤erent

models is an estimate of the di¤erence between the KL distance for the two models.

Further, exp(�1=2	i) is the relative likelihood of model i where 	i = AICi�minj AICj

for j = 1; :::; N and AICi is the AIC of the ith model in the model space N . Therefore,

exp(�1=2	i) can be thought of as the odds for the ith model to be the best KL distance

model in N . In other words this quantity can be viewed as a crucial di¤erence from a

Bayesian Analysis, in which it is assumed that a model in N is the true model while in

the Bayesian view the models must span the complete set.

We can obtain the optimal weights by normalising exp(�1=2	i) as

wi =
exp(�1=2	i)PN
i=1 exp(�1=2	i)

(5.5)

where
P

iwi = 1.

The wi can be regarded as model probabilities under noninformative priors giving a

parallel to Bayesian analysis. However, this analogy should not be taken literally as these

model weights are �rmly based on frequentist ideas and do not make explicit reference to

prior probability distributions about either parameters or models.

5.3.1.5 Multiple Indicators Model (MIM)

The multiple indicators model (MIM) is a distinct approach to combine realised volatility

measures proposed by Engle and Gallo (2006). It jointly considers di¤erent volatility

measures to form a forecasting model based on their conditional dynamics. The MIM is a

two-step approach. We �rst forecast directly the realized volatility measures themselves.

For a non-negative valued process xt, we describe it by a multiplicative error model (MEM,

as studied in Engle, 2002). That is, xt is the product of a time varying scale factor and

a standard positive valued random variable. The formula is therefore

xt = �t"t; "tj
t�1 v iid:D(1; ') (5.6)
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where �t is a time varying scale factor which depends upon the recent history of the series

and "t is a standard positive valued random variable. �t is speci�ed as

�t = � +
Xp

i=1
�ixt�i +

Xp

i=1
�j�t�j + c

0zt (5.7)

where zt summarizes further terms that can signal the dependence of the series on weakly

exogenous variables included in the information set available at time t� 1. For example,

the basic MEM speci�cation for realized volatility estimator i can be expressed as

�i;t = wi + �ir
2
t�1 + �i�i;t�1 (5.8)

and here we extend the basic model to account for asymmetry by applying the APARCH

model

�i;t = wi + �ir
2
i;t�1 + �i�t�1 + 
ir

2
t�1dt�1 + �irt�1 (5.9)

where dt�1 is a customary dummy variable for negative returns dt = I(rt < 0).

After obtaining MEM forecasts for di¤erent realised volatility measures, we merge

them together as a MIM system of equations. The last step is to regress each of the

�i;t on yt, the actual volatility in the upcoming calendar month, to generate the optimal

weight for each MEM model in the MIM combination.

5.3.2 Volatility Forecasting Framework

The out of sample monthly volatility forecasts for each realized volatility measure are

made by rolling window autoregressive fractionally integrated moving average (ARFIMA)

estimations. The monthly volatility is equivalent to the quadratic price variation in 22

trading days, therefore for each model we carry out a 22-period ahead variance forecast.

The 22 daily forecasted variances are then summed up to form the forecasted monthly

variance. The square root of the forecasted monthly variance is a comparable measure

to the VXO, implied volatility of S&P 100 index for the coming calendar month. We

also use the ARFIMA model to forecast VXO since long-range dependence is a typical
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stylized factor of implied volatility (see Corsi, 2004; Koopman et al., 2005; Bandi and

Perron, 2006). The ARFIMA approach is brie�y discussed in below.

A stochastic process st is called an ARFIMA(p; d; q) process if the fractionally di¤er-

enced process is an autoregressive moving-average (ARMA) series as

(1� �L� :::� �pLp)(�dXt) = (1� �1L� :::� �qLq)("t) (5.10)

where d is not restricted to integral values. ARFIMA concerns long-memory process, a

stationary series whose autocorrelation function decays slowly. An ARFIMA speci�cation

yields a parsimonious parameterization of long-memory processes that nests the ARMA

model, which is commonly used for short-memory processes. The ARFIMA model can

also be considered as an extension of the ARIMA model as the former allows for fractional

degrees of integration.

As noted in Fuertes and Olmo (2012), the ARFIMA modelling framework has been

successfully used in the literature to capture the stylized slow, less than exponentially

decay in autocorrelations of daily realized volatilities. For example, Bhardwaj and Swan-

son (2006) investigate the usefulness of ARFIMA models in practical prediction-based

applications. The authors �nd evidence that such speci�cations often outperform a wide

class of the benchmark non-ARFIMA models, including AR, ARMA, ARIMA, random

walk, and related models. This chapter focuses on the homoscedastic ARFIMA (1; d; 0)

model, which has been employed in Andersen et al. (2003), Koopman et al. (2005), and

Fuertes and Olmo (2012). The model is proved to be an e¢ cient competitor to other time

series methods of forecasting realized volatility. The model speci�cation is

(1� �L)(1� L)d(st � w) = "t (5.11)

where st is one of the the daily realized estimators, w is the unconditional mean of st,

and L is the lag operator (Lst = st�1). Estimation of the coe¢ cients in the equation

including d is carried out by exact maximum likelihood under the normal assumption and

forecasts are calculated from the autoregressive and moving average representation of the
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process (see Fuertes and Olmo, 2012). In the ARFIMA models �tted to the log measures,

the forecasted volatility is obtained through the common exponential transformation (see

Forsberg and Ghysels, 2007; Clements et al., 2008; Liu and Maheu, 2009).

After obtaining the ARFIMA forecasted monthly volatility based on individual es-

timators, 47 forecast combinations will be constructed. The forecast combinations can

be divided into two broad categories: simple combinations and further combinations. A

simple combination forecast combines an ARFIMA foretasted realized volatility estima-

tor and ARFIMA predicted implied volatility using OLS regression. For each simple

combination the formula is

ht;i = �i + �1;iV X̂Ot + �2;iŝi;t (5.12)

where ht is the forecasted monthly volatility, V X̂Ot is the ARFIMA forecasted VXO and

ŝi;t is the ARFIMA forecasted volatility for realized estimator i.

A further combination combines 42 volatility estimators including the 41 intraday

volatility estimators and implied volatility using 5 di¤erent combination approaches in-

troduced in Section 5.3.1: the equal weighted, geometrical mean, regression-based, Akaike

information criterion (AIC) based, and multiple indicators model (MIM).

5.3.3 Forecast Evaluation Framework

Though the main purpose of the empirical study is to examine the economic value of the

individual and combination volatility estimators, statistical evaluation is also implemented

for completeness. The statistical assessment consists of symmetric loss functions and the

economic value is evaluated by the performance of option trading strategies.

5.3.3.1 Statistical Evaluation

Individual volatility estimators and their combinations are evaluated by three popular

symmetric loss functions: mean absolute error (MAE), mean squared error (MSE) and

adjusted mean absolute percentage error (AMAPE). Proposed by Bollerslev et al. (1994),
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MSE is the most widely applied forecast evaluation method, which is based on a quadratic

loss function. It is best used when large forecast errors are disproportionately more

concerned than smaller ones. MAE measures the actual error in absolute values, which is

less sensitive to large mispredictions than MSE does. AMAPE, proposed by Makridakis

(1993), is an absolute error divided by the average of the forecast and actual values. The

speci�cation of the loss functions are shown in below.

Mean Absolute Error MAE = 1
T

PT
t=1

��~�2t � y2t;i��
Mean Squared Error MSE = 1

T

PT
t=1(~�

2
t � y2t;i)2

Adjusted Mean Absolute Percentage Error AMAPE = 1
T

PT
t=1

��~�2t�y2t;i
~�2t+y

2
t;i

��
(5.13)

where ~�2t is the conditional variance and its proxy y
2
t;i for forecast evaluation is the 5-

minute realized variance for the upcoming 22 trading days. The statistical accuracy of

model i forecasts, y2t;i is evaluated by the loss functions.

5.3.3.2 Economic Evaluation

We analyse the potential pro�ts using a straddle trading strategy based on di¤erent

volatility forecasts. Hull and White (1987) note that, when volatility is constant, the

Black-Scholes implied volatility of an at-the-money option approximately equals the ex-

pected future volatility over the life of the option. The implied volatility, VXO, is derived

from the at-the-money call and put options based on the Black Scholes option pricing

formula
C = SN(d1)�Xe�rtN(d2)
P = Ke�rtN(�d2)� SN(�d1)

(5.14)

d1 =
ln(S=X)+(r+�2=2)t

�
p
t

; d2 = d1 � �
p
t (5.15)

where S is the S&P 100 index price, assumed to follow a log-normal distribution with a

constant volatility �, K is the option strike price, t is the time to maturity and r is the

risk-free interest rate and N(�) represents the Gaussian density.

The economic value from volatility trading is tested as follows. We collect the price

and option delta for near-to-the money options on the S&P 100 index for each trading day
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at market close. We then simulate purchase or sale of at-the-money straddles, based on

whether the forecasted volatility to expiration is greater or less than the implied volatility

of the option contracts by a certain degree. The resulting long or short option position is

then held to maturity.

A straddle is a non-directional option trading strategy involves buying (long straddle)

or selling (short straddle) a call option and a put option approximately at-the-money at

the same time. The two options are about at the same strike price and expire at the

same time. In our case the options are at-the-money ones therefore the strike price is the

underlying price. A short straddle is constructed if our forecasted volatility falls below

the VXO by a certain percentage. This position is an unlimited risk, since the pro�t is

capped to the premiums of the two options sold but large loss occurs when the S&P 100

index goes very high up or very low down.

A long straddle strategy makes a pro�t if the S&P 100 price moves far away from

the strike price, meaning that we expect high volatility during the remaining life of the

options bought. According to our trading strategy, a long straddle will be implemented

if our forecasted volatility exceeds the VXO by a certain degree, or trading range. This

position is attached with limited risk, as the most we may lose are the premiums of both

options. In contrast, the pro�t potential is unlimited. The payo¤ from a long position

straddle is listed in the table in below.

Payo¤ from a Long Straddle

Range of Stock Price Payo¤ from Call Payo¤ from Put Total Payo¤

ST � K 0 K � ST K � ST
ST > K ST �K 0 ST �K

We construct a straddle on day t only if the di¤erence between the VXO and our

forecasted volatility on the trading day exceeds a preset trading range. For instance, if

the trading range is 0.5%, it means that the forecasted volatility needs to be greater than
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the VXO by at least 50 basis points (bp) to trigger a long straddle and to be smaller by

at least 50bp for a short straddle. The larger the trading range, the smaller the chance a

straddle will be constructed. This is because a large trading range requires a substantial

di¤erence between the forecasted volatility and the VXO, a triggering condition that is

hard to meet. If the trading range is wide, it might be di¢ cult to make large pro�t since

only a limited number of trades will be implemented. However, if the trading range is too

narrow, many transactions will be made and therefore a signi�cant amount of transaction

costs will be generated. In the empirical study we test a variety of trading ranges spanning

from 0% to 1% to examine the robustness of the trading strategy.

Each implemented short or long position is held to maturity and delta-hedged at the

end of each trading day using the net of the closing deltas of the two option contracts.

In terms of the S&P 100 options, the delta is the measure of how the value of an option

changes with respect to changes in the value of the S&P 100 index. Delta, represented

in absolute value, can be regarded as an approximation of the probability that an option

will �nish in-the-money. Delta lies between 0 and 1 for a call option, and between 0 and

-1 for a put option. Given the information on the closing deltas of the call and put option

contracts, the option contracts bought or sold is delta hedged at the end of each trading

day. The delta (4) can be calculated as 4 = @C
@S
. Assume that the delta hedging is

achieved by trading SPDRs2, contracts at the American Stock Exchange at 1/10 the size

of the S&P 100 index. Hedge contracts are signed at the reported closing o¤er or bid

price.

In terms of transaction costs, we assume the trading costs at $1 per round turn for

each contract and at $0.005 for each SPDR bought or sold. The transaction costs are

higher than would be incurred by large-sacle fund trading on electronic exchanges. We

do not consider market impact, as the impact should be relatively minor in highly liquid

instruments up to notional capital amounts of $500 or so (see Kinlay, 2005).

2A S&P 100 exchange traded fund (ETF), before expenses, seeks to closely match the returns and

characteristics of the S&P 100 index.

129



5.4 The Dataset

Tick by tick data for the S&P 100 cash index from November 06/01/1997 to 31/12/2010

were collected from multiple data feeds via Disk Trading database and subjected to scrub-

bing methodologies to detect and repair bad ticks. The estimation sample spans 10 years

of trading data from 06/01/1997 to 29/06/2006, containing 2509 daily observations. The

forecast period runs from 03/01/2007 to 31/12/2010, with 1008 daily samples spanning 4

years. Rolling window forecasts for 22 trading days are carried out based on parameters

of the models estimated in the sampling period.

Figure 5.1.A shows a roller-coaster like price pattern of the S&P 100 index prices

over the past 14 years. An upward price trend lasted 4 years from 1997 to 2000 and

doubled the equity index from around 400 to 800. This buoyant momentum was driven

by strong economic data and technology boom in the United States in the late 1990s.

However, the collapse of the dot-com bubble and September 11th attacks lead to an

overwhelmingly pessimistic market sentiment which dragged the S&P 100 index all the

way down to 400 within 2 years from 2001 to 2002. Since 2003 the stock market recovered

gradually and climbed up consistently for about 5 years supported by stable economic

conditions and strong growth in emerging countries. But since late 2007 a rise in subprime

mortgage delinquencies and foreclosures evolved into a fully-�edged subprime mortgage

crisis, which destroyed �nancial liquidity and investors�con�dence and brought the S&P

100 prices down to almost 300 from 700 in a year. After 2008 a signi�cant amount of

government bail-outs and stimulus shored up the global �nancial system and supported

a rebound of the S&P 100 prices to above 500 at the end of 2010.

Figure 5.1.B presents the monthly volatility of the S&P 100 index using realized vari-

ance sampled at 5-minute frequency. The level of volatility di¤er dramatically throughout

the sample period. From 1997 to 2002 the volatility remained at reasonable levels as the

collapse of the dot-com bubble did not a¤ect the S&P 100 index much, since it did not

contain a large portion of internet stocks. From 2003 to 2007 the volatility was at rel-
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atively low levels driven by stable market conditions. However, from 2008 onwards the

volatility soared up substantially with a spike shown in late 2008, re�ecting the peak of

the 2008-2009 global �nancial crisis.

41 realized estimators introduced in Chapter 2 are calculated for the empirical study.

Table 5.1 shows the summary statistics of the estimators. The largest average is estimated

by RR_30min (a realized range estimator sampled at 30-minute frequency). The measure

gauges the average monthly volatility of the S&P 100 at 6.22%, equivalent to an annual

rate of 21.6%. This is no surprise since RR employs the extreme values occurred in the

sampling period. The smallest mean value is estimated by RK Cubic_5min (a realized

kernel measure with a cubic kernel weight function sampled at 5-minute frequency). The

measure estimates the average monthly volatility at 3.25%, corresponding to an annual

volatility of 11.27%. The variation in volatility estimated by the models is due to their

distinct speci�cations, which interpret and sample volatility in di¤erent ways. This vari-

ation is also noted in previous empirical studies such as in Patton and Sheppard (2009).

None of the estimators have a minimum value that is non-positive, including the realised

kernel estimators, which do not ensure non-negativity of the estimates. The smallest

standard deviation is obtained by the RPV_15min and the largest is the RR_5 minute.

All the realized measures exhibit positive skewness and high kurtosis, therefore do not

follow a normal distribution. This is commonly seen in �nancial time-series data, which

have a high concentration around the mean and a fat tail extending both ends.

Daily VXO data from 06/01/1997 to 31/12/2010 are collected from the Chicago Board

Options Exchange (CBOE). VXO is the ticker symbol for the CBOE Market Volatility

Index, a popular measure of the implied volatility of S&P 100 index based on trading

of S&P 100 (OEX) options. The VXO is generated by the Black-Scholes option pricing

model and calculated from both call options and put options. It is a widely used measure

of market risk and is often referred to as the "investor fear gauge". The implied volatility

is quoted in percentage points; it is the square root of the par variance swap rate for a
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30-day term initiated today. After the monthly volatility is derived, the CBOE convert

the volatility to an annually rate by multiplying the monthly volatility with
p
12. For

example, an annualized VXO of 15 implies that the market believes the S&P 100 prices

will vary around 15% over the coming year. To make the VXO and our realized measures

comparable, we convert both to monthly standard deviation.

In common with parallel research, we �nd that during the sample period the average

VXO, which shows an annualized rate of 23.5%, is greater than the mean of any realized

volatility measures. Kinlay (2005) suggests that, unlike model forecasts, implied volatility

forecasts show evidence of a consistent and substantial bias. The relatively high average

of VXO is caused by a risk premium factor. Option sellers bear signi�cant downside risk

so they need to charge a premium for volatility to pro�t and hedge. Therefore VXO

contains a risk premium that is not incorporated in the realized measures.

Table 5.2 presents the summary statistics of the combinations of realized measures.

Similar to the individual estimators, volatilities estimated by each combination are rescaled

to monthly standard deviations. The largest average is estimated by the regression-based

combination, which estimates the average monthly volatility of S&P 100 at 6.47%, corre-

sponding to an annual volatility of 22.4%. The smallest mean is estimated by the geomet-

ric mean estimator, which gauges average monthly volatility at 4.66%, corresponding to

an annual volatility of 16.14%. Similar to the individual estimators, none of the combina-

tion estimators has a minimum value that is non-positive and all of them exhibit positive

skewness and high level of kurtosis.

5.5 Empirical Results

This section compares the performance of the individual and combination volatility es-

timators in the context of volatility trading. We �rst present the result of statistical

evaluation, which is used as a reference for comparing the individual and combination

volatility estimators. Then we evaluate the economic value of combining a large number
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of individual volatility estimators. Finally, a robustness test is implemented by assessing

the volatility estimators�performance in alternative settings of option-trading strategy.

5.5.1 Statistical Evaluation of Combination Volatility Estimators

Monthly volatility of the S&P 100 index are forecasted by 42 individual and �ve combi-

nation estimators, which are ranked according to their MAE, MSE and AAPE statistics

in Figure 5.2. The 42 individual estimators include the ARFIMA forecasted implied

volatility (VXO hereafter) and 41 intraday-based volatility measures. The combination

estimators combine the 41 individual realized volatility measures using �ve distinct com-

bination methods, namely, equal weighted, geometric mean, regression-based, AIC based

and MIM. For the combination estimators, the implied volatility is not selected as a com-

bination component as we intend to compare the forecast power of the realized estimators

and the implied volatility. The absolute forecast accuracy of an estimator is judged by

comparing its forecasts with actual volatilities, which are approximated by the 5-minute

realized variance (RV_5min) of the upcoming month. The forecast period lasts four years

from 2007 to 2010.

In detail, Figure 5.2 shows that the VXO, implied volatility of the S&P 100 index,

generates unparalleled performance according to all the three statistical criteria, suggest-

ing that implied volatility outperforms the best possible individual or combined realized

estimators. The result is in line with the �ndings of Blair, Poon and Taylor (2001),

and Miller (2003), which show that implied volatility estimates generally provide better

volatility forecast statistically.

Under a rational expectations assumption, market participants use all the available

information to form their expectations about future volatility, and therefore the mar-

ket option price re�ects the market�s �true�volatility forecasts. If the market is weakly

e¢ cient, the market�s forecasts, the implied volatility, should be the best possible fore-

cast given the currently available information. The US stock market, which contains the
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S&P 100 components, is widely believed to be e¢ cient in the weak form (see, Williamson,

1972). The result of statistical evaluation for VXO is therefore consistent with the theory.

Two realized combinations, Regression-Based and MIM, produce the second and third

best results for all the three loss functions, outperforming all the individual realized esti-

mators and suggesting statistical value of combining realized volatility estimators. This

result is in line with the literature (see, for example, Patton and Sheppard, 2009), which

shows that combination estimators often produce better forecast performance compared

with individual forecasts. A well-combined volatility estimator takes the advantage of dis-

tinct information provided by its components, produces forecasts that cannot generally

be out-performed by the best individual component.

5.5.2 Economic Evaluation of Combination Volatility Estimators

The empirical studies presented in this section are designed to examine the economic value

of combining the implied volatility and intraday-based volatility estimators. Two broad

types of forecast combinations are considered. First, 41 simple combination estimators

combine the implied volatility and an individual volatility measure using a regression-

based approach. Second, �ve further combination measure combines the implied volatil-

ity and 41 distinct realized volatility estimators. The �ve further combination estimators

di¤er from those in the statistical evaluation as they now have the implied volatility as a

combination component. Trading performances of volatility trading strategies based on

di¤erent combination forecasts are assessed to determine whether the simple combina-

tion forecasts would provide superior economic value compared with the best individual

volatility estimator, ARFIMA forecasted VXO (VXO hereafter), and whether the trad-

ing performance can be further improved by carrying out further combinations, which

combines a large number of individual volatility forecasts.
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5.5.2.1 Simple Combination of Implied and Realized Volatility

Figure 5.3 shows the simulated trading results of trading strategies based on di¤erent

volatility estimators and implemented on a trading range of 0.25%, which means that a

straddle is bought or sold on day t only if the absolute di¤erence between model-forecasted

volatility and the implied volatility for day t exceeds 0.25%. The model presented in grey

is the benchmark measure, VXO, the best individual estimator, the 41 models in blue are

the simple combination estimators, and the �ve models in orange are further combinations.

Panel C presents the largest win and loss, where the former is the biggest pro�t made by

a single option transaction and the latter the largest loss made by a single trade.

We �rst assess the economic value in combining model-forecasted and implied volatility

by comparing the simple combination estimators with the best single volatility estimator,

VXO. The performance of the further combination estimators will be discussed in the

next subsection.

Panel A of Figure 5.3 lists out the annualized return (in brighter colour) and volatility

(in darker colour) generated by each estimator. The volatility models in Panel A are

ranked by the Sharpe ratios generated, which are shown in brackets after the name of

the corresponding estimator. The benchmark model, VXO, ranks the 28th among the

47 volatility estimators according to the criterion. It generates an annualized return of

12.56% while exhibits volatility of 6.69%, yielding a Sharpe ratio of 1.28.

In contrast, the best performing simple combination measure, the 5-minute realized

range (RR_5min), ranks the 4th with an annual return of 14.64%, volatility of 6.53%, and

Sharpe ratio of 1.63. In fact, 21 simple combination measures, which combine the VXO

and one of the 41 realized estimators, outperform the benchmark model which utilizes

historical VXO information alone. The result indicates that a simple combination of a

realized estimator and the implied volatility is more preferable than the best individual

volatility estimator in terms of economic value.

This �nding contradicts to Poon and Granger�s (2003) suggestion that model predicted
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volatility is unable to add the information already contained in market forecasts. One

possible explanation is that intraday volatility estimators may contain unique information

that is not captured by both the implied volatility and daily volatility measures. A

simple regression based combination of the implied and intraday volatility estimators

could e¤ectively combine the distinct information contained in both, hence providing

better economic performance.

Panel B evaluates the accuracy of directional predications by the percentage of winning

and the percentage of option trades made a pro�t. Generally, the volatility models are

more accurate than a random walk as even the worst performing estimator, 5-minute

sampled realized power variation with Z=1 (RPV_1_5min), has 52.12% of transactions

ended up with a pro�t. The benchmark estimator VXO ranked the 10th with a percentage

of winning of 54.05%, surpassed by 6 simple combination estimators. RPV_1.5_1min is

the best simple combination estimator, which generates positive returns for 54.94% of its

straddle trades.

It is interesting that the accuracy of directional prediction does not always translate

into pro�t. For example, while ranks the 4th in terms of the accuracy of directional

predictions, RPV_1.5_1min is placed the 22nd according to the Sharpe ratio produced.

Thus an estimator with more accurate directional predictions is not guaranteed to out-

perform in terms of less over- or under-prediction. Since the performance of the straddle

trading strategy is particularly based on the size of variation between the forecasted and

actual volatility, accurate directional prediction alone does not guarantee pro�tability.

At last we take a look on the annual volatility generated by the trading strategies.

The RPV_1_60min tops the simple combination category with an annual volatility of

6.49%, smaller than the 6.69% provided by the benchmark model VXO. In this setting a

combination of implied and realized volatilities reduces the risk of the trading strategy. In

summary, a simple combination of implied and realized volatility can generating economic

value that cannot be outperformed by the single best estimator.
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5.5.2.2 Further Combination of Individual Volatility Estimators

The second issue to be analysed is that whether the economic value can be further im-

proved by adopting more complex combination approaches, which combine a large number

of individual estimators. The �ve further combinations applied are the geometric mean,

AIC-based, equal weights, regression-based and the MIM. Ranked by Sharpe ratio, all the

�ve combination models provide superior performance than the simple combinations and

the benchmark VXOmodel. The MIM and regression-based combinations top the ranking

table. By generating an annual return of 17.16% and volatility of 5.88%, the MIM combi-

nation provides the strongest performance with a Sharpe ratio of 2.24. Regression-based

combination also produces a Sharpe ratio exceeding two, signi�cantly higher than the 1.63

obtained by the best single estimator, 60 minute sampled realized range (RR_60min).

This result indicates that further combinations which utilize the information contents

in a variety of volatility estimators form distinct classes can generate signi�cant economic

value in the context of volatility trading. The advantage of carrying out further combi-

nation lies in enriched information. Intraday estimators formed by di¤erent speci�cations

may contain distinct yet relevant information for forecasting future volatility. A well-

combined estimator of di¤erent realized measures and the implied volatility utilizes the

information to enhance its forecasting power in predicting future volatility and producing

better economic value.

Ranked by the percentage of winning trades (shown in Panel B of Figure 5.3), three

further combination estimators, geometric mean, AIC-based and equal weights top the

table with over 55% of trading activities being pro�table, before transaction costs. The

three combinations outperform the best estimator in the simple combination category,

RPV_1.5_1min, which has a percentage of winning of 54.94%. Two further combination

estimators, the regression-based and MIM, lagged behind with a percentage of winning

at 53.37%. Interestingly, MIM and regression-based are the top performers according to

the Sharpe ratio rankings. The result again indicates that accurate directional prediction
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does not always translate into economic value.

Ranked by the annual volatility generated in the trading simulation, three further com-

bination estimators stand out. The MIM, regression-based and geometric mean produce

the smallest volatility with standard deviation of 5.88%, 6.43% and 6.49% respectively.

The best model in the simple combination class, RPV_1_60min has an annual standard

deviation of 6.49%, which is identical to the value for geometric mean. In summary, fur-

ther combination of realized estimators produces higher return, lower volatility and larger

percentage of winning. These empirical results show that there is substantial economic

value in carrying out further combinations.

5.5.3 Estimation Results of the Volatility Models

The left columns in Table 5.4 report the parameter estimates and regression statistics of

selected models. The Numbers in square brackets are the p-values of the corresponding

parameters. The dependent variable of the models is the actual volatility based on 5-

min realized variance. Further combination models, regression-based and MIM, use the

corresponding combination estimators as independent varilabes together with the VXO.

The simple combination model, RV_5min, uses the ARFIMA forecasted RV_5min as

the independent variable alongside the VXO. All estimated parameters are signi�cant

and positive, including those of the realized volatility (RV) and the realized combination

(regression-based and MIM). Highly signi�cant coe¢ cients of the realized combination in

all the further combination models statistically justify the use of intraday information.

5.5.4 Robustness Tests

It is interesting to assess whether consistent trading results can be generated using al-

ternative trading strategies. Figure 5.4 presents the empirical performance of an option

trading strategy based on a relatively narrow trading range of 0.2%, which is a �ltering

strategy where each agent trades only when the absolute di¤erence between the model-
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forecasted volatility for day t and the implied volatility in day t is greater than 0.2%. Two

further combination models, the MIM and regression-based again top the ranking table

with Sharpe ratios of 2.15 and 1.82, respectively. However, other models in the combina-

tion group, the AIC-based, equal weights and geometric mean are no longer superior to

the best simple combination estimator in terms of Sharpe ratio produced. RPV_1_1min

outperforms the three further combination models by generating a Sharpe ratio of 1.6.

Similar to the previous case, the benchmark model VXO ranks the 38th with a Sharpe

ratio of 1.02 only, outperformed by most of the simple and further combination models.

Ranked by annual volatility generated in the option trading simulation, MIM again

produces the top result with a standard deviation of 5.82%. The best model in the

simple combination class, RR_1min, has an annual standard deviation of 6.38%, which

outperforms all the four other further combination estimators.

Although the further combinations, MIM and regression-based, are again the top

models in terms of return produced, standard deviation generated, and the number of

winning trades made, they are no longer the best performers according to the percentage

of winning (see Panel B of Figure 5.4). Simple combinations such as the 1-minute sampled

Tukey-Hanning realized kernel estimator (RK_TKH_1min) and RR_5min produce a

percentage of winning over 55%. All the models in evaluation once again achieve a

percentage of winning over 50%, showing that the estimators are better suited to produce

directional forecasts than a random walk model.

Figure 5.5 shows the performance of trading strategies based on a relatively wide

trading range of 0.3%. Two further combination models, MIM and regression-based once

again outperform all other volatility estimators by producing Sharpe ratios of 1.81 and

1.32, respectively. However, these Share ratios are smaller than previous values obtained

from trading strategies with smaller trading ranges. This is because the higher the trading

range, the larger the di¤erence between model-forecasted volatility and VXO is required

to generate a trading signal. Therefore fewer transactions will be implemented based
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on a wide trading range, and consequently inactive trading may lead to lower pro�t.

Three other further combinations, the AIC-based, equal weights and geometric mean are

outperformed by most of the simple combination models. The benchmark model VXO

performed slightly better than in the case of narrow trading range by ranking the 13th

with a Sharpe ratio of 0.62.

Finally we choose one of the top ranking further combination estimators, the regression-

based, to study the model performance under di¤erent trading ranges. Table 5.3 lists out

information of the Sharpe ratio, number of winning trades, percentage of winning, an-

nual return and volatility generated with di¤erent trading ranges. The table shows a bell

shaped performance pattern in terms of Sharpe ratios, in which the ratios are smaller at

both the low and high end of the trading range. In addition, the pattern of annual returns

follows a similar shape to the Sharpe ratio one. The returns are lower at both ends of

the trading range, which are 13.21% in the case of a 0.05% trading range and 9.6% in the

case of a wide range at 1%. The highest annual return is obtained with a medium trading

range at 0.5%, which is 17.84%.

These Sharpe ratio and return variations may be caused by a trade-o¤ between the

accuracy of prediction and frequency of trading. The narrower the trading range, the

more options will be bought or sold, incurring more inaccurate predictions and higher

transaction costs. In contrast, the wider the trading range, the lower the number of

options will be bought or sold, leading to less pro�table opportunities. In this study a

trading range between 0.2% and 0.5% provides the right balance in regards to the trade-o¤

by producing the highest Sharpe ratio.

The riskiness of the strategy (annual volatility of returns) decreases as trading range

increases. This is because when we increase the trading range, we become implicitly

more cautious in implementing an option transaction. A straddle is bought or sold only

when the discrepancy between markets�perceived volatility and our forecasted volatility

is signi�cantly large in the case of a wide trading rage, which in turn reduces the risk of
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the trading strategy.

By observing the output of the empirical tests with di¤erent trading strategies, we

provide three main �ndings. First, two further combination models, MIM and regression-

based, consistently outperform all other estimators according to annualized return, stan-

dard deviation and the number of winning trades, showing signi�cant economic value

in the context of volatility trading. Second, there are always a few simple combination

models capable of providing superior performances compared with the benchmark model

VXO, the best single estimator. Hence, employing implied or realized volatilities alone

cannot outperform their combinations judged by economic value. Finally, within trading

ranges from 0.05% to 1%, all the combination models generate signi�cant positive returns

after hedging and transaction costs. This result further con�rms the economic value of

realized combination.

5.6 Conclusion

This chapter presents an empirical study on the economic value of combining intraday-

based and implied volatility estimators. Both simple combinations of the implied volatility

and an intraday volatility estimator, and further combinations of the implied volatility

and 41 intraday estimators are considered. The sample spans 14 years of price data for

S&P 100 index from 06/01/1997 to 31/12/2010. The economic value of the individual

estimators and their combinations are assessed out-of-sample according to their perfor-

mances based on straddle option trading strategies. A brief statistical evaluation on the

individual and combination estimators has also been implemented.

The empirical study contributes to the literature in two directions. First, we address

the research question that whether forecast combination can outperform the best pos-

sible single volatility measure in terms of economic value, after transaction cost being

deducted. Second, we investigate if the �forecast combination puzzle�, which refers to the

phenomenon that a naive equal weighted forecast combination turns out to be di¢ cult
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for most sophisticated competing combination models to beat, exists in a realized con-

text by comparing the volatility trading performance of the simple and further realized

combination models.

Our �rst �nding is that, in general, a simple combination of a realized estimator

and implied volatility cannot be outperformed by the best single estimator, the implied

volatility, in terms of economic value. The VXO, implied volatility of S&P 100 index, is

surpassed by a large number of simple and further combination estimators in terms of

the Sharpe ratio generated. This is because an intraday volatility estimator may contain

distinct information that is not captured by implied volatility, and a simple combination

of the two could take advantage of the relevant information contained in both and leads

to better performance economically.

In addition, two further combination models, MIM and regression-based which com-

bines the implied volatility and 41 individual intraday volatility estimators, outperform

all other estimators consistently according to the annualized return, standard deviation

and Sharpe ratio criteria. This result indicates that more sophisticated forecast combina-

tions, by bene�ting from the information contained in di¤erent volatility estimators form

distinct classes, are able to produce signi�cant economic value judged by the performance

of volatility trading.

Finally, the statistical evaluation results are largely in line with the economic ones.

Statistically the VXO, MIM combination, and regression-based combination top the rank-

ing table according to their out-of-sample performances. In terms of economic value the

further combination models, MIM and regression-based, which both have the VXO as a

component, also generate the best performance.

In conclusion, the empirical results shown in the chapter suggest that there is economic

value in combining di¤erent volatility estimators introduced in the literature to date. The

economic value is robust to hedging and transaction costs and further proves the economic

bene�t in combining realized and implied volatility measures.
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TABLE 5.1 
Summary Statistics of 41 Realised Measures 

 

  Mean  Median  Minimum  Std. Dev.  Skewness  Kurtosis 

RV_1min 1.042 0.553 81.096 0.040 2.279 16.373 

RV_5min 1.298 0.719 73.618 0.036 2.455 11.690 

RV_15min 1.338 0.687 54.198 0.034 2.571 8.137 

RV_30min 1.303 0.660 54.922 0.019 2.555 8.495 

RV_60min 1.109 0.545 58.286 0.007 2.116 10.324 

RR_1min 1.041 0.551 81.268 0.041 2.278 16.459 

RR_5min 1.290 0.716 74.491 0.034 2.413 12.115 

RR_15min 1.311 0.681 54.822 0.029 2.455 8.319 

RR_30min 1.224 0.643 59.126 0.016 2.284 9.363 

RR_60min 1.049 0.515 28.824 0.002 1.797 6.235 

BPV_1min 0.909 0.473 81.786 0.034 2.247 17.659 

BPV_5min 1.159 0.621 51.366 0.023 2.200 9.162 

BPV_15min 1.122 0.583 55.998 0.026 2.238 9.514 

BPV_30min 1.031 0.521 37.668 0.016 2.033 8.597 

BPV_60min 0.739 0.347 26.260 0.002 1.439 8.268 

RK_2nd_1min 1.286 0.717 96.045 0.037 2.660 16.494 

RK_2nd_5min 1.289 0.678 64.302 0.039 2.487 9.568 

RK_Bartlett_1min 1.291 0.723 98.165 0.036 2.690 16.881 

RK_Bartlett_5min 1.296 0.683 68.494 0.038 2.521 10.107 

RK_Cubic_1min 1.298 0.715 83.445 0.037 2.575 13.262 

RK_Cubic_5min 1.268 0.660 57.019 0.028 2.432 8.877 

RK_Epa_1min 1.302 0.727 92.632 0.035 2.651 15.448 

RK_Epa_5min 1.292 0.681 55.917 0.031 2.434 8.462 

RK_Parzen_1min 1.287 0.705 76.504 0.038 2.509 11.917 

RK_Parzen_5min 1.261 0.667 57.888 0.034 2.398 9.034 

RK_Th_1min 1.306 0.728 94.269 0.035 2.665 15.685 

RK_Th_5min 1.277 0.671 56.915 0.035 2.438 8.734 

RPV_0.5_1min 2.593 2.442 9.049 0.851 0.733 1.925 

RPV_0.5_5min 0.890 0.856 2.700 0.268 0.247 1.376 

RPV_0.5_15min 0.399 0.383 1.200 0.122 0.113 1.336 

RPV_0.5_30min 0.239 0.229 0.664 0.080 0.070 1.279 

RPV_0.5_60min 0.154 0.147 0.478 0.048 0.048 1.248 

RPV_1_1min 1.592 1.332 17.462 0.282 1.036 4.139 

RPV_1_5min 0.897 0.776 7.691 0.151 0.552 3.136 

RPV_1_15min 0.535 0.457 4.296 0.088 0.338 2.989 

RPV_1_30min 0.381 0.326 2.630 0.055 0.246 2.908 

RPV_1_60min 0.294 0.245 2.404 0.028 0.203 3.142 

RPV_1.5_1min 1.118 0.771 35.099 0.101 1.391 8.345 

RPV_1.5_5min 1.017 0.734 23.353 0.090 1.138 6.047 

RPV_1.5_15min 0.804 0.561 15.324 0.065 0.920 5.197 

RPV_1.5_30min 0.677 0.471 11.571 0.032 0.787 5.081 
 

Notes: The table presents basic summary statistics on the 41 different realized measures considered in the empirical 

study. RV stands for realized variance, RR stands for realized range, BPV stands for realized bi-power variation, RPV 

stands for realized power variation, and RK stands for realized kernel. 1-60min denotes the corresponding sampling 

frequency. 
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TABLE 5.2 
Summary Statistics for the Combinations of Realized Measures 

 

 Equal Weights Geometric Mean Regression Based AIC Based MIM 

 Mean 4.955 4.660 6.468 3.935 6.405 

 Median 4.254 4.117 6.185 3.494 6.118 

 Maximum 50.696 33.482 20.909 27.611 21.349 

 Minimum 1.298 0.000 2.172 1.109 -3.928 

 Std. Dev. 3.166 2.689 2.210 2.075 2.209 

 Skewness 4.122 2.751 1.601 2.893 1.616 

 Kurtosis 33.447 16.779 8.207 18.139 8.438 
 

Notes: The table presents basic summary statistics on the 5 different realised combinations considered in the empirical 

study. 

 

TABLE 5.3 
Performance of the G&B Combination with Different Trading Ranges 

 

Granger & Bates Trading Range 

 0.05% 0.25% 0.5% 0.75% 1% 

Sharpe Ratio 1.34 2.12 2.13 1.34 0.92 

Annual Return 13.23% 17.62% 17.84% 12.63% 9.60% 

Annual Volatility 6.95% 6.43% 6.32% 6.16% 6.07% 

No. of Winning Trades 167 159 132 71 40 

% Winning 51.09% 53.37% 58.33% 56.80% 61.54% 
 

Notes: The table lists out information of the Sharpe ratio, number of winning trades, the percentage of winning, annual 

return and volatility with different trading ranges. The number of winning trades is the total number of profitable option 

deals made. The percentage of winning is the percentage of option trades made a profit. The annual return is the 

annualized profit rate between the 4 years trading period and the annual volatility is the annual standard deviation of the 

returns produced by the option strategies.   

 
TABLE 5.4 

Estimation Result and Robustness of Selected Models 

 

  Regression-Based 

 

MIM 

 

RV_5min 

 𝑐 0.494 [0.000] 0.731 [0.000] 0.854 [0.000] 

𝑣𝑥𝑜 0.754 [0.000] 0.857 [0.001] 0.853 [0.000] 

𝑐𝑜𝑚𝑏𝑖. 0.177 [0.000] 0.071 [0.000] - - 

𝑟𝑣 - - - - 0.041 [0.001] 

       �̅�2 0.837 0.833 0.833 

S.E. 1.099 1.112 1.112 

Log 𝐿 -5285 -5328 -5328 

DW 2.288 2.107 2.196 

AIC 3.027 3.051 3.052 

Obs 2993 2993 2993 

Notes: The table provides estimation results of selected forecasting models. 𝑐 represents the intercept, 𝑣𝑥𝑜 represents 

the coefficients of the ARFIMA forecasted VXO. 𝑐𝑜𝑚𝑏𝑖. represents the coefficients of the combination estimator. 𝑟𝑣 

represents the coefficient of the realized volatility. The upper panel reports the resulting parameter estimates, together 

with robust standard errors in parentheses and p-values in square brackets. The lower panel reports the corresponding 

regression outputs. 
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FIGURE 5.1 
Price and Volatility Patterns of the S&P 100 Index 

 

 
A. S&P 100 Price 

 

 
B. S&P 100 Volatility 

 

Notes: The figure plots the S&P100 index price and volatility over the period January 1997 to December 2010. The 

volatility is calculated using realized volatility based on 5-minute calendar-time trade prices, converted to monthly using 

the formula 𝜎𝑡 = √22 × 𝑅𝑉_5𝑚𝑖𝑛. 
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FIGURE 5.2 
Statistical Evaluation of the Individual Measures and Their Combinations 

 

Notes: RV stands for Realized Volatility, RR for Realized Range, RBP for Realized Bi-power Variation, RPV for Realized 

Power Variation and RK for Realized kernels. The 6 RK specifications are Barlett (BAR), Epanechnikov (Epa), 2nd Order 

(2nd), Cubic (CUB), Parzen and Tukey-Hanning (TKH). Bars in ∎ show corresponding test statistics for individual realized 

measures, and bars in ∎ show that of the combination estimators. VXO is the S&P 100 implied volatility. 
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FIGURE 5.3 
Empirical Performance of Option Strategies (0.25%) 

 

Notes: The simulated trading results are based on different volatility estimators and implemented on a trading range of 

0.25%. Models shown in ∎ and ∎ are individual realized measures, and shown in ∎ and ∎ are combination estimators. 

VXO is the benchmark estimator, implied volatility of the S&P 100 index. 5.3.A lists out annualized return (in darker color) 

and volatility for each estimator. The annual return is the annualized profitability during the 4 years trading period and 

the annual volatility is the standard deviation of the returns produced by the option strategies. The figure is ranked by 

Sharpe ratio, which is shown in brackets after the name of the corresponding estimator. 5.3.B shows the percentage of 

winning, which is the percentage of option trades made a profit. 5.3.C presents the largest win and loss, where the largest 

win is the largest profit made by a single trade and the largest loss is the largest loss made by a single transaction.  
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FIGURE 5.4 
Empirical Performance of Option Strategies (0.20%) 

 

Notes: The simulated trading results are based on different volatility estimators and implemented on a trading range of 

0.2%. See note to Figure 5.3. 
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FIGURE 5.5 
Empirical Performance of Option Strategies (0.30%) 

 

Notes: The simulated trading results are based on different volatility estimators and implemented on a trading range of 

0.3%. See note to Figure 5.3. 
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CHAPTER 6: CONCLUSION

6.1 Concluding Remarks

Volatility modelling and forecasting has been one of the most exciting and successful

areas of research in �nancial econometrics in recent decades. This thesis provides a

comprehensive investigation on the economic or practical value of volatility forecasting,

with a distinct focus on the bene�t of utilizing intraday (co)variation estimators. The

thesis presents three empirical studies covering the three main practical applications of

volatility forecasting: portfolio optimization, risk management and volatility trading. In

general each empirical work follows a similar structure. First, univariate (variance) or

multivariate (covariance matrix) intraday volatility estimators are constructed using real

market data. Second, the intraday volatility estimators are used to augment univariate

GARCH or multivariate GARCH class models in order to extract the economic value of

intraday information. Finally, this economic value (if any) is compared and assessed by

one of the three aforementioned economic criteria.

The empirical research is motivated by three main factors. First, given the central

role of volatility forecasting in �nancial economics and practical applications, it is always

tempting to search for a better volatility model. The second reason is that while the

statistical accuracy of volatility forecasts has been analysed extensively, the economic

value of the predictions is a relatively new area of interest. Since statistical accuracy

does not always translate into pro�t in the real market, it is arguably more e¢ cient

to evaluate volatility forecasts directly in an economic framework. Furthermore, most

empirical studies with economic value in mind focus on only daily or lower frequency

data, leaving an enormous space for analysing the topic in a realized context.

We start by analysing the economic value of incorporating a realized covariance es-

timator into standard daily return based multivariate GARCH (MGARCH) models in

the context of volatility timing. Although a number of studies have provided evidence
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in favour of MGARCH speci�cations, the literature that makes use of intraday infor-

mation for volatility timing is based only on nonparametric rolling window covariance

estimators. Chapter 3 seeks to complement the literature in this respect. We deploy

a dynamic optimal-weight portfolio strategy based on one-day-ahead covariance matrix

forecasts from a model-free EWMA approach and three competing MGARCH models,

BEKK, CCC and DCC. Each of these covariance models are augmented with realized co-

variance matrix to construct the realized covariance models, REWMA, RBEKK, RCCC

and RDCC. The analysis is applied to a portfolio of three indices, NASDAQ 1000, Russell

2000 and the CRB commodity index.

An economic loss function based mean-variance portfolio optimization strongly sug-

gests that intraday based covariance models outperform their daily return based counter-

parts. The ranking of realized covariance models depends on the decision-maker�s port-

folio rebalancing strategy. The nonparametric benchmark model, realized exponential

weighted moving average (REWMA), is well suited for time-�xed rebalancing strategies,

while more sophisticated parametric realized MGARCH (RMGARCH) models are better

choices for time-varying rebalancing strategies. In general the realized CCC approach

with a volume-driven rebalancing strategy produces the highest economic value, which is

quanti�ed as the maximum annualized fee in basis points that a representative investor

would be willing to pay in order to switch from competing volatility estimators. Our

results in Chapter 3 provide further evidence, which is new in the context of covariance

forecasting, that realized covariance models, especially those sophisticated parametric

ones, do have incremental economic value compared with volatility speci�cations based

on data sampled at lower frequencies.

Another important practical application of volatility forecasting is risk management.

The literature has evaluated both single index (univariate) and portfolio (multivariate)

volatility models in terms of the forecast power of value-at-risk (VaR) forecasts. However,

the univariate and multivariate model comparison has yet to be addressed in a high-

151



frequency context. Building on the RGARCH (realized GARCH) models proposed by

Fuertes, Kalotychou and Izzeldin (2009) and the RMGARCHmodels studied in Chapter 3,

Chapter 4 complements the literature by comparing the practical value of intraday based

single index and portfolio models through the lens of VaR forecasting. VaR predictions

are generated from standard daily univariate or multivariate GARCH class models, and

GARCH class models extended with ARFIMA forecasted realized measures. Out-of-

sample VaR predictions are assessed by a number of conditional coverage tests. Two

research questions are addressed in the chapter. The �rst one is that whether realized

volatility models can signi�cantly improve the prediction power of classic daily GARCH

class models. The second one is that, in a high-frequency context, which group of forecasts,

single index or portfolio volatility models, delivers the best VaR prediction.

The empirical results provide further support for realized volatility estimators through

the angle of VaR prediction, where the intraday based volatility models outperform their

daily counterparts by providing more adequate VaR forecasts for a prolonged out-of-

sample forecasting period. With regard to the univariate and multivariate comparison,

we �nd that both the realized single index and realized portfolio models generate ade-

quate VaR predictions. However, neither of them is statistically superior based on the

backtesting results. The realized portfolio models provide more accurate coverage ratio

while the realized single index speci�cations show smaller average and maximum absolute

deviation of violations. Nevertheless, given the parsimonious nature of the realized single

index models, they are probably more suited for forecasting VaR in daily practices.

Builds on the empirical study of realized univariate and multivariate volatility models

in Chapter 3 and 4, Chapter 5 moves one step further by analysing forecast combination.

The forecasting performance of a number of intraday-based realized volatility estimators,

implied volatility and combinations of them are assessed in a volatility trading framework.

Volatility forecast are generated by the ARFIMAmodel for each volatility estimator. Eco-

nomic gain of a volatility estimator is assessed through the return accrued using volatility

152



trading strategies based on the corresponding volatility forecasts. The study is applied to

14 years of tick-by-tick data of S&P 100 index and its daily option prices. Evaluations are

made on two fronts. First, we are interested in whether simple combination models, which

combines a realized volatility estimator and implied volatility, can outperform the best

individual volatility measure. Second, can further combination models, which combine

42 individual volatility estimators from 6 distinct classes of speci�cations, provide further

economic gains compared with simple combination models.

The test results show that, in general, a simple combination of a realized estimator

and implied volatility cannot be outperformed by the best single estimator in terms of

economic value. A realized estimator may contain unique information that is not captured

by implied volatility, a combination of the two can bene�t from the relevant information

provided by both measures. In addition, two further combination models, the multiple

indicators model (MIM) and regression based, outperform all other estimators consistently

according to annualized return, standard deviation and Sharpe ratio generated. Hence

there is signi�cant economic value in combining a variety of volatility estimators sampled

at di¤erent time frequencies.

In conclusion, the thesis provides a comprehensive study of economic value of intraday

based volatility estimators. The test results of all three empirical works show signi�cant

economic value when intraday information is incorporated into the volatility forecasting

process. The �ndings are proved to be robust to transaction cost and dataset changes.

Furthermore, the result is valid on both the univariate and multivariate volatility mod-

elling frameworks. Furthermore, Chapter 5 shows that the economic value can be further

improved via combining realized volatility estimators from distinct types of speci�cations.

6.2 Further Research

It is important to recognize the complexity of future volatility of asset returns in the

sense that return variations are determined by the interaction of economic fundamentals
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and a range of unobserved factors �political changes, natural disasters, and physiological

attributes could equally determine the magnitude of asset price swings. The search for

better approaches to forecast volatility and, more broadly, to deploy volatility forecasts

in practical applications such as portfolio optimization, risk management and volatility

trading, will almost surely remain a challenging yet exciting area of research.

The results of our empirical studies point to some interesting directions for future

study. One possibility is to evaluate newly proposed intraday (co)variation estimators

to see whether forecasting accuracy can be further improved. For instance, a number

of novel realized covariance matrix estimators have been introduced over the past two

years. Estimators addressing both the non-synchronicity and the microstructure noise

have been proposed by Zhang (2010), Barndor¤-Nielsen, Hansen, Lunde and Shephard

(2011) and Ait-Sahalia, Fan and Xiu (2010). Most recently, Park and Linton (2012)

propose a new estimator of multivariate ex-post volatility that is robust to microstructure

noise and asynchronous data timing. The method is based on Fourier domain techniques,

which have been widely applied in discrete time series modelling. The proposed Fourier

Realized Kernel (FRK) estimator is shown to outperform the realized covariance estimator

especially when two assets are traded very asynchronously and with di¤erent liquidity

and when estimating the high dimensional integrated covariance matrix. It would be

interesting to see whether these newly proposed realized estimators would further improve

the economic value of the realized volatility models.

In addition, instead of incorporating realized volatility into the standard volatility

models, one can add other pieces of intraday information into the speci�cations. For

instance, intraday trading volumes may possess distinct information in revealing future

volatility. In this area, the multiplicative error model (MEM) introduced by Engle (2002)

serves as a workhorse for the modelling of non-negative, serially dependent intraday data.

MEM estimates its parameters over long estimation horizon in order to increase estimation

e¢ ciency. The model performs well in modelling �nancial duration data and intraday
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trading volumes, see, e.g., Manganelli (2005), Brownlees et al. (2011) and Hautsch et al.

(2011), among others. Most recently, Hardle et al. (2012) propose a local adaptive MEM

accommodating time-varying parameters. A data-driven optimal length of local windows

is selected, yielding adaptive forecasts at each point in time. By analysing one-minute

cumulative trading volumes of �ve large NASDAQ stocks in 2008, they show that a local

window of approximately 3 to 4 hours are reasonable to capture parameter variations while

balancing modelling bias and estimator e¢ ciency. These intraday volume estimators could

be augmented into the realized models to provide an extra layer of information.

Last but not least, another potential avenue is to incorporate realized volatility esti-

mators into more sophisticated GARCH class or alternative classes of volatility models.

For example, Aielli (2011) show that the DCC large system estimator can be inconsis-

tent, and that the traditional interpretation of the DCC correlation parameters can led

to misleading conclusions. The author suggests a more tractable dynamic conditional

correlation model (cDCC), which reformulates the correlation driving process of the DCC

model. Tested with real data, he �nds that the cDCC multi-step-ahead correlation fore-

casts have been proven to perform equally or signi�cantly better than the corresponding

DCC forecasts. With more sophisticated (co)variation models, the economic value of

intraday data could be further improved.
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Appendix 3.1 Index Explanation  

 

Nasdaq-100 Index 

The index began in 1985 and consists of 100 of the largest US and international 

non-financial companies listed on the NASDAQ stock exchange. The components 

are weighted based on their market capitalization with certain rules capping the 

influence of the largest components. The index is rebalanced in December every 

a year.  

     

Russell 2000 Index 

The index is commonly regarded as the benchmark for "small-cap" mutual funds. 

It tracks the performance of the small-cap segment of the U.S. equity universe. 

The index includes about 2000 of the smallest securities based on a combination 

of market cap and current index membership. The index is rebalanced annually 

to ensure larger stocks do not distort the representation of the true small-cap 

opportunity set.  

     

Reuters-CRB Index 

The Reuters-CRB Index (CCI) is a commodity price index established by 

Commodity Research Bureau in 1957. It currently consists of 19 commodities as 

quoted on the NYMEX, CBOT, LME, CME and COMEX exchanges. The commodities 

are classified into 4 groups, each with different weightings. These groups are 

petroleum based products, liquid assets, highly liquid assets and diverse 

commodities. 
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FIGURE A.3.2.1 
Covariance Ranking • 12% Target Return, Return-Driven Rebalancing with a 20% Threshold 

Notes: We rebalance the portfolio on day 𝑡 if the overall percentage change in returns exceeds 20% on day 𝑡 − 1. See note to Figure 3.3. 
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Appendix 3.2 Additional Covariance Ranking Figures 
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FIGURE A.3.2.2 
Covariance Ranking • 12% Target Return, Volume-Driven Rebalancing with a 50th Percentile 

Notes: We rebalance on the day 𝑡 if transaction volume on day 𝑡 − 1 exceeds the average of the in-sample period. S&P500 volume is used as a volume proxy since it is more representative of the market the 

three indices we have. See note to Figure 3.3. 
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FIGURE A.3.2.3 
Covariance Ranking · 8% Target Return, Daily Rebalancing 

Notes: Each day the optimal portfolio weights are allocated to minimize conditional volatility subject to a target return of 8%. See note to Figure 3.3.  
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FIGURE A.3.2.4 
Covariance Ranking · 16% Target Return, Daily Rebalancing 

Notes: Each day the optimal portfolio weights are allocated to minimize conditional volatility subject to a target return of 16%. See note to Figure 3.3.  
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FIGURE A.3.2.5 
Covariance Ranking · 12% Target Return, No Short-Selling, Daily Rebalancing 

Notes: The figure summarizes the model performances under a target return strategy with a no short-selling constraint. See note to Figure 3.3.  
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