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Partially Fixed Structure Determinantal Assignment
Problems

John Leventides, Nicos Karcanias and Maria Livada

Abstract—We deal with the study of the Determinantal Assign-
ment Problem (DAP) when the parameters of the compensator
are not entirely free, but some of them are fixed. The problem
is reduced to a restricted form of an exterior algebra problem
(decomposability of multi-vectors) which is referred to as Partial
Decomposability problem. We study this problem and in case
that this problem has no solution, we examine the problem
of approximate partial decomposability. We treat the problem
of exact or partial decomposability into a vector and a multi-
vector of lower dimension. If this procedure is repeated then
this results in an approximation of the initial multi-vector into
a decomposable vector. The approximation of a vector by an
optimal decomposable multi-vector is a non linear procedure and
has been solved completely using the Power Method. The method
developed in this paper although it produces a sub- optimal
solution, can be used alternatively for the solution of DAP or the
Approximate DAP, as a shorter and easier approach, because it is
based on known tools as the Singular Value Decomposition (SVD).
We apply these results to treat the Restricted - Approximate
Decomposability problem, which leads to approximate solutions
to the pole placement and zero assignment problems.

Index Terms—Algebraic Control, Pole Assignment, Control
Systems Design.

I. INTRODUCTION

The Determinantal Assignment Problem (DAP) has
emerged as the abstract problem to which the study of pole,
zero assignment of linear systems may be reduced [4], [7],
[6], [8]. The different versions of DAP have been introduced
as the abstract unifying descriptions of frequency assignment
problems (pole,zero) [12] that arise in linear systems theory.
This problem has been treated so far under the conditions that
the compensators are not restricted. The aim of this paper is
to provide a methodology for handling the case of partially
fixed compensators. The multilinear nature of DAP suggests
that the natural framework for its study is that of exterior
algebra [1], [2]. The study of DAP [4] may be reduced to a
linear problem of zero assignment of polynomial combinants
[11] and a standard problem of multi-linear algebra, that
is the decomposability of multi-vectors [1]. The solution of
the linear subproblem, whenever it exists, defines a linear
space in a projective space Pρ(R) whereas decomposability
is characterised by the set of Quadratic Plücker Relations
(QPR), which define the Grassmann variety of Pρ(R) [3].
The general Determinantal Assignment Problem (DAP) is
expressed as finding a constant matrix H of dimension l×m
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such that for an appropriate system description M(s)∈Rm×l [s],
l ≤ m we have:

det(H ·M(s)) = f (s) (1)

where f (s) is a desirable polynomial. Thus, the different
classes of DAP are clearly of multi-linear nature, as far as the
parameters in H and thus the natural setting for its study is that
of exterior algebra [1], [2]. Let hT

i , be the rows of H ∈ Rl×m

and mi(s) be the columns of M(s), i = 1,2, ...l respectively.
Then, if we denote by

Cl(H) = hT
1 ∧ ...∧hT

l = hT ∈ R1×q,q =

(
m
l

)
Cl(M(s)) = m1(s)∧ ...∧ml(s) = m(s) ∈ Rq[s]

then the Binet-Cauchy Theorem [2] leads to:

f (s) =Cl(H) ·Cl(M(s)) = 〈h,m(s)〉= ∑
ω∈Ql,m

hω mω(s) (2)

where 〈•,•〉 denotes scalar product, ω = (i1, ..., il) ∈ Ql,m [2]
and hω ,mω are the entries in h, m(s) respectively. Note that
hω is the l× l minor of H, which corresponds to the ω set of
columns of H and thus is a multi-linear alternating function
of the hi j entries of H.
Let z ∈ ∧mRn, then the problem of decomposability of z is to
find zi ∈ Rn, i = 1,2, ...,m such that:

z = z1∧ z2∧ . . .∧ zm

In this case we call z decomposable. For a multi-vector z to
be decomposable there is a necessary and sufficient condition
which states that z must satisfy certain quadratic relations
called Quadratic Plücker Relations (QPR), which characterise
the Grassman variety of the corresponding projective space
[1], [3]. The general DAP assumes that the row vectors of
H are free. However, for most of the applications part of the
rows of H are fixed and this leads to the problem of partial
decomposability considered here. We make the assumption
that l is different than 1 or m− 1. In these two cases the
DAP problem is reduced to a linear problem and its solutions,
as well as the restricted versions of DAP are trivial.
In fact, if l is different than 1, or m−1 a generic z ∈ ∧mRn is
not decomposable; however, it might be possible to decompose
a vector into a product of lower dimensional multi-vectors in
which case we refer to partial decomposability. The simplest
case of partial decomposability of a vector z ∈ ∧mRn is to
decompose it as:

z = zm−1∧ z1
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where zm−1 ∈ ∧m−1Rn and z1 ∈ Rn. In case that this is not
possible we approximate z by zm−1 ∈ ∧z1, i.e. we solve the
minimization problem:

min
∥∥z− zm−1∧ z1

∥∥ , where zm−1 ∈ ∧
m−1Rn and z1 ∈ Rn (3)

This is the approximate partial decomposability problem. Here
we solve this problem completely by matrix methods, i.e.
we find the closest multi-vector of the form zm−1 ∧ z to
z. For the solvability of this problem two matrices related
to the multi-vector z, the so-called Grassmann and Hodge-
Grassmann matrix [10] play a crucial role.
The singular value decomposition of these matrices plays an
important role to the solution of the problem [16]. In fact,
the maximum singular value and the corresponding singular
vectors can be used to construct the solution. Note that Grass-
mann matrices [5],[10] as opposed to tensor unfolding matrices
presented in [14], [15] are unique and do not depend on the
mode used to define the unfolding. Furthermore Grassmann
matrices incorporate the skew symmetry of the tensor as well
as information of how exterior product operates and in this
respect are more suitable for tensor representations in the
Grassmann algebra [10].
The results from the partial decomposition may be used to
consecutively construct a decomposable multivector approxi-
mating z. This does not constitute an optimal but a suboptimal
solution, which may be used as a starting point for the
construction of the best decomposable approximation.
We apply these results to treat the Restricted - Approxi-
mate Decomposability problem, which leads to approximate
solutions of pole placement and zero assignment problems
[10],[13].

II. THE PROBLEM OF EXACT PARTIAL DECOMPOSABILITY

Here we consider the problem that given a z ∈ ∧mRn to
derive conditions that z can be written as z = zm−1∧ z1 where
zm−1 ∈∧m−1Rn and z1 ∈Rn. We will use the following lemma:

Lemma 1: [14] The following statements are equivalent:
a) z = zm−1∧ z1, z1 ∈ Rn

b) z1∧ z = 0, z1 ∈ Rn

Definition 1: Given z ∈ ∧mRn define the Grassmann matrix
[10] Φm

n (z) as the representation matrix of the map [10]:

T : Rn→∧m+1Rn

such that T (z1) = z1∧ z.
By utilizing this matrix and Lemma 1 we have the following
results for partial decomposability.

Theorem 1: [18] [10] A multi-vector z ∈ ∧mRn is partially
decomposable as:

z = zm−1∧ z1 (4)

with zm−1 ∈ ∧m−1Rn and z1 ∈Rn if and only if the following
equivalent statements are true:

a) rank(Φm
n (z))< n

b) det(Φm
n (z)

T ·Φm
n (z)) = 0

c) Φm
n (z) has at least one singular value equal to zero.

Proof 1: Due to lemma 1 z is written as in (4) is equivalent
to:

Φ
m
n (z) · z1 = 0

and departing from this, Theorem is evidently proved.
Corollary 1: If multi-vector z ∈ ∧mRn is partially decom-

posable as z= zm−1∧z1 then z1 may be constructed as the right
singular vector corresponding to 0 singular value of Φm

n (z).

III. THE APPROXIMATE PARTIAL DECOMPOSABILITY
PROBLEM

Consider the problem:

min
∥∥z− zm−1∧ z1

∥∥ , where zm−1 ∈ ∧
m−1Rn and z1 ∈ Rn (5)

One can easily see [13] that this is equivalent to solve:

min
zm−1 ∈ ∧m−1Rn

z1 ∈ Rn

‖z‖2−
〈
z,zm−1∧ z1

〉2∥∥zm−1∧ z1

∥∥2

Therefore we may solve the problem (M1)

max
zm−1 ∈ ∧m−1Rn

z1 ∈ Rn

〈
z,zm−1∧ z1

〉
subject to

∥∥zm−1∧ z1

∥∥= 1.

(6)
We denote the solution of (6) or (M1) a pair (σ ,zm−1 ∧
z1), where zm−1 ∧ z1 is the multi-vector that maximizes〈
z,zm−1∧ z1

〉
and σ is the attained maximum value.

If
(
σ ,zm−1∧ z1

)
is a solution of the latter (M1) then(√

‖z‖2−σ2,zm−1∧ z1

)
is a solution of the original problem

(5). To solve (M1) we require the following Lemma:
Lemma 2: If

∥∥zm−1∧ z1

∥∥ = 1, zm−1 ∈ ∧m−1Rn, z1 ∈ Rn

then there exists z
′
1 ∈ Rn, z

′
m−1 ∈ ∧m−1span

[
z1

]⊥ such that

z
′
m−1∧ z

′
1 = zm−1∧ z1 and

∥∥∥z
′
m−1

∥∥∥= ∥∥∥z
′
1

∥∥∥= 1.

Proof 2: Set z
′
1 =

z1
‖z1‖

. Then consider z
′
1,z
′
2, ...,z

′
n an ori-

ented basis for Rn. In this basis zm−1 can be written as

zm−1 = ∑

ω∈Qm−1
n

αω z
ω
=

= ∑

ω
′ ∈ Qm−1

n
ω
′ ⊆ {2,3, ...,n}

α
ω
′ z

ω
′ + z

′
1∧ ∑

ω
′′ ∈ Qm−2

n
ω
′′ ⊆ {2,3, ...,n}

α
ω
′′ z

ω
′′

We set z
′
m−1 =

∥∥z1

∥∥ ∑

ω ∈ Qm−1
n

ω
′ ⊆ {2,3, ...,n}

α
ω
′ z

ω
′ . In this setting

zm−1∧ z1 =
∥∥z1

∥∥ ∑

ω
′ ∈ Qm−1

n
ω
′ ⊆ {2,3, ...,n}

α
ω
′ z

ω
′ ∧ z

′
1 =

= z
′
m−1∧ z

′
1

and 1 =
∥∥zm∧ z1

∥∥2
=
∥∥z1

∥∥2. Moreover, we have that

∑ (α
ω
′ )2 =

∥∥∥z
′
m−1

∥∥∥2
, where the sum is taken for all ω

′ ∈ Qm−1
n

and ω
′ ⊆ {2,3, ...,n} Hence, z

′
m−1∧z

′
1 = zm−1∧z1 and

∥∥∥z
′
1

∥∥∥=∥∥∥z
′
m−1

∥∥∥= 1.
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Definition 2: Let z ∈ ∧mRn, define the
( n

m−1

)
× n matrix

Φm
n (z
∗)∗ [10], [13] as:

zT
m−1Φ

n−m
n (z∗)∗z1 =

〈
z,zm−1∧ z1

〉
Proposition 1: Let z ∈ ∧mRn, then Φn−m

n (z∗)∗ is the matrix
representation of the map:

T : Rn→∧m−1Rn

such that T (z1) = (−1)(n+1)×(m−1)(z1∧ z∗)∗.

Proof 3:〈
z,zm−1∧ z1

〉
=
〈
zm−1∧ z1∧ z∗

〉∗
=

= (−1)(n+1)×(m−1)(zm−1∧ (z1∧ z∗)∗∗)∗ =

=
〈

zm−1,(−1)(n+1)×(m−1)(z1∧ z∗)∗
〉
=

= zt
m−1Φn−m

n (z∗)∗z1

And this completes the proof.
Define the (M2) optimization problem:
max

〈
z,zm−1∧ z1

〉
where zm−1 ∈ ∧m−1Rn and z1 ∈ Rn such

that
∥∥zm−1

∥∥= ∥∥z1

∥∥= 1.
Theorem 2: [18] Both maximization problems (M1) and

(M2) can be solved and they attain the same maximum σ .
Proof 4: Indeed, (M1) is defined on the set:{
zm ∈ R(

n
m),
∥∥zm

∥∥= 1 and det(Φm
n (zm)

T ·Φm
n (zm)) = 0

}
and (M2) is defined on the set:{

(zm−1,z1) ∈ R(
n

m−1)×Rn,
∥∥zm−1

∥∥= ∥∥z1

∥∥= 1
}

which are both compact therefore both objective functions
attain global maxima. Let

(
σ1,zm−1,z1

)
,
(

σ2,z
′
m−1,z

′
1

)
are

solutions for (M1), (M2) respectively.
By lemma 2 zm−1,z1 can be corresponded to a z

′′
m−1,z

′′
1

such that z
′′
m−1 ∧ z

′′
1 = zm−1 ∧ z1 and

∥∥∥z
′′
m−1

∥∥∥ = ∥∥∥z
′′
1

∥∥∥ = 1, this

proves that σ1 ≤ σ2. On the other hand as
∥∥∥z
′
m−1∧ z1

∥∥∥ ≤∥∥∥z
′
m−1

∥∥∥∥∥z1

∥∥′ = 1, both (M1), (M2) may be relaxed to (M3):

max
zm−1∈∧

m−1Rn

z1∈R
n

〈z,zm−1∧ z1〉

such that
∥∥zm−1∧ z1

∥∥≤ 1.
If (σ3,z

′′′
m−1,z

′′′
1 ) is a solution to (M3) by a re-scaling argument

must satisfy
∥∥∥z
′′′
m−1∧ z

′′′
1

∥∥∥ = 1, thus σ2 ≤ σ3 = σ1. And this
completes the proof.
Now, (M2) may be solved via a singular value decomposition
of the matrix Φn−m

n (z∗)∗.
Theorem 3: [18] Let z ∈ ∧mRn.

a) The problem (M2) has a solution (σ ,zm−1,z1), where σ

is the highest singular value of Φn−m
n (z∗)∗ and zm−1,z1

are the corresponding left and right singular vectors;
b) Furthermore, ‖zm−1∧ z1‖= 1.
Proof 5:

a) Evident from the properties of the singular value decom-
position;

b) Since, zm−1 = (−1)(n+1)×(m−1)
(
z1∧ z∗

)∗ we
have that zm−1 ∈ ∧m−1span(z1)

⊥, hence∥∥zm−1∧ z1

∥∥= ∥∥zm−1

∥∥∥∥z1

∥∥= 1.

IV. APPLICATIONS TO THE PROBLEM OF
DECOMPOSABILITY

The previous results may be applied to the problem of
approximate decomposability i.e. approximating an m-vector
z ∈ ∧mRn by a product of m× 1-vectors. This can be done
iteratively as follows:
We start by the vector zm = z ∈ ∧mRn and using the ma-
trix Φn−m

n (z∗)∗ we approximate it by σ1zm−1 ∧ z1,1 , zm−1 ∈
∧m−1Rn,z1,1 ∈ Rn. Then we repeat the same procedure for
zm−1 ∈ ∧m−1Rn utilizing the matrix Φn−m+1

n (z∗m−1)
∗ approxi-

mating by σ2zm−2∧z1,2 , zm−2 ∈∧m−2Rn,z1,2 ∈Rn. We follow
the same steps until we reach a two vector z2 which we
approximate by a product of two one vectors. This may be
described graphically as follows: In this setting the (subopti-

mal) decomposable vector approximating z is given by:

(
m−1

∏
i=1

σi)z1∧ z1,p−1∧ z1,p−2∧·· ·∧ z1,1 (7)

Furthermore if u1∧u2∧·· ·∧um is a solution of the best de-
composable approximation of z, with ‖u1∧u2∧·· ·∧um‖= σ ,
we have that:

(
m−1

∏
i=1

σi)≤ σ ≤ σ1

where σ corresponds to the optimal solution, i.e. the best

decomposable approximation, (
m−1
∏
i=1

σi) corresponds to the

partial decomposability in cascade of the present technical
note, i.e. suboptimal solution. Finally, σ1 represents the first
level of partial decomposability, which although approximates
closer the original vector does not correspond to a full
decomposable solution and σ1 only serves as an upper bound.

We may apply this approach to ∧3Rn in which case we
consider ∧3Rn and it is required to approximate this vector by
a product of three 1-vectors. In this case the above algorithm
consists of the following two steps:

Step 1Consider the SVD of the matrix Φ3
n(z
∗)∗ and ap-

proximate z via the highest singular value and the
corresponding singular vectors as σ1z2 ∧ z1,1 , z2 ∈
∧2Rn,z1,1 ∈ Rn

Step 2Consider the SVD of the matrix Φ4
n(z2

∗)∗ and
approximate z2 via the highest singular value
and the corresponding singular vectors as σ2z1 ∧
z1,2 , z1,z1,1 ∈ Rn.
The sub-optimal decomposable approximation of z is
then given by:

(σ1σ2)z1∧ z1,2∧ z1,1
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Additionally the norm of the best decomposable
approximation σ is related to the previous data by
the following inequality:

σ1σ2 ≤ σ ≤ σ1

V. APPLICATION OF PARTIAL DECOMPOSABILITY OF
MULTIVECTORS IN DAP

In this subsection we demonstrate how partial decompos-
ability can be utilized to solve the DAP, such as a pole
/ zero assignment problem. These particular problems are
decomposed into a linear and a multilinear problem [10] as
mentioned in Section I. We start by solving the linear problem,
that is, the solution of linear equations and we continue by
approximating the solution by a decomposable one, using
the methodology described in Section IV. To calculate a
controller that stabilizes a system, we compute a vector z
in ∧mRp+m that assigns the desired stable controller and
then we approximate z by ẑ decomposable, according to the
methodology of the present technical note. If ẑ is adequately
close to z, then the polynomial assigned by ẑ will be stable.
The metric relationship that describes the above approximate
problem can be found in [13] (Theorem 4.2). A methodology
for constructing an approximate stabilizing controller K is
described below, along with an example.

A. Methodology for Pole Placement & Zero Assignment Prob-
lems

Let a system with m inputs, p outputs and ρ states. The
polynomial matrix of the system is defined by:

M(s) =
[

D(s)
N(s)

]
and in terms of transfer function is given by:

G(s) = N(s) ·D−1
(s)

where D(s) and N(s) are the denominator and numerator of a
coprime MFD of the transfer function of the system. The aim
is to stabilize the system, by assigning the poles to the left
half plane, using a static output feedback controller K, i.e.
det([I,K] ·M(s)) = f (s), where f (s) is the desired polynomial.

Step 1: Compute the Plücker matrix P [4], which is
defined as the coefficient matrix of all m×m minors of M(s),
or equivalently:

Cm (M(s)) = P ·
[

sn sn−1 · · · s1 1
]T

where Cm [M (s)] denotes the m-th compound matrix [2] of
M(s). The Plücker matrix would then be of

(m+p
m

)
× (ρ + 1)

dimension.

Step 2: We solve the linear problem:

z ·P = f (8)

where f = coeff.vector( f (s)).

Step 3: We seek for a solution z to the linear problem

(8) that has the minimum norm, or equivalently a multi-vector
z that is perpendicular to the linear variety, such that z ·P = f .
The solution z = zmin is then computed as follows:

zmin = f ·
(
PT ·P

)−1 ·PT

and results to be a
(m+p

m

)
× 1 multi-vector, which is not

necessarily decomposable.

Step 4: We aim to find a decomposable vector
ẑ = z1 ∧ z2 ∧ . . . ∧ zm of dimension

(m+p
m

)
× 1 which is

close to zmin, using the partial decomposability method.
We follow the procedure presented in section IV, according
to which we find an approximate decomposition of z as
a product of p × 1 vectors using the iterative procedure
described in that section. The expression in (7) produces an
approximate decomposition of z, that is z1∧ z2∧ . . .∧ zm.

Step 5: In the final step we compute the controller K
that assigns the poles of the system as follows:
We form the matrix:

XT =
[

z1 z2 · · · zm−1 zm
]T

where X is of dimension m× (p+m) and we partition it as:

X =

[
A︸︷︷︸

m×m

K1︸︷︷︸
m×p

]
where A is the leftmost m×m submatrix of X . In this setting
the required controller K is given by:

K = A−1 ·K1

In the case of strictly proper systems the leading coefficient
of f (s) is calculated to be equal to detA. This means that it
is compulsory that the solution

[
A K1

]
has the property

detA 6= 0, i.e. A is non-singular, otherwise at least one of
the closed loop poles goes to infinity. This excludes any sub-
optimal solution that detA = 0.

B. example

We consider a system of m = 3 inputs, p = 3 outputs
and ρ = 6 states. The arbitrary pole placement problem
cannot be solved by dyadic linearization (Kimura’s condition
m+ p−1≥ ρ [19], [20], [21]). Therefore, more sophisticated
methods have to be employed. This can be either the Global
Linearization Method [9], [22], which can be applied when
mp > ρ (this is the case here) or the methodology of the
present technical note. This system has transfer function the
following 3×3 rational matrix:

G(s) =
−1−s2−s3+s4

s5
1+s2

s3
−1+s

s2

− 2(1+s)
s3

1
s

1
s

− (−1+s)(1+s)2

s5
−1−s

s3
1+s
s2

=

 1+ s 1+ s −1+ s
0 1+ s s
0 0 1+ s


·

 s2 0 0
s+1 s2 0
s+1 s s2

−1

= N(s) ·D(s)−1
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where D(s) and N(s) are the denominator and numerator of
the transfer function G(s) and M(s) =

[
D(s)T , N(s)T ]T

denotes the composite MFD polynomial matrix fraction de-
composition of G(s). This particular system is unstable as all
of its poles are located at 0. The stabilisation of this system
by real static output feedback pole placement is equivalent to
finding a 3×3 real matrix K such that:

det
(
[I3,K] M(s)

)
= f (s)

where f (s) is a given 6-degree polynomial with zeroes located
at the left-half plane. In this case, we select f (s) = (s+ 1)6.
i.e. all the closed loop poles to be located at −1. To do so,
we proceed as follows:

Step 1: We compute the Plücker matrix P, which is defined
as the coefficient matrix of all 3× 3 minors of M(s), or
equivalently: C3(M(s)) =P ·

[
s6 s5 s4 s3 s2 s1 1

]T
where C3(M(s)) denotes the 3rd compound matrix of M(s).
The Plücker matrix P is a 20×7 matrix and is:

P =



1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 −1 0 −1 0 0 0
0 −1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 1 2 1 0 0
0 0 1 2 1 0 0
0 1 −1 −1 0 −1 0
0 0 −2 −2 0 0 0
0 0 −1 −1 1 1 0
0 0 −1 −1 1 2 1
0 0 −1 −1 2 3 1
0 0 0 1 3 3 1
0 0 1 1 1 2 1
0 0 0 0 1 2 1
0 0 0 1 3 3 1
0 0 0 1 3 3 1


Step 2: We solve the linear problem z ·P = f , where

f = Coeff.vector((s+1)6)

and this is f =
[

1 6 15 20 15 6 1
]
.

Step3: We seek for a solution z that has a minimum
norm, or equivalently a multi-vector z that is perpendicular to
the linear variety, such that z ·P = f . This solution z = zmin is
computed as:

zmin = f · (PT ·P)−1 ·PT

and results to be a 20× 1 vector, which is not necessarily
decomposable:

zmin = [1,−0.93,1.30,3.53,−0.13,5−1.30,1.06,
0.89,1.95,1.95,0.66,−2.12,0.58,−2.09,0.44,1.51,
0.03,−1.03,1.51,1.51]

Step 4: We aim to find a decomposable vector ẑ = z1∧ z2∧ z3
of dimension 20× 1 which is close to zmin, using the partial

decomposability method.
We start by the vector z = zmin, that we calculated in Step
3. We compute the matrix Φ3

6(z
∗)∗ and this results to be the

following 15×6 matrix:
Φ3

6(z
∗)∗ =

=



0 0 1 −0.93 1.30 3.53
0 −1 0 −0.13 −1.30 1.06
0 0.93 0.13 0 0.89 1.95
0 −1.30 1.30 0.89 0 1.95
0 −3.53 −1.06 −1.95 −1.95 0
1 0 0 0.66 −2.12 0.58

−0.93 0 −0.66 0 −2.09 −0.44
1.30 0 2.12 2.09 0 1.51
3.53 0 −0.58 0.44 −1.51 0
−0.13 0.66 0 0 0.33 −1.03
−1.30 −2.12 0 −0.03 0 1.51
1.06 0.58 0 1.03 −1.51 0
0.89 −2.09 0.03 0 0 1.51
1.95 −0.44 −1.03 0 −1.51 0
1.95 1.51 1.51 1.51 0 0


We factorize Φ3

6(z
∗)∗ using the SVD approach and we choose

the highest singular value σ1. For this singular value we find
the left and right corresponding singular vectors z2 and z1.
These are the following:
ẑT

1 = [1.18,0.21,−0.03,0.27,0.61,−0.01,0.09,−0.17,
−0.13,−0.12,0.38,−0.14,0.27,0.03,−0.4]T and

zT
1 = [−0.29,−0.75,−0.17−0.43−0.160.332]T

We keep the zT
1 vector and we follow the same procedure for

ẑT
1 .

Step 5: We compute the 6×6 matrix Φ4
6(ẑ
∗
1)
∗ =

=


0 0.18 0.21 −0.03 0.27 0.61

−0.18 0 −0.01 0.09 −0.18 −0.13
−0.21 0.01 0 −0.12 0.38 −0.14
0.03 0.09 0.12 0 0.27 0.03
−0.27 0.17 −0.38 −0.27 0 −0.4
−0.61 0.13 0.14 −0.03 0.4 0

 .

We factorize Φ4
6(ẑ
∗
1)
∗ using the SVD approach and we

choose the highest singular value σ2. For this singu-
lar value we find the left and right corresponding sin-
gular vectors, z2 and z3 These are the following: zT

2 =[
−3.44 ·10−16,−0.07,−0.46,−0.09,−0.47,−0.74

]T
and

zT
3 = [0.74,−0.19,0.06,0.27,−0.53,0.28]T .

The decomposable vector that we are seeking is the

ẑ = z1∧ z2∧ z3 =C3

 z1
z3
z4


and the angle between the decomposable vector ẑ and zmin is
equal to

arccos

〈
ẑ,zmin

〉
‖ẑ‖
∥∥zmin

∥∥ = 25,79o.

Step 6: We calculate the resulting f
′

(the polynomial that
results from the approximate controller) with the new ẑ as
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ẑ ·P = f
′

and we divide by the highest coefficient to make it
monic. The resulting polynomial f

′
is given by:

f
′
= s6 +3.92s5 +7.1s4 +11.28s3 +9.54s2 +5.64s+1.87

Finally, we compute the roots of f
′
,

s1→
s2→
s3→
s4→
s5→
s6→

−2.38
−0.66

−0.26−0.71i
−0.26+0.71i
−0.18−1.42i
−0.18+1.42i

which all have negative real parts, hence the polynomial is
stable.

Step 7: Finally, the controller K of (9)

det
([

I K
]

M(s)
)

(9)

that stabilizes the system, can be computed from the matrix

X =
[

A K1
]
=

 z1
z2
z3


as shown below:

K = A−1K1 (10)

Hence, the controller K is given by the 3×3 matrix:

K =

 0.38 −0.72 0.01
0.39 0.27 −0.82
0.14 0.98 1.74


VI. RESTRICTED - APPROXIMATE DECOMPOSABILITY OF

MULTI-VECTORS

We can additionally consider the problem of partial decom-
posability of a multi-vector z ∈ ∧pRn [13], where we require
that the approximate decomposition is of the form:

v1∧ v2∧ . . .∧ vk ∧ xk+1∧ xk+2∧ . . .∧ xp (11)

where {v1,v2, . . . ,vk} is an orthonormal set of k < p fixed
vectors. To do so we set as

V = span{v1,v2, . . . ,vk}

and let
V T = span{vk+1,vk+2, . . . ,vn}

where {vk+1,vk+2, . . . ,vn} is an orthonormal basis of V T .
We then rewrite z in terms of the orthonormal basis
{v1,v2, . . . ,vn} and we then factorize this expression as:

z = v1∧ v2∧ . . .∧ vk ∧ z1 + z2

with z1 ∈ ∧p−kV T and z2 satisfies v1∧ v2∧ . . .∧ vk ∧ z∗2 = 0.
Then as in section IV we approximate z1 as xk+1∧xk+2∧ . . .∧
xp and the final restricted approximate decomposition of z is
given by:

z = v1∧ v2∧ . . .∧ vk ∧ xk+1∧ xk+2∧ . . .∧ xp (12)

VII. CONCLUSIONS

We have examined the problem of partially fixed structure
Determinantal Assignment Problem which is reduced to a
problem of decomposability of skew symmetric tensors and
this is expressed in terms of the exact or approximate partial
decomposability. This problem may be treated with matrix
methods in terms of the Hodge and Grassmann matrices [10].
Consecutive applications of this method derive sub-optimal
solutions of the approximate decomposability problem. We
have applied these results to treat the Restricted - Approxi-
mate Decomposability problem, which leads to approximate
solutions of pole placement and zero assignment problems.
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