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Abstract. In continuation of the work in [9,8], which defines extremal varieties
in P

(∧2Rn
)

, we define a more general concept of extremal varieties of the real

Grassmannian Gp (Rn) in P(
∧pRn). This concept is based on the minimization

of the sums of squares of the quadratic Plücker relations defining the Grassman-
nian variety as well as the reverse maximisation problem. Such extremal prob-
lems define a set of Grassmannian inequalities on the set of Grassmann matrices,
which are essential for the definition of the Grassmann variety and its dual ex-
tremal variety. We define and prove these inequalities for a general Grassmannian
and we apply the existing results, in the cases ∧2R2n and ∧nR2n. The resulting
extremal varieties underline the fact which was demonstrated in [10,9], that such
varieties are represented by multi-vectors that acquire the property of a unique
singular value with total multiplicity. Crucial to these inequalities are the num-
bers Mn,p, which are calculated within the cases mentioned above.
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AMS Subject Classification: 15A69 · 47A07 · 93C35

Communicated by Liqun Qi.

1 Introduction

Grassmann varieties and manifolds play an important role in many areas of mathe-
matics. The main application of Grassmannians in system theory and engineering is
the parametrization and usage of fixed structure controllers in feedback systems. Many
problems in control theory, linked to frequency assignment, can be written as intersec-
tion problems of a Grassmann variety viewed as a projective variety via the Plücker
embedding. For this reason the Grassmannian is significant with respect to mathemat-
ical control theory, see [1]. The Grassmannian manifolds are also of significant impor-
tance in the study of vector or tangent bundles of manifolds or varieties, see [12]. In
fact, every tangent bundle of a manifold M generates a continuous map from M to a
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generalized Grassmannian. The study of the vector bundle is reduced to the study of
this map. Vector and tangent bundles are frequently encountered in algebraic topology,
differential topology, differential geometry, and theoretical physics, see [5]. Another
application is multidimensional data reduction or simplification, see [6]. For this rea-
son, the study of Grassmannians is of great significance in the above mentioned areas.
If we have tensor data with skew symmetric structure, then one way to simplify these
data is to approximate the tensor by a decomposable one. This problem amounts to ap-
proximating a point in the Plücker space by an element of the Grassmannian. A study of
such a distance problem has applications in multidimensional data reduction. Such data
appear in image processing, signal processing, or areas like social sciences where mul-
tidimensional data appear. In [10,9], distance problems were examined in the projective
space P

(∧2Rn
)
. Such problems arise in pole and zero assignment in Control Theory

where generalized controllers are approximated by realizable controllers belonging to a
realizable Grassmannian variety. If z∈P

(
∧2Rn

)
, is a multi-vector solution of the linear

sub-problems of frequency assignment, then an optimization problem of the form

min
x1,x2∈Rn

‖z− x1∧ x2‖

has to be solved, so that the controller formed by the vectors x1, x2 is realizable. The
more general problem

min
x1,x2,...,xp∈Rn

∥∥z− x1∧ x2∧ ...∧ xp
∥∥

has to also be addressed for the general frequency assignment problems of Multi-Input
Multi-Output (MIMO) systems. This is basically an approximation problem in an exte-
rior algebra of a multi-vector by a decomposable vector. Similar approximation prob-
lems arise in signal processing where a multidimensional vector has to be approximated
and simplified by a lower and decomposable vector, gaining in such a way simplicity
and storage space. This can also be viewed as a distance problem d (z,Gp(Rn)) of a
multi-vector from the Grassmannian variety consisting of all decomposable vectors.
The multi-vectors z∈ P(∧pRn), which are “badly” approximated are the ones that have
the furthest possible distance from Gp(Rn). Such multi-vectors form a variety called
the extremal variety of the Grassmannian and it is a new interesting variety, dual to the
Grassmannian variety, worthy of studying. This duality stems from distance problems
in the projective space, where distance is measured by the angle between two points
in the projective space. This distance can be either maximised or minimised and if the
set of vectors with maximal distance to Grassmann variety are considered, then we get
the Extremal variety and vice versa. This involution type of mapping is explained in
[8]. In [9,8], such varieties were considered when p = 2, leaving out the more general
case p > 2. In the present paper, we extend the definition of these varieties to accom-
modate the case p > 2. The additional advantage is, that these varieties can now be
computed, in the sense that their defining equations can be easily calculated. This is
done, by maximising the sums of squares of the quadratic Plücker relations defining the
Grassmannian. This sum is denoted by fn,p(z), where z ∈ ∧pRn. By utilizing the results
obtained in [4, 6] together with some new results presented in this paper, we derive a set
of inequalities relating fn,p(z) and the Grassmann matrix Φ(z). The maximum value of
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fn,p(z) when ‖z‖2 = 1, is denoted as Mn,p and this way the extremal variety is defined
by the equation

fn.p(z) = Mn,p‖z‖4

The extremal variety is a real variety defined by a single homogeneous equation of
degree 4 in the Plücker space. Hence, it is a real projective variety in the projective
Plücker space. To define the extremal variety of Gp(Rn), denoted by Extr(n, p), the
numbers Mn,p have to be calculated. We prove that the numbers Mn,p satisfy the bound
Mn,p ≤ (n−p)p

n . In certain cases Mn,p equals this upper bound and in other cases the in-
equality is strict. In this paper we calculate the exact values Mn,p for ∧2R2n and ∧nR2n.
We also study the cases of ∧3R6 and ∧pRpk. Finally, we present representations and
spectral properties of the elements Extr(n, p), underlying the fact that these vectors
contain multi-vectors of a unique singular value of total multiplicity.
The consideration of reversing an extremisation problem (from min to max or vice
versa) also exists in operator theory, i.e. in the definition of operator trigonometric
functions [4] and in antieigenvalue theory [3]. In our case, this extremisation revers-
ing reveals an interplay between Grassmann and extremal varieties.
The optimisation problem considered in the present paper, if it is simpified, in a matrix
version seems to be related to the orthogonal Procrustes problem [2].
The extremisation approach may be used in various scenarios as demonstrated by ”toy”
examples at the end of this paper. In the setup of vector bundles we may project the
related line bundle to the extremal variety and examine the new line bundle produced.
Secondly, in case that the extremal variety is simpler than the Grassmann variety, we
may solve intersection problems on the Grassmannian by considering equivalent prob-
lems on the extremal variety and then utilize Poincaré - Miranda type of intermediate
value theorems [11].

2 Grassmann Inequalities and Extremal Varieties

In this section we define extremal varieties and their corresponding inequalities, cal-
culations and bounds for the Mn,p constants, connections with the Grassmann matrices
and some basic representations.

Let z ∈ ∧pRn. Then z is decomposable if

z = ∧p
i=1xi, xi ∈ Rn

In this case, if we consider the line

〈z〉= {λ z : λ ∈ R}

in P(
∧pRn), the set of all lines of decomposable multi-vectors from a variety called the

Grassmann variety . To study decomposability and, as a result, the Grassmann variety
we define a linear map

T : Rn→∧p+1Rn

defined as
T (u) = z∧u
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and the matrix representation of T , denoted as Φ
p
n (z) ∈ R(

n
p+1)×n is called the Grass-

mann matrix. The rank properties of this matrix are related to the decomposability prop-
erties of z. We may define in a similar manner the Grassmann matrix of z∗, the Hodge
dual of z. This matrix is denoted by Φ

n−p
n (z∗) and is called the Hodge-Grassmann ma-

trix of z. These two matrices play an important role in the decomposability properties of
z as well as in the definition of the Grassmann variety. The Grassmann variety Gp(Rn)
in P(

∧pRn), is defined by the quadratic equations, see [6],

Φ
n−p
n (z∗)Φ p

n (z)
T = 0

called the quadratic Plücker relations (QPRs), or equivalently, the sum of squares of
QPRs equals zero.
This sum of squares can be written in trace form as:

fn,p(z) = tr
(

Φ
p
n (z)Φ

n−p
n (z∗)T

Φ
n−p
n (z∗)Φ p

n (z)
T
)

(1)

and fn,p(z)maps the compact and connected sphere S(
n
p)−1 to R. Hence, it attains a

global minimum, which is equal to zero and defines the set of decomposable vectors.
It also attains a global maximum Mn,p, and so, in view of the fact that fn,p(z) is a
homogeneous function of degree 4, we can rewrite this maximum relation as:

Mn,p‖z‖4 ≥ fn,p(z)≥ 0, for all z ∈ ∧pRn. (2)

Based on the maximum we define another variety as follows:

Definition 1. The set {z ∈ P(
∧pRn)}: fn,p(z) = Mn,p ‖z‖4} defined by the zeros of

the 4-th order homogeneous polynomial fn,p(z)−Mn,p ‖z‖4 is a projective variety in
P(
∧pRn) denoted by Extr(n, p).

The purpose of this paper is to calculate Mn,p and explore the structure of the variety
Extr(n, p).

Theorem 1. (See [10]) For any z ∈ ∧pRn the following identity holds:

Φ
n−p
n (z∗)T

Φ
n−p
n (z∗)+Φ

p
n (z)

T
Φ

p
n (z) = ‖z‖

2In (3)

where Φ
p
n (z) is the Grassmann matrix and Φ

n−p
n (z∗) is the Hodge-Grassmann matrix

of z.

Corollary 1. Let (σi)
n
i=1 and (σ

′
i )

n
i=1 the singular values of Φ

p
n (z) and Φ

n−p
n (z∗), re-

spectively. Then, these singular values can be paired so that:

σ
2
i +
(

σ
′
i

)2
= ‖z‖2 and 0≤ σi,σ

′
i ≤ ‖z‖ (4)

Proof. The matrices Φ
n−p
n (z∗)T ·Φn−p

n (z∗) and Φ
p
n (z)

T ·Φ p
n (z) are simultaneously di-

agonalizable, and so, in view of (3) relation (4) follows.
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Lemma 1. For any z ∈ ∧pRn the following identity holds:

tr
(

Φ
p
n (z)

T
Φ

p
n (z)

)
= (n− p)‖z‖2 (5)

where Φ
p
n (z) is the Grassmann matrix of z.

Proof. Indeed, let ei be the canonical bases of Rn and q∈Qn
p the selections of p indices

from {1,2, ...,n}, then

tr
(

Φ
p
n (z)

T
Φ

p
n (z)

)
= ∑

i
〈z∧ ei,z∧ ei〉= ∑

1≤i≤n
∑

q∈Qn
p,i/∈q

z2
q = (n− p)‖z‖2

Lemma 2. It holds that

tr
(

Φ
p
n (z)Φ

n−p
n (z∗)T

Φ
n−p
n (z∗)Φ p

n (z)
T
)
= (n− p)‖z‖4− tr

[(
Φ

p
n (z)

T
Φ

p
n (z)

)2
]
. (6)

Proof. In view of (3), we have

tr
(

Φ
p
n (z)Φ

n−p
n (z∗)T

Φ
n−p
n (z∗)Φ p

n (z)
T
)
= tr

[
Φ

p
n (z)

(
‖z‖2In−Φ

p
n (z)

T
Φ

p
n (z)

)
Φ

p
n (z)

T
]
.

From this and in view of (5), one may easily see that

tr
(

Φ
p
n (z)Φ

n−p
n (z∗)T

Φ
n−p
n (z∗)Φ p

n (z)
T
)
= (n− p)‖z‖4− tr

[(
Φ

p
n (z)

T
Φ

p
n (z)

)2
]
.

Using identities (5) and (6), the extremal problem to be considered is: max (or min) tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]
,

tr
(

Φ
p
n (z)

T
Φ

p
n (z)

)
= (n− p)‖z‖2 and ‖z‖2 = 1.

 (7)

If σi are the singular values of 1
‖z‖Φ

p
n (z), by taking into consideration (4), the extremal

problem described by (7) is equivalent with the following extremal problem:{
max (or min) ∑i σ4

i ,

∑i σ2
i = n− p and σ2

i ≤ 1.

}
(8)

Remark 1. By setting σ2
i =wi, the extremal problem described by (8) is equivalent with

the following extremal problem:{
max (or min) ∑i w2

i
∑i wi = n− p and 0≤ wi ≤ 1

}
(9)
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The ratio
∑i w2

i

∑i wi

is the measure of dispersion of wi and is called Herfindahl-Hirschman Index. The
maximum value of the ratio is attained when {wi} have maximum dispersion, i.e when
the n− p highest wi are equal to 1 and the rest equal to zero. The minimum value of the
ratio is taken when all wi are equal to n−p

n .

In view of remark 1, the following theorem is now clear.

Theorem 2. The following statements are true:

(i) The maximum value of tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]

is attained when

1

‖z‖2 Φ
p
n (z)

T
Φ

p
n (z) =

[
In−p 0n−p×p

0p×n−p 0p×p

]
= G (10)

(ii) The minimum value of tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]

is attained when

1

‖z‖2 Φ
p
n (z)

T
Φ

p
n (z) =

(
n− p

n

)
In (11)

Remark 2. Theorem 1 gives rise to the following Grassmann inequality:

(n− p)‖z‖4 ≥ tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]
≥ (n− p)2

n
‖z‖4 (12)

Theorem 3. A vector z ∈ P(∧pRn) satisfies the following equation

tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]
= (n− p)‖z‖4 (13)

if and only if, z is decomposable.

Proof. In this case
Φ

p
n (z)

T
Φ

p
n (z) = G‖z‖4 (14)

Here, Φ
p
n (z) has a p-dimensional right kernel. If

v ∈ Rker(Φ p
n (z)),

then
z∧ v = 0,

which means that v is a factor of z. If

v1,v2, . . . ,vp
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is an orthonormal basis of Rker(Φ p
n (z)), then

z = ‖z‖v1∧ v2∧ . . .∧ vp, (15)

implying that z is decomposable.
Conversely, if (15) holds, then one can easily see that (14) holds, and so, (13) also
holds. The proof is complete.

Theorem 4. In the special case where n = 2n and p = 2 the extremal variety Extr(n, p)
can be also defined by the following trace equation:

tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]
=

(n− p)2

n
‖z‖4 (16)

where z ∈ P(
∧pRn).

Proof. Indeed, if z ∈ ∧2R2n, then consider z to be

z = σx1∧ y1 + . . .σxn∧ yn,

where
{

x1, ...,xn,y1, ...,yn

}
is an orthonormal basis. Then,

nσ
2 = ‖z‖2, Φ

2n−2
2n (z∗)T

Φ
2n−2
2n (z∗) = σ

2I2n,

and in view of (3),

Φ
2
2n(z)

T
Φ

2
2n(z) = ‖z‖

2I2n−σ
2I2n =

n−1
n
‖z‖2I2n,

implies that

tr
[(

Φ
2
2n(z)

T
Φ

2
2n(z)

)2
]
=

(
n−1

n

)2

2n‖z‖4 =
2(n−1)2

n
‖z‖4 =

(2n−2)2

2n
‖z‖4 (17)

Hence, Extr(2n,2) defined by (16) is nonempty.
Conversely, if (17) holds, then in view of (3),

Φ
2n−2
2n (z∗)T

Φ
2n−2
2n (z∗) =

1
n
‖z‖2I2n,

and hence,

z =
‖z‖√

n

(
x1∧ y1 + ...+ xn∧ yn

)
, (18)

for some orthonormal basis
{

x1, ...,xn,y1, ...,yn

}
. So, for the case of Extr(2n,2) the

variety defined by (17), contains exactly all vectors of the form (18).
In the case of ∧nR2n, if we consider the vector

z =
‖z‖√

2

(
x1∧ ...∧ xn + y1∧ ...∧ yn

)
(19)
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where
{

x1, ...,xn,y1, ...,yn

}
is an orthonormal basis, then

Φ
n
2n(z)

T
Φ

n
2n(z) =

‖z‖2

2
I2n

and

tr
[(

Φ
n
2n(z)

T
Φ

n
2n(z)

)2
]
=
‖z‖4

4
2n =

n
2
‖z‖4 =

(2n−n)2

2n
‖z‖4

Hence, Extr (2n,n) is non-void, as it contains all vectors of the form (19). The proof of
the theorem is complete.

The definition of the extremal variety given in (1) suggests that it is a real projective
variety in the Plücker space as it is defined by the zero set of a homogeneous polynomial
of degree 4 on the Plücker coordinates. This definition is unique and well defined and
the variety is non empty. In the case of theorem 4, this variety can also be written by

a trace formula of an operator, i.e. tr
[(

Φ
p
n (z)

T
Φ

p
n (z)

)2
]

which is obviously invariant

under orthogonal coordinate transformations of the starting space Rn (in these specific
two cases p→ 2, n→ 2n and p→ n, n→ 2n). There are many other instances that this
trace formula can give an alternative definition for the extremal variety.

Theorem 5. It holds that

(n− p) p
n

‖z‖4 ≥ fn,p (z)≥ 0 and Mn,p ≤
(n− p) p

n
. (20)

Proof. The proof follows directly from (12) in view of (6). The proof is complete.

Corollary 2. In the case of theorem 4 for the specific choices of n, p we have that
Mn,p = (n−p)p

n . Therefore, we can calculate the following characteristic numbers for
these cases:

M2n,2 =
(2n−2)2

2n
=

2(n−1)
n

and M2n,n =
(2n−n)n

2n
=

n
2
.

Remark 3. Extremal varieties are defined by the equation fn,p = Mn,p‖z‖4. Theorem 5
states that Mn,p≤ (n−p)p

n . The following theorem 6 demonstrates a case where the above
inequality is strict.

Theorem 6. If n = 5 and p = 2, then

Mn,p = 1 6= (5−2)2
5

=
6
5
.

Proof. Consider z ∈ ∧2R5 and z1 = σ1x1∧ y1 +σ2x2∧ y2.
Then,

Φ
3
5 (z
∗)Φ

3
5 (z
∗)∼


σ2

1 0
σ2

1
σ2

2
σ2

2
0 0

 .
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Hence,

Φ
2
5 (z
∗)Φ

2
5 (z
∗)∼


σ2

2 0
σ2

2
σ2

1
σ2

1
0 ‖z‖2


and

tr
[(

Φ
2
5 (z)

T
Φ

2
5 (z)

)2
]
= 2σ

4
1 +2σ

4
2 +‖z‖

4.

The extremal problem is

min tr
[(

Φ
2
5 (z)

T
Φ

2
5 (z)

)2
]

s.t. σ
2
2 +σ

2
1 = ‖z‖2.

In view of (6),
Φ

2
5 (z)

T
Φ

2
5 (z)+Φ

3
5 (z
∗)T

Φ
3
5 (z
∗) = ‖z‖2I5,

we have 2σ2
1 = 2σ2

2 = ‖z‖2, and so,

tr
[(

Φ
2
5 (z)

T
Φ

2
5 (z)

)2
]
= 2
‖z‖4

4
+2
‖z‖4

4
+‖z‖4 = 2‖z‖4.

Hence, (6) implies that

max
‖z‖2=1

f5,2(z) = (5−2) ·14−2 ·14 = 1 6= (5−2)2
5

=
6
5
.

The proof of the theorem is complete.

For the case of ∧2nR4n, the Hodge star operator (∗) is an involution, that is (z∗)∗=z,
and it has two eigenvalues ±1. The eigenspaces V+1 and V−1 of this involution are
related to the extremal variety Extr(4n,2n).

Theorem 7. Extr(4n,2n) contains the projectivizations of V+1 and V−1. In the case of
Extr(4,2) these two projectivizations are exactly Extr(4,2).

Proof. For
x ∈V+1∪V−1

we have
x∗ =±x and Φ

n
2n(x

∗)T
Φ

n
2n(x

∗) = Φ
n
2n(x)

T
Φ

n
2n(x)

In view of (6), we find

Φ
n
2n(x

∗)T
Φ

n
2n(x

∗)+Φ
n
2n(x)

T
Φ

n
2n(x) = 2Φ

n
2n(x)

T
Φ

n
2n(x) = ‖x‖

2I2n.

Therefore,

Φ
n
2n(x)

T
Φ

n
2n(x) =

‖x‖2

2
I2n,
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and so, x ∈ Extr (4n,2n).
In the case of Extr(4,2) the reverse is also true, as the maximum value of |QPR(x)| is
equal to ‖x‖

2

2 , that is, if x0 = argmax|QPR(x)|, then

‖x0‖
2

2
= max |QPR(x0)| ,

which, if written in coordinates we have:

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 =±2(x1x6− x2x5 + x3x4)

⇔ (x1± x6)
2 +(x2∓ x5)

2 +(x3± x4)
2 = 0.

Hence,
x1 =±x6, x2 =∓x5 and x3 =±x4

proving the reverse, that is

x∗ =±x and x ∈V+1∪V−1.

The proof is complete.

3 The Extremal Variety Extr(6,3)

In the following section we define representations for the extremal variety Extr(6,3)
and calculations for M(6,3).

Theorem 8. The extremal variety Extr(6,3) is given by the set A , which is the solution
set of the equations

tr
[(

Φ
3
6 (z)

T
Φ

3
6 (z)

)2
]
=

3
2

and ‖z‖2 = 1 (21)

or equivalently the equations,

tr
[(

Φ
3
6 (z)

T
Φ

3
6 (z)

)2
]
=

3
2
‖z‖4. (22)

Proof. In view of theorem 2, the minimum value of tr
[(

Φ3
6 (z)

T
Φ3

6 (z)
)2
]

is attained

when all eigenvalues are equal, or equivalently when condition (11) holds, in which
case the set of homogeneous equations

tr
[(

Φ
3
6 (z)

T
Φ

3
6 (z)

)2
]
=

3
2
‖z‖4

defines a projective variety in P(
6
3)−1(R) = P19(R), which is non-void, since the vectors

1√
2

e1∧ e2∧ e3±
1√
2

e4∧ e5∧ e6 (23)

belong to this variety.
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(23) is a representation of a specific element of the extremal veriety Extr(3,6) in the
projective space P(

∧3R6). For this specific projective space there is a minimal repre-
sentation of its elements in terms of an orthonormal basis and 5 decomposable mul-
tivectors (see [7]) (26). The representation in (23) can be generalised to describe all
elements of the extremal variety Extr(3,6) utilising the representation in [7]. This is
shown in theorem 9.

Remark 4. The following inequalities hold true:

3‖z‖4 ≥ tr
[(

Φ
3
6 (z)

T
Φ

3
6 (z)

)2
]
≥ 3

2
‖z‖4. (24)

When the left part is an equality, then we have the Grassmann variety, whereas when
the right part is equality we have the extremal variety.

Next, we define a basis representation of the elements of Extr(6,3).

Theorem 9. If z∈Extr(6,3), then there exists an orthonormal basis {x1,x2,x3,y1,y2,y3}
of R6, such that

z =
1√
2

x1∧ x2∧ x3 +
1√
2

y1∧ y2∧ y3. (25)

Proof. As in [5], every element z ∈ ∧3R6, can be written as

z = λ1x1∧x2∧x3+λ2y1∧y2∧x1+λ3y1∧y3∧x2+λ4y2∧y3∧x3+λ5y1∧y2∧y3 (26)

where {x1,x2,x3,y1,y2,y3} is an orthonormal set and

λ1 ≥ |λ2| ≥ |λ3| ≥ |λ4| and λ
2
1 ≥ λ

2
2 +λ

2
5 .

In this case, the matrix Φ3
6 (z)

T Φ3
6 (z) is similar to: (by an orthonormal change of basis)

G6 =



λ 2
3 +λ 2

4 +λ 2
5 −λ2λ5 0 0 0 0

−λ2λ5 λ 2
1 +λ 2

2 0 0 0 0
0 0 λ 2

2 +λ 2
4 +λ 2

5 λ3λ5 0 0
0 0 λ3λ5 λ 2

1 +λ 2
3 0 0

0 0 0 0 λ 2
2 +λ 2

3 +λ 2
5 −λ4λ5

0 0 0 0 −λ4λ5 λ 2
1 +λ 2

4


In view of Theorem 2, in this case z ∈ Extr(6,3),

G6 =
‖z‖2

2
I6.

Hence,
λ2λ5 = λ3λ5 = λ4λ5 = 0.

This can happen, if and only if, either
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(a) λ5 = 0 and λ 2
i =

‖z‖2
4 i = 1,2,4

or

(b) λ2 = λ3 = λ4 = 0 and λ 2
1 = λ 2

5 =
‖z‖2

2

The second case (b) means (given that ‖z‖= 1) that

z =
1√
2

x1∧ x2∧ x3±
1√
2

y1∧ y2∧ y3

and so, the result follows in this case.
The first case (a) is equivalent to

z =
1
2

x1∧ x2∧ x3±
1
2

y1∧ y2∧ x1±
1
2

y1∧ y3∧ x2±
1
2

y2∧ y3∧ x3,

which can be written in the form (25) as:

1√
2

(
1√
2
(−x1 + y3)∧ 1√

2
(−x2− y2)∧ 1√

2
(x3 + y1)

)
+ 1√

2

(
1√
2
(x1 + y3)∧ 1√

2
(x2− y2)∧ 1√

2
(x3− y1)

)
.

This proves that all elements of Extr(6,3) are of the form (25). The proof of the theorem
is complete.

4 The Extremal Variety Extr(n, p) when n = pk

In this section we define representations for the extremal variety Extr(pk, p) and calcu-
lations for M(pk,p).

Theorem 10. When n = pk, then

Mn,p =
(n− p) p

n
=

k−1
k
· p (27)

Proof. Consider an orthonormal basis of Rn as follows:

e1
1,e

1
2, ...,e

1
p,e

2
1,e

2
2, ...,e

2
p, ...,e

k
1,e

k
2, ...,e

k
p

and consider also the multi-vector

z =
1√
k

e1
1∧ e1

2∧ ...∧ e1
p +

1√
k

e2
1∧ e2

2∧ ...∧ e2
p + ...+

1√
k

ek
1∧ ek

2∧ ...∧ ek
p

Then one may easily check that:

(a) 〈
z∧ ei

j,z∧ ei
j
〉
=

(
1√
k

)2

+ ...+

(
1√
k

)2

︸ ︷︷ ︸
k−1 times

=
k−1

k
(28)
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(b) 〈
z∧ ei

j,z∧ eρ

λ

〉
= 0, for all (ρ,λ ) 6= (i, j) (29)

Hence, (
Φ

p
n (z)

T
Φ

p
n (z)

)2
= diag

(
(k−1)2

k2 ,
(k−1)2

k2 , ...,
(k−1)2

k2

)
and

fn,p(z)= (n− p)‖z‖n−n · (k−1)2

k2 = p(k−1)− pk · (k−1)2

k2 = p(k−1)
(

k− (k−1)
k

)
= p· (k−1)

k

as the eigenvalues of Φ
p
n (z)

T
Φ

p
n (z) have the minimum dispersion, that is zero disper-

sion. Therefore,

max
‖z‖=1

fn,p(z) =
p(k−1)

k
.

The proof is complete.

5 Applications to Control Theory

In the following section we present how Grassmann inequalities can be used as an
alternative tool in the Pole placement problem, which is one of the main problems in
Algebraic Control Theory.

5.1 Pole Placement Assessment

An application of Grassmann inequalities, that is discussed in this paper, is the assess-
ment of pole placement for a specific MIMO system S with n states, p inputs, m outputs
and a known pole polynomial p of degree n with static output feedback. This problem is
one of the basic problems in Algebraic Control Theory. This problem may be described
as a central projection problem from a projective space parametrised by the Plücker
coordinates to another projective space parametrised by the pole polynomials. The de-
sirable solutions are elements of the Grassmannian into this projective space which are
depicted in the pole polynomial through central projection. The aforementioned prob-
lem can be mathematicaly formulated as follows:

zT PS = p (30)

zT ∈ Gp(Rm+p)⊂ P(∧pRm+p) (31)

The set of solutions of equation (30) for given PS and p is denoted by LPS,p. When zT

does not satisfy the requirement in (30) and belongs in general in the projective space,
then the following Grassmann inequalities hold true:

m‖z‖4 ≥ tr
[(

Φ
p
m+p(z)

T
Φ

p
m+p(z)

)2
]
≥ m2

m+ p
‖z‖4 (32)
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If normalised, so that ‖z‖= 1

m≥ tr
[(

Φ
p
m+p(z)

T
Φ

p
m+p(z)

)2
]
≥ m2

m+ p
(33)

A solution z ∈LPS,p satisfies also equation (31) if

tr
[(

Φ
p
m+p(z)

T
Φ

p
m+p(z)

)2
]
= m (34)

This extra condition (34) does not always hold. In this case, we have to assess how close
is the set LPS,p to have a decomposable solution. If this question is answered, then the
problem of approximate pole placement can be solved. Grassmann inequalities offer a
tool to assess the effectiveness of approximate pole assignability. This can be done as
follows:
We consider the set:

SLPS,p =

{
z
‖z‖

: z ∈LPS,p

}
(35)

and its closure: SLPS,p, which contains also the point:{
z
‖z‖

: zPS = 0
}

(36)

Consider the map:

SLPS,p
F−→
[

m2

m+ p
,m
]

where, F(z) = tr
[(

Φ
p
m+p(z)

T
Φ

p
m+p(z)

)2
]

and F(SLPS,p) =
[
aS,p,bS,p

]
⊆
[

m2

m+p ,m
]
.

Since SLPS,p is a compact and connected spherical segment, then the index:

0≤ k(S,p) =
m−bS,p

m− m2

m+p

≤ 1 (37)

measures how close is this problem, for a given pair (S, p), to have a decomposable
solution, i.e. to find a realizable controller to assign the poles closed to the required
ones. Equivalently, the index:

0≤ l(S,p) =
bS,p−aS,p

m− m2

m+p

≤ 1 (38)

indicates how sensitive any numerical method to solve this approximate problem is.

5.2 Pole Placement Solvability Conditions

Consider a linear system S of 2 inputs, 2 outputs and n states. We require to solve the
arbitrary pole placement via static output feedback. As in [6,7,10] we have to solve
simultaneously a system of nonlinear and 1 bi-linear equations:

x ·PS = 0, PS ∈ R6×n (39)
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x∧ x = 0, x ∈ P(∧2R4) (40)

in the 5-dimensional projective space P(
∧2R4). We call the solution space in P(

∧2R4)
as Σ0. We have to state conditions on ”n” such that Σ0 6=∅. We call Σ+, Σ− the solution
space of the system as above with x∧x = 0 replaced by x∧x = ‖x‖2 and x∧x =−‖x‖2

respectively.
The three solution spaces Σ0, Σ+, Σ− correspond to the intersection of the linear space,
LS, defined by (39) with the Grassmanian G2(R4) and V+, V− the sub-spaces of Extr(4,2)
respectively. If we prove that Σ+, Σ− 6= ∅, then by the intermediate value theorem we
will have Σ0 6= ∅ as well. The introduction of Σ+, Σ− facilitates the problem as we
replace the the nonlinear equations x∧ x = 0 with linear equations defining V+, V−. In
the last case Σ+, Σ− are non-empty if

dim(Σ+)+dim(LS)≥ dim(P(∧2R4)) (41)

i.e. 5−3+5−n≥ 5 and thus, if 2≥ n. So, we calculate that if n≤ 2, then the arbitrary
pole placement problem is generically solvable.

5.3 Example 2

We consider the torus S1×S1 embedded in R4. The tangent bundle of S1×S1 defines a
map:

M : S1×S1→ G2(R4) (42)

and as a result a line bundle map:

∧2M : S1×S1→ P(∧2R4) (43)

which for (z1,z2) ∈ S1 × S1 is given by the tensor product z1 ⊗R z2. If we project
∧2M (z1,z2) to the extremal variety Extr(4,2) ⊆ P(∧2R4) we get another line bun-
dle map which we call Extr(∧2M ), which in this case is equivalently defined by z1.z2
(the complex multiplication of z1,z2). So we have that

Extr(z1⊗R z2) = z1.z2 (44)

6 Conclusion

We considered special types of varieties related to the Grassmann varieties called ex-
tremal varieties. These are defined via new types of inequalities called Grassmann in-
equalities. The Grassmannian and extremal varieties are obtained as the two extremes
of the inequalities. The numbers Mn,p arising in these inequalities were calculated for
specific values of n and p. Additionally, various representations of the extremal vari-
eties for specific values of n and p were presented demonstrating the total multiplicity
property for the singular values of the Grassmann matrix. Further work has to be done
towards calculating Mn,p for all values of n and p and also towards exploring the struc-
ture of Extr(n, p) for each and everyone of these cases. Finally, another step would be
to relate the properties of Extr(n, p) to those of the Grassmann variety Gp(Rn).
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